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Abstract. We show that any global convex solution to the Sigma-2 equation
must be quadratic.

1. Introduction. In this note, we show that any global convex solution in R
n to

the Hessian equation

σk

(

D2u
)

= σk (λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik
= 1

with k = 2 must be quadratic. Here λis are the eigenvalues of the Hessian D2u.
Classically any global convex solution in Rn to the Laplace equation σ1

(

D2u
)

=

△u = 1 or the Monge-Ampère equation σn

(

D2u
)

= detD2u = 1 must be quadratic.

Theorem 1.1. Let u be any smooth solution in Rn to σ2

(

D2u
)

= 1 with D2u ≥
[

δ −
√

2
n(n−1)

]

I for any δ > 0. Then u is quadratic.

The lower bound D2u ≥ (δ − K) I with K =
√

2/n (n − 1) forces the Hessian, or
the eigenvalues λ on the positive branch of σ2 (λ) = 1. (Because σ1 (λ) ≤ −nK for
λ on the negative branch of σ2 (λ) = 1.) We really need this particular bound K =
√

2/n (n − 1) in our argument for the convexity of a corresponding new equation.

The solution u satisfies the above elliptic equation σ2

(

D2u
)

= 1 with convex level
set {λ | σ2 (λ) = 1} . However the ellipticity is not uniform even under the strict
convexity assumption on u, D2u > 0. The standard Evans-Krylov-Safonov theory
does not apply. To apply this theory, we make a Legendre-Lewy type transformation
of the solution u so that the new function has bounded Hessian (Step 1); the new
corresponding equation is convex (only under the particular assumption D2u ≥
[

δ −
√

2/n (n − 1)
]

I, Step 2.1); and the new equation is uniformly elliptic (Step
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2.2). The standard theory on Hölder estimates for the Hessian leads to our theorem
(Step 3).

We guess that Theorem 1.1 should still be true under the semiconvexity assump-
tion D2u ≥ −KI with arbitrarily large K, even for general equation σk

(

D2u
)

= 1
with 2 ≤ k ≤ n − 1. At least this is the case when n = 3 and k = 2; see [4, Theo-
rem 1.3] where a different transformation and the geometric measure theory were
employed.

2. Proof. Step 1. We first make a (Legendre-Lewy type) transformation of the
function u so that the Hessian of the new function ũ is bounded from both sides. The
negative ũ is the Lewy type rotation of u, which in turn is nothing but the Legendre

transformation of the function w (x) = u (x) + 1
2K |x|2 ; see [1]. Geometrically the

Legendre transformation is to re-present the “gradient” graph G : y = Dw (x) , or
(x, Dw (x)) ⊂ Rn × Rn over y-space (that is, to switch x and y coordinates) as
another “gradient” graph in R2n. Any tangent vector to G takes the form

(

e, D2w e
)

or
(

(

D2w
)−1

ē, ē
)

,

where vector e is in x-space and ē is in y-space. Note that the (canonical) angles
between the tangent planes of G and x-space are

arctan (λi + K) ∈ [arctan δ,
π

2
)

by the semiconvexity assumption λi ≥ δ − K. From this angle condition and the

symmetry of
(

D2w
)−1

, it follows that G can still be represented as a “gradient”
graph x̄ = Dw̄ (y) , or (Dw̄ (y) , y) over the whole y-space; further

arctan λ̄i =
π

2
− arctan (λi + K) ∈ (0,

π

2
− arctan δ],

where λ̄is are the eigenvalues of the Hessian D2w̄.
Therefore, the entire function ũ (y) = −w̄ (y) satisfies

−1

δ
I ≤ D2ũ = −

(

D2u + K
)−1

< 0

or

λ̃i = − 1

λi + K
∈ [−1

δ
, 0), equivalently λi = − 1

λ̃i

− K ≥ δ − K,

where λ̃is are the eigenvalues of the Hessian D2ũ.
Remark. In the “gradient” graph space Rn × Rn = Cn, the Legendre trans-

formation is a π/2-U (n) rotation followed by a conjugation. The transformations
described in [4] are U (n) rotations with arbitrary angles.

Step 2.1. We next show that the Hessian D2ũ is on a convex hyper surface in the
symmetric matrix space. By calculating the double derivatives with the chain rule,
or writing symmetric convex functions as maxima of linear functions with certain
properties, we only need to verify the eigenvalues of D2ũ sit on a convex level set
in the λ̃ space.

Let

g
(

λ̃
)

= σ2

(

− 1

λ̃1

− K, · · · ,− 1

λ̃n

− K

)

= σ2 (λ) = f (λ) .



LIOUVILLE PROBLEM 661

Note

σ2

(

− 1

λ̃1

− K, · · · ,− 1

λ̃n

− K

)

=
σn−2

(

λ̃
)

σn

(

λ̃
) + (n − 1)K

σn−1

(

λ̃
)

σn

(

λ̃
) +

(

n
2

)

K2

=
σn−2

(

λ̃
)

σn

(

λ̃
) + (n − 1)K

σn−1

(

λ̃
)

σn

(

λ̃
) + 1,

where we used K =
√

2/n (n − 1), then the level set

Γ =
{

λ̃ | g
(

λ̃
)

= 1
}

=
{

λ̃ | σn−2

(

λ̃
)

+ (n − 1)Kσn−1

(

λ̃
)

= 0, λ̃i < 0
}

.

It follows from an old result (cf. [2, Theorem 15.16]) that Γ is convex.
Remark. The level set Γ is saddle for large K and n ≥ 3 in general.
Step 2.2. We now show that ũ satisfies a uniformly elliptic equation. We only

need to demonstrate that the normal to the level set Γ is uniformly inside the

positive cone
{

λ̃ | λ̃i > 0 for i = 1, · · · , n
}

, when −δ−1 ≤ λ̃i < 0 or λi ≥ δ − K.

To achieve this, we multiply the gradient Dg by a (conformal) factor and show the
resulting vector is uniformly inside the positive cone.

The gradient Dg has components

g
λ̃i

(

λ̃
)

= fλi

1

λ̃2
i

= [σ1 (λ) − λi] (λi + K)2 .

Let

N =
1

√

(1 + λ2
1) . . . (1 + λ2

n)
Dg

=

(

(σ1 − λ1) (λ1 + K)
2
, . . . , (σ1 − λn) (λn + K)

2
)

√

(1 + λ2
1) . . . (1 + λ2

n)
.

Remark. For n = 3 still with σ2 (λ) = 1, N also takes the form

N =

(

(λ1 + K)
2

1 + λ2
1

,
(λ2 + K)

2

1 + λ2
2

,
(λ3 + K)

2

1 + λ2
3

)

.

We proceed with the following simple algebraic lemma.

Lemma 2.1. Assume F
(

D2u
)

= σ2 (λ) = 1 and λ is on the positive branch

{λ | σ2 (λ) = 1, σ1 (λ) > 0} . Then

(

Fuij

)

=









σ1 − λ1

σ1 − λ2

· · ·
σ1 − λn









≥ c (n)









1
λ1

λ1

· · ·
λ1









,

when D2u is diagonalized with eigenvalues λ1 ≥ · · · ≥ λn.

Proof. This lemma follows from the argument for Theorem 1 in [3]. For complete-
ness, we include a proof.

The matrix equality is straight forward. We prove the inequalities. Denote

σk;i1i2 (λ) = σk (λ) |λi1
=λi2

=0.
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We go with σ1 − λ1 = σ1;1 first. Note

σ2;1 + λ1σ1;1 = σ2 = 1

and

σ2;1 =
(σ1;1)

2 − |(0, λ2, · · · , λn)|2
2

<
1

2
(σ1;1)

2
,

then
1

2
(σ1;1)

2
+ λ1σ1;1 − 1 > 0.

By the assumption that λ is on the positive branch of σ2 (λ) = 1, it is standard that

σ1;1 =
∂σ2

∂λ1
> 0.

Hence we get

σ1;1 > −λ1 +
√

λ2
1 + 2 =

2

λ1 +
√

λ2
1 + 2

≥ c (n)

λ1
.

The last inequality is from the fact that

λ1 ≥ σ1

n
=

1

n

√

2σ2 + |D2u|2 ≥ c (n) .

For i ≥ 2, the lower bound of σ1 − λi = σ1;i is estimated as follows. We have

σ1;1i + λ1 = σ1;i

and

σ2;1i + λ1σ1;1i = σ2;i = σ2 − λiσ1;i > −λiσ1;i.

These inequalities imply

σ2;1i − (σ1;1i)
2

> −λiσ1;i − σ1;1iσ1;i = −σ1;1σ1;i ≥ − (σ1;i)
2
.

where we used 0 < σ1;1 ≤ σ1;i. Again noting

σ2;1i ≤
(σ1;1i)

2

2
,

we get

(σ1;i)
2

>
(σ1;1i)

2

2
and consequently

|σ1;1i| <
√

2σ1;i.

Thus

λ1 = σ1;i − σ1;1i <
(

1 +
√

2
)

σ1;i,

that is

σ1;i >
(√

2 − 1
)

λ1.

Now we show that each component of N has positive lower and upper bounds.
We first need to show that λi is also bounded from above for i ≥ 2. We have

1 = σ2 = λi (σ1 − λi) + σ2;i

= λi (σ1 − λi) + λ+ · λ− + λ+ · λ+ + λ− · λ−

≥ λi (σ1 − λi) − λ+ · λ−,
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where λ+ · λ−, λ+ · λ+, and λ− · λ− represent the sum of products of all pair
eigenvalues in σ2;i with the opposite signs, the same positive signs, and the same
negative signs respectively. From the above lemma and the assumption λi ≥ δ−K,
we obtain

1 ≥ λi

(√
2 − 1

)

λ1 − C (n)Kλ1,

consequently

λi ≤
1 + C (n)Kλ1
(√

2 − 1
)

λ1

≤ C (n)K,

where we used λ1 > c (n) again. Further for i ≥ 2

1
√

1 + λ2
i

≥ c (n, K) .

We are ready to show a “lower bound” for N. From the above bounds for λ and
the lemma, we get

N1 ≥ c (n, K)
(λ1 + K)2

λ1

√

(1 + λ2
1)

> c (n, K) > 0

and

Ni ≥ c (n, K)
λ1

√

1 + λ2
1

δ2 ≥ c (n, K, δ) > 0 for i ≥ 2.

We next show an “upper bound” for N. From

λ1 (σ1 − λ1) + σ2;1 = 1

it follows that

λ1 (σ1 − λ1) = 1 − σ2;1 < C (n, K) .

Then we get

N1 < (σ1 − λ1)
(λ1 + K)2
√

1 + λ2
1

= (σ1 − λ1)λ1
(λ1 + K)

λ1

(λ1 + K)
√

1 + λ2
1

< C (n, K) .

For i > 1

Ni <
(σ1 − λi)
√

(1 + λ2
1)

(λi + K)2 < C (n, K) ,

where we used the fact λi ≤ C (n)K for i ≥ 2.
Finally the inequalities

0 < c (n, K, δ) ≤ Ni ≤ C (n, K) for all i = 1, · · · , n

immediately show that N = Dg/
√

(1 + λ2
1) . . . (1 + λ2

n), and consequently the nor-
mal to the level set Γ, N/ |N | is uniformly inside the positive cone.

Remark. Unlike the convexity, the uniform ellipticity is valid for large K in
general.

Step 3. The closing argument is standard. We now have a global solution ũ
with bounded Hessian satisfying a convex and uniformly elliptic equation. By the
Evans-Krylov-Safonov theory, we obtain

[

D2ũ
]

Cα(BR)
≤ C (n, δ)

Rα

∥

∥D2ũ
∥

∥

L∞(B2R)
≤ C (n, δ)

Rα
→ 0 as R → ∞,
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where α = α (n, δ) > 0. We conclude that D2ũ is a constant matrix, and conse-
quently D2u is also a constant matrix.
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