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Abstract

We derive a priori interior Hessian estimates for special Lagrangian equations

when the potential is convex. When the phase is very large, we show that con-

tinuous viscosity solutions are smooth in the interior of the domain.
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1 Introduction

In this paper, we establish a priori interior Hessian estimates for convex solu-

tions to the special Lagrangian equation

(1.1) F.D2u/ D
nX

iD1

arctan �i D ‚

where the �i are the eigenvalues of the Hessian D2u and ‚ is a constant.

The fully nonlinear equation (1.1) arises from the special Lagrangian geometry

[7]. The gradient graph .x; Du.x// of the potential u is a Lagrangian submanifold

in R
n � R

n: The Lagrangian graph is called special when the phase, which at each

point is the argument of the complex number .1 C p�1 �1/ � � � .1 C p�1 �n/; is

a constant ‚; that is, u satisfies equation (1.1). A special Lagrangian graph is a

volume-minimizing minimal submanifold in R
2n.

We first state the following interior Hessian estimates:

THEOREM 1.1 Let u be a smooth convex solution to (1.1) on a ball BR.0/ � R
n.

Then we have

jD2u.0/j � C.n/ exp

�
C.n/

�
osc

BR.0/

u

R2

�3n�2�
;

where C.n/ is a uniform dimensional constant.
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Observe that all eigenvalues �i are positive if the phase ‚ is very large:

nX
iD1

arctan �i D ‚ � .n � 1/
�

2
:

Then a direct consequence of Theorem 1.1 is the following:

COROLLARY 1.2 Let u be a smooth solution to (1.1) with j‚j � .n � 1/�
2

on

BR.0/ � R
n. Then we have

jD2u.0/j � C.n/ exp

�
C.n/

�
osc

BR.0/

u

R2

�3n�2�
:

In the 1950s Heinz [9] derived a Hessian bound for the two-dimensional Monge-

Ampère-type equation, including (1.1) with n D 2. In the 1970s Pogorelov [13]

constructed irregular solutions to �3.D2u/ D det.D2u/ D 1 in dimension 3,

which were generalized to a wider class of �k-equations with k � 3 by Urbas [16].

Hessian estimates for solutions with certain strict convexity constraints to Monge-

Ampère equations and �k equations with k � 2 were obtained by Pogorelov [13]

and Chou and Wang [5], respectively. Pointwise Hessian estimates in terms of cer-

tain integrals of the Hessian for �k-equations and for special Lagrangian equation

(1.1) with n D 3, ‚ D � , were produced by Urbas [17, 18] and by Bao and Chen

[1], respectively. More recently, for (1.1) Hessian estimates have been obtained:

when the solutions are convex with small gradients in [19]; when n D 2 in [20]

(giving a sharper bound than in [9]); when n D 3 and j‚j � �
2

, including the

equation �2

�
D2u

� D 1 in dimension 3, in [21, 22].

What Theorem 1.1 says is that the geometry of the special Lagrangian graph

with convex potential is simple, namely, the induced metric is quasi-isometric to

the flat one up to a factor of the height (or the oscillation of the potential). The

idea of our arguments is thus to retrieve this simple geometry. By a Lewy-type

rotation, the geometry of the Lagrangian graph is already simple in the rotated

coordinate system. Consequently, the subharmonic volume element, in the origi-

nal coordinates, of the special Lagrangian graph with convex potential is actually

a subsolution to a uniformly elliptic equation. Therefore the volume element is

bounded pointwise by its integral on the minimal graph by mean value inequali-

ties. (Here one can avoid the “harder” mean value inequality for the nonuniformly

elliptic Laplace-Beltrami operator on minimal surfaces.) Using a relative isoperi-

metric inequality on the rotated coordinate plane, we derive a Sobolev inequality

for functions without compact support on the Lagrangian graph. Then we bound

the integral of the volume element by that of its gradient. Further, the Laplacian

of the volume element bounds its gradient. This Jacobian inequality enables us to

bound the integral of the gradient of the volume element by a volume term. The

Lewy-type rotation also leads to a bound of the volume by the height of the La-

grangian graph, or the gradient of the potential. Lastly, the gradient of any convex

function is dominated by its oscillation.
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As an application of our a priori estimates in Corollary 1.2, we have the follow-

ing regularity result:

THEOREM 1.3 Any C 0 viscosity solution to (1.1) with j‚j � .n � 1/�
2

is analytic

inside the domain of the solution.

A well-known result (cf. [11, cor. 3]) states that all W 2;n strong solutions to

any (possibly degenerate) elliptic equation in dimension n are also C 0 viscosity

solutions. From this and Theorem 1.3 we see that all W 2;n strong solutions to

(1.1) with j‚j � .n � 1/�
2

are regular. Previously in [1], the regularity was shown

for any W 2;3C convex strong solution to 4u D det D2u, which is (1.1) with

‚ D � and n D 3.

There are several ways to establish the existence and uniqueness of a C 0 vis-

cosity solution to the Dirichlet problem of the special Lagrangian equation (1.1);

see the remarks at the end of the paper.

Throughout the paper, C.n/ denotes various positive constants depending only

on dimension n.

2 A Jacobi Inequality for the Volume Element

Taking the gradient of both sides of the special Lagrangian equation (1.1), we

have for each k D 1; : : : ; n

(2.1)

nX
i;j D1

gij @ij uk D 0;

where .gij / is the inverse of the induced metric g D .gij / D I C D2uD2u on the

submanifold .x; Du.x// � R
n � R

n. Straight computation using (1.1) shows that

the Laplace-Beltrami operator of the metric g

4g D 1p
det g

nX
i;j D1

@i .
p

det ggij @j /

simplifies to

(2.2) 4g D
nX

i;j D1

gij @ij :

The gradient and inner product with respect to the metric g are

rgv D
� nX

kD1

g1kvk; : : : ;

nX
kD1

gnkvk

�
;

hrgv; rgwig D
nX

i;j D1

gij viwj ;
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where vk D @kv and wj D @j w for functions v and w. In particular, jrgvj2 D
hrgv; rgvig .

We now derive a Jacobi inequality for the volume element

V D p
det g D

nY
iD1

.1 C �2
i /

1
2 :

PROPOSITION 2.1 Suppose that u is a smooth convex solution to (1.1) in BR � R
n.

Then

4g ln V � 1

n
jrg ln V j2:

Consequently, Z
Br

jrg ln V j2 dvg � C.n/

R � r

Z
BR

dvg :

PROOF: By differentiating the minimal surface equation (2.1) again and per-

forming some long and straightforward computations, one gets the standard for-

mula for 4g ln V I see, for example, [23, lemma 2.1]. (The general formula for

minimal submanifolds of any dimension or codimension originates in [14, p. 90].)

At any fixed point, we assume that D2u is diagonalized; then

4g ln V D
nX

i;j;kD1

.1 C �i�j /h2
ijk;

where hijk D p
gi i

p
gjj

p
gkkuijk are the second fundamental form of the graph.

Gathering all terms containing h2
ijj D h2

jij D h2
jj i for a fixed i , we have

.1 C �2
i /h2

ii i C
X
j ¤i

.1 C �2
j /h2

jj i C
X
j ¤i

.1 C �i�j /h2
ijj C

X
j ¤i

.1 C �j �i /h
2
jij

D .1 C �2
i /h2

ii i C
X
j ¤i

.3 C �2
j C 2�i�j /h2

jj i :

Thus

4g ln V D
nX

iD1

�
.1 C �2

i /h2
ii i C

X
j ¤i

.3 C �2
j C 2�i�j /h2

jj i

�

C 2
X

i<j <k

.3 C �i�j C �j �k C �k�i /h
2
ijk :

To bound the gradient, we compute (still at the same fixed point with D2u diago-

nalized)

@i ln V D
nX

j D1

gjj �j ujj i :
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Then

jrg ln V j2g D
nX

iD1

gi i

� nX
j D1

gjj �j ujj i

�2

D
nX

iD1

� nX
j D1

�j hjj i

�2

� n

nX
i;j D1

�j
2h2

jj i :

From the convexity of u, we have

4g ln V � 1

n
jrg ln V j2 �

nX
iD1

h2
ii i C

X
j ¤i

Œ3 C 2�i�j �h2
jj i � 0:

Next, for any smooth cutoff function ' 2 C 1
0 .BR/,Z

BR

'2jrg ln V j2 dvg � n

Z
BR

'2 4g ln V dvg

D �n

Z
BR

h2'rg'; rg ln V ig dvg

� 1

2

Z
BR

'2jrg ln V j2 dvg C 2n2

Z
BR

jrg'j2 dvg :

In particular, choosing ' to be 1 on Br with gradient bounded by 2
R�r

in BR, we

see Z
Br

jrg ln V j2 dvg �
Z

BR

'2jrg ln V j2 dvg

� 4n2

Z
BR

jrg'j2 dvg

� C.n/

R � r

Z
BR

dvg :

This completes the proof of Proposition 2.1. �

3 Hessian Estimates for Smooth Convex Solutions

We assume that R D 7 and u is a solution on B7 � R
n for simplicity of

notation. By scaling u.R
7

x/=.R
7

/2, we still get the estimate in Theorem 1.1. We

now present the proof of Theorem 1.1, which consists of five steps.
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Step 1. We take a new representation M D . Nx; D Nu. Nx// for the original (spe-

cial) Lagrangian graph M D .x; Du.x// in a new coordinate system of R
n �R

n Š
C

n, Ń D e�p�1 �=4´ with ´ D x C p�1 y and Ń D Nx C p�1 Ny:

(3.1)

(
Nx D

p
2

2
x C

p
2

2
Du.x/

Ny D D Nu D �
p

2
2

x C
p

2
2

Du.x/:

The following is contained in [23, p. 122].

PROPOSITION 3.1 Let u be a smooth convex function BR.0/ � R
n. Then the

Lagrangian submanifold M D .x; Du.x// � R
n � R

n can be represented as a

gradient graph M D . Nx; D Nu. Nx// of the new potential Nu in a domain containing a

ball of radius

(3.2) NR �
p

2 R

2

such that in these coordinates the new Hessian satisfies

(3.3) � I � D2 Nu � I:

Also define

N�r D Nx.Br.0//:

Then we have from (3.2)

(3.4) dist. N�1; @ N�5/ � 4p
2

> 2:

We see from (3.1) that j Nxj � � for Nx 2 N�6 with

(3.5) � D 6

p
2

2
C kDukL1.B6/

p
2

2
:

From (3.3), it follows that the induced metric on M D . Nx; D Nu. Nx// in Nx-coordinates

is bounded by

(3.6) d Nx2 � g. Nx/ � 2d Nx2:

Step 2. We recall a relative isoperimetric inequality in [22] and include a proof

for completeness.

LEMMA 3.2 Let �1 � �2 � B� � R
n. Suppose that dist.�1; @�2/ � 2; also A

and Ac are disjoint measurable sets such that A [ Ac D �2. Then

minfjA \ �1j; jAc \ �1jg � C.n/�nj@A \ @Acj n
n�1 :

PROOF: Define a continuous function on �1

�.x/ D jA \ B1.x/j
jB1j :
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Case 1. �.x�/ D 1
2

for some x� 2 �1. We know B1.x�/ � �2. From the

classical relative isoperimetric inequality for balls (cf. [10, theorem 5.3.2]), we

have
jB1j

2
� C.n/j@A \ @Ac \ B1.x�/j n

n�1 � C.n/j@A \ @Acj n
n�1 :

It then follows that

minfjA \ �1j; jAc \ �1jg � j�1j < jB�j D �njB1j � C.n/�nj@A \ @Acj n
n�1 :

Case 2.1. �.x/ > 1
2

for all x 2 �1. Cover �1 by at most N � C.n/�n unit

balls B1.xi / for some uniform constant C.n/. Note that all these balls are inside

�2. By the classical relative isoperimetric inequality for balls again,

jAc \ B1.xi /j D minfjA \ B1.xi /j; jAc \ B1.xi /jg � C.n/j@A \ @Acj n
n�1 :

Summing this inequality over all covers, we get

jAc \ �1j �
NX

iD1

jAc \ B1.xi /j � C.n/�nC.n/j@A \ @Acj n
n�1 I

then the conclusion of the lemma follows.

Case 2.2. �.x/ < 1
2

for all x 2 �1. Repeat the argument in Case 2.1 with Ac

replaced by A; we still have the conclusion of the lemma.

The proof of Lemma 3.2 is complete. �

Using the relative isoperimetric inequality in Lemma 3.2, we proceed with the

following Sobolev inequality on the special Lagrangian graph for functions without

compact support. This is inspired by [2].

PROPOSITION 3.3 Let u be a smooth convex function on B5.0/ � R
n. Let f be a

smooth positive function on the Lagrangian surface M D.x; Du.x//. Then�Z
B1

j.f � �/Cj n
n�1 dvg

� n�1
n � C.n/�2.n�1/

Z
B5

jrg.f � �/Cjdvg ;

where � was defined in (3.5) and � D 2
jB1j

R
B5.0/ f dx.

PROOF: Let M D kf kL1.B1/. We may assume � < M since otherwise the

desired result holds trivially. By Sard’s theorem, the level set fx j f .x/ D tg is C 1

for almost all t . We first show that for all such t 2 Œ�; M �,

(3.7)
ˇ̌fx j f .x/ > tg \ B1

ˇ̌
g

� C.n/�2n
ˇ̌fx j f .x/ D tg \ B5

ˇ̌n=.n�1/

g
:

Here j � jg denotes the area or volume with respect to the induced metric; j � j denotes

the same with respect to the Euclidean metric.
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From t > 2
jB1j

R
B5.0/ f dx and f > 0, it follows that jfx j f .x/ > tg \ B1j <

jB1j=2 and consequently

(3.8)
ˇ̌fx j f .x/ � tg \ B1

ˇ̌
>

jB1j
2

:

Now we use instead the coordinates for M D . Nx; D Nu. Nx// given by the Lewy

rotation (3.1). Let

At D f Nx j f . Nx/ > tg \ N�5;

where we are treating f as a function on the special Lagrangian surface M. Ap-

plying Lemma 3.2 with (3.4) and (3.5), we see that

minfjAt \ N�1j; jAc

t \ N�1jg � C.n/�nj@At \ @Ac

t j
n

n�1 :

If jAt \ N�1j � jAc

t \ N�1j, then we have from (3.6)

jAt \ N�1jg. Nx/ � 2
n
2 jAt \ N�1j

� C.n/�nj@At \ @Ac

t j
n

n�1

� C.n/�nj@At \ @Ac

t jn=.n�1/

g. Nx/
:

If jAt \ N�1j > jAc

t \ N�1j, still we have

jAt \ N�1j � C.n/�njAc

t \ N�1j;
since by (3.8), jAc

t \ N�1j > jB1j=2nC1. Thus

jAt \ N�1jg. Nx/ � C.n/�njAc

t \ N�1j
� C.n/�2nj@At \ @Ac

t jn=.n�1/

g. Nx/
:

In either case we have the desired isoperimetric inequality (now given in the new

coordinates for M), which holds for � < t < M ,

jAt \ N�1jg. Nx/ � C.n/�2nj@At \ @Ac

t jn=.n�1/

g. Nx/
;

or equivalently (3.7) in the original coordinates.

We then proceed to prove the Sobolev inequality via the Federer-Fleming ar-

gument (cf. [2, theorem 3]). First we recall the Hardy-Littlewood-Polya inequality

for any nonnegative, nonincreasing integrand 	.t/:

(3.9)

�Z T

0

	.t/q dtq

� 1
q �

Z T

0

	.t/dt

with q � 1. This inequality follows from the fact that the left equals the right when

T D 0, and the T -derivative of the left is less than or equal to that of the right.
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Therefore, we have�Z
B1

j.f � �/Cj n
n�1 dvg

� n�1
n

D
�Z M��

0

ˇ̌fx j f .x/ � � > tg \ B1

ˇ̌
g

dt
n

n�1

� n�1
n

�
Z M��

0

ˇ̌fx j f .x/ � � > tg \ B1gˇ̌.n�1/=n

g
dt

� C.n/�2.n�1/

Z M

�

ˇ̌fx j f .x/ D tg \ B5

ˇ̌
g

dt

� C.n/�2.n�1/

Z
B5

jrg.f � �/Cjdvg ;

by (3.9), (3.7), and the co-area formula for the above three inequalities, respec-

tively. The proposition is thus proved. �

Step 3. We consider the function f D ln V on the special Lagrangian mani-

fold M; where V is the volume element with respect to the original x-coordinate

system. Observe that ln V. Nx/ in the rotated Nx-coordinate system satisfies

nX
i;j D1

gij . Nx/
@2 ln V. Nx/

@ Nxi @ Nxj
D 4g. Nx/ ln V. Nx/ � 0

because of (2.2) and Proposition 2.1. Note also that the above nondivergence and

divergence elliptic operators are both uniformly elliptic by (3.6).

Via the De Giorgi–Moser iteration (cf. [6, theorem 8.17]), we have

.ln V � �/C.0/ D .ln V � �/C.N0/

� C.n/

� Z
B

1=
p

2
.N0/

j.ln V � �/C. Nx/j n
n�1 d Nx

� n�1
n

� C.n/

� Z
B

1=
p

2
.N0/

j.ln V � �/C. Nx/j n
n�1 dvg. Nx/

� n�1
n

� C.n/

� Z
B1.0/

j.ln V � �/C.x/j n
n�1 dvg.x/

� n�1
n

where

� D 2

jB1.0/j
Z

B5.0/

ln V dx:
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Using the nondivergence structure of the Laplace-Beltrami operator (2.2), one

may also get the above mean value inequality by a local maximum principle [6,

theorem 9.20].

Thus by Proposition 3.3 and Proposition 2.1, we obtain

ln V.0/ � C.n/�2.n�1/

Z
B5

jrg.ln V � �/Cjdvg C C.n/

Z
B5

ln V dx

� C.n/�2.n�1/

�Z
B5

jrg ln V j2 dvg

� 1
2
�Z

B5

V dx

� 1
2 C C.n/

Z
B5

V dx

� C.n/�2.n�1/

Z
B6

V dx:(3.10)

Step 4. We finish the proof of Theorem 1.1 by bounding
R

B6
V dx. Returning

to our rotated coordinates, from (3.6) we see

V dx D NV d Nx � 2
n
2 d Nx:

Since N�6 D Nx.B6.0//,Z
B6

V dx D
Z
N�6

NV d Nx � 2
n
2

Z
N�6

d Nx � C.n/�n:

Then (3.5) leads to Z
B6

V dx � C.n/Œ1 C kDukn
L1.B6/�:

Finally, from the above and (3.10) we conclude

ln V.0/ � C.n/�2.n�1/Œ1 C kDukn
L1.B6/�

or

jD2u.0/j � C.n/ exp
˚
C.n/kDuk3n�2

L1.B6/

	
:

Step 5. Now the gradient of the convex function u is bounded by its oscillation

kDukL1.B6/ � osc
B7

u:

By scaling, we arrive at the conclusion of Theorem 1.1.

4 Interior Regularity for Special Lagrangian Equations

with Very Large Phase

In this section, we apply our a priori interior estimates of Corollary 1.2 to show

Theorem 1.3, which asserts that any C 0 viscosity solution to special Lagrangian

equation (1.1) with very large phase j‚j � .n � 1/�
2

is regular, that is, analytic

inside the domain of the C 0 viscosity solution.
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PROOF: By symmetry, we assume ‚ � .n � 1/�
2

. By scaling, we assume that

the C 0 viscosity solution u satisfies (1.1) in the unit ball around any interior point

of the domain of u. We approximate the C 0 boundary data uj@B1
D ' by smooth

data '". Notice that the level set of F.D2u/ D arctan �1 C � � � C arctan �n in

�-space, corresponding to the elliptic equation (1.1),

(4.1) † D f.�1; : : : ; �n/ j arctan �1 C � � � C arctan �n D ‚g
is convex for ‚ � .n � 1/�

2
. By [4, theorem 4] (see also a simplification [15]), we

obtain a smooth solution u" to (1.1) with smooth boundary data '" in B1.

Applying the (easy) comparison theorem to the C 0 viscosity solution u and the

C 2 solution u",

(4.2) ku � u"kL1.B1/ � ku � u"kL1.@B1/ ! 0 as " ! 0:

In fact, one can deduce (4.2) from the definition of viscosity solution as follows:

Suppose

M
defD max

B1

.u � u"/ > max
@B1

.u � u"/
defD M@I

then the function

u �
�
u" � .M � M@/

2
jxj2

�
achieves its maximum at an interior point x0. By the definition of viscosity solu-

tion,

F

�
D2

�
u" � .M � M@/

2
jxj2

��
� ‚

at x0. But F is strictly elliptic,

‚ D F.D2u"/ > F.D2u".x0/ � .M � M@/I / � ‚:

This contradiction shows that maxB1
.u � u"/ � max@B1

.u � u"/. Similarly, one

proves minB1
.u � u"/ � min@B1

.u � u"/. Therefore (4.2) holds.

From our Corollary 1.2 combined with the Evans-Krylov-Safonov theory

(cf. [6, theorem 17.15]), we have

ku"kC 2;˛.�/ � C.�; kukL1.B1//

for any subdomain � � VB1. Thus u is C 2;˛ inside B1. Now by the classical

elliptic theory (cf. [6, theorem 17.16] and [12, p. 203]), u is smooth, even analytic

inside B1. �

In closing, we make some remarks on the existence and uniqueness of the C 0

viscosity solution of the Dirichlet problem for special Lagrangian equation (1.1).

As we see in the above, the approximation and the existence of smooth solutions

with smooth boundary data to (1.1) with j‚j � .n � 1/�
2

in any (strongly) convex

domain already lead to the existence and uniqueness of the C 0 viscosity solution

to the Dirichlet problem with C 0 boundary data.
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Notice that (1.1) is strictly elliptic in the sense

Fuij
.D2u/ > 0:

The existence and uniqueness of the C 0 viscosity solution for the Dirichlet problem

of (1.1) follow from those for general strictly elliptic equations. This general result

is known. It follows from the comparison principle for C 0 viscosity solutions to

strictly elliptic equations. In fact, strict ellipticity (rather than uniform ellipticity) is

enough for the proof of uniqueness (also comparison principle) for fully nonlinear

elliptic equations presented in [3, pp. 43–46]. For details, see, for example, [24].

Recently there has been a new approach toward the existence and uniqueness

of a C 0 viscosity solution to the special Lagrangian equation (1.1), as stated in

[8, p. 46]. Actually, theorem 6.2 in [8] on the Dirichlet problem for general fully

nonlinear elliptic equations with starlike/convex level set already applies to (1.1)

with j‚j � .n � 1/�
2

, even j‚j � .n � 2/�
2

. This is because the level set (4.1) †

is convex for large phase j‚j � .n � 2/�
2

; see lemma 2.1 in [25].

We point out that the above two conditions on the fully nonlinear elliptic equa-

tions, strict ellipticity and starlike/convex level set, are independent of each other.

The regularity for C 0 viscosity solutions to the general special Lagrangian

equation (1.1), without a convexity assumption on solutions or restriction on phase,

is far from being settled.

Acknowledgment. Chen is partially supported by a Natural Sciences and Engi-

neering Research Council grant. Yuan is partially supported by an National Science

Foundation grant.

Bibliography

[1] Bao, J.; Chen, J. Optimal regularity for convex strong solutions of special Lagrangian equations

in dimension 3. Indiana Univ. Math. J. 52 (2003), 1231–1249.

[2] Bombieri, E.; Giusti, E. Harnack’s inequality for elliptic differential equations on minimal sur-

faces. Invent. Math. 15 (1972), 24–46.

[3] Caffarelli, L. A.; Cabré, X. Fully nonlinear elliptic equations. American Mathematical Society

Colloquium Publications, 43. American Mathematical Society, Providence, R.I., 1995.

[4] Caffarelli, L.; Nirenberg, L.; Spruck, J. The Dirichlet problem for nonlinear second-order ellip-

tic equations. III. Functions of the eigenvalues of the Hessian. Acta Math. 155 (1985), 261–301.

[5] Chou, K. S.; Wang, X. J. A variational theory of the Hessian equation. Comm. Pure Appl. Math.

54 (2001), 1029–1064.

[6] Gilbarg, D.; Trudinger, N. S. Elliptic partial differential equations of second order. Reprint of

the 1998 edition. Classics in Mathematics. Springer, Berlin, 2001.

[7] Harvey, R.; Lawson, H. B., Jr. Calibrated geometry. Acta Math. 148 (1982), 47–157.

[8] Harvey, R.; Lawson, H. B., Jr. Dirichlet duality and the non-linear Dirichlet problem. arXiv:

0710.3991, 2007.

[9] Heinz, E. On elliptic Monge-Ampère equations and Weyl’s embedding problem. J. Analyse

Math. 7 (1959), 1–52.

[10] Lin, F.; Yang, X. Geometric measure theory—an introduction. Science Press, Beijing; Interna-

tional, Boston, 2002.



HESSIAN ESTIMATES 595

[11] Lions, P. L. A remark on Bony maximum principle. Proc. Amer. Math. Soc. 88 (1983), 503–508.

[12] Morrey, C. B., Jr. On the analyticity of the solutions of analytic non-linear elliptic systems of

partial differential equations. I. Analyticity in the interior. Amer. J. Math. 80 (1958), 198–218.

[13] Pogorelov, A. V. The Minkowski multidimensional problem. Scripta Series in Mathematics.

Winston, Washington, D.C.; Halsted [Wiley], New York–Toronto–London, 1978.

[14] Simons, J. Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88 (1968), 62–105.

[15] Trudinger, N. S. On the Dirichlet problem for Hessian equations. Acta Math. 175 (1995), 151–

164.

[16] Urbas, J. On the existence of nonclassical solutions for two classes of fully nonlinear elliptic

equations. Indiana Univ. Math. J. 39 (1990), no. 2, 355–382.

[17] Urbas, J. Some interior regularity results for solutions of Hessian equations. Calc. Var. Partial

Differential Equations 11 (2000), 1–31.

[18] Urbas, J. An interior second derivative bound for solutions of Hessian equations. Calc. Var.

Partial Differential Equations 12 (2001), 417–431.

[19] Warren, M.; Yuan, Y. A Liouville type theorem for special Lagrangian Equations with con-

straints. Comm. Partial Differential Equations 33 (2008), 922–932.

[20] Warren, M.; Yuan, Y. Explicit gradient estimates for minimal Lagrangian surfaces of dimension

two. Math. Z., forthcoming. arXiv: 0708.1329, 2007.

[21] Warren, M.; Yuan, Y. Hessian estimates for the sigma-2 equation in dimension three. Comm.

Pure Appl. Math., forthcoming.

[22] Warren, M.; Yuan, Y. Hessian and gradient estimates for three dimensional special Lagrangian

equations with large phase. arXiv: 0801.1130, 2008.

[23] Yuan, Y. A Bernstein problem for special Lagrangian equations. Invent. Math. 150 (2002), 117–

125.

[24] Yuan, Y. Linear and nonlinear elliptic equations, Lecture Notes, University of Washington,

2004.

[25] Yuan, Y. Global solutions to special Lagrangian equations. Proc. Amer. Math. Soc. 134 (2006),

no. 5, 1355–1358.

JINGYI CHEN

The University of British Columbia

Department of Mathematics

1984 Mathematics Road, Room 121

Vancouver, BC V6T 1Z2

CANADA

E-mail: jychen@math.ubc.ca

YU YUAN

University of Washington

Department of Mathematics

Box 354350

Seattle, WA 98195-4350

E-mail: yuan@

math.washington.edu

MICAH WARREN

University of Washington

Department of Mathematics

Box 354350

Seattle, WA 98195-4350

E-mail: mwarren@

math.washington.edu

Received January 2008.


