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Abstract

We derive a priori interior Hessian estimates for the special Lagrangian equation
o2 = 1 in dimension 3. (©) 2008 Wiley Periodicals, Inc.

1 Introduction

In this article, we derive an interior a priori Hessian estimate for the o, equation
(1.1) 02(D%u) = AAs + Aadz + Asd; =1

in dimension 3, where A; are the eigenvalues of the Hessian D?u. We attack (1.1)
via its special Lagrangian equation form

n
(1.2) Zarctan)\i =0
i=1
with n = 3 and ® = 7. Equation (1.2) stems from the special Lagrangian geom-
etry [4]. The Lagrangian graph (x, Du(x)) C R" x R” is called special when the
phase or the argument of the complex number (1 + v/—1A1)--- (1 + /=1 4,) is
constant ®, and it is special if and only if (x, Du(x)) is a (volume minimizing)
minimal surface in R” x R” [4, theorem 2.3, prop. 2.17].
We state our result in the following:

THEOREM 1.1 Let u be a smooth solution to (1.1) on Br(0) C R3. Then we have

|D?u(0)| < C(3) exp|:C(3) max |Du|3:|‘
- Br(0) R3

By Trudinger’s gradient estimates for oy -equations [9], we can bound D?u in
terms of the solution u in B, g(0) as
Ju|?

|D2u(0)] < C(3) exp[C(3) BTRa()(()) F]
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One immediate consequence of the above estimates is a Liouville-type result for
global solutions with quadratic growth to (1.1); namely, any such solution must be
quadratic (cf. [15, 16]). Another consequence is the regularity (analyticity) of the
C° viscosity solutions to (1.1) or (1.2) withn = 3 and ® = i%.

In the 1950s, Heinz [5] derived a Hessian bound for 02(D2u) = Ay =
det(D?u) = 1, the two-dimensional Monge-Ampére equation, which is equivalent
to (1.2) withn = 2 and ® = :I:%. In the 1970s Pogorelov [8] constructed his
famous counterexamples, namely, irregular solutions to three-dimensional Monge-
Ampere equations 03(D?u) = A1AzA3 = det(D?u) = 1; see generalizations
of the counterexamples for oy -equations with & > 3 in [10]. Hessian estimates
for solutions with certain strict convexity constraints to Monge-Ampere equations
and oy -equations (k > 2) were derived by Pogorelov [8] and Chou and Wang [3],
respectively, using the Pogorelov technique. Urbas [11, 12] and Bao and Chen [2]
obtained (pointwise) Hessian estimates in terms of certain integrals of the Hessian,
respectively, for o -equations and the special Lagrangian equation (1.2) withn = 3
and ® =,

The heuristic idea of the proof of Theorem 1.1 is as follows: The function
b =1In/1 + A2, is subharmonic so that b at any point is bounded by its integral
over a ball around the point on the minimal surface by Michael and Simon’s mean
value inequality [6]. This special choice of b is not only subharmonic but, even
stronger, satisfies a Jacobi inequality. This Jacobi inequality leads to a bound on
the integral of b by the volume of the ball on the minimal surface. Taking advantage
of the divergence form of the volume element of the minimal Lagrangian graph,
we bound the volume in terms of the height of the special Lagrangian graph, which
is the gradient of the solution to equation (1.2).

Now the challenging regularity problem for sigma-2 equations in dimension 4
and higher still remains open to us.

. 2
Notation. D; = 0; = aixi, 0ij = %axj, u; = 0;u, uj; = 0jju, etc., but
Als...,Ap and

b =tnyf14 22, bz:lnmzm\/@’

do not represent the partial derivatives. Further, /;;x will denote (the second fun-
damental form)

hijk = Uijks

1 1 1
\/1+Al.2 \/1+AJZ. \/1+A,§

when D2y is diagonalized. Finally, C(n) will denote various constants depending
only on dimension 7.
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2 Preliminary Inequalities

Taking the gradient of both sides of the special Lagrangian equation (1.2), we
have

@.1) > 8Y8i(x, Du(x)) =0,
i,j=1

where (g%/) is the inverse of the induced metric g = (g;;) = I + D?uD?u on the
surface (x, Du(x)) C R” x R". Simple geometric manipulation of (2.1) yields the
usual form of the minimal surface equation

Ag(x, Du(x)) =0,
where the Laplace-Beltrami operator of the metric g is given by
1 < .
Ag = T Z d; (y/det g gV 9;).

ij=1

Because we are using harmonic coordinates Agx = 0, we see that A, also equals
the linearized operator of the special Lagrangian equation (1.2) at u,

n
Ag = Z gljaij.
i,j=1

The gradient and inner product with respect to the metric g are

n n
(Zglkvk,-“ ,Zg"kvk),
k=1 k=1
n
(Vev, Vew)e = Z g”viw;, inparticular, |Vgv|? = (Vgv, Vgv)g.
i,j=1

Vgv

We begin with some geometric calculations.

LEMMA 2.1 Let u be a smooth solution to (1.2). Suppose that the Hessian D?u
is diagonalized and the eigenvalue A1 is distinct from all other eigenvalues of D*u

at point p. Set by = In /1 + A% near p. Then we have at p

n
(2.2) Vebi|* =Y A3hiy,
k=1
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and
2A1 2020
2.3 1+ A2)h? 1 h?
(2.3) (I+A7) 111+];(/\1—Ak+kl—lk) kk1
201 k%(kl—f-/\k)
2.4 1 h
@5 +Z[ M T P ]“’“
k>1
1+A2 1+27
(2.5) + Y 2y [ +)k1 Af + (A, +/\k)]hkj1
k>j>1

PROOF: We first compute the derivatives of the smooth function b; near p. We
may implicitly differentiate the characteristic equation
det(D?u — A1) =0
near any point where A1 is distinct from the other eigenvalues. Then we get at p

deA1 = OeU11,

(aeulk)

JeeA1 = OeeU11 + 22 Ak

k>1
with arbitrary unit vector e € R”.
Thus we have (2.2) at p

n

A1
|ng1|2: ngk( Azakull) Zkzhllk’

k=1

where we used the notation /;;5 = /g v/g// v/ g** ;.

From

/ A 1-23

we conclude that at p

Ay (3eM1k) } -
deeb1 = 0 E 2 0
eeb1 1+A2|: eeMuJFk>1 +(1—|—/\2)2( ett11)?

and

n
Aghy = Z g7 d,,b;

(2.6) = Z W

(U1ky)? N
|:w1411+22 z } 27(14_/\2)2 W“%ly-

k>1
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Next we substitute the fourth-order derivative terms d,,u1; in the above by
lower-order derivative terms. Differentiating the minimal surface equation (2.1)
ZZ,ﬂ:l g%h Ujop = 0, we obtain

n n
Aguij =Y Pujiap =Y —0igehujop
a,f=1 a,f=1

n
= > g"0igys8Pujup
o,B,y,6=1

n
@.7) = Y "¢ (o + Ap)uapitiap).
a,f=1

where we used
n
08,5 = 0i (5y5 +> Myeuas) = uysi(Ay + As)
e=1

with diagonalized D?u. Plugging (2.7) withi = j = I into (2.6), we have at p

B S e i+ 30 T2 o]

—A
a,B=1 y=1k>1 A1 k
n 2
A 2

*ng

Aghy =

2x1(1+x

= A Z (A +Aﬂ)ham+zz e
aﬂ 1 k>1y=1
+ Z(l Az)hlly’
y=1

where we used the notation 15 = v/g'" v/g%/ v/ g**u;;i. Regrouping those terms
hoot, h110, and hpga in the last expression, we have

221(1 +A )
Aghy = (1-2})h3 u+22m ha1 + Z Mg
a=1
241(1 +A )

+Z(1—k%)h 1k+22)‘1()‘k+’\1)hk11 Z T

k>1 k>1

211(1+A )

+ ) 20 AR+ ) hjkl.

k>j>1 J.k>1,

J#k
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After simplifying the above expression, we have the second formula in Lemma 2.1.
O

LEMMA 2.2 Let u be a smooth solution to (1.2) withn = 3 and © > % Suppose
that the ordered eigenvalues A1 > Ay > A3 of the Hessian D2u satisfy A1 > A, at

point p. Set
by =Iny/1+ 22, =In/1+ 22

1
(2.8) Aghy > g|vgb1|2.

Then we have at p

PROOF : We assume that the Hessian D?u is diagonalized at point p.

Step 1. Recall 0; = arctand; € (=%, 5)and 0y + 0, + 603 = © > 2. It
is easy to see that §; > 6, > 0 and 6; + 6; > O for any pair. Consequently,
A1 > A2 > 0and A; + A; > 0 for any pair of distinct eigenvalues. It follows that
(2.5) in the formula for Agb; is positive; then from (2.3) and (2.4) we have the
inequality

21 21
2 Z k 22 k 2
(29) A bl >A (hlll-i_k>1A A hkkl) +/\1k>1 (1+A1_kk)hllk.

Combining (2.9) and (2.2) gives

1
(2.10) Ag by — —|ng1|2 >

2A 2(A1 + 2Ag)
A2( £ h2 Tk p2 2N AL T AR g2
(3 111+,§M—Ak kk1 ] + 1]; 30 —ap) 11k

Step 2. We show that the second term on the right-hand side of (2.10) is non-
negative. Note that A1 +2A; > A1 +2A3. We only need to show that A1 +243 > 0
in the case that A3 < 0 or equivalently 63 < 0. From 01 + 6, + 03 = © > Z_ we

2’
have
T T T T T T
— >0 —==-0 ——0 O——>2=-01]).
2> 3+2 (2 1)+(2 2)+ 2_(2 1)
It follows that
1 T T 2
—— =1 0 — 2t —— 01 =—;
e an(3+2)> an(2 1) e

@.11) A1+ 213 > 0.

then
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Step 3. We show that the first term in (2.10) is nonnegative by proving
20, 4 213
R P P

We only need to show it for A3 < 0. Directly from the minimal surface equa-
tion (2.1)

2
(2.12) 3 hiy + h3s; > 0.

hi11 + ha21 + h3z1 = 0;

we bound

2 2A
h§31 = (hlll + h221)2 = _h%ll + %h%21
3 Al —Ap

It follows that

3 A —Ay
2T T )

2 " M5 (3 Al—As
iy h .
(3 et 221)[ - A3( oL )]

The last term becomes

14 2/\3 3+ll—12 _ (o)) -0
A1 —A3\2 22 ) (Qa—=2A3)A

The above inequality is from the observation

3
Re[J(1+V-14)=1-062<0

i=1
for > 01 + 6 + 03 = © > 7. Therefore (2.12) holds.
We have proved the pointwise Jacobi inequality (2.8) in Lemma 2.2. O

LEMMA 2.3 Let u be a smooth solution to (1.2) withn = 3 and © > % Suppose
that the ordered eigenvalues A1 > Ao > A3 of the Hessian D?u satisfy Ao > A3 at

point p. Set
1
by = 5(1n‘/1 +23+1n 1+ 23).

Then b, satisfies at p
(2.13) Ngby > 0.

Further, suppose that A1 = A, in a neighborhood of p. Then b, satisfies at p

1
(2.14) Aghy > 5|vgbz|2.
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PROOF: We assume that Hessian D?u is diagonalized at point p. We may use
Lemma 2.1 to obtain expressions for both Agln /14 A2 and Agln /1 + A3,
whenever the eigenvalues of D2y are distinct. From (2.3), (2.4), and (2.5), we

have

(2.15) Agln/1+ 22+ Agin/1+ 232

2A1(1 + A1 Ag)
= (1 —1—/\2 h? I LY
Yhin kz;: = kk1

2 +A«1A.k 2
+Z[1+)\ +2A1(m W2
k>1
1+13  1+23 )
Az + Ap) |h
11—)&3+l1—/\ + (A3 + 2):| 321
2A2(1 + A2Ag) B2
Ao — A kk2

+2)tl|:

+ 25y + Y
k#2

1+ A4
+Z[1+A§+2Az(72 k)]hzzk
A2 — Ar
k#2
1+22  1+4A2
Ay —Az Ay — A

+2A2[ + (A3 +/\1)}h§21-

The function b, is symmetric in A1 and A,; thus b5 is smooth even when Ay =
Ao provided that A, > A3. We simplify (2.15) to the following, which holds by
continuity wherever A1 > A, > A3:

20y by =

22 2222
2.16) (14 ADh2), + G+ A2+ 20 20)h2,, + Lo 282
A —As | A1—As

. 22, 22225\ .,
Ay —Az  Ax—2Aj3

301 — Az + A%(A] + A3) 2 30, — Az + A2 (Az + /\3) 2
h h
+ [ Al _A?, 113 + AZ —A3 223
M+ | A+4D7,,
R U
A1 —A3 Az — A3

(2.18)

(2190 + 2[1 + A1As 4+ Aoz + Az +

Using the assumption A1 > A, > A3 coupled with the relations A1 > A, > 0,
Ai +A; > 0, and 05 > 1 derived in the proof of Lemma 2.2, we see that (2.19)
and (2.18) are nonnegative. We only need to justify the nonnegativity of (2.16) and
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(2.17) for A3 < 0. From the minimal surface equation (2.1), we know

W335 = (h112 + h222)?

1 1
A3 4201 40)0H3 A3h3 (— —).
It follows that

AZA

> [(A% + 2AIAZ)h 112 + A2h222]|: + 2/‘\/%}‘3 ( 1 + L):|
- Ay — A3 )L%+2/\1)tz k%

The last term becomes

20243 (A2 — A3 1 1
. T3 +3)=
Ay — A3 2)&2/\3 )Ll + 2A1A2 )Lz

Az |: (o)) _ A3 :|>O
Az — A3 A1Ay (A1 +2A2)]

Thus (2.17) is nonnegative. Similarly, (2.16) is nonnegative. We have proved
(2.13).

Next we prove (2.14), still assuming D?u is diagonalized at point p. Plugging
A1 = Ap into (2.16), (2.17), and (2.18), we get

2)
2 Ag by = A3 W31y + 3h3n; + %hgn
Al — A3

2X
+ A7 (3h T2+ M3 + —_ h%32)

A1 —A3
A1+ A3
+ A%(Ai)(h T3 + h323).
1
Differentiating the eigenvector equations in the neighborhood where 1; = A,
A+ A A+ A
(D2u)U = 2! er 20U, (D2 = 2! er 2y and (D)W = AsW,

we see that 1. = u2oe for any e € R3 at point p. Using the minimal surface
equation (2.1), we then have

hiik = hpop = —3 h33g

at point p. Thus

A1+ A3 A1+ A3 A1+ A3
Aghby > A2|2 h? 2 h? h2 ..
gh2 = 1|: ()&1—13) 111+ (/‘\1—13) 112+(/\1—k3) 113




314 M. WARREN AND Y. YUAN

The gradient |Vgby|? has the expression at p

3

1 A 1 A 2
Y, byl? = kk(_ D +——8u)
|Vgbs| k§1g 21+A%k11 21+A§k22

3
_ 212
= > Aih3
k=1

Thus at p

! Atz |l A HAs) 1
Byb = 3Vebal 2 A%{ [Z(xl —As) - §]h%“ " [2(A1 —13) - §:|h%12

)tl—{-)tg, 1 2
— 2
(55 - 1)

where we again used A; + 243 > 0 from (2.11). We have proved (2.14) of
Lemma 2.3. Il

207

PROPOSITION 2.4 Let u be a smooth solution to the special Lagrangian equation
(1.2) withn = 3 and © = Z on B4(0) C R>. Set

b zmax{ln,/l —|—Ar2naX,K}

with K = 1 +1n /1 4 tan?(%). Then b satisfies the integral Jacobi inequality

1
By By

for all nonnegative ¢ € C§°(Bs).

PROOF: If by = In+/1 + A2, is smooth everywhere, then the pointwise Ja-
cobi inequality (2.8) in Lemma 2.2 already implies the integral Jacobi (2.20). It is
known that A,y is always a Lipschitz function of the entries of the Hessian D?u.
Now u is smooth in x, so by = In/1 + A2, is Lipschitz in terms of x. If b;
(or equivalently Ap,x) is not smooth, then the two largest eigenvalues A (x) and
A2(x) coincide, and b1 (x) = b (x), where b (x) is the average

Iny/1422+1n,/1+ A2
by = > :

We prove the integral Jacobi inequality (2.20) for a possibly singular b (x) in
two cases. Set

S ={x|A1(x) = A2(x)}.
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Case 1. S has measure zero. For small t > 0, let

Q= Ba\{x|b1(x) = K} = B4 \ {x [ b(x) = K},
Qi(r) =4{x|b(x) =b1(x) > ba(x) + t} N Q,
Q2(7) = {x | ba(x) = b(x) = b1(x) < ba(x) + T} N Q.

Now b(x) = by(x) is smooth in 21(7). We claim that b(x) is smooth in
Q5(t). We know by (x) is smooth wherever A>(x) > A3(x). If (the Lipschitz)
b>(x) is not smooth at x4 € Q5(7), then

ln\/1+kz=ln\/1+kgzln l—i-)L%—Zr

>1In/1+ tan?(%) + 1 -2,

by the choice of K. For small enough z, we have A, = A3 > tan(¥%) and a contra-
diction

(01 + 62 + 03)(x4) > %

Note that

/—(Vg‘/”vgmg dvg
By

= / —(Vg@,Veb)g dug
Q

= lim |: / —(Vg9,Vgb)g dvg + / —(Vg¢’vg(b2+f)>gdvg:|-

=0+
Q2 (7) Q5 (1)

By the smoothness of b in 21 (7) and b, in 2,(7), and also inequalities (2.8) and
(2.13), we have

Q1 () Q3 (7)
_ / —pd, b dAg + / 0 Dg by dvg
Q1 (7) Q1(7)

+ / —<p8y§(b2 +1)dAg + / @ Ag (ba + 1)dvg
9Q2(7) Qa(7)
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> / —pd,1bdAg + / —pd,2(by + T)dAg
021 (1) Q2 (1)

1
+ 3 / ¢|Vebi|* dug,
Q1(0)
where yé and )/; are the outward conormals of d€21(t) and 92, (t) with respect
to the metric g.

Observe that if by is not smooth on any part of d2\dB4, which is the K-level
set of by, then on this portion d2\dBy4 is also the K-level set of by, which is
smooth near this portion. Applying Sard’s theorem, we can perturb K so that €2 is
piecewise C 1. Applying Sard’s theorem again, we find a subsequence of positive ¢
going to 0, so that the boundaries 921 () and d$2,(7) are piecewise C L.

Then we show the above boundary integrals are nonnegative. The boundary
integral portion along 92 is easily seen to be nonnegative, because either ¢ = 0 or
—ay 1 b >0, _ay§ (b2 + ©) = 0 there. The boundary integral portion in the interior
of 2 is also nonnegative, because there we have

b=by+1t (andb > by 4+ 7in 21(7)),
—8y§b — 3y§(b2 +1) = 8ygb — aygz(bz +1)>0.
Taking the limit along the (Sard) sequence of T going to 0, we obtain Q21 (t) —
up to a set of measure zero, and

/—(ng,ng)g dvg =/—(Vg¢’vgb)g dvg
B4 Q

1 1
> g/|vgb|2dug = g/|vgb|2dug.
Q By

Case 2. S has positive measure. The discriminant
D= (A1 —2A2)*(A2 — 23)*(A3 — A1)?

is an analytic function in B4, because the smooth u is actually analytic (cf. [7,
p- 203]). So D must vanish identically. Then we have either A;(x) = A,(x) or
A2(x) = As(x) at any point x € By. In turn, we know that 11(x) = Ax(x) =
A3(x) = tan(¥) and b = K > by(x) at every “boundary” point of S inside
By, x € S N §4. If the “boundary” set dS has positive measure, then A1(x) =
A2(x) = A3(x) = tan(%) everywhere by the analyticity of u, and (2.20) is trivially
true. In the case that dS has zero measure, b = by > K is smooth up to the bound-
ary of every component of {x | b(x) > K}. By the pointwise Jacobi inequalities
(2.14) and (2.8), the integral inequality (2.20) is also valid in case 2. [l
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3 Proof of Theorem 1.1

We assume that R = 4 and u is a solution on B4 C R3 for simplicity of
notation. By scaling v(x) = u(%x) / (%)2, we still get the estimate in Theo-
rem 1.1. Without loss of generality, we assume that the continuous Hessian D?u
sits on the convex branch of {(A1, A2,A3) | A1A2 + A2A3 + A34; = 1} containing
(1,1,1)/+/3; then u satisfies (1.2) withn = 3 and © = Z. By symmetry this also

/1

covers the concave branch corresponding to ® = —7.

Step 1. By the integral Jacobi inequality (2.20) in Proposition 2.4, b is subhar-
monic in the integral sense; then b3 is also subharmonic in the integral sense on
the minimal surface 991 = (x, Du):

/—<vg¢,vgb3>g dvg = / —(Vg(3b%p) — 6bV b, Vgb)g dvg
> /(cpb2|ng|2 + 6bg|Veb|*)dvg > 0

for all nonnegative ¢ € CS°, where we approximate h2¢ by smooth functions if
necessary.

Applying Michael and Simon’s mean value inequality [6, theorem 3.4] to the
Lipschitz subharmonic function 53, we obtain

1/3 1/3
b(0) < C(3)( [ b3dvg) < C(3)(/b3dvg) ,
B

B1NM

where 9B, is the ball with radius r and center (0, Du(0)) in R3 x R3, and B, is the
ball with radius r and center 0 in R3. Choose a cutoff function ¢ € Cs°(B2) such
that ¢ > 0, ¢ = 1 on By, and |[D¢| < 1.1; we then have

1/3 1/3 1/3
(/b3dvg) < (/(p6b3dvg) = (/(<pb1/2)6 dvg) :

B B> B>

Applying the Sobolev inequality on the minimal surface 9t [6, theorem 2.1] or
[1, theorem 7.3] to @b'/2, which we may assume to be C! by approximation, we
obtain

1/3
( / (b1/2)° dvg) <o) / Ve (9bY/2)]2 dg.
Bz BZ

Splitting the second integrand as follows:

2
1
Vo @b = |5 09+ 05| < g2V 4 20Ty

1
2p1/2

=

902|ng|2 + 2b|vg(ﬂ|2,

N —
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where we used b > 1, we get

b(0) < C(3) / Ve (0b"/?)P dvg
B>

<O [ TP+ [ 515,02 dv, )
Bz B2
< COIDullL(5r) + COMDUIE oy + | Dl zy)

Step 2 Step 3

Step 2. By (2.20) in Proposition 2.4, b satisfies the Jacobi inequality in the
integral sense:

3Ng b >|Vgh|*

Multiplying both sides by the above nonnegative cutoff function ¢ € C§°(B>) and
then integrating, we obtain

/<p2|ng|2dvg < 3[g02 Ag bdvg
32 BZ

B>

1
<5 [ PIVebP dvg 18 [ (Voo dv.

Bz B2
It follows that
/¢2|ng|2dvg < 36[ IVeo|* dug.
Bz BZ

Observe the (“conformality”) identity:

1 1 1
) ) V: _A' ) _A' 9 _A'
(l—i—k% 12 1+A§) (01 — A1, 01 — Az, 01 —A3)

where we used the identity V = ]_[?=1 V(A + )Ll.z) = 01 — o3 withop, = 1. We
then have

(Dip)?
1+ A7

3
Vidx =) (Dig)*(01 — Ai)dx

i=1

<242 Audx.

3
(3.1) Veol>dvg =
i=1
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Thus

/¢2|vgb|2dvg < C(3)/ Audx
32 B2
< C(3) | Dul|Loo(Bs)-

Step 3. By (3.1), we get
/b|Vg<p|2dvg < C(3)/b Audx.
B2 B2

Choose another cutoff function ¢ € C5°(B3) such that ¢ > 0, ¢ = 1 on B3, and
|Dy| < 1.1. We have

/bAudx§/¢bAudx2/—(bDw+WDb,Du)dx
B> B3 B3

< | Dulpoe(ay / (b|DY| + | Dbl)dx
B3

< C(3)| Dull ooz / (b + | Db|)dx.

B3
Now
b= max{ln V1+AZ,., K}
SAmax F K <A1+ A2+ A3+ K = Au+ K,
where A, + A3z > 0 follows from arctan A, + arctan Az = % —arctanA; > O.
Hence

/bdx < C(3)[1 + ||DM||LOO(B3)].
Bj
We have left to estimate [ |Db|dx:

3 .
/|Db|dx </JZ((DIIJ)2(1+A%)(1+/\§)(1+A§)dx
B3 i=

2
B3 1 1+Ai)
:/|vgb|de
B3

< ([|vgb|2de)1/2(/ de)l/z.

B3 B3
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Repeating the “Jacobi” argument from Step 2, we see

/ |Vgb|?V dx < C(3)| Dul|poo(B,)-
B3

Then by the Sobolev inequality on the minimal surface 91, we have

3
/de =l dvg gB[qsﬁdvg 5C(3)(B[4|Vg¢|2dvg) ;

B3

where the nonnegative cutoff function ¢ € Cy°(By) satisfies ¢ = 1 on B3 and
D¢l < 1.1.
Applying the conformality equality (3.1) again, we obtain

/ |Veop|> dvg < C(3)/Au dx < C(3)|| Dul|pso(By)-
By By

Thus we get
/ Vdx < CO)|Dul e s,
B3
and
/ |Dbldx < C(3)|| Dul|7oo(p,)-
B3

In turn, we obtain
/ bIVgl? dvg < CO)K] Dullzoo(ss) + I DullZ ooy + 1 DUl oz,
B>
Finally, collecting all the estimates in the above three steps, we arrive at
Jmax(0) < exp [CO) (| DullLo(ay) + 1 Dl oo g,y + 1 Dl 5]
< C3)exp[CONDUI} o]
This completes the proof of Theorem 1.1.

Remark. A sharper Hessian estimate and a gradient estimate for the special La-
grangian equation (1.2) with n = 2 were derived by an elementary method in [13].
More involved arguments are needed to obtain the Hessian and gradient estimates
for (1.2) withn = 3 and |®] > 7 in [14].
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