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1. Introduction

In this note, we show the following

Theorem 1.1. Let u be a smooth solution to the special Lagrangian equation

n∑
i=1

arctan �i = c on �n� (1.1)

where �is are the eigenvalues of the Hessian D2u�x�� Suppose that

3+ �1− ���2i �x�+ 2�i�x��j�x� ≥ 0 (1.2)

for all i� j� x and any small fixed � > 0� and the gradient �u�x� satisfies

��u�x�� ≤ 	�n��x� (1.3)

for large �x� and any fixed 	�n� < 1/
√
n− 1� Then u must be a quadratic polynomial.

The special Lagrangian equation (1.1) arises in the calibrated geometry (Harvey
and Lawson, 1982). A Lagrangian graph M = �x� �u�x�� ⊂ �n = �n ×�n is called
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A Liouville Type Theorem 923

special when the calibrating n-form


c = Re�e−
√−1 cdz1 ∧ dz2 ∧ · · · ∧ dzn�

is equal to the induced volume form along M� equivalently, u satisfies (1.1). The
equation (1.1) holds if and only if the gradient graph �x� �u�x�� ⊂ �n is a (volume
minimizing) minimal surface in �n ×�n (Harvey and Lawson, 1982, Theorem 2.3,
Proposition 2.17).

By Fu’s classification result (Fu, 1998), any global solution to (1.1) on �2

is either quadratic or harmonic; a harmonic function with any linear growth
condition on the gradient is certainly quadratic; see also Yuan (2006) for a
uniqueness result for the global solutions to (1.1) with �c� > �n− 2� �2 . In the
case n = 3� other Liouville–Bernstein type results hold true for (1.1) under
the following conditions respectively: �i ≥ −K (Yuan, 2002); �i�j ≥ −K (Yuan,
unpublished); or c = � and the solution is strictly convex with quadratic growth
(Bao et al., 2003). While boundedness of the Hessian alone is sufficient in dimension
three, certain boundedness and convexity are both needed for Liouville–Bernstein
type results to be valid for (1.1) in the general dimension (n ≥ 4). The results
hold with the assumptions that c = k� and the solution is convex with linear
growth (Borisenko, 1992); with the almost convex assumption �i ≥ −��n� (Yuan,
2002); with the semi-convex assumption �i ≥ − 1√

3
+ � everywhere, or with the

(“equivalent”) assumption ��i� ≤
√
3− �′ everywhere (Yuan, unpublished); or with

the assumption �i�j ≥ −1− ��n� (Yuan, unpublished). (It is straightforward that
any convex solution with a bounded Hessian to (1.1) is a quadratic polynomial,
by the well-known C Hessian estimate of Krylov–Evans for now the convex elliptic
equation (1.1); see also Xin (2003, pp. 217–218), for a different approach via the
iteration argument of Hildebrandt et al. (1980/81).) A Liouville–Bernstein type
result with the assumption ��i� ≤ K and �i�j ≥ const > − 3

2 was stated in Tsui and
Wang (2002).

The more general “convexity” condition (1.2) does not alone lead to any Hessian
bound for the solutions to (1.1), but does guarantees that the volume element V�
which is a geometric combination of the eigenvalues, is subharmonic. Better yet, the
Laplacian of V bounds its gradient; see Lemma 2.1, which is a key piece in our
proof of Lemma 2.2 on our Hessian estimates.

In fact, this paper grows out of our attempts towards deriving a Hessian
estimate in terms of the gradient, for solutions to the special Lagrangian
equation (1.1). The unpleasant technical assumption 	�n� < 1/

√
n− 1 in (1.3)

reflects the limitation of our current arguments; the assumption is necessary for us
to push the Bernstein–Pogorelov–Korevaar technique to obtain a Hessian estimate
for special Lagrangian equations; see Lemma 2.2.

Once a Hessian bound for solutions to (1.1) is available, the “standard”
blow-down process from the geometric measure theory will show that the global
solution is a quadratic polynomial, provided certain convexity conditions like (1.2)
or others are available in the whole process (for n ≥ 4). (Unlike Jost and Xin, 1999,
we could not generalize the iteration argument in Hildebrandt et al. (1980/81) to
get a Liouville type result for now the larger image set (1.2) of the corresponding
harmonic Gauss map to the Lagrangian Grassmanian.) The simple constraints ��i� ≤
K like ��i� ≤ 1 or ��i� ≤

√
3− � are easily shown to be available in the blow-down

process. An extra effort is needed to justify that the nonlinear constraints (1.2) or
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924 Warren and Yuan

others like �i�j ≥ const are preserved under the C1� convergence of the scaling
process uk�x� = u�kx�/k2� Taking advantage of the single elliptic equation (1.1),
we apply the W 2�	 estimates for solutions in terms of the supreme norm of the
solution to extract a W 2�	 sub-convergent sequence, as in Yuan (2001). Then we
extract another subsequence with the Hessians converging almost everywhere. This
justifies that the constraints (1.2) are preserved in the above blow-down process.
Another route of the justification is through Allard’s regularity result (cf. Simon,
1983, Section 36).

Actually, Theorem 1.1 holds true for n = 3 without any growth condition
like (1.3). The condition (1.2) implies �i�j ≥ −K� so as in Yuan (unpublished)
we can find a bound on the Hessian (possibly for a new potential), and then
draw the conclusion. Note that the boundedness on the Hessian alone for n =
3 is enough for one to run the blow-down process to obtain a Liouville type
result; see Fischer-Colbrie (1980, Theorem 5.4). In general dimension n ≥ 4� we
derive yet another Liouville–Bernstein type result for the solutions to (1.1) with
the bounded Hessian satisfying weaker constraints (3.1); see Theorem 3.1 in the
Appendix. One consequence of Theorem 3.1 coupled with the De Giorgi-Allard
�-regularity theory is an improvement of the above mentioned Liouville–Bernstein
type result in Yuan (unpublished), namely, any global solution to (1.1) with �i ≥
− 1√

3
− ��n� everywhere or ��i� ≤

√
3+ �′�n� everywhere is a quadratic polynomial

(for n ≥ 4�. The argument is identical to the one in Yuan (2002) with Proposition 2.1
there replaced by Proposition 3.1 here.

The desired Hessian estimate for special Lagrangian equations in the two
dimensional case follows from the gradient estimates in terms of the heights of
the two dimensional minimal graphs with any codimension by Gregori (1994),
where some Jacobian estimates of Heinz were employed. For higher dimensional
and codimensional minimal graphs with the assumption that the product of any
two slopes is between −1 and 1, the gradient estimates were obtained in Wang
(2004), using an integral method developed for codimension one minimal graphs.
The gradient estimate for codimension one minimal graphs is by now a classical
result.

The general Hessian estimate for special Lagrangian equations is still a puzzling
issue to us.

Notation. �i = �
�xi
� �ij = �2

�xi�xj
� ui = �iu� uji = �iju� etc.

2. Proof of Theorem 1.1

Taking the gradient of both sides of the special Lagrangian equation (1.1), we have

n∑
i�j=1

gij�ij�x� �u�x�� = 0� (2.1)

where �gij� is the inverse of the induced metric g = �gij� = I +D2uD2u on the
surface �x� �u�x�� ⊂ �n ×�n� Simple geometric manipulation of (2.1) yields the
usual form of the minimal surface equation

�g�x� �u�x�� = 0�
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A Liouville Type Theorem 925

where the Laplace–Beltrami operator of the metric g is given by

�g =
1√
det g

n∑
i�j=1

�i

(√
det ggij�j

)
�

Because we are using harmonic coordinates �gx = 0� we see that �g also equals the
linearized operator of the special Lagrangian equation (1.1) at u�

�g =
n∑

i�j=1

gij�ij�

The gradient and inner product with respect to the metric g are

�gv =
( n∑

k=1

g1kvk� � � � �
n∑

k=1

gnkvk

)

	�gv� �gw
g =
n∑

i�j=1

gijviwj� in particular ��gv�2g = 	�gv� �gv
g�

We begin by demonstrating a Jacobi inequality for the volume element

V = √
det g =

n∏
i=1

�1+ �2i �
1
2 �

Lemma 2.1. Suppose that u is a smooth solution to (1.1) satisfying (1.2). Then

�g lnV ≥ �

n
��g lnV �2g

or equivalently

�gV
�
n ≥ 2

��gV
�
n �2g

V
�
n

� (2.2)

Proof. By differentiating the minimal surface equation (2.1) again and performing
some long and tedious computation, one gets the standard formula for �g lnV�
see for example (Yuan, 2002, Lemma 2.1). (The general formula for minimal
submanifolds of any dimension or codimension originates in Simons (1968, p. 90)).
At any fixed point, we assume that D2u is diagonalized, then

�g lnV =
n∑

i�j�k=1

�1+ �i�j�h
2
ijk�

where hijk =
√
gii
√
gjj

√
gkkuijk� Gathering all terms containing h2

ijj = h2
jij = h2

jji for a
fixed i, we have

�1+ �2i �h
2
iii +

∑
j �=i

�1+ �2j �h
2
jji +

∑
j �=i

�1+ �i�j�h
2
ijj +

∑
j �=i

�1+ �j�i�h
2
jij

= �1+ �2i �h
2
iii +

∑
j �=i

�3+ �2j + 2�i�j�h
2
jji�
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926 Warren and Yuan

Thus

�g lnV =
n∑

i=1

[
�1+ �2i �h

2
iii +

∑
j �=i

�3+ �2j + 2�i�j�h
2
jji

]

+ 2
∑

i<j<k

�3+ �i�j + �j�k + �k�i�h
2
ijk� (2.3)

Condition (1.2) gives that

3+ �1− ���2i + �i�j + �i�j + �k��j + �i�− �k��j + �i� ≥ 0

that is

Sijk = 3+ �i�j + �j�k + �k�i ≥ ��k − �i���i + �j�+ ��2i �

Switching �i and �j� we also have

Sijk = Sjik ≥ ��k − �j���j + �i�+ ��2j �

By symmetry of Sijk� we may assume

�i ≥ �k ≥ �j� (2.4)

then either ��k − �i���i + �j� or ��k − �j���j + �i� has to be non-negative, thus

Sijk ≥ �min
{
�2i � �

2
j

}
� (2.5)

We conclude that

�g lnV ≥
n∑

i=1

[
�1+ �2i �h

2
iii +

∑
j �=i

�3+ �2j + 2�i�j�h
2
jji

]
� (2.6)

To bound the gradient, we compute, (still at the same fixed point with D2u
diagonalized)

�i lnV =
n∑

j=1

gjj�jujji�

then

��g lnV �2g =
n∑

i=1

gii
( n∑

j=1

gjj�jujji

)2

=
n∑

i=1

( n∑
j=1

�jhjji

)2

≤ n
n∑

i�j=1

�2j h
2
jji� (2.7)

Combining (1.2) with (2.6) and (2.7) we have

�g lnV − �

n
��g lnV �2
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A Liouville Type Theorem 927

≥
n∑

i=1

�1+ �1− ���2i �h
2
iii +

∑
j �=i

�3+ �1− ���2j + 2�i�j�h
2
jji ≥ 0� (2.8)

The proof of Lemma 2.1 is complete. �

Lemma 2.2. Suppose that u is a smooth solution to (1.1) on B1�0� satisfying condition
(1.2) and

��u� ≤ 	 <
1√
n− 1

�

Then

�D2u�0�� ≤ C�n� 	� ���

Proof. Set

v = u+ 
1

��u�0�� 	�u�0�� x
 or u+ x1 if �u�0� = 0�

where  = � 1√
n−1

− 	�/2� Now v satisfies in B1 the following

D2v = D2u� ��v�0�� ≥ � and ��v� ≤ + 	 <
1√
n− 1

�

Set b = V
�
n � and consider the function

w = �b = [��v�2 − �+ 	�2�x�2]+b ≥ 0�

A positive maximum for w will be attained at a point p on the interior, since
w�0�> 0 and w�x� vanishes on the boundary �B1. At this point p�

�g��b� = 0 or �g� = −�

b
�gb�

0 ≥ �g��b� = ��g b + 2	�g�� �gb
g + b �g �

= �

(
�g b − 2

��gb�2g
b

)
+ b �g �

≥ b �g ��

by the inequality (2.2) in Lemma 2.1. This last inequality implies a bound on
�D2v�p�� as the following. We have

0 ≥ �g� = �g���v�2 − �+ 	�2�x�2�

=
n∑

i�j=1

gij
[
2

n∑
k=1

�vkivkj + vk�ijvk�− �+ 	�2�ij�x�2
]

= 2
n∑

i=1

�2i − �+ 	�2

1+ �2i
≥ 2

[
�21 − �+ 	�2

1+ �21
− �n− 1��+ 	�2

]
�
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928 Warren and Yuan

using the minimal surface equation (2.1) and assuming ��1� ≥ ��i� for all i� It follows
that

1+ �21�p� ≤
1+ �+ 	�2

1− �n− 1��+ 	�2
�

We get

2b�0� ≤ ��v�0��2b�0� ≤ ��p�b�p� ≤ �+ 	�2
[

1+ �+ 	�2

1− �n− 1��+ 	�2

] �
2

�

then

1+ �2i �0� ≤
(
1+ 	



) 4n
�
[

1+ �+ 	�2

1− �n− 1��+ 	�2

]n

� (2.9)

Therefore, we conclude the estimate �D2u�0�� ≤ C�n� 	� �� in Lemma 2.2. �

Lemma 2.3. Let u ∈ C��n\�0�� be a solution to the special Lagrangian
equation (1.1) and homogeneous of order 2; that is, u�x� = �x�2u�x/�x��� Suppose that
the eigenvalues �i of the Hessian D2u�x� satisfy (1.2). Then u must be quadratic.

Proof. Lemma 2.3 follows from Proposition 3.1; nonetheless we give a direct proof
in the following. Considering (1.2), (2.4), and (2.5), we observe that the coefficients
of h2

ijk in (2.3) are strictly positive. Accordingly,

�g lnV ≥ c���
n∑

i�j�k=1

h2
ijk (2.10)

with c��� > 0�
Since u is homogeneous of order 2� the homogeneous order 0 function lnV

attains its maximum along a ray. We infer from the strong maximum principle that
lnV ≡ const� It follows from (2.10) that D3u ≡ 0. Therefore, u must be quadratic,
as claimed in Lemma 2.3. �

Proof of Theorem 1.1. Now the Hessian bound is available by Lemma 2.2. We run
the “routine” blow-down procedure “in detail” to finish the proof of Theorem 1.1,
as in Yuan (2002).

Step 1. From the assumption that ��u�x�� ≤ 	�x� for large x� we have on the
ball BR�p� with any fixed p ∈ �n

��u�x�� ≤ 	��p� + R� =
(
	+ 	�p�

R

)
R�

A rescaled version of Lemma 2.2 with R going to  then leads to a Hessian bound,
�D2u�p�� ≤ C�n� 	� �� � K� which must hold at each point p ∈ �n�

Step 2. Repeating verbatim the argument in Yuan (2001, pp. 263–264), we
show that we can find a tangent cone of the special Lagrangian graph �x� �u�x��
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A Liouville Type Theorem 929

at  whose potential function is C1�1, homogenous order 2, and still satisfies the
“convexity” condition (1.2).

Without loss of generality, we assume u�0� = 0��u�0� = 0� We “blow down” u
at �

Set

uk�x� =
u�kx�

k2
� k = 1� 2� 3� � � � �

We see that

�uk�C1�1�BR�
≤ C�K�R��

so there exists a subsequence, still denoted by �uk� and a function uR ∈ C1�1�BR� such
that uk → uR in C1��BR� as k → � and �D2uR� ≤ K� By the fact that the family
of viscosity solution is closed under C0 uniform limit, we know that uR is also a
viscosity solution of

F�D2u� =
n∑

i=1

arctan �i = c on BR�

Applying the W 2�	 estimate (cf. Caffarelli and Cabré, 1995, Proposition 7.4) to the
difference uk − uR� we have

�D2uk −D2uR�L	�BR/2�
≤ C�K�R��uk − uR�L�BR�

→ 0 as k → �

Note that �D2uk�� �D2uR� ≤ K� so also

�D2uk −D2uR�Ln�BR/2�
→ 0 as k → �

By a standard fact from real analysis, there exists another subsequence and C1�1

function on BR, still denoted by �uk� and uR/2 such that D2uk → D2uR/2 almost
everywhere as k → � So D2uR still satisfies (1.2) almost everywhere on BR/2�

The diagonalizing process yields yet another subsequence, again denoted by �uk�
and v ∈ C1�1��n� such that uk → v in W 2�n

loc ��
n� as k → � v is a viscosity solution

of (1.1) on �n� �D2v� ≤ K� and D2v still satisfies (1.2) almost everywhere on �n�
The surfaces �x��uk�x�� are minimal in �n ×�n and their potentials uk

converge to v in W 2�n
loc ��

n�� so by the monotonicity formula (cf. Simon, 1983,
Theorem 19.3, p. 84), we conclude that Mv = �x��v�x�� is a cone.

Step 3. We claim that Mv is smooth away from the vertex. Suppose Mv is
singular at P away from the vertex. We blow up Mv at P to get a tangent cone,
which is a lower dimensional special Lagrangian cone crossing a line; repeat the
procedure if the resulting cone is still singular away from the vertex. Finally we get
a special Lagrangian cone which is smooth away from the vertex, and the bounded
eigenvalues of the Hessian of the potential function satisfies (1.2), by a similar W 2�	

argument as in Step 2. By Lemma 2.3, the cone is flat. This is a contradiction to
Allard’s regularity result (cf. Simon, 1983, Theorem 24.2).

Applying Lemma 2.3 to Mv� we see that Mv is flat.
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930 Warren and Yuan

Step 4. Now with the flatness of Mv, a final application of the monotonicity
formula yields that the original gradient graph �x� �u�x�� is also a plane (cf. Yuan,
2002, p. 123). Therefore, u is a quadratic polynomial. �

3. Appendix

We include here a uniqueness result for global solutions to the special Lagrangian
equation (1.1) with bounded Hessian satisfying certain “convexity” constraints (3.1).
The constraints are only needed for n ≥ 4�

Theorem 3.1. Let u be a smooth solution to the special Lagrangian equation (1.1).
Suppose that the eigenvalues �i of the Hessian D2u�x� are bounded ��i�x�� ≤ K and
satisfy

3+ �2i �x�+ 2�i�x��j�x� ≥ 0 (3.1)

for all i� j� and x. Then u must be a quadratic polynomial.

Proof. The proof is identical to the one of Theorem 1.1 with Lemma 2.3 replaced
by the following proposition. �

Proposition 3.1. Let u ∈ C��n\�0�� be a solution to the special Lagrangian
equation (1.1) and homogeneous of order 2, that is u�x� = �x�2u�x/�x��� Suppose that
the eigenvalues �i of the Hessian D2u�x� satisfy (3.1) for all i� j� and x �= 0� Then u must
be quadratic.

Proof. By (3.1), we certainly have (2.8) with � = 0 in Lemma 2.1, that is

�g lnV ≥
n∑

i=1

�1+ �2i �h
2
iii +

∑
j �=i

�3+ �2j + 2�i�j�h
2
jji

=
n∑

i=1

1

�1+ �2i �
2
u2
iii +

∑
j �=i

�3+ �2j + 2�i�j�

�1+ �2j �
2�1+ �2i �

u2
jji ≥ 0� (3.2)

Since u is homogeneous of order 2, the Hessian D2u�x� is homogeneous of order 0,
hence lnV must attain its maximum along a ray. The strong maximum principle
yields that lnV is constant, so in fact

0 = �g lnV� (3.3)

We claim now that

�u = const (3.4)

on �n\�0�� At any point p compute the derivative

�i��u� =
n∑

j=1

ujji (3.5)
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for all i� Still assuming that D2u is diagonalized at p, an inspection of (3.2), together
with (3.3) shows that for all j with ujji �= 0,

3+ �2j + 2�i�j = 0� (3.6)

From 3+ �2i + 2�i�j ≥ 0� we see that �2i ≥ �2j � Solving (3.6) for �j we get

�j = −�i −
√
�2i − 3� if �i < 0�

�j = −�i +
√
�2i − 3� if �i > 0�

The minimal surface equation (2.1) at p then reads

0 = �gui

p= ∑
j=1

1

1+ �2j
ujji =

1

1+ �−�i ±
√
�2i − 3�2

∑
j

ujji�

Hence �i��u� = 0 and �u is constant.
Differentiating (3.4), we see that each uij satisfies

�uij = 0�

Applying the strong maximum principle once again to each (homogeneous order 0)
function uij , we have immediately

uij = const�

that is, u is quadratic. �
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