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BEHAVIOR NEAR THE BOUNDARY
OF POSITIVE SOLUTIONS

OF SECOND ORDER PARABOLIC EQUATIONS. II

E. B. FABES, M. V. SAFONOV, AND YU YUAN

Abstract. A boundary backward Harnack inequality is proved for positive
solutions of second order parabolic equations in non-divergence form in a
bounded cylinder Q = Ω× (0, T ) which vanish on ∂xQ = ∂Ω× (0, T ), where Ω
is a bounded Lipschitz domain in Rn. This inequality is applied to the proof
of the Hölder continuity of the quotient of two positive solutions vanishing on
a portion of ∂xQ.

1. Introduction

In this paper we are concerned with the boundary behavior of positive solutions
u and v of the parabolic non-divergence equation

Lu =
n∑

i,j=1

aij (x, t) Diju (x, t)−Dtu (x, t) = 0(1)

near an open portion of the Lipschitz lateral boundary where u and v are assumed
to vanish. We prove that v

u is locally Hölder continuous up to that portion of the
lateral boundary (Theorem 4.6 and related results in Sec. 4.3).

In our proof of the Hölder continuity of the quotient we first derive so called
boundary backward Harnack inequality (Theorem 3.7) which is of considerable in-
terest in itself. It states that any non-negative solution of (1) in a bounded cylinder
Q = Ω× (0, T ) , which vanishes on the entire lateral boundary ∂Ω× (0, T ), satisfies

u (x, s) ≤ Nu (x, t)(2)

uniformly for all (x, t) ∈ Q, such that s ≥ t ≥ s − d2 ≥ δ2 = const > 0, with N
independent of u, where d =dist(x, ∂Ω) . Note that (2) is different from the usual
Harnack inequality (5), which is formulated in Theorem 2.2 below; here we have
u (Y ) ≤ Nu (X) with X = (x, t) , Y = (x, s) .

The above two results in parabolic divergence case were proved in a recent paper
[FS]. The boundary backward Harnack inequality (2) was first obtained in [G] and
[FGS] for the non-divergence and divergence cases when the coefficients are time-
independent. Notice that the constant N in (2) does not depend on d =dist(x, ∂Ω) .
A weaker estimate with N depending also on d is called the interior backward
Harnack inequality. In combination with the usual Harnack inequality (5), this
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inequality (2) implies the elliptic-type Harnack inequality (Theorem 3.6), which
was proved in [G] for the non-divergence case and in [FGS] for the divergence case.
The Hölder continuity of the quotient for two positive solution of heat equation 4u
−ut = 0 was proved in [ACS]. The corresponding results for the (non-divergence
and divergence) elliptic equation is contained in [B], [AC] and [FGMS]. When the
domain Ω is smooth, the estimate (2) for non-divergence can be extended for all
s ≥ t ≥ δ2.

The results and methods of this paper are independent of [FS], though the struc-
ture of these two papers is similar. Moreover, our approach provides an alternative
proof of the Hölder continuity of quotients in [ACS], [FS] for the parabolic diver-
gence case and also [JK], [B], [AC], [FGMS] for the elliptic case, where it was derived
via the estimates for the Green’s functions and the doubling property for the cor-
responding L-caloric (L-harmonic) measures. The examples in [FK] and [S] show
that the appropriate estimates for Green’s functions in the non-divergence case fail.
Regarding the doubling property in the parabolic divergence case, it follows auto-
matically from the backward Harnack inequality (see [FGS]); for the non-divergence
case it is proved in a forthcoming paper [SY].

Some intermediate results here (Statements 3.1–3.6) are basically contained in
[G]. We give their simplified proofs for completeness of presentation.

In this paper, we assume the coefficients aij (x, t) are measurable and for all
X = (x, t) ∈ Ω× (0,∞) , ξ ∈ Rn,

ν|ξ|2 ≤
n∑

i,j=1

aij(X)ξiξj ≤ ν−1|ξ|2(3)

with a constant ν ∈ (0, 1]. However, by means of appropriate approximation proce-
dures, all our estimates for solutions can be reduced to the similar estimates with
smooth aij and u. It is important only that these estimates do not depend on the
smoothness of aij and u. So we may assume that all the functions aij and u in (1)
are smooth.

The preliminary draft of the paper was ready before Professor E. B. Fabes passed
away unexpectedly. We hope the present paper meets his high standards, though
we are responsible for this final version.

Acknowledgments. The authors would like to thank Professor N. N. Ural’tseva
for her useful remarks and suggestions.

2. Assumptions and Known Results

For an arbitrary domain V ⊂ Rn+1, we define its parabolic boundary ∂′V as the
set of all points X ∈ ∂V such that there is a continuous curve lying in V ∪{X} with
initial point X , along which t is non-decreasing. In particular, for Q = Ω× (0, T )
we have

∂′Q = ∂xQ ∪ ∂tQ,

where the lateral boundary ∂xQ=∂Ω× (0, T ), and ∂tQ=Ω× {0}.
The following comparison principle is well-known.

Theorem 2.1. Let V be a bounded domain in Rn+1, u, v ∈ C2 (V )∩C(V ), Lu ≤
Lv in V , and u ≥ v on ∂′V . Then u ≥ v on V .
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For X = (x, t) ∈ Rn+1 and r > 0, a “standard” cylinder

Cr(X) = Cr(x, t) = Br(x)× (t− r2, t),

where Br(x) = {y ∈ Rn : |y − x| < r}. For δ = const > 0, Ω ⊂ Rn, Q = Ω× (0, T )
we set

Ωδ = {x ∈ Ω : dist (x, ∂Ω) > δ} = {x ∈ Ω : Bδ(x) ⊂ Ω},
Qδ = Ωδ × (δ2, T ) = {X ∈ Q : Cδ(X) ⊂ Q}.(4)

Theorem 2.2 (Harnack Principle). Let u be a nonnegative solution of Lu = 0
in a bounded Q = Ω × (0, T ), δ = const > 0 such that Ωδ is a connected set,
X = (x, t), Y = (y, s) ∈ Qδ, and s− t ≥ δ2. Then

u(X) ≤ Nu(Y ),(5)

where the constant N = N(n, ν, diamΩ, T, δ). For cylinders Q = Cr, r > 0, the
constant N = N(n, ν, δ

r ).

This theorem was proved in [KS], see also [K, Chap. 4], for the divergence case
it was proved in [M1], [M2], see also [FSt].

As in [FGS] and [FS], we assume that a bounded domain Ω ⊂ Rn satisfies the
following Lipschitz condition with some positive constants r0 and m.

Assumptions: For each y ∈ ∂Ω, there is an orthonormal coordinate system
centered at y such that

Ω ∩Br0(y) = {x = (x′, xn) : x′ ∈ Rn−1, xn > ϕ(x′), |x| < r0},
where ‖∇ϕ‖L∞ ≤ m.

In such local coordinates, y ∈ ∂Ω is represented as (0, 0) and (0, r) ∈ Ω for all
r ∈ (0, r0]. For Q = Ω × (0, T ), Y = (y, s) = (0, 0, s) ∈ ∂xQ = ∂Ω × (0, T ), and
r > 0, we set

Y r = (0, r, s + r2), Y r = (0, r, s− 2r2).

Throughout this paper, N denotes various positive constants depending only on
the original quantities.

3. Backward Harnack Inequalities

3.1. Estimates of Solutions Near the Boundary.

Lemma 3.1. Let u be a nonnegative solution of Lu = 0 in Q = Ω× (0, T ). Then
for any Y = (y, s) ∈ ∂xQ and 0 < r ≤ 1

2 min(r0,
√

T − s), we have

M = sup
Q2r

dγu ≤ Nrγu(Y r),(6)

where Q2r = Q ∩ C2r(Y ), d = d(X) = sup{ρ > 0 : Cρ(X) ⊂ Q2r}, and γ, N are
positive constants depending only on n, ν, m.

Proof. We fix a point X ∈ Q2r. By simple geometrical considerations one can see
that there exists a finite sequence {X(i) = (x(i), t(i)) : i = 0, 1, · · · , k} ⊂ Q such
that

X(0) = X, X(k) = Y r, di ≥ δ0q
id0,(7)

Cδdi(X
(i−1)) ⊂ Cdi(X

(i)) ⊂ Q, t(i) − t(i−1) ≥ δ2d2
i ,(8)
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for all i = 1, 2, · · · , k, where di = sup{ρ > 0 : Cρ(X(i)) ⊂ Q}, i ≥ 0, and constants
δ0, δ ∈ (0, 1), q > 1 depend only on m. From (7) it follows

d = d(X) ≤ d0 ≤ δ−1
0 q−kdk ≤ δ−1

0 q−kr.(9)

Further, by Theorem 2.2 we have u(X(i−1)) ≤ Nu(X(i)), i = 1, · · · , k, where
N = N(n, ν, m) > 1. We represent this constant N in the form N = qγ . Then

u(X) = u(X(0)) ≤ qkγu(X(k)) = qkγu(Y r).

Together with (9) this yields dγu(X) ≤ Nrγu(Y r). Since X is an arbitrary point
in Q2r, we arrive at the desired estimate (6).

Lemma 3.2. Let Q = Ω×(0, T ), Y = (y, s) ∈ ∂xQ, and 0 < r ≤ 1
2 min(r0,

√
s) be

fixed, and let u be a nonnegative solution of Lu = 0 in Q2r = Q ∩ C2r(Y ). Then

u(Y r) ≤ Nrγ inf
Qr

d−γu,(10)

where d = d(x) = dist (x, ∂Ω) for X = (x, t) ∈ Qr = Q ∩ Cr(Y ), and γ, N are
positive constants depending only on n, ν, m.

Proof. It follows the lines of the proof of the previous lemma, only we replace Y r

by Y r in (7), and instead of (8) we now take

Cδdi(X
(i+1)) ⊂ Cdi(X

(i)) ⊂ Q, t(i) − t(i+1) ≥ δ2d2
i .

Then we have (9) and

u(Y r) = u(X(k)) ≤ qkγu(X(0)) = qkγu(X) ≤ Nrγd−γu(X),

which proves (10).

The next theorem is a boundary Harnack inequality. Such kind of estimate is
also referred to as Carleson type inequality. The estimate (12) was first proved
by S. Salsa in [Sl] (Theorem 3.1) for divergence case, and by N. Garofalo in [G]
(Theorem 2.3) for non-divergence case.

Theorem 3.3. Let Y = (y, s) ∈ ∂xQ and 0 < r ≤ 1
2 min(r0,

√
T − s,

√
s) be fixed.

Then for any nonnegative solution of Lu = 0 in Q, which continuously vanishes
on Γ = ∂xQ ∩ C2r(Y ), we have

M0 = sup
Q2r

dγ
0u ≤ Nrγu(Y r),(11)

where

d0 = d0(X) = sup{ρ > 0 : Cρ(X) ⊂ C2r(Y )},
and γ, N are positive constants depending only on n, ν, m. In particular,

sup
Qr

u ≤ Nu(Y r).(12)

First we prove the following elementary estimate; such kinds of estimates usu-
ally serve as intermediate steps in the proof of boundary Hölder estimates (in the
divergence case, see [LSU, Chap. II], Sec. 8, and [T, Sec. 4]).
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Lemma 3.4. Let a domain U ⊂ C2r = C2r (Y ) , where r > 0 and Y = (y, s) ∈
Rn+1. Let Z = (z, τ) and 0 < ε ≤ 1 be such that

Bεr (z)× {τ} ⊂ C2r\U, s− 4r2 < τ ≤ s− 2r2.(13)

Then for any u satisfying Lu ≥ 0 in U, u ≤ 0 on (∂′U)\(∂′C2r), and
supU u > 0, we have

sup
U∩Cr

u ≤ θ sup
U

u(14)

with a constant θ = θ (n, ν, ε) ∈ (0, 1) .

Proof. We fix X0 = (x0, t0) ∈ U ∩ Cr. Without loss of generality we may assume
supU u = 1, r = 1, and Z = (z, τ) = (0, 0) . Then from (13) it follows that |x0| ≤ 3,
1 ≤ t0 ≤ 4. Consider the function v = e−λtw2, where w = ε2 − |x− tl|2, l = x0/t0,
and λ = const, on the slant cylinder

V = {(x, t) : |x− tl| < ε, 0 < t < t0} .

We have

Lv = e−λt
(
λw2 + 2wLw + F

)
, where F = 2

∑
i,j

aijDiwDjw ≥ 2ν|Dw|2

and |Lw| ≤ N = N (n, ν) in V . Since F ≥ νε2 and w is small near

∂′V = {(x, t) : |x− tl| = ε, 0 < t < t0} ,

there exists ε1 = ε1 (n, ν, ε) ∈ (0, ε) such that Lv ≥ 0 for ε1 ≤ |x − tl| ≤ ε,
0 ≤ t ≤ t0, and arbitrary λ ≥ 0. On the remaining part of U , we also have Lv ≥ 0,
provided λ = λ (n, ν, ε) > 0 is large enough.

Further, the parabolic boundary ∂′ (U ∩ V ) = Γ1 ∪ Γ2 where Γ1 ⊂ ∂xV ∩ U ,
Γ2 = (∂′U\∂′C2) ∩ V . Since u ≤ supU u ≤ 1, v = 0 on Γ1 and u ≤ 0, v ≤ ε4 ≤ 1
on Γ2, we have u + v ≤ 1 on ∂′ (U ∩ V ) . Moreover, L (u + v) ≥ 0 in U ∩ C2r. By
the comparison principle, u + v ≤ 1 in U ∩ V . Hence

u (X0) ≤ 1− e−4λε4 = θ = θ (n, ν, ε) ∈ (0, 1) .

Since X0 ∈ U ∩ C2r is arbitrary, we get the estimate (14).

By iterating the estimate (14), we get the following Hölder estimate (cf. [G,
Lemma 2.1]).

Corollary 3.5. Under the assumption of Theorem 3.3, for ρ ≤ r, we have

sup
Qρ

u ≤ 2α
(ρ

r

)α

sup
Qr

u

where α = α(n, ν, m) = − log2 θ > 0.

Proof of Theorem 3.3. Comparing (11) with (6), we see that it suffices to prove the
estimate

M0 ≤ N0M, with N0 = N0(n, ν, m).(15)

We choose ε0 = ε0(n, ν, m) ∈ (0, 1
3 ) small enough, so that

θ0 = (1− 3ε0)−γθ < 1,(16)

where θ < 1 is the constant in Lemma 3.4. For arbitrary X = (x, t) ∈ Q2r, we
consider separately two possible cases (a) and (b).
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(a) d = d(X) ≤ ε0d0(X). In this case, d = dist (x, ∂Ω) = |x − x0| for some
x0 ∈ ∂Ω. By Lemma 3.4 applied to u in Q2d(X0) = Q ∩ C2d(X0), X0 = (x0, t),
we have

u(X) ≤ sup
Qd(X0)

u ≤ θ sup
Q2d(X0)

u.(17)

Further, d0(X) ≤ d0(Z) + |X − Z|, where

|X − Z| = max(|x− z|, |t− τ | 12 ) ≤ 3d ≤ 3ε0d0(X)

for arbitrary Z = (z, τ) ∈ Q2d(X0). Therefore, (1 − 3ε0)d0(X) ≤ d0(Z) for such
Z, and together with (17), (16), (11), this gives us

dγ
0u(X) ≤ (1− 3ε0)−γθ sup

Q2d(X0)

dγ
0u ≤ θ0M0.(18)

(b) d = d(X) > ε0d0(X). Obviously, in this case,

dγ
0u(X) ≤ ε−γ

0 dγu(X) ≤ N0M with N0 = ε−γ
0 .(19)

Combining (18) and (19), we now have

M0 = sup
Q2r

dγ
0u ≤ max(θ0M0, N0M) = N0M,

because θ0 < 1. So the estimate (15) is proved.

3.2. Backward Harnack Inequalities. The following elliptic-type Harnack in-
equality is similar to Theorem 2.6 in [G] (see also [FGS], Theorem 1.3, for the
divergence case).

Theorem 3.6. Let u be a nonnegative solution of Lu = 0 in Q = Ω × (0, T )
which continuously vanishes on ∂xQ, and let 0 < δ ≤ 1

2 min(r0,
√

T ). Then there
exists a positive constant N = N(n, ν, m, r0, diamΩ, T, δ), such that

sup
Qδ

u ≤ N inf
Qδ

u,(20)

where Qδ is defined in (4).

Proof. Applying the maximum principle, the boundary Harnack inequality (Theo-
rem 3.3) and the Harnack principle (Theorem 2.2), we have

sup
Qδ

u ≤ sup
x∈Ω

u

(
x,

δ2

4

)
≤ N1 sup

x∈Ωµδ

u

(
x,

δ2

2

)
≤ N inf

Qδ
u

where µ = µ(m) > 0, N1 = N1 (n, ν, m), and N = N (n, ν, m, r0, diam Ω, T, δ).

The boundary backward Harnack inequality is formulated as follows.

Theorem 3.7. Let u be a nonnegative solution of Lu = 0 in Q = Ω × (0, T )
which continuously vanishes on ∂xQ, and let δ = const > 0. Then there exists a
positive constant N = N(n, ν, m, r0, diamΩ, T, δ), such that

u(x, s) ≤ Nu(x, t)(21)

where T > s ≥ t ≥ s− d2 ≥ δ2 = const > 0, d = dist (x, ∂Ω).



BOUNDARY BEHAVIOR OF SOLUTIONS OF PARABOLIC EQUATIONS 4953

We first prove an auxiliary result. For given Y = (y, s), r > 0 and k > 0, we
set

V1 = Ωkr × (s− r2, s), V2 = Ω2kr × (s− 4r2, s),(22)

where Ωkr = Ω ∩ Bkr(y), Ω2kr = Ω ∩ B2kr(y). The parabolic boundary of V2 is
represented in the form ∂′V2 = Γ0 ∪ Γ1 ∪ Γ2, where

Γ0 ⊂ Q0\∂′Q0, Γ1 ⊂ ∂xQ0, Γ2 ⊂ ∂tQ0,
Q0 = B2kr (y)× (s− 4r2, s

)
.

(23)

Lemma 3.8. Let Y = (y, s) ∈ Q and let positive constants r and γ be given.
There exists a constant k = k(n, ν, γ) ≥ 8 such that, for any nonnegative solution
of Lu = 0 in V2 which continuously vanishes on Γ0, from the inequality

M = sup
V1

u > (2k)−γ sup
Γ1

u(24)

it follows

sup
Γ2

u >
1
2
M.(25)

Proof. Using the transformations:

x −→ (2r)−1(x− y), t −→ (2r)−2(t− s) + 1, and u −→ const · u,

we reduce the proof to the case

y = 0, s = 1, r =
1
2
, sup

Γ1

u = 1,

so that V1 = Ω k
2
× (3

4 , 1), V2 = Ωk × (0, 1). Next, we show that for the proof of
the lemma it suffices to construct a function v(x, t) satisfying the inequalities

v ≥ 0, Lv ≤ 0 in V2, v ≤ Ne−
k2
N in V1, and v ≥ 1 on Γ1(26)

with constants N = N(n, ν) > 0. Indeed, then we have
L(u− v) = −Lv ≥ 0 in V2, and u− v ≤ 0 on Γ0 ∪ Γ1 = ∂′V2 \ Γ2. Therefore,

sup
Γ2

u ≥ sup
Γ2

(u − v) = sup
∂′V2

(u− v)

= sup
V2

(u− v) ≥ sup
V1

(u − v) ≥ M −Ne−
k2
N ,

where N = N(n, ν) > 0. We can choose k = k(n, ν, γ) ≥ 8 such that

Ne−
k2
N ≤ 1

2
(2k)−γ =

1
2
(2k)−γ sup

Γ1

u.

This gives us

sup
Γ2

u ≥ M − 1
2
(2k)−γ sup

Γ1

u.

This inequality together with (24) yields (25). So it remains to construct v(x, t)
satisfying (26).

Consider the function

v = k0s
−αe

β|x|2
s , where s = 2− t, k0 = 2αe−

βk2
2 ,
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and α, β are constants. We have v ≥ 0,

Lv =
∑
i,j

aijDijv + vs

=
v

s

(
2β
∑

i

aii − α

)
+

βv

s2

4β
∑
i,j

aijxixj − |x|2
 ≤ 0

in V2 for some α, β > 0 depending only on n, ν. Further,

|x| < k

2
, v ≤ k0s

−αe
βk2
4s ≤ 2αe−

βk2
4 ≤ Ne−

k2
N in V1.

Finally, |x| = k and 1 < s < 2 imply v ≥ 1 on Γ1. Hence v satisfies (26), and
the proof of the lemma is completed.

Proof of Theorem 3.7. Denote ρ0 = 1
2 min(r0, δ0) > 0. If d > ρ0, then (21) follows

directly from (20) with δ = ρ0, so we may assume d ≤ ρ0.
We choose y ∈ ∂Ω such that |x − y| = d, set Y = (y, s), and consider the

function

f(ρ) = ρ−γ sup
Qρ

u, where Qρ = Q ∩Cρ(Y ),

and γ = γ(n, ν, m) > 0 is the constant in Lemma 3.2. Now we define

r = max{ρ : d ≤ ρ ≤ ρ0, f(ρ) ≥ f(d)}.
The inequality f(d) ≤ f(r) implies

u(x, s) ≤ sup
Qd

u ≤
(

d

r

)γ

sup
Qr

u.

By Lemma 3.2 we also have

u(Y r) ≤ N
( r

d

)γ

u(x, t).

These two estimates reduce the proof of (21) to the inequality

M1 = sup
Qr

u ≤ Nu(Y r).(27)

In the proof of this inequality, we consider separately two cases (a) and (b).
(a) ρ0

2k ≤ r ≤ ρ0, where k is a constant in Lemma 3.8 corresponding to our γ.
Since r is comparable with ρ0, from Theorem 3.6 it follows u(Y r) ≤ Nu(Y r).
This estimate and (12) yield (27).

(b) d ≤ r < ρ0
2k . By definition of r, f(r) > f(2kr); hence

M1 = sup
Qr

u > (2k)−γ sup
Q2kr

u.(28)

It is easy to see that Qr ⊂ V1, Q2kr ⊃ Γ1, where V1, Γ1 are defined in (22), (23).
Therefore, (28) implies (24) and (25). The last estimate means

M1 < 2u(Z0) for some Z0 = (z0, s− 4r2), z0 ∈ Ω2kr.(29)

If dist (z0, ∂Ω) < r, then |z0 − z| < r for some z ∈ ∂Ω, and by (12)

u(Z0) ≤ sup
Qr(Z)

u ≤ Nu(Zr).
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The Harnack inequality (5) guarantees u(Zr) ≤ Nu(Y r), where by “scaling” ar-
guments N depends only on n, ν, m. Therefore,

u(Z0) ≤ Nu(Y r).(30)

If dist (z0, ∂Ω) ≥ r, then we can use the Harnack inequality directly to get (30).
Finally, (29) and (30) provide the estimate (27).

4. Hölder Continuity of Quotients

We now begin the discussion leading to the proof of the second main result: the
quotient of two solutions of a parabolic non-divergence equation, both solutions
vanishing on a portion of the lateral boundary, is locally Hölder continuous up to
that portion of the boundary. In this section we need some further Notation: for
Y = (y, s) ∈ Rn+1 with y ∈ ∂Ω, 0 < r ≤ R, we set

ΩR (y) = BR (y) ∩ Ω,

ΩR,r(y) = ΩR (y) ∩ {x ∈ Ω : d(x) < r} ,

QR (Y ) = QR(y, s) = ΩR(y)× (s−R2, s),
QR,r(Y ) = QR,r(y, s) = ΩR,r(y)× (s−R2, s),
SR,r (Y ) = {(x, t) ∈ ∂′QR,r (Y ) : d (x) = r} ,

ΓR,r (Y ) = {(x, t) ∈ ∂′QR,r (Y ) : 0 < d (x) < r} ,

where d (x) =dist(x, ∂Ω) .

4.1. Some Lemmas. We first present two auxiliary lemmas, which are interesting
for their own sake.

Lemma 4.1. Let Y = (y, s) ∈ Rn+1 with y ∈ ∂Ω, r > 0, K ≥ 6, Kr ≤ r0, and let
u be a solution of Lu ≥ 0 in QKr,r(Y ) satisfying the following conditions: 1. u ≤ 1
in QKr,r(Y ), 2. u ≤ 0 on (∂′QKr,r) \ΓKr,r. Then we have

sup
Qr(Y )

u ≤ e−NK ,(31)

where N = N(n, ν, m) > 0.

Proof. We prove this decay estimate by iteration. By scaling x → r−1x, t → r−2t,
we may assume r = 1. Let j ≥ 1, 2j + 1 ≤ K, supQ2j−1,1

u = u (Xj) for some
Xj ∈ ∂′Q2j−1,1. Since ∂Ω satisfies the Lipschitz condition, we may apply Lemma
3.4 with a constant ε = ε (n, ν, m) ∈ (0, 1) to U = C2 (Xj) ∩QK,1 ⊂ Q2j+1,1, then
we have

sup
Q2j−1,1

u = u (Xj) ≤ θ sup
U

u ≤ θ sup
Q2j+1,1

u,

where θ = θ (n, ν, m) ∈ (0, 1) . Notice that Q1,1 = Q1. Iterating the above estimate,
we obtain

sup
Q1

u ≤ θk sup
Q2k+1,1

u ≤ θk

where 2k + 1 ≤ K ≤ 2k + 3. Since k > K−3
2 ≥ K

4 , we get the desired estimate (31)
with N = N(n, ν, m) = − 1

4 ln θ > 0.
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Lemma 4.2. Let Y = (y, s) ∈ ∂Ω×R1 be fixed, and let u, v satisfy the conditions

1. Lu ≤ 0, u ≥ 0 in QKr,r, u ≥ 1 on SKr,r,
2. Lv ≥ 0, v ≤ 1 in QKr,r, v ≤ 0 on (∂′QKr,r) \ΓKr,r,

(32)

where K ≥ 6, 0 < Kr ≤ r0. Then we have

v ≤ u in Qr = Qr (Y ) ,(33)

provided K = K (n, ν, m) is large enough.

Proof. As before, we may assume r = 1. First we prove the estimate

u (X) = u (x, t) ≥ 2δdγ (x) in Q1 = Q1 (Y )(34)

with positive constants δ and γ depending only on n, ν, m.
We choose R = R(m) ≥ 6 and ỹ ∈ Ω, such that |ỹ−y| = R and B2(ỹ) ⊂ ΩR+2 =

Ω ∩ BR+2(y), and assume K ≥ R. Next, we define ũ in QR = Q ∩ CR(Y ) as the
(unique) solution of the equation Lũ = 0 in QR with the boundary values

ũ = min(u, 1) on (∂′QR) ∩ (∂′QR,1), ũ = 1 on (∂′QR) \ (∂′QR,1).

By the comparison principle, 0 ≤ ũ ≤ 1 in QR. Moreover, since

u ≥ 1 on SK,1 ⊇ SR,1 ⊇ (∂′QR,1) \ (∂′QR),

we have u ≥ ũ on ∂′QR,1, and hence u ≥ ũ in QR,1 ⊇ Q1. Further, we set

z = ỹ + R−1(ỹ − y), z̃ = ỹ −R−1(ỹ − y), Ỹ = (ỹ, s− 4), Z̃ = (z̃, s− 4).

It is easy to see that

B1(z) ⊂ B2(ỹ) \ ΩR, B1(z̃) ⊂ B2(ỹ) ∩ΩR.

We can apply Lemma 3.4 to the function 1 − ũ in U = QR(Y ) ∩ C2(Ỹ ), which
vanishes on (∂′QR) \ (∂′QR,1) ⊇ (∂′U) \ (∂′C2(Ỹ )). This gives us

1− ũ(Z̃) ≤ sup
U∩C1(Ỹ )

(1− ũ) ≤ θ sup
U

(1− ũ) ≤ θ = θ(n, ν) < 1,

and ũ(Z̃) ≥ 1− θ > 0. By the Harnack principle, Theorem 2.2,

ũ(Y 1) ≥ N−1ũ(Z̃) ≥ δ0 = δ0(n, ν, m) > 0.

Now applying Lemma 3.2 to ũ in QR ⊃ Q2 ⊃ Q1, we have

ũ(X) = ũ(x, t) ≥ N−1dγ(x)ũ(Y 1) ≥ 2δdγ(x) in Q1,

where γ = γ(n, ν, m) > 0, δ = δ(n, ν, m) > 0. Since u ≥ ũ in Q1, the estimate (34)
is proved for K ≥ R. In particular, for such K we have

u ≥ 2δK−γ in Q1\Q1,K−1 ⊃ S1,K−1 .

It follows from Lemma 4.1 that

v ≤ e−NK ≤ δK−γ in Q1,

provided K = K (n, ν, m) is chosen large enough. Then

u1 =
Kγ

2δ
u ≥ 0 in Q1,K−1, u1 ≥ 1 in Q1\Q1,K−1 ⊃ S1,K−1 ,

v1 =
Kγ

2δ
(2v − u) ≤ Kγ

δ
v ≤ 1 in Q1 ⊃ Q1,K−1 , v1 ≤ 0 on S1,K−1 ,
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and hence

u1 − v1 =
Kγ

δ
(u− v) ≥ 0 in Q1\Q1,K−1.

In particular, u1, v1 satisfy the same assumption as (32) with r = K−1. By
iteration, we can construct uj , vj such that

uj − vj =
(

Kγ

δ

)j

(u− v) ≥ 0 in QK1−j\QK1−j,K−j

for all j = 1, 2, 3, · · · . As a consequence,

u− v ≥ 0 on I(Y ) =
∞⋃

j=1

QK1−j (Y )\QK1−j,K−j (Y ).

For arbitrary X0 = (x0, t0) ∈ Q1 = Q1(Y ), we can take Y0 = (y0, t0) with
y0 ∈ ∂Ω satisfying d(x0) = dist (x0, ∂Ω) = |x0 − y0|. Then X0 ∈ I(Y0). Moreover,
|y0 − y| ≤ |x0 − y|+ |x0 − y0| < 2; therefore,

QK,1(Y0) ⊂ QK+2,1(Y ), SK,1(Y0) ⊂ SK+2,1(Y ).

Replacing K with K + 2, we conclude u − v ≥ 0 on I(Y0) 3 X0. Since X0 is an
arbitrary point in Q1, we arrive at (33).

Remark. In terms of the L-caloric measure ωX (see [FGS, p. 540]) corresponding
to L and QKr,r (Y ), (33) says

ωX (SKr,r) ≥ ωX (ΓKr,r) for X ∈ Qr (Y ) .

4.2. Boundedness of Quotients.

Theorem 4.3. Fix Y = (y, s) ∈ ∂Ω× (0,∞) with 0 < Kr < 1
2 min (r0,

√
s) , where

K is the constant in Lemma 4.2. Assume u and v are two nonnegative solutions of
Lu = 0 in Ω× (0,∞) , and v = 0 on C2Kr (Y ) ∩ (∂Ω× (0,∞)); then

sup
Qr(Y )

v

u
≤ N (n, ν, m)

v
(
Y Kr

)
u (Y Kr)

.(35)

Proof. By scaling, we may assume r = 1, u (Y K) = v
(
Y K

)
= 1. By the boundary

Harnack inequality, Theorem 3.3,

v ≤ N0 (n, ν, m) in QK ⊃ QK,1.

By Lemma 3.2 (or Theorem 2.2),

u ≥ 1
N0 (n, ν, m)

on SK,1.

Applying Lemma 4.2 to the functions u0 = N0u and v0 = N−1
0 v − u0, we get

sup
Q1

v

u
= N2

0 sup
Q1

(
v0

u0
+ 1
)
≤ 2N2

0 = N (n, ν, m) ,

the desired estimate (35).

Remark. The above estimate (35) was first proved in [G] (Theorem 3.1) for the non-
divergence case and C2-domains and in [FGS] (Theorem 1.6) for the divergence case
and Lipschitz domains. For elliptic equations (divergence and non-divergence), it
was proved in [CFMS] (Theorem 1.4), [B] (Theorem 2.1), and [FGMS] (Theorem
I.3.7).
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4.3. Oscillation Decay. In the following two theorems, we use the notation

ω (X, r) = osc
Qr(X)

v

u
, where Qr (X) = Q ∩Cr (X) .

Theorem 4.4. Assume u and v are two strictly positive solutions of Lu = 0 in
Q = Ω× (0,∞) and also u = 0 on ∂xQ = ∂Ω× (0,∞) .

(a) Let X = (x, t) ∈ Q, t > δ2 = const > 0, and 0 < r ≤ 1
2d(X), where

d(X) = min(d(x),
√

t). Then

ω
(
X,

r

2

)
≤ θ0ω (X, r) ,(36)

where θ0 = θ0 (n, ν, m, r0, diam Ω, δ) ∈ (0, 1) .
(b) Let Y = (y, s) ∈ ∂xQ, s ≥ δ2 = const > 0 and 0 < Kr ≤ 1

2 min (r0,
√

s) ,
where K is the constant in Lemma 4.2. Let v = 0 on CKr (Y ) ∩ ∂xQ . Then

ω
(
Y,

r

2K

)
≤ θ1ω (Y, r) ,(37)

where θ1 = θ1 (n, ν, m, r0, diam Ω, δ) ∈ (0, 1) .

Proof. (a) Denote X± =
(
x, t± r2/2

)
. We may assume

0 ≤ v

u
≤ 1 = ω (X, r) = osc

Cr(X)

v

u
in Cr (X) , and

v

u

(
X−) ≥ 1

2
;

otherwise in place of v we take c1u+c2v with some constants c1, c2. By the Harnack
principle (Theorem 2.2),

v
(
X−) ≤ Nv, u ≤ Nu

(
X+
)

in C r
2

(X) .

Moreover, by the boundary backward Harnack inequality (Theorem 3.7),

u
(
X+
) ≤ N1u

(
X−) .

Thus
1
2
≤ v

u

(
X−) ≤ N2

v

u
≤ N2 in C r

2
(X) ,

which implies (36) with θ0 = 1− 1
2N2

.

(b) According to Theorem 4.3, ω (Y, r) < ∞. As before, we may assume

0 ≤ v

u
≤ 1 = ω(Y, r) in Qr (Y ) , and

v

u

(
Y r

2

)
≥ 1

2
.

Applying Theorem 4.3 again and then Theorem 3.7, we get

sup
Q r

2K

u

v
≤ N

u
(
Y r

2

)
v
(
Y r

2

) ≤ N3
u

v

(
Y r

2

)
≤ 2N3 = 2N3 (n, ν, m, r0, diam Ω, δ) .

Thus
1

2N3
≤ v

u
≤ 1 in Q r

2K
(Y ) ,

which implies (37) with θ1 = 1− 1
2N1

.

Theorem 4.5. Let u and v be two strictly positive solutions of Lu = 0 in Q =
Ω× (0,∞) such that u = 0 on ∂xQ = ∂Ω× (0,∞) , and v = 0 on CKr1 (Y ) ∩ ∂xQ,
where Y = (y, s) ∈ ∂xQ, s ≥ δ2 = const > 0, K is the constant in Lemma 4.2, and
r1 = 1

6K min (r0,
√

s) . Then the quotient v
u is Hölder continuous in Qr1

= Qr1 (Y ).
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Proof. By Theorem 4.3, we have

ω (Y, 3r1) ≤ N
v
(
Y 3Kr1

)
u
(
Y 3Kr1

) = N0 < ∞.(38)

For arbitrary X = (x, t) ∈ Qr1
and 0 < r ≤ r1, we deal with three cases:

(a) 0 < r ≤ d ≤ r1, (b) 0 ≤ d < r ≤ 1
2r1, and (c) d < r, 1

2r1 < r ≤ r1, where
d = d(x) =dist(x, ∂Ω).

Case (a). Iterating (36), we get

ω (X, r) ≤ 2α0

(
2r

d

)α0

ω

(
X,

d

2

)
for 0 < r ≤ d

2
,

where α0 = − log2 θ0 > 0. This implies the estimate

ω (X, r) ≤
(

4r

d

)α0

ω (X, d) ,(39)

which is also true for d
2 < r ≤ d.

Case (b). In this case, Qr(X) ⊂ Q2r(X0) for some X0 = (x0, t) ∈ ∂xQ with
|x− x0| = d = d(x). By iterating estimate (37), we have

ω (X, r) ≤ ω (X0, 2r) ≤
(

4Kr

r1

)α1

ω (X0, r1) for d ≤ r ≤ 1
2
r1,(40)

where α1 = − log2K θ1 > 0.
Combining (39) and (40), we get

ω(X, r) ≤
(

4r

d

)α0

ω(X, d) ≤
(

4r

d

)α0 (4Kd

r1

)α1

ω(X0, r1) for 0 < r ≤ d ≤ 1
2
r1.

Notice that Qr1(X0) ⊂ Q2r1(X) ⊂ Q3r1(Y ); hence by virtue of (38), ω (X0, r1) ≤
ω (Y, 3r1) ≤ N0. We set α = min(α0, α2). We may assume that the constants
θ0, θ1 are close to 1, so that α0, α1, α ∈ (0, 1). Then the above estimate gives us

ω (X, r) ≤ 16K

(
r

r1

)α

N0(41)

for arbitrary X ∈ Qr1
and 0 < r ≤ d ≤ 1

2r1. If 0 < r ≤ 1
2r1 < d ≤ r1, it is a

consequence of (39). If d < r ≤ 1
2r1, this estimate follows immediately from (40).

In case (c) and the remaining of case (a), we have r > 1
2r1, which also implies (41).

Thus the estimate (41) holds for all X ∈ Qr1
, 0 < r ≤ r1, and this provides the

Hölder continuity of the quotient v
u .

Finally, we are ready to prove the Hölder continuity of the quotient of v
u with u

and v vanishing on an open portion of the lateral boundary.

Theorem 4.6. Let u and v be strictly positive solutions of Lu = 0 in Q = Ω ×
(0,∞) , vanishing on C2r (Y0)∩ ∂xQ, where Y0 = (y0, s0) ∈ ∂xQ = ∂Ω× (0,∞) and
s0 ≥ 4r2 > 0. Then v

u is Hölder continuous in Qr (Y0).

Proof. First we assume u ≡ 0 on ∂xQ. The Hölder continuity of u and v in any
subdomain Q′ ⊂ Q′ ⊂ Q, which is known from [KS], implies the same property
for v

u (it can also be obtained by iteration of (39)). Moreover, by Theorem 4.5,
v
u is Hölder continuous in Qr1 (Y ) for all Y ∈ Cr (Y0) ∩ ∂xQ and small r1 > 0.

Combining these two facts, we get the Hölder continuity of v
u in Qr (Y0) .
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In the general case, as in [FS], we represent u in the form u = u0 + u1, where

Lu0 = Lu1 = 0 in Q,

u0 = 0, u1 = u on ∂xQ,

u0 = u, u1 = 0 on ∂tQ = Ω× {0}.
Here without loss of generality we may assume u > 0 on Ω × {0}; otherwise we
replace t by t+const. Then u0 > 0 in Q, and the previous arguments show that v

u0

and u1
u0

are Hölder continuous in Qr (Y0) . Hence the same holds true for

v

u
=

v

u0
· 1
1 + u1

u0

.

This completes the proof.

Remark. The similar result for divergence case in [FS] (Theorem 8) was obtained by
employing Green’s function. Our proof of Theorem 4.4 also works for the divergence
case, since the boundary backward Harnack inequality is available (Theorem 4 in
[FS]).
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