Weekly Homework 1

Due: Friday, Jan 15 2016

January 8, 2016

Problem 1 (Solutions To Differential Equations). For each of the following, show whether or not the specified function is a solution to the corresponding differential equation.

(a) $y'''' + y''' + y' - y = 0$, $y(x) = \cos(x)$

(b) $\frac{\partial u}{\partial t} + \frac{\partial^3 u}{\partial x^3} + 6u \frac{\partial u}{\partial x} = 0$, $u(x, t) = \frac{1}{2} \csc h^2 \left[\frac{\sqrt{c}}{2} (x - ct - a) \right]$

(c) $y'' - y = 0$, $y(x) = \sinh(x)$

Problem 2 (Solving differential equations). For each of the following differential equations, do the following

(i) Identify the type of differential equation
(ii) Find the “general solution”

(a) $y' = 2y + 3$

(b) $y' = \frac{x^2 - y^2}{x + y}$

(c) $\sin(u) \frac{du}{dt} = \cos(u)/(1 + t^2)$

(d) $\frac{dy}{dt} = \frac{t^2 - y^2}{ty}$

(e) $(3x - 4y)dy = (2x + 7y)dx$

(f) $\frac{du}{dt} + y/t = 6 \cos(4t)$

(g) $y' + y = \cos(t)$

(h) $y' = 1 - y^3$

Problem 3 (Waaaaait a minute!). Explain what is wrong with the following argument:
Consider the differential equation

\[y' = 1 - 2y \]

Integrating both sides, we get the equation

\[y = y - y^2 + C. \]

Simplifying this, we get the solution \(y^2 = C \) meaning that

\[y = \pm \sqrt{C}. \]

Problem 4 (Slope fields). For each of the following initial value problems

(i) Plot the slope field

(ii) Based on the plot of the slope field, predict the behavior of a solution to the IVP at large values of \(t \)

(iii) Explicitly solve the IVP

(iv) Based on the explicit solution of the IVP, determine the behavior at large values of \(t \)

(a) \(y' = y(1 - y^2), \ y(0) = 1 \)

(b) \(y' = y(1 - y^2), \ y(0) = 1/2 \)

(c) \(y' = y(1 - y^2), \ y(0) = 3/2 \)

Problem 5 (Second order equations). Consider the second order differential equation

\[y'' - y = 0 \]

(a) Show that the change of variables \(z = y' + y \) in the above second-order equation transforms it into the first order equation

\[z' - z = 0 \]

(b) Find the general solution of the first-order equation of (a)

(c) By substituting the value of \(z \) back into the equation \(z = y' + y \), find the value of \(y \). Your final answer for \(y \) should involve two arbitrary constants.

Problem 6 (Solving Initial Value Problems). Find a solution to each of the following initial value problems

(a) \(y' = x \cos(y), \ y(0) = 1 \)

(b) \(y' = e^x + y, \ y(1) = 2 \)
(c) \(\frac{dy}{dt} + 2y = te^{-2t}, \quad y(1) = 0 \)

(d) \(xy' + 2y = \sin(x), \quad y(\pi/2) = 1 \)

Problem 7 (An almost homogeneous equation). Consider the differential equation

\[y' = x \cos(y/x) + y/x \]

(a) Explain why this is not a homogeneous differential equation

(b) Find the general solution of the differential equation.