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ABSTRACT

In this book there will be found an introduction to transcendental number
theory, starting at the beginning and ending at the frontiers. The emphasis is
on the conceptual aspects of the subject, thus the effective theory has been
more or less completely ignored, as has been the theory of E-functions and
G-functions. Still, a fair amount of ground is covered and while I take certain
results without proof, this is done primarily so as not to get bogged down in
technicalities, otherwise the exposition is detailed and little is left to the

reader.
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CORRECTION #1.

Re: 615, #30: Tt has been pointed out to me by Michel Waldschmidt that
the proof of this result has a mistake in that Step 2 as formulated does not lead
to Step 3. The situation is rectified in the lines below via a modification of

Step 2, which is then shown to lead to Step 3.

Step 2: Introduce

[= =] o o “
a= £ o0.27,8= I B 27,
j=1 1 j=1 J

where for k! < j < (k+1)!,

1S
Il

3 mjaxxiﬁj:{ll k=1,3,5,...)

{2
Il

Gmﬁaj:mj (k=2,4,6,...).

Xx=0a+ B.

Step 3: Assume that the series defining o is infinite —— then in this
case, 0 is a Liouville mumber.

[Break up the series

T oo 29
=1 J
as follows:
e % 27 . : & 67 o
11<k<21 %5 27+ 215]%{3! o L 4 31512«4! % 27+ 425%{51 o 273 4 5!5£<6'. Al g
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Consider
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The remainder of the argument goes through without change.]



§0. THE CANONICAL ESTIMATE

THEOREM Given a positive constant C,

c

lim ﬁ—!-=0.
n > c

PROOF Write

n! =ne " /4 Y, (Stirling's formula).

Here
iy ce=2215],
5 n e Sy, "~ e
Choose n > > 0:eC < n — then
0< G =l
* ne /My
n
_ (0 1
" Ay
n
n
s(%) "é%
n
<§._]_'_—)-0 (n+oo)



81. ORDERED SETS

Iet X be a nonempty set.

1l: DEFINITION An order on X is a relation < with the following proper-

ties.
e Trichotomy Given X,y € X, then one and only one of the statements
X<V, X=Y, ¥y<X

is true.

e Transitivity Given x,v,z € X, if x < yvand v < 2, then x < z.

2: N.B.
® V >Xmeans x < V.

® X<{ymeansx < yor x =Y.

3: DEFINITION An ordered set is a pair (X,<), where X is a nonempty set

equipped with an order <.

EXAMPLE, Take X = Q —— then X is an ordered set if p < g is defined to

mean that g - p is positive.
Iet X be an ordered set, S < X a nonempty subset.

5: NOTATION

U(s) = {xeX:zvseS, s<x}.

DEFINITION S is bounded above if U(S) # @, an element of U(S) being

called an upper bound of S.




7: N.B. The terms "bounded below" and "lower bound" are to be assigned

the obvious interpretations, where now

L(S) ={xeX:vs €S, x <s}.

Let X be an ordered set, S © X a nonempty subset such that U(S) # d.

8: DEFINITION An element x € U(S) is a least upper bound of S if

y <x=>y gU(S).

9: LEMMA Ieast upper bounds are unique (if they exist at all) and one
writes
x =1ub S or x = sup S ("supremm").
[Note: The definition of "greatest lower bound" is analogous, such an element
being denoted by

x =glb S or x = inf S ("infimm").]

10: EXAMPLE Take X QandletS={I—];-:nEN}——thensupS=lisinS

but inf S = 0 is not in S.
Iet X be an ordered set.

11l: DEFINITION X has the least upper bound property if each nonempty

subset S < X which is bounded above has a least upper bound.

12: EXAMPLE Take X = N — then X has the least upper bound property.

EXAMPIE Take X = Q — then X does not have the least upper bound

I

property.



[Assign to each rational p > 0 the rational

and note that

(p+2)2
Introduce
— 2
={peQp>0&p <2}
2
_B={peQp>0s&p >2}.
Then
T pPEA=>pP<g&gEA
_ pPEB=>g<p&dgEB.
Therefore
" A has no largest element
_ B has‘no smallest element.
But
T U@ =B
L(B) = A.

So A does not have a least upper bound and B does not have a greatest lower bound.]

Iet X be an ordered set.

14: LEMMA Suppose that X has the least upper bound property. Iet S <X



be nonempty and bounded below -~ then

sup L(S) = inf S.

PROOF By hypothesis, L(S) # # and
s €S =>s € UL(S)) => U(L(S)) # 4.
Therefore sup L(S) exists, call it A. Given s € S, there are three possibilities:

S<XA, 8=, A < s.

However s < )\ is untenable since it implies that
s & U(L(S)) = s £ S.
Accordingly
SES=>XA<s8s=>X%¢€L(S).

If now A < A', then A' € L(S) (for otherwise X' € L(S) => A' < X by the very

definition of A ...), thus A = inf S.

15: DEFINITION Zn ordered field is an ordered set X which is also a

field subject to the following conditions.

e Ify<z, thenVvVx, x+y<x+ 2.

e Ifx>06&y>0, then xy > 0.

16: EXAMPIE Take X = Q — then X is an ordered field.



§2. REAL NUMBERS

The following result is the central theorem of existence.

1l: THEOREM There exists an ordered field R with the least upper bound

property which contains  as an ordered subfield.
[Note: Here there is an abuse of the language in that "Q" is not necessarily

the rationals but rather an isomorphic replica thereof.]

2_: DEFINITION The elements of R are called real mumbers.

3: N.B. Suppose that Rl and R2 are two realizations of R —— then there

exists a unigque order preserving field isomorphism q;:Rl > R, such that qb(Ql) = Qz.

4: REMARK There are three standard realizations of R.
® The set of infinite decimal expansions.
e The set of equivalence classes of Cauchy sequences of rational numbers.
® The set of Dedekind cuts.
[Note: The fact that these models are actually ordered fields with the least

upper bound property is not obvious, the actual verification involving a fair

amount of tedious detail.]

5: REMARK If S is a nonempty subset of R which is bounded below, then S

has a greatest lower bound (cf. §l, #14).
[In fact,

glb S = - 1ub - S.]

6: IEMMA Let S be a nonempty subset of R which is bounded above —-- then



for each € > 0, there is an element s € S such that s > sup S - €.
PROOF If the assertion were false, then for some € > 0 and all s € S,
sup S - € 2 s.
Accordingly, by definition of supremum,
sup S - € > sup S,

so € £ 0, a contradiction.

7: LEMMA Let S be a nonempty subset of R which is bounded above. Suppose

that @ is an upper bound for S with the property that for each € > 0, there exists
an element s € S such that 4 - € < s — then u = sup S.
PROOF If instead p # sup S, then u > sup S, hence y - sup S > 0, thus for
some s € S,
U—-(u-sup S) =sup S < s,

a contradiction.

8: ARCHIMEDEAN PROPERTY For every positive real x and for every real y,
there exists a natural number n such that nx > y.

PROOF Suppose to the contrary that there exist real numbers x > 0 and y
such that nx < y for every natural number n. Iet S = {nx:n € N} —— then S is
bounded above (by v), hence has a supremm j, say. Because 4 - X < u (x is
positive), there must be a natural number n with the property that nx > u - x
(cf. #6), so (n + 1)x > u. But (n + 1)x belongs to S, thus the inequality
(n + 1)x > u contradicts the assumption that u is, in particular, an upper bound

for S.

9: COROLIARY For every real number %, there exists a natural number n

such that n > x.



10: COROLIARY For every real mumber x, there exists an integer m such
that x > m.
[Choose a natural number n such that n > - x (cf. #9) — then x > - n, so

we can take m = - n.]

11: COROLLARY For every positive real number x, there exists a natural

number n such that x > g'l—

. _ i
12: EXAMPIE Let S = {_3:n € N} — then 1 € U(S) and we claim that

1 =sup$S. Thus let uy = sup S and suppose to the contrary that y < 1. Using

#11, chooseanaturalnumbern>lsuchthat%<l-u,hence
1 _n-1
u<l"H" n '’

which implies that y is less than an element of S.

13: LEMMA For every real number x, there exists an integer m such that
Xx-1lg<gm<x.
PROOF Owing to #9 and #10, there exist integers a and b such that a < x < b.
Iet m be the largest integer in the finite collection a, a + 1,..., b such that

m<x-—thenm+1>x, hencem > x - 1.

14: DEFINITION A nonempty subset S of R is said to be dense in R if it
has the following property: Between any two distinct real numbers there is an

element of S.

15: THEOREM Q is dense in R.



PROOF Fix X,y € Rix <y =— then v - x > 0, so there exists a natural number
n such that y - x > = (cf. #11), i.e., such that x <y - ;L—l On the other hand,
there exists an integer m with the property that

ny -1 <m«<ny (cf. #13),
hence

S|
) 7AN
s18
A
<

from which

1

16: SCHOLIWM If x and y are real numbers with x < y, then there exists

an infinite set of rationals q such that x < g < y.

The Archimedean Property is essentially "additive" in character; here is its

"multiplicative" analog.

17: LEMMA If x > 1 and y are real numbers, then there exists a natural

numbernsuchthatxn>y.
PROOF Proceeding by contradiction, suppose that there exist real numbers
x > 1 and y such that = < y for every natural number n. Iet S = {x":n e N} —

then S is bounded above (by y), hence has a supremm U, say. Because x > 1, p is

less than ux, hence y/x < 1, so there must exist an n € N such that p/x < <.

n+1l

+
But then p < x 1

and, as rainl= S, we have arrived at a contradiction.

18: EXAMPLE Iet x > 0 and 0 < r < 1 be real numbers; let



n
s= LX) . qen.
Then, in view of the relation
n n
x1-r)_ x  xr X
I-r " I-7v I-t 1T-¢r@€cN,
it is clear that T }_{ = is an upper bound for S and we claim that
X
l_r=supS.

To prove this, it suffices to show that if € is any real number such that

X

O<e<l_

= then € € U(S) (cf. 81, #8). So fix such an & —- then there

exists a natural number n such that

1 X o 1
n >x—-€(l-r) (cf. #17) (0<r<l—>;> 1),
thus
rn<x—€(l—r)=l_€(l—r)
X X
or still,
n
x(1 -r’) _
€<=y =>¢ Z U(s).
19: DEFINITION A real number x is irrational if it is not rational.
20: NOTATION P is the subset of R whose elements are the irrational
numpbers.

21: N.B. Therefore R=P U Q, where P n Q = 4.

22: IEMMA Irrational numbers exist.



[In fact, R is not countable, hence P is neither finite nor countable (Q

being countable), hence P # #.]

23: THEOREM P is dense in R.
PROCF Fix a positive irrational p and fix x,y € Rix< y. Using #15, choose

a nonzero rational g such that

Then
X<pg<y
and pg € P.

24: N.B. For the record, if p € P, then - p € P and %) € P. In addition,

if g€ Q (g#0), then
p+q,p—q,pq,§-

are irrational.

25: DEFINITION An element x € R is algebraic or transcendental according

to whether it is or is not a root of a nonzero polynomial in Z[X].

a

26: EXAMPIE If % (b # 0) is rational, then = is algebraic.

[Consider the polynomial bX - a.]

27: EXAMPIE Iet r,s € Q, r > 0 —— then ro is algebraic.

[Write s = I%:- (m,n €.Z, n > 0) and consider the polynomial - rm.]



=

[Note: Take r = 2, s = !2'-, hence n = 2 and 22 = y2 1is algebraic (but

irrational (cf. §6, #2)).]

28: N.B. It will be shown in due course that e and 7 are transcendental.

e .
However the status of e+m, e — 7, em, e, and ™ 1s unknown.

[Note: e" is transcendental but whether this is true of 7 remains an open

question. ]

9: EXAMPLE Is e + 7irrational? Is ey irrational? Answer: Nobody knows.

But at least one of them must be irrational. To see this, consider the polynomial

X2— (e + MX + em.

Its zeros are e and . So if both e + 1 and enm were rational, then e and 7 would

be algebraic which they are not.

30: NOTATION 6 is the subset of R whose elements are the algebraic

numbers and T is the subset of R whose elements are the transcendental numbers.
31: N.B. Q is a subset of 6 and T is a subset of P.

32: ILEMMA The cardinality of 6 is aleph-0.

33: N.B. Consequently, on purely abstract grounds, transcendental numbers

exist. Historically, the first explicit transcendental was constructed by

Liouville, viz.

$ 10 (of. §15, #9).
-1



34: LEMMA C_J is the algebraic closure of Q in R and

[Q:Ql = aleph-0.

Being a field, 6 is closed under addition and multiplication.

35: IEMMA If x # 0 is algebraic and y is transcendental, then x + y

and Xy are transcendental.

36: EXAMPIE /2 e and /2 + 7 are transcendental.

37: LEMMA If x € R is transcendental, then so is x2.

[If x2 were algebraic, then there would be a relation of the form

2 4 2n _
a0+a2x +a4x +---+a2nx =0 (azkEQ)
or still, 3
0x+
2n _
a0+0x+a /\4 +---+a2x =0

implying thereby that x is algebraic.]

38: EXAMPLE Not both eT and g can be algebraic.
[In fact,

(em Q) = ]

39: N.B. T is not closed under addition and multiplication.

40: CRITERION Iet x and y be real numbers. Suppose that x < ¥ + ¢ for

every € > 0 —— then x < y.



PROOF Assume that x > y and puts=-2]l (x = y) — then € > 0. However

x+y) <3 &+n) =x

=

yt+te=

contrary to the supposition that y + € > x for every € > 0.



§3. SUPREMA

We shall record here some technicalities that will be of use in the sequel.

1l: IEMMA Iet S be a nonempty subset of R, T a nonempty subset of S.

Suppose that S is bounded above —— then T is also bounded above and sup T < sup S.

[This is obvious from the definitions.]

2: LEMMA Let S and T be two nonempty subsets of R, each being bounded
above. Suppose further that given any s € S there isa t € T such that s < t
and that given any t € T there isa s € S such that t < s —— then sup S = sup T.

PROOF It suffices to rule out the other possibilities:

sup S < sup T

sup T < sup S.

If the first of these were true, then sup S ¢ U(T), so there exists a t € T such
that sup S < t < sup T. But, by hypothesis, there isa s € S such that t < s,
hence sup S < s, a contradiction. The second of these can be eliminated in the

same way.

3: NOTATION Given nonempty subsets S, T of R, put

S+T={s+t:s€8S, tecT}

4: ILFMMA Iet S and T be nonempty subsets of R, each being bounded above --

then S + T is bounded above and

sup(S + T) = sup S + sup T.
PROOF Iet r € S + T — then there exist s € S, t e Tsuch that r=s+ t

and so r < sup S + sup T. Since r is an arbitrary element of S + T, it follows



that sup S + sup T is an upper bound for S + T, hence sup(S + T) exists and in
fact
sup(S + T) < sup S + sup T.

To reverse this, we shall employ §2, #40 and prove that

sup S+ sup T < sup(S +T) + ¢

for every € > 0. Thus fix € > 0 and choose s € S, t € T such that

s>supS——§-,t>supT——2€— (cf. &, #6).

Then

s+t>supS+ssupT-c¢
or still,

sup S+ sup T <s+t+¢

<sup(S + T) + €.

I

NOTATION Given nonempty subsets S, T of R, put

S-T= {st:s eS8, t €eT}.

6: LEMMA Let S and T be nonempty subsets of R>O’ each being bounded

above —— then S - T is bounded above and

sup(S + T) = (sup 8)-(sup T).

PROOF Note first that

sup S >0 and sup T > O.
This said, let r € S - T — then there exist s € S, t € T such that r = st and
sor < (sup S)-(sup T). Since r is an arbitrary element of S . T, it follows
that (sup S)-(sup T) is an upper bound for S - T, hence sup(S - T) exists and
in fact

sup(S « T) < (sup S)-(sup T).



T& reverse this, we shall employ §2, #40.and prove that

(sup S) - (sup T) < sup(S-T) + ¢

for every € > 0. Thus fix € > 0 and choose s € S, t € T such that

£ _ €
S>supS m-—T—,t>SupT supS+supT (Cf- §2, #6).
Then
S ~ s < € sup T - t < =
Sup sap S +sup T ' P supS + sup T '’
from which
- __€supT
t(sup S s) sup S + sup T
and
_ €-8Up S
sup S(sup T - t) <supS+supT'
Therefore
(sup S)+(sup T) - st
=sgup S(sup T - t) + t(sup S - s)
< EeSUp S gesup T
sup S+ sup T sup S+ sup T
=g,
i.e.,

(sup S)-(sup ) < st + ¢

< sup(S.T) + €.

: REMARK The assertion of #6 may be false if we drop the assumption



that S and T are nonempty subsets of R>0‘

[Take, e.g., S=-= N, T= - N —=- then both S and T are bounded above but

S+T is not.]



§4. EXPONENTS AND ROOTS

Iet a > 0 and x be real numbers -- then the primary objective of the present
§ is to assign a meaning to the symbol ax.
If a is any real number and if n is a natural number, thenthepoweran

is defined inductively by the rule

n
a =a, a = a -a.

When a # 0, we define a¥ as 1; we do not define 0°. vhen a # 0, we define a™@

as %; we do not define 0 °.
a

l_: IAWS OF EXPONENTS FOR INTEGRAL POWERS Iet a and b be nonzero real

numbers; let m and n be integers.

m n T m, n m am m-n
(1) a=a " =a ; (2) (@) =a;(3)—ﬂ=a H
a

3

1l

m m am_ a
(4) @)™ =4dY% (6) @ =y

o,

(6) (i) Ifn>0anda,b>0,thena<bifandonlyifan<bn.

(6) (ii) If n < 0 and a,b > 0, then a < b if and only if a > b .

(7) () Ifa > 1, thenm<nifandonlyj_fam<an.

(7) (i) If0<a< 1, thenm<nj_fandonlyifam>an.

In order to define the symbol at for rational r, it is first necessary to

establish the existence and uniqueness of "nth roots".

2. THEOREM For every real a > 0 and every natural number n, there is one

and only one real x > 0 such that 2 = a.



Uniqueness is immediate. For suppose that %y > 0, X, > 0 are such that

xlil = a, xg = a —- then these conditions imply that X = X, (cE. #1, 6(i)).

Turning to existence, let S be the set of all positive real numbers s such

that sn < a.

3: IEMMA S is nonempty and is bounded above.

PROCF To see that S is nonampty, observe that 2 _ ]ies between 0 and 1,

1+a
hence
at a a
< < => =
(l+a)n—l+a a>l+aES'

In addition, 1 + a € U(S). Indeed, if there exists s € S such that s > 1 + a (> 1),

n .
then s >s > 1 + a > a, a contradiction.

Iet 4 = sup S — then we claim that un = a. To establish this, it suffices

to eliminate the other possibilities:

H <a
W s,
un<a: Since
n
a-y
@+t -

is a positive real number, one can choose a real number Vv lying between 0 and 1

and such that

n

v < a —nu = (e.g. quote 2, #15).
(L+y) -y




Then
(u + wh = un + (M unql\) + O unm2v2 +oeee + (VP
1l 2 n
< VIO O e e (O

TRITIRNY 1 ) Ry

I

<pn+(a-un)=a.

Therefore y + v € S, which contradicts the fact that p is an upper bound for S.

gy > a: Choose a real number v lying between 0 and 1 with the following

properties:
D_a
v<yuand v < “n o
(L +u" -u
Then for s > y - v, we have
-1 -2 2
ST (=T =t - Qe v+ QU - e (PO

=P v - O+ e = DRV

Dol O e (O

v
=
I

i@+ w® -y

I
=
l

n
sy - (W —-a)=a.



Therefore 1 - v is an upper bound for S, which contradicts the fact that u is
the supremum for S.

Consequently

as claimed.

Iet a > 0 be a positive real number —-- then for each natural number n, the
preceding theorem guarantees the existence and uniqueness of a real x > 0 such that
n

X = a. Wewrite?/’é'forthisxandcallr;}aTthenthrootof a.

[Note: If n=1, write a for 375 ; if n = 2, write va for %5.]

: EXAMPIE /2 exists.

Suppose mnow that a < 0 is a negative real muber -- then for each odd natural
number n, % is taken to be the unique real x < 0 such that - x = r‘}:é' (e.qg.
}-@=—2). Since n is odd,

= (- (== (D=0 == (-a) = a,

thereby justifying the definition.

[Note: We do not define l}éfwhen a < 0 and n is an even natural number.]

5: N.B. Set ¥0 = 0 for all n € N.

Iet a > 0 be a positive real muber. Given a rational number r, let II% be

the representation of r in lowest terms.

6: DEFINITION

af = (l}a_x)m,



1
themthpower of the n™* root of a (if m= 1, then a" ="A).

[Note: Regardless of the sign of m, it is clear that a® > 0.]

7: LAWS OF EXPONENTS FOR RATIONAL POWERS Let a ard b be positive real

numbers: let r and s be rational numbers.

r
1) af-a =2, ) @5 = a5 (3) i's"= TS,
a
r
r_ _nr, a,r _a .
(4) (ab)” =ab7; (3) B —k—)-f,

(6) (i) If r > 0, then a < b if and only if a© < b'.

(6) (i) I£fr < O, thena<bifandonlyifar>br.
(7) (1) Ifa>1,thenr<s:i_fandonlyifar<as.

(7) (i) If 0<a <1, thenr<sifandonlyifar>as.

: REMARK If p is a natural number, then

VD" = (P,

Therefore in the definition of the symbol ar, it is not necessary to require

that r be reduced to lowest terms so, for example,

a=al= (Il}a_)n neN.

: ILEMMA Iet a > 0, a # 1 —— then

for all r,s € Q - {0} with r < s.



PROOF Iet us admit for the moment that the lemma is true when, in addition,
r and s are nonzero integers with r < s. Proceeding to the general case, there
is no loss of generality in supposing that r = p/n, s = g/n, where n € N, p ard
qez- {0}, and p < g. It is then a question of proving that

@™ - 1)n g @™ - 1)n
P a !

or, equivalently, since n > 0, that

ap/n—l<aq/n—l
P q

Put b = 35 — then, since we are granting temporarily the truth of the lemma in

the integral case, it follows that

as desired. Turning now to the case when r and s are nonzero integers with r < s,
it is enough to consider just three possibilities, namely (i) 0 < r <r + 1 = s;
(i) r<r+1=s8<0; (iii) -1 =1r < s=1. The first of these is the assertion
that

a —l<ar+l—l
r r+1

or still, upon multiplying both sides of the inequality by r(r + 1), that
(r + l)ar -1c< rar+l,

or still, that

af ~1<ra (a-1),

or still, upon division by a - 1 # 0, that



Il af 2 iiva+l<rafifasl

aF 1 ar 2y . ra+1s>rafif0<a< 1.

But these inequalities do in fact obtain (apply #1, 7(i) and 7(ii)). The second
case, r<r +1 =8 < 0, can be reduced to the first by considering - s, -r, and

al. Finally, if r = -1 and s = 1, then the inequality to be established can be

writtenl—a_l<a—-landthisiscerta:inlytruefora>0,a;él.

Fix a real number a > 1. Given a rational number x, let

S={ar:reQandr<x}.

10: SUBLEMMA S is nonempty and has an upper bound M, say, thas S has

a supremum.

11: LEMMA sup S = a~.

PROOF Since a™ € U(S), it suffices to show that for each £ > 0, there is a

rational mmber r < x sach that a~ - a- < ¢ (cf. 82, #7). Without yet comitting

ourselves, it can be assumed from the beginning that 0 < x - ¥ < 1, hence

a -1
_x—Tr_—<a—l<a+l (cf. #9),
from which
X-r
X r __r a -1 _
a =-a = a [T] (x r)

< M@a+1)x-rn,

so if r < x is chosen in such a way that



1 _. €
O0<x-rx <§'mm {N[—(a_l_—l)—, l},

then a~ - a& < e.
Fix a real mumber a > 1. Given a real number x, let
r
S={a:ireQandr <xh
12: SUBLEMMA S is nonempty and bounded above.

[Tt is clear that S is nonempty (cf. §2, #10). On the other hand, if n is

any natural number > x (cf. §2, #9), then

r<x=>r<n=a <a (cE. #7, 7(1))

=> a € u(s) => U(s) # 4.1

13: DEFINITION a* = sup S.

[Note: If a =1, we define a¥asl. If0<ac< 1, then 1/a > 1 and we define

a~ as l/(l/a)x. Tn all cases: a~ > 0.1

14: N.B. Matters are consistent when restricted to rational x (cf. #11).

15: ILAWS OF EXPONENTS FOR REAL POWERS Let a and b be positive real

numbers; let x and y be real numbers.

X
1) a%a¥ = a5, (2) @)Y =a; 3) &= &Y

-
1

Y
a
@) (@) = 55 (5) AF =2,
7 b bX’

(6) (i) If x > 0, then a < b if and only if a* < b .

(6) (ii) If x < 0, then a < b if and only if & > b".



(7) (1) If a > 1, then x <yifandonlyifax<ay.

(7) (ii) If 0 <a < 1, thenx<yj_fandonlyifax>ay.

The proof of this result is spelled out in the lines below.

[Note: We shall omit consideration of triwvial, special cases (e.q. 1%.1Y =

1X+y etc.]

Ian 1:

Case 1: a >1. ILet

{aS:seQands<x}

wn
Il

T

{at:t € Qand t < y}

U

{au:ueQandu<x+y},

X

Y = sup T, a Y o sup U. In addition,

thus ax= sup S, a

a®-a¥ = (sup S)- (sup T)

sup(S-T) (ct. 83, #6),

ST = {as-at:s, teQQand s <x, t <y}

s+t

={a T:s,teQand s<x, t <y}

So, to prove that aeal = ax+y’ it will be enough to prove that sup(S-T) = sup U
and for this purpose, we shall employ §3, #2. Since S-T is a subset of U, it
need only be shown that given any element a’(u e Q and u < x + y) in U, there
exist rational numbers s, t with s < x, £t < y and such that u < s + t (for then

at < aSH: € S-T). Noting that

u-x+ u-y+
—rten SR ax



10.

choose rational mubers s and t such that

u-y2+x<s<x,1_1_:£2+_y<t<y (cf. §2, #15).
Then
_u-y+x u-x+y
a > + > < s+ t.
Case 2: 0 <a <l: We have
X .V _ 1l 1

a -<a

Cwat wa?

1
(1/a)®- (1/a)Y

1 — ax+y
(1/a) Y

A simple but important consequence of LAW 1 is the fact that

X 1

at=— (@>0,x€eR.
Proof:
1=a0=ax_x=aoa—x=>ax=_l_.
-
a
ILAW 2:

Case 1: y € Z. Suppose first that v € N and argue by induction. The

assertion is trivial if y = 1. Assuming that the assertion is true for y = n,

we have
x\ntl _ . xnh X e e s
(a™ = (@) -a (by definition)
= (@ .a* (by induction hypothesis)
= FH) (by 1AW 1).



11.

It therefore follows that (aX)y = aXy for arbitrary a > 0, x real, and y a positive
integer. The assertion is trivial if y = 0 and the reader can supply the details
if y is a negative integer.

Case 2: y € Q. Let IHnbe the representation of y in lowest terms. By

Case 1, (ax)In = axm' Therefore

|
)

I
)
B

(by Case 1)

=a .

Case 3¢ a >1, x >0, y arbitrary. Let

S {(ax)S:s € Qand s <y}

T

{at:t € Q and t < xy},
thus @)Y = sup S, aY = sup T, the claim being that sup S = sup T. To this
end, we shall utilize §3, #2. In view of Case 2,
S={aXS:sEQands<y}.
. XS . XS t
Given a~~ € S, choose a rational number t such that xs < t < xy —— then a = < a

and at € T. On the other hand, given at € T, choose a rational number s such that

§<s<y——thenat<axsandaxses.



12.

Case 4: 0 <a <1, x>0, y arbitrary. Using L&W 4 below (whose proof

does not depend on IAW 2), write

@Y= (2 Hyy-__ 1 1 -,

(1/a)*® (%Y Y

Case 5: 0 <a, x <0, y artbitrary. If x <0, then - x > 0, hence

( l)y= 1 -1 _ %y
a ™ @5Y

@Y =

1AW 3: One need only observe that

a® = XYY

=a~ Y.aY (by LAaW 1),

i.e.,
a> X=
a_ XY
2
IAW 4:
Case 1: a >1, b>1l. Ilet
S={aS:sEQands<x}
t
T={b:teQand t < x}
={(ab)u:uEQandu<x},
b4 b4 X .
thusa = sup S, b" = sup T, (@b)” = sup U. Meanwhile,

a’p*

I

(sup S) - (sup T)

sup(S-T) (cf. 83, #6).



13.

So, to prove that (ab)x = axbx, it will be enough to prove that sup(S-T) = sup U
and for this purpose, we shall employ §3, #2. Since U is a subset of S-T, it
suffices to go the other way. But a generic element of S-T is of the form asbt,

where s, t € Qand s < x, t < Xx. And, assuming that s < t, we have

a5t < a%f = (@)t e u.

Case 2: 0 <a<l, 0<b<l. Since 0 < ab <1, from the definitions,

(ab)x____l__ .

 (/aE

Since 1/a > 1, 1/b > 1, it follows from the discussion in Case 1 that

l1.x ,1.x ,1.x
"= QF @
Therefore
(ab)® = L
(1/ab)*

_ 1 _ X
SN SR §
(1/a)”- (1/b)

Case 3: 0<a<1, b>1l. In this situation 1/a > 1. Suppose first
that 1 < 1/a < b — then ab > 1, so

X _ 1.x _ x ,1.x
b—(ab'a-)—(ab) (a)r

hence

(ab)x=bx 1 = 1 bX=aXbX.
(/a)*  @wa)®

The other possibility is that 1 < b < 1/a. Since in this situation both 1/ab and
b are greater than 1, we have

1.x _ 1 x_ ,1 X
P* = - BT = (P,



14.

(ab)* = —E — = L _p¥ = 2%,
(1/a0)*  (1/a)

Case 4: a > 1, 0 <b <1. This is the same as Case 3 with the roles of

a and b interchanged.

A simple but important consequence of LAW 4, used already in Case 4 of LAW 2

above, is the fact that

1.x 1
F =5 @>0,xeR.
a
Proof:
X _ 1x_ xlx__ 1x_ 1
=@ - 9%=ag = %==.
a
IAW 5: Write
a,x _ lx_xlx_xl__aX
P =@ -pi=agi=a =",

IAW 6: We shall consider (i), leaving (ii) for the reader, and of the two parts

to (i), only the assertion 0 < a < b => a® < b* will be dealt with explicitly.

Claim: If c > 1, x > 0, then & > 1. Granting the claim for the moment, note
now that

b

b, x bx
O<a<b=>l<a-=>1<(g) =;§ (by LAW 5)

=> aX <b .

Going back to the claim, fix a rational number r such that 0 < r < x —— then it

will be enough to prove that 1 < cf. Sincel <2=>r < 2r => ¢ < c2r, it



15.

follows that

r-r — r
1=c¢ <c2rr=c.

1AW 7: We shall consider (i), leaving (ii) for the reader, and of the two parts

to (i), only the assertion x < y => a* < a¥ will be dealt with explicitly. Choose
s € Q:x < s <y — then

r S X s
reQandr<x=>r<s=>a <a =>a <a .

ChooseteQ:s<t<y——thenas<atandat_<_ay,henceax<ay.

16: ILEMMA Iet a > 0, a # 1 — then

for all x,y € R - {0} with x <y (cf. $9).



85. exp_ AND log,

Ilet a # 1 be a positive real number.

: DEFINITION The exponential function to base a is the function exp

with domain R defined by the rule

expa(x) = g% (x € R).

2: ILEMMA expa:R > R>0 is injective (cf. 84, #15, 7(i) and 7(ii)).

. ILEMVA expa:R - R>0 is surjective.

This is not quite immediate and requires some preparation.

4: SUBLEMMA Iet n > 1 be a natural number and let a # 1 be a positive

real nmuber —— then
n(al/n -1) <a-1.

PROOF In 8§, #9, takex=%,y=l——thenx<yand

al/n—l<a—l
Yp 1

i.e.,
n(al/n—l) <a-1.

To discuss #3, distinguish two cases: a > 1l or a < 1. We shall work through

the first of these, leaving the second to the reader.



5: SUBLEMMA If t > 1 and

1/n

then a < t.

PROCF In fact,

1> al/n -1
t -1
i/n 1/n

=+t -1>a -1l=>t>a .

Fixy>O“thamtheclaimisthatthereisarealxsuchthatax=y

(x then being necessarily unique). So let

S = {w:aW < v}

and put x = sup S.
o a¥< vy is untenable.

[In #5, taket=lx>1toget
a

al/n A
X
a

forn > > 0, thus

X+ =
n
a <y

for n > > 0. But then, for any such n,

1

x+neS



1
n .

which leads to the contradiction x > x + ]

o 2> y is untenable.

X
[In#S,taket=§§— > 1 to get

forn > > 0, thus

for n > > 0. Owing to 8§82, #6, for each n > > 0, there exists W, € S:Wn > X - 3‘—1,
hence

y>a®>a T (cf. s, #15, 7(i))

a contradiction.]

Therefore a* = y, as contended.

6: SCHOLIUM expa:R > R>0 is bijective.

7: REMARK There is another way to establish the surjectivity of exp,

if one is willing to introduce some machinery, the point being that the range of

exp, is an open subgroup of R>O' One may then quote the following generality: A
locally compaét topological group is connected if and only if it has no proper

open subgroups.

Since

expa:R > R>0



is bijective, it admits an inverse

exp :R>0 -+ R.

_ -1
loga = exp_".

: DEFINITION The logarithm function to a base a is the function loga

defined by the rule

loga(ax) =x (x €R).

10: LEMMA ILet u and v be positive real numbers —— then

loga (av) = loga (n) + loga (v)

log, (%) = log, (w) - log, (v).

11: LEMMA Let y be a positive real number, r a real number -- then
log_(y") = rlog_(y)
o9, ¥ o9, \Y) -

PROOF Write y = a®, thus

v = @ = (cf. s, #15, (2)
rx
= a

=>

log, (¥) = rx = rlog, (¥) -

12: N.B. Special cases:

loga(l) = 0, loga(a) = 1.



13: IEMMA Iet a # 1, b # 1 be positive real numbers —- then

log_(b) log, (a) = 1.

PROCOF Put
x = log, (b), y = log, (a),
so that
aX = b, by = a,
hence

a=b' = @)Y =aY (cf. §, #15, (2))

from which xy = 1.

14: DEFINITION The common logarithm is loglo.

15: EXAMPLE loc;r:L0 2 is irrational.

[Suppose that
_a
logip2 =5

where a and b are positive integers —- then

a

2= 10° = 2P = 10% = 222,

But 2b is not divisible by 5.]
[Note: It turns out that loglo 2 is transcendental, a point that will be

dealt with later on.]

B

There are irrational mubers o,f such that o is rational.

16: EXAMPIE Take o = /10 (cf. &7, #6), B =2log,, 2 —- then



And

1
5 21og;,2
(m210g102 _ (102) 10
= 10199102 = 2.
APPENDIX
Put
© Xk
E(x) = kEO " (x € R.
[Note:
E(1) = e.]
LEMMA E(xl + see + xn) =E(xl)---E(xn).
[Note
EX)E(-x) = EX - X) = E(0) = 1.]
'Iakexl=l, ey xn=lto get
Em) = e,
Ifnowr=% {m,n € N}, then
EEN® = E(r) = E@ =&"
m
=>E(r) = = e .
1 _ 1 _ -r
E(-xr) = m‘ = -e—; = e
Summary:



But now for any real x,

e = sup S,

where

sS={efireQand r < x} (cf. §4, #13).

THEOREM V X € R,

E(x) = € (= exp_(x)).

REMARK Tt can be shown that

e = sp{(l +H™m e N},

a fact which is sometimes used as the definition of e.



§6. IRRATIONALITY OF /2

Recall that P is the subset of R whose elements are irrational and, on
abstract grourds, is uncountable, in particular, irrational numbers exist. Still,
the problem of deciding whether a specific real number is irrational or not is

generally difficult.
: RAPPEL, /2 exists (cf. §4, #4).

2: THEOREM Y2 is irrational.

There are many proofs of this result. In what follows we shall give a

representative sampling.

First Proof: Suppose that v2 is rational, say /2 = = , where x and y

ke

2

are positive integers and gcd(x,y) = 1 —- then x_2_ = 2 or still, x
y

2 2y2, thus

21x? and x°

is even. But then x must be even (otherwise, x odd forces x2 odd) ,
so x = 2n for same positive integer n. And:

X2 = 2Y2 => (21‘1)2 = 2y2

=> 2n2 = yz => 2'y2 => ZIY.

Therefore gcd (x,y) # 1, a contradiction.

Second Proof: Suppose that v2 is rational, say v2 = § , where x and y
2
are positive integers and y is the smallest such —— then % = 2 or still, x2 = 2y2.

Yy



Next

Put u

Put v

y <2y

2

2

=X

2 = 2y)y < (2y) (2y)

=> y2 < x2 < (2y)2

=>y <x <2y (cf. 84, #1, 6(1)).

X — y, a positive integer:

ytu=x<2y=y+y=>u<y.

2y - X, a positive integer:

ve - 2u" = (2y—x)2—2(x—y)2

—-4yx+x2-2(x2—2xy+y2)

I
>
=

+ x2 - 2x2 - 2y2

Il
N
=

= &% - 29 - 262 - 299

1 - 2) %% - 2y7)

(-1) (0) = o.

=>(— = 2 =1/§-
u

=> 7 = V2  (cf. 84, #7, 2)
u



But now we have reached a contradiction: u is less than y whereas y was the

smallest positive integer with the property that }é = /2 for some positive integer x.

Third Proof: Suppose that /2 is rational, say /2 =§, where x and y are
positive integers. Write
!/2""1: L ’
V2 -1
thus
.}_{_-]-l: 1 = Y
y X1 X~y
Y
=>
goX__ ¥ _,_27-x _ "
Yy x-Y X-Yy 3
But
l</§<2=>l<§<2=>y<x<2y
xl=2y—x>0 % €N
=> =>
B yl=x-y>0 _yleN.
In addition

2y < 2x=x +x = 2y—x<x=>xl<x.

Proceeding, there exist positive integers x., and Yo such that

2

with X, < ¥y < X And so on, ad infinitum. The supposition that /2 is irrational



therefore leads to an infinite descending ehain of natural numbers, an impossibility.

X

Fourth Proof: Suppose that /2 is ratiomal, say /2 = 7

, Where x and y

are positive integers. Define sequences

al’a2, L

b, ,b

1Por oo

of natural numbers recursively by

a;=l,a,=22a=2a ,+a , @0>2)
B b,=1,b,=3,b =2 ;+b , @>2).
Put
_ 2 2
p(t) =a t"-b  (m2x1).
Then

2 .2
pn(/f) = 2a_ - b-

is an integer and [p (v2) | = 1 (Qetails below). On the other hand,

1= |pn(/7) | = [(an/_ -b) (an/i' +b) [
= |(an§,—— b.) (a §+bn)|
ax + bny
= lanx - by IG___TT—__Q
y
=>
2
0< |ax-by|-= —¥ .



Since the sequence {anx + bny} is strictly increasing, from some point on

2
v- < a_x + bny.

n>>0=> [anx—bny|<l.

But there are no integers between 0 and 1.
[Inductively we claim that

2 2 _ , qy0tl _ . (_1\D
2an bn = (-1) and zan—lan bn—lbn = (-1)".

These identities are certainly true whenn =1 (take a, = 0, b, = 1). Assune

0 0

therefore that they hold at level n > 1 -~ then at level n + 1:

2afl+l - br21+l =22, + an—l)2 - (B bn—-l)2
=4(2a’ - b)) +4(2a _ja -b _;b) + (2> - b))
= a0y 4+ 1P
_ (_l)n - (_l)n+2.
And, analogously,
228041 " PrPpi1 = (_l)m-l.

Finally
n+l

2 2
p,(V2) = 2a_ - b" = (-1)
=> |p_(/2) | = 1.]

Fifth Proof: Let S be the set of positive integers n with the property




that nv/2 is a positive integer. If /2 were rational, then S would be nonempty,

hence would have a smallest element, call it k. Now, from the definitions,

kes= (/2-1keN.
But

((/2 - 1)k) V2 = 2k - k/2

= (2 - /2)k
is a positive integer, 0 (/2 - 1)k € S. However
/2 - 1)k < (2 - Dk = k,

which contradicts the assumption that k is the amllest element of S.



§7. IRRATIONALITY: THEORY AND EXAMPLES

For use below:

1l: RAPPEL let a,b,c be integers such that a,b have no prime factors

inconmonanda[bnc (n € N) — then alc.

The following resalt is the so-called "rational roots test".

2: THEOREM ILet

_ 2
f(X) = a +alX+a2X + ... +aan

0

be a polynomial with integral coefficients. Suppose that it has a rational root

%:p,q € Z and gcd(p,q) = 1 —— then pla0 and qlan.
PROOF TakeX=%toget

p B2, ... pyn _
a0+al(§) +a2(a) + +an(§) =0

so0, after multiplying through by qn,

n._ n-1 2n-2 . n
dag= (alpq + a,p’d + + a,p )

_ n-1 n-2 .. n-1

= p(alq + apq + + anp )y €17

=> pld'a, => pla, (cf. #1).

That qlan can be established amalogously.

3: N.B. When specialized to the case where a = 1, the conclusion is



that if the polynomial

aD+alX+a2X2+ .es +Xn
has a rational root, then this root is an integer (which divides aD) :
[Consider a rational root %am take g positive (in the event that q were

negative absorb the mimus sign into p). From the above, q divides &L= 1, hence

qg=1, l'eme%=Tp=p (and piaﬁ}l.]

4: EXAMPLE If p is a prime, then /b is irratiomal.
[Consider the polynomial Xz - p, thus (f'ﬁ]z -p=0, i.e., /p is a root.
Suppose that vp was rational s for some k € N,

,/E:]{:)p:kz‘

But l-:2 has an even mmber of prime factors, from which it follows that the stated

relation is impossible (or qwote $#1: a=p, b=%k, n=2, ¢ =1, implying that
p|l).]

Therefore in particular /2 and +3 are irrational but this does rot automatically

imply that v2 + /3 is irratiomal (the sum of two irrationals may be either rational

or irrational).

EXPMPIE V2 + /3 is irrational.

[V2Z + /3 is a zero of the function

Xz-.?}ifrf-l,

so /2 + /3 is a root of the polynomial

2+ 2%/2 - 1) X - 2%/ - 1) =x% - 10 + L.



From the above, the only possible rational roots of this polynomial are integers
which divide 1, i.e., + 1. And /2 + V3 # £ 1, thus v2 + /3 is not among the

possible roots of

X" -10X" + 1,

thus is irrational.]

6: EXAMPIE ILet a and n be positive integers —- then & is either

irrational or a positive integer. And if %T is a positive integer, then a is the

nth power of a positive integer.

[Consider the polynomial X' - a, hence (Wa)" -a=a -a = 0. There are
now two possibilities, viz. either {}a_ is irrational or else 1}5 is ratiomal in which

case 1}5 = k is a positive integer (and a = kn) .l

7: REMARK Consequently, if a is a positive integer such thlat /a is not
a positive integer, then /a is irratiomal (cf. #4).
[Here is armother proof. Assume instead that v/a is rational, say va = % ,

where x and y are positive integers and y is the smallest such:

y/a = x = (y/a)/a = x/a => ya = x/a.
Choosen e Nin < /a <n+ 1 — then

_x(Aa - n)

J/a ==
Y y(/a-n)

x/a - xn _ ya - xn

ya-yn x-yn




The numerator and denomimator of the fraction
ya - xn
X=-yn

are integers that, in fact, are positive:

x(va - n) >0

ya — Xn = Xv/a - Xn

Xx-yn=y/a-yn=y(/a-n) >0.
And

x-yn=y(/a-n) <y

which contradicts the cloice of y.]

8: THEOREM Suppose that ayr 8y, -+., @ are positive integers. Assume:
= + e
T = /Eq ’/%"' + /a—n
is rational — then /éI, /ag, cens /a; are rational.

9: APPLICATION If for some k (1 < k < n), is irrational, then

/EI+J%+---+

e

is irratiomal.
10: EXAMPLE 2 + /3 is irrational (cf. #5).
11: EXAMPLE V2 + /3 + /5 is irrational.

Passing to the proof of #8, it will be enough to show that /aq is rational.

For this purpose, introduce

F(X;a,) =H(X—/eqi R i-/a;),



where the product ranges over all combinations of plus and minus signs, thus
F(Z;al) = 0.

Next multiply out the expression defining F(X;a;) —— then /aTl_ appear s to both

even and odd powers but /ag,. ..,/a_n' appear only to even powers. Assemble the

even powered terms in /aq, call the result G(X;al) ; and assemble the odd powered

terms in va

1+ call the result - /aqH(X;al) ~-— then

F(Xja)) = G(X;a;) - /é‘l_H(x;al)

and G(X;al) ' H(X;al) are polynomials with integral coefficients.

E.g.: Whenn = 2,

F(X) (X - va, + /a,) (X—/e?l‘-/a—)

1 2 2

x - vaD® - (ay”

&+ (ap? - van? - VA ().
Now evaluate the data at X = I:

0= F(Z;al) = G(Z;a v/a, H(Z;a

1) -

provided H(Z;al) # 0. To check that this is so, write

F(Z;al) - F(Z;—al)

=0 - F(Z;—al)



= (G(Z5ay) - /EIH(Z;al)) - (G(Z;a)) + /éIH(Z;al))
= - 2/a; H(Z;a))
=>
H(Z;a) = — F(Z;-a;)
2/%
1
—2/a_H(z+/aq.t/a§i- + va )
1
= 25‘_H(21ﬂa—l—+ (Vay * /A + +++ + (Ya_ £ /a)
a
1
=1 g (2va] +2 T /&)
21/:,1_l SC{/a_z,...,/a_n} a.€s
=1 (a] + I /A).
/aq SC{/é;,...,/aTn'} a€es
But
Ja, + ¥ Ja.
1 a.es =

is never zero.

12: THEOREM Given x € R, there are infinitely many coprime solutions

p.q (g > 0) to

x-Bl <.
d g

One can say more if x is irrational.



13: THEOREM Given x € P, there are infinitely many coprime solutions

p,g (g > 0) to
1
IX‘Elﬁ—z'-
9 q

[Note: This estimate can be sharpened to

P 1
x - &l <
q JE q2
but /L_ cannot be replaced by a smaller real number unless some restriction is
5
placed on x. To see this, take
_V/5-1
X = .

p
Then it can be shown that there is a coprime sequence anr—l- (qn > 0) with the

1

property that if 0 < C < — , then
/5
B
]x--anl[>% Vvn>>0.]
%

14: NOTATION For any real number r, write

{r} =r - [r],

the fractional part of r.

[Note: 0 < [»} < 1.]

15: BOX PRINCIPLE If n + 1 objects are placed in n boxes, then some box

contains at least 2 objects.

16: CONSTRUCTION Iet n > 1 be a positive integer and divide the interval



[0,1] into n sabintervals [%, J ;l] (3 =0,1,...,n - 1), Assming that x is

irrational, the n + 1 numbers 0, {x},..., {nx} are distinct elements of [0,1],

hence by the Box Principle at least 2 of them must be in one of the subintervals

[%, J ;: l] 3=20,1,...,n-1). Arrange matters in such a way that {jlx} and

{jzx} (j2 > jl) are contained in one subinterval of width % Set
p=[]2X]"[JlX]:q=32"Jl_>_]— (@ <n).
Then

[,%) - Gigx}] < =

|Gy = 3% = (x) = [xD | < =

1
l& - Pp| <3
=>
[x—% <f1171'<_17'
d

Existence per #13 is thereby established. To conclude, it has to be ruled

out that there is just a finite number of coprime solutions to

1
k-EBl <=,
q <2

s|ay



Since x is irrational, there exists a positive integer m > 1 such that
jo
k-2 >L (i=1,2,...,%.
% m

In #16, replace n by m2 and -g— by %, thus

1 1
k-2l <.
b o b2
On the other hard,
1 1
m— <z b >1),
SO
a 1
k-gl<=-
But
P.
a i .
_ = —— (3 l)
b a4
which implies that
a 1
| - gl > o
Contradiction.

a
b

coprime pair (p,q) (g > 0) with

17: THEOREM Given x =~ € Q (a,b € Z, b > 0, gcd(a,b) = 1), for any

there follows



10.

PROCF
.a_ 74 S - b 75
i q > agq P 0

=> lag - bp| > 1

E-3l- 5

= Iaqb; bp|

_ lag - bp|

bg

> L
_bq°

18: CRITERION Iet x € R. Assume: There exists a coprime sequence
P
n
P9, (qn > 0) s.1chthatx#a-n—for all n and qx - pn—*,—o asn + o — then x
is irrational.

[Suppose instead that x is rational, say x = % (b >0, ged(a,b) = 1), thus

e Y R
%9 9

_ ,_a__p_n o1

b gl = bay




11.

But this is a contradiction since 9 X =P, 0 by hypothesis.

19: CRITERION Iet X € R. Fix positive constants C and §. Assume: There
are infinitely many coprime solutions p,g (g > 0) to

_C
48 °
d

e - B <
Then x is irrational.
[The contrapositive is the assertion that for a rational x there are but
finitely many coprime p,q (g > 0) satisfying the stated inequality. Take x as
a

5 Per #17, hence

C P
—_ - £
s > | l
g +o 9

= 1a_.P
b g
1
2 Bq
=>
oo w8, g
£ P

Accordingly, there are but finitely many possibilities for q. The same is true

of p. To see this, fix p and g subject to

‘i _p| . _C
b 1+8
g
and consider fractions of the form
P e,

d



1z.

where
a_ptr) _C
b q 1+38 °
Then
el _|lr,p_a_p_a
= |-+ £ - = - £ + =
d g b g ' b
pr _a p_2
= q b+|q b
< 2C
1+3
gq
=>
\r]<3§52C.
q

Oour contention is therefore manifest.]

20: APPLICATION Iet x € R. Assme: There isa § > 0 and a sequence

P
Ei. (q, > 0) # x of rational mumbers such that
P, -
}X__n -0 (qn (l+(3)).
Then x 1is irrational.
APPENDIX

IRRATIONALITY CRITERIA Iet x be a real number — then the following
conditions are equivalent.

(1) x is irrational.

(ii)Vs>0,3§Equchthat



13.

0 < 'x—E—) <
g

Qjm

(1ii) V real number Q > 1, 3 an integer g in the range 1 < g < Q and a

rational integer p such that

<« L

0<x—9— .
=-E <

(iv) 3 infinitely many % € Q such that

1

X -S| < —=,
l /5

q




§8. IRRATIONALITY OF e

Recall that e can be defined as

n

sup{ I
k=0

:n € N}

&l

or, equivalently, as

sup{ (L + %)n:n € N}.

1: N.B.
n n+l
b kl—,< z kl—,and (1+%)n<(1+r—1-—}r—l)n+l.
k=0 & k=0 ¥

2: SUBLEMMA Let 0 < r < 1 —- then

o0}

n 1
L r = ’
n=0 1 r
S o)
® n r
r r = .
=1 l-r

THEOREM e is irrational.

PROOF Suppose that e is rational, sy e = }%, where x and y are positive

integers and gcd(x,y) = 1. Since 2 < e < 3, y is > 1. Write

1
e = (l+i]:r+ e +_YT) +.-. .

Then

'S
)
I
e
M| X



(y - 1) ix

1 1
=(y!+{—i+---+§-i-)+R.

Here

1 1

R=Y (gFort TroT

+ oeee)

is a positive integer. Continuing,

) 1 1
SIS e N ) )

-1 5 1 + ..

y+l (y+D(y+2)

1 1

< + et ee-
+ 1
Y (y+I)2
[o0]
n=1 (y + 1)
1
_y+1 =%<l.
1 1
v+ 1

But this implies that R is less than 1, a contradiction.

[Note: The preceding is actually an instance of §7, #18.

no
p = Z -—'—""'th.en
n an=0k.

N n l
gqge-p, =gfle—- I —)
qn n qn FOk!

=nl(s '%N

ke=n+1- -

Thus take qn=n!,



1 + 1
n+1l n+1{On + 2)

<;L_1 (cf. supra)
>0 (n ».]

The foregoing argument can be extended to establish the irrationality of e2.

2

Thus start as before by assuming that €™ = = , where X and y are positive

pid
Y
integers and god(x,y) =1 (v > 1), hence

ye =

ORI

o<}

y(I 2 =x(I D5

k=0 k=0 -
=> (vneN
n
1 1
v(Z =+ I +
k=0 ki k>n ke
n
k k1
=x(Z (DS + T (D
k! k!
k=0 k>n
k1
=y + I ki,) +x@ + I (DF .
k>n 77 k>n )
Now multiply both sides of the last relation by n! to get
1 k1
y(C_+n! I =) =x({O +n! & (1) &)
n on kt n k>n kt’7
Cn = n.'.An
D= nlB

n n



being integers.

or still,

Therefore

Moving on,

1 1
ch+y(n+l+ RN ) F ee)

XD+ x(—l)n+l( 1 1

¥C, ~ ¥P
_ n+l 1 1
=xCD GE T m yDeFsy YY)
1 1
Yoy Ttmayoeayy o)
lyc, - =0, |
< xl— & +oeee

n+l m+Dm+ 2

+y1n+l nmh+1)(n+ 2)

A
e
+
+

n+1 n+1)(n+ 2)

R AT i e o) B

PFinally, for all n > > O,

1 1
=Xty
n
X+ y

nF¥ Ll mED @+

*)



I.e.: For an infinite set of n,

vC, = =D, | =0,

or still, for an infinite set of n,

an impossibility.

4: DEFINITION An irrational number r is a quadratic irrational if there

exist integers A, B, C not all zero such that

Ar2+Br+C=0.

[Note: A quadratic irrational is necessarily algebraic.]
5: EXAMPIE v2 is a quadratic irrational.
6: THEOREM e is not a quadratic irrational.

The proof is detailed in the lines below.
To arrive at a contradiction, suppose that there are integers A, B, C not all
zero such that

Ae2+Be+C= 0.

7: N.B. If A = 0, matters are clear. If A # 0 and if B = 0, matters are
clear. If A# 0and if B # 0 and if C = 0, matters are clear. One can accordingly
assume from the beginning that A # 0, B # 0, C # 0. Moreover, we shall work
instead with the equation

Re + B+ S =0,
e



8: SUBLEMMA Given n € N, there is an integer I such that

1
1 =
nle In+n+oc ,
where 0 < o < 1.
n
PROOF Write
o ® nt
nle= 5 —++ I -+.
k=0 ke=n+1
- n! _ n! n! .
* L K GmFrDI T mrort
S nl _ 1
n+1)! n+1°
> n! _ 1 1
¢ k£n+lH_n+l+(n+l)(n+2)+
1 1
< + EEER
n+1 (n+l)2
=1
o
Therefore
1 > n! 1
< I —_— < =,
n+ 1 ken+1 ! n
from which
T ot _ 1
]Ell—!_—n-"an (0<o"n<l)'
To conclude, it remains only to set
no,
L =% 17-
k=0



9: SUBLEMMA Given n € N, there is an integer I, such that

£=J (_l)n+l
e n n+l+Bn’

where 0 < Bn < 1.

PROCF Write
n (o]
n! k nl! k n!
s 3 )Ry 3 )R
¢ k=0 K i k!
-~ o knl_ T L2+ (m+1) n!
o k£n+l(l) X io(l) TF @+ D]
_ n+1l . L n! - n+1l
= (1) Lio Sy e S-
Put
N
_ L nl!
ST, Y mErmemT
Then
Sy €S Sy 1
In particular (W = 1):
1 1 1 1 1

g <

ERERCEINCE R CE N CE R R N L I

1 1

® IFI mFrD@OFD

1 1, 1

n+l(l—n+2’ n+ 2




and
1 1 . 1
n+1 nm+ 1)+ 2) mhM+1)(n+ 2)(n + 3)
-1 1 1 \
B A -w ey e oy
_ 1 1 1
—n+l(l+n+2( l+n+3))
1 1 ,~n-3+1
“aF3T G tarz m 3z
1 1 ,~n-2
i+ O taiz )
_ 1 _ 1 1
_n+I(l n+3 “n+1-
Therefore
1 1 _ 1
nrz<S<gFT™°" n+ I+ (0 <8, <1
And then
oo _ n+1 _ (_l)n+l
D DF k—“(—l) S=EnFI+g
k=n+l
To conclude, let
n l
J = I (—l) ’T
n =0 k!
Sumnary: _
_ 1
n'e—In—O(H)
1
o -0dy.




Return now to the equation

Ae+B+==20

(0h @]

and consider

A(le - I) + C(% - 3)

C
1 =y - 1
n! (Ae + B + ) (AT + Bn! + CJ )

= - (AIn+Bn!+CJn)

IH

- Kn.

Then K is an integer. But

Therefore

K =0 (n>>0).

10: SUBLEMMA

Kn+2 - n+ 1) (Kn + Kn+l) = 2A.,

[Use the relations

In+l

1+ (n+l)In

I = [ LIS 1)J,.]

Since A # 0, the relation figuring in #10 is impossible for n > > 0. And

this contradiction closss out the proof of #6.



10.

11: SCHOLTIM 1, e, e2 are linearly independent over Q.

APPENDIX

EXAMPIE 1 Suppose that r is a nonzero rational — then the number

oo k

r 1 2,13
z =l+r+5xr " +5r + -
k=02k(k—l)2 2 8

is irrational.

EXAMPLE 2 Suppose that r is a nonzero rational subject to 0 < |r| <1 —-
then the number

o k
z r2 =r+r2+r4+r8+---

is irrational.
EXAMPLE 3 Suppose that M is an integer > 2 — then the number

1

1Mk2

T a8

is irrational.



§9. TRRATIONALITY OF &P

Iet a/b be a nonzero rational number.

:  THEOREM ea/b is irrational.

[Note: Special cases, namely e and e2 are irrational, as has been shown

in §.]

2: IEMVA If € is irrational for all integers r > 1, then ea/]O is

irrational for all nonzero rationals a/b.

PROOF Take a € N and suppose that ea/b is rational, say ea/b =g € Q - then

&2 = (ea/b)b _ qb € Q.

Working toward a contradiction, assume that for some r € N, e’ is rational

and choose a positive integer m with the property that me’ € N.
The data in place, we shall now introduce the machinery that will be utilized

to arrive at our objective.

3: NOTATION Given n € N, let

2n
T (X) = I X -13),
j=n+l

an element of Z[X].

4: RAPPEL



Put
§ = X'ddE .
5: SUBLEMMA
k k
Tn(ﬁ)x = Tn(k)x .
6: LEMA
Tn(6)ex = Qn(x)ex = (& + o)
= Pn(x) + Rn(x) ’
where
n k n
P = I T 00 E= (-t 5 BRI O)K
k=0 : k=0 : '
and
o X
R (x) = I T (k) &=
n kensl o K
o k co k
= TkX= 3 (k-n- DI _x_
kol B Kb oy (k- 2n -k
7: N.B.
Qn(x) € 7[x]

Pn(x) € Z[x].

Accordingly, at an r € N,
Q,(r) € Z

Pn(r) € Z.



o k
In I 2n + 1)! k=2n+1 (k - 2n- 1)1}
2n + 1
_n! [x] e|x|.
(2n + 1)!

Returning to the situation above, we claim that for sufficiently large n,
0 <mR_(r) < 1.
n

To see this, consider

2n + 1
nlr er= n! 2n( r)
T (mF Dl Cn+ 1 - \reJ.
Then
VR S R = O N |
(2n + 1)! nl n+1 n+2  n+n 2n+1
- r2 r2 .. r2 1
n+1 n+ 2 n+n 2n+1°

Choose n > > Q:

r2
n+1 <1
thus
n! r2n < 1
2n + 1)! 2n + 1 7

from which the claim is immediate.

On the other hand,

r
mR, (r) =mn(Q (x)e” - P (r))



= me")Q () - mP, (r)

€ L

But there are no integers between 0 and 1.

9: REMARK It will be shown in due course that if x # 0 is algebraic,

then e” is irrational, so, e.g., eﬁ 1s irrational.

APPENDIX
0 <k £n: Here
n2n -%k! n
17 S ()
— n (2n - k)! n!
= =1 Al ANCEERAL
n 2n-k)! 1
= 1 m-k! kU
and the claim is that
— n (2n - k)!
[ ek =0:
2n
T =TT (0-3)
J=n+1

- m+1(-Mm+2) - (- (2n))

) @+ L@m+2) --- (2n)

2n!
com 2t



2n
T =T @a-3)

j=n+l

I1-hb+1)) A-@+2) --- 1 - (2n))

(n)(-n-1) «++ (- (2n - 1))

D% m@+1) -+~ (2n - 1)

n (2n - 1)!

CLY T

2n

T @-3)

Jj=n+1l

T, (n)

m-mh+1))n~-Mn+2) --- (n~- (2n))

(-1) (2) +++ (-n)

1" nt

n (2n - n)! ]

(-1) m-n)t! °

2n + 1 £ k < «: In this situation, the claim is that

_k-n-1!
T® =x-m-nr-




[ k=2n+ 1:

2n

T @n+1-3)

j=n+l

Tn(2n + 1)

2n+l-Mnm+D)))2n+1- nm+2))(2n+1 - 2n)

n)(n-1) --- (1)

= n!

_(2n+1-n-1n!
T Cn+l-2n-1)71°

e k=2n+ 2:

2n

T (2n+ 2 -3)

Tn(2n + 2)
J=n+1

Il

Cn+2-Mm+L))2n+2-(n+2))e++(2n+ 2 - 2n)

mh+ 1)@ --- (2)

n+ 1)!

=(2n+2—n—l)!
(2n+ 2 - 2n - 1)1

To prove the remainder estimate, one has to show that

(k-—n—l)!< nl
k! - (2n + 1)}

k22n+1).

Ietk=2n+r (r=12,...) and take r > 1 —— then



k-n-1)! _(Zn+r-n-1)!

k! (2n + r)!

_n+r -1t
- (2n + 1)1

_ n+r-1)!
Tn+D!InF 2)..-Cn F1) o

Cancelling the

1
2n+1)! !

there remains the claim tihat

m+r-1)!
ER R

Write

n+r-1)!
=1l+2-< n-1)n+1-1)n+2-1) - m+1r -1)

=mnm-DI+1l-1)(n+2-1) - n+r -1).

Cancelling the (n - 1)!, matters thus reduce to

mM+1-1)n+2-1) «+- n+1r-1)
Cn+2) --- (2n + 1)

<n
or still,

m+2-1) - nM+r -1) <1
2n+ 2) «++ (2n + r) =

which is obvious.



§10. IRRATIONALITY OF &P (bis)

a/b

There is another way to prove that e is irrational (a/b a nonzero rational

mumber). Thus, proceeding as in §9, suppose that for some r € N, et is rational,

myer=% a,velz v>0).
Let
n n
Fx) = ¥ (ln!— X)
Then
0<x<l=>0< f£(x) <ni,.
1: IEMA
£eDwyez 5=1,2....
2: N.B.
eDyez g=1,2,....
[This is because
f(l-x)=1fx).]
Given n € N, put
Fx) = r22 £(x) - v L £r0x) + r2 2 i) - eee - D)y 4 £ ) ()

and note that
F(), FQ) € Z.

Cbviously

% € F ) = F@F(x) + F' ) = r2 e (x)



vr2n+l flé ¥ F (x)dx = r(erXF (x) ]6

= v(e'F@)) - vF(0)

= uF(l) - vE(0),

an integer. On the other hand,

0 < vrzm'l fl

0 e"*f (x)dx

2ntl r
< vr e

for n > > 0 (cf. 80), giving a contradiction.

This is a good place to insert an application.

: DEFINITION The natural logarithm is loge .

4: NOTATION Write fn in place of loge .
5: THEOREM If g #1 is ratiomal and positive, then £n(q) is irrational.
PROOF Suppose that n(q) is rational —- then eJZn(q) is irrational. Meanwhile

q= e/?.n(q).

SCHOLIUM If x # 1 is a positive real number and if £n(x) is rational,

E

then x is irrational.



APPENDIX

Iet a # 1, b # 1 be positive real numbers -- then

loc_:;c_:l (b)
log (b)4n(a) = £n(a )

= fn (),

1log, () =%.

a

EXAMPLE

_en(9) _ n@Ed

;3
10939 = @3y “ miy - 2

ION 2.




§11. TRRATIONALITY OF w

There are many ways to introduce the mumber .

1l: DEFINITION Geometrically, m is the length of a semicircle of radius

one, i.e., analytically,

2: THEOREM Consider the complex exponential function

exp:C ~ C.

Then T is the unique positive real number with the moperty that

Ker (exp) = 27 V-1 Z.

3: THEOREM w is the unicue positive real number such tlat cos g =0
andcosx#0f0r05x<%.

4: THEOREM T is irrational.

We shall give four proofs of this result.

First Proof: Suppose that m = —, where a and b are positive integers.

oy B+

Introduce

xn (a - bx)n

£@x) = n!

and

P) =) ~ £ ) + £3 () = evr + (DD @) ),



n € N to be determined momentarily. Note that f(J) 0 ez G=1,2,...), hence

t9m ez =12..) (sice ) =£@ - =£(n-x). Next

%(F' (xX)sin x - F(xX)cos x)

F'"X)sin x + P(X) sin x

fxX)sin x (since F(x) + F''(x) = f(x)).

Therefore

fg f(x)sin x dx = (F' (x)sin x - F(x)cos x

T
0

F(m) + F(0).

But F(m) + F(0) is an integer. On the other hand,

n_n
O<f(x)sinx<ﬂT (0 <x <m,

nn
fgf(x)sinxdx<'rr'”a.1

ni

is positive and tends to zero as n + « (cf. §0).

Second Proof: This proof is a slightly more complicated variant of the

preceding proof and has the merit that it establishes the stronger result that

2

'IT2 is irrational. Proceeding to the details, suppose that 7 = % ; Where a and b

are positive integers but this time introduce

1-x)"

xn(
f(x) = o ’

a polynomial encountered earlier (cf. §10). Put



Fx) = b £x) - 122 2@ () 4+ 724 @y - iy ()R @) )

and note that
F(0), F() € Z
Moxreover
% {F' (x) sin(1x) - 7F (%) cos(mx) }
= @ ) + 1% (%)) sin ()
= 1% 722 £ (x) sin (1x)
2 n .
=7n1a f&)sin(m).
Therefore

=l /%) £ (x) sin (mx) dx

_ (F' (%) sin (mx)

- - F (%) cos(mx)

1

0
= F(l) + F(0),

an integer. On the other hand,

n
0 < ma® f]6 £ (o) sin(mo)dx < <1

if n > > 0, from which the usual contradiction.

Third Proof: Let

1 =/t

2. n % _
0 1 1 -x7) cos(T)dx n=20,12,...).

Then for -1 < x < 1,



0 < (1 - X2)n cos(%{-) <1

= 0<I <2.
n
In addition, there is a recurrence relation, viz.

2

.Tr —_ — — —
T In = 2n(2n l)In-l 4n (n ].)In_2 n > 2),

as can be seen by integration by parts (twice). Using this, it follows via

induction that

+
(_1_'1'_)211 l n = n!Pnr

2

where Pn is a polynomial in 14— with integral coefficients of degree [321-]:

T 2n+3
(_) T

= (__)2n+3(_2_)2 20+ 1)(@2n + l)In - 4(n+ L)n In—l}

= @™ Qo+ D@+ DI -40+ I )

-1

2+ 1) (2 + 1) §) 2n+lI -~ 4(n+ n (“)z(g) n-1 . I,

2

2(0+ 1) (2n+ DniP_ - 4@+ VnlP @ - VL E_,,

the degree being that of the second term, i.e.,

e e

2 2

2
Suppose now that “T = %, where a and b are positive integers —-— then



j2n+1 2 - an2e)?
@
=>

&2 2= @l )?
=>

2nt+l

a 2 _  2ntl 2

> In =Db (Pn) .

(n!)

But Pn is a polynomial in %with integral coefficients of degree ' , hence

2n+l

the degree of (Pn)2 is 2! % l< 2n+ 1, hence b (Pn)2 is an integer. To get

the contradiction, simply note that

a2n+l 5 (a2) n
0 < I~ < 43
2 n n!

(n!)

+ 0 (n~> o (cE. §0).

Fourth Proof: The machinery employed in 8§ can also be used to establish

that 7 is irratiomal. So assume once again that m = %, where a and b are positive

integers, and let z, = 7 V=1 = a v=1 -- then

R (zy) =Q (a /~De o /-1 - P, (@ v—=1) (cf. §9, #6)

=0 @/ DEe™ ™ - @D

=0 (a /D) 1P - P_(a /D),

an element of Z[v/~1]. Replacing x by zZy in 59, #8 (a formal maneuver), it follows
that

Rn(zo) =0 (n>>0).



Next

Ax) = Qn(X)Rn+l (x) - Qu (%) Rn(X)

0, (%) Q) W€ - P (%))
- Q4 ®) @ e - P_(x))

=-9Q, (x) P (x) + Q41 (%) P ()

2(=1) n x2n+l.

Therefore A(z O) # 0. Mearwhile

Rn (ZO) = Rn+l (ZO) =0

n>>0).



§12. IRRATIONALITY OF cos(x)

Let x be a nonzero ratiomal number.

l: THEOREM cos{x) is irrational.

2: APPLICATION 7 is irrational.

[Suppose that m is rational —- then cos(w) is irrational.

3: ILEMMA Let g(X)€ ZI[X] and put

£(X) =§9(X) (neN.
Then v § € N,

£3) o) e 7,
and in addit ion,

m+1) | £9 (0

except perhaps for j =n (£ () (0) =g(0).

Let a,b € N (gcd(a,b) = 1) and let p > a be an odd prime.

Put
xP L
fX) = B-Dr9 x),
where
gX) = (@ - bx) %P(2a - bx)PL.

Then #3 is applicable (taken=p - 1), hence VvV j € N,

£0) () € z,

But cos(n) = -1... .]



and in addition,
ple® (0
except perhaps for j = p - 1.
FACT
£P 1) (0) = g(0) = a?P(aq) Pt = P3P 1
=>
p f£P (0.

4: LEMVMA Given a real mumber r, suppose that ¢(X) € Z [(r - X)z], i.e.,

0 =a, -0 +a, o -x7"2

+ e +a2(r—X)2+a

0

Then for any positive odd integer Xk, f(k) (r) = 0.

To ensure the applicability of #4, take r = % and rote that

_ 2P, 2 2 PL
£(X) = (r - X) : I()r_ - !(r X)) b3p—l
€Il - 4.

Turning now to the proof of #1, it suffices to establish that cos(x) (x > 0)
is irratiomal. This said, assume that x= %, where a,b € N (gcd(a,b) = 1).
Working with £(X) per supra (p > a an odd prime), introduce

FX) =£®) -£3 @ +£@ ) - ... - £8P (),



Then
P x) + P = £®).

Moreover
% (F! (X) sin(X) - F(X)cos(X))

= 7? (%) sin@) + F(X) sin()

= £ (X) sin (X)

=>
/’5 £(X) sin(X)dX = F' (x) sin(x) -~ F(x)cos(x) + F(0).

From here, the procedure is to investigate the three terms on the right

and see how the supposition that cos(x) is rational leads to a contradiction.
o £ )y — 0= Frm) = 0.
e 90 ez=r0 €z
° plf(j) (0 G #p-1).
e p/ PV .

e F(0) =g (xd(p,9 =1).
So far then

[y £® sin(X)dX = - F(x)cos(x) + q.
Observe next that f£(X) can be viewed as a function of the variable y = x - X:
fX) = h(Y)

_ ¢2P (xz _ YZ).p—-l
(p- D!

b3p—l




_ Yp—1Yp+l (x2 _ Y2) p-1
(p - 1)!

b3p—l

vP L

- (Yp+l (x2 _ Y2) p—l)b3p—l.
(p- D!

FACT v J €N,

£3) g = 09 (0.

In view of #3, the h(J) (0) are divisible by p with the possible exception

of h(p_l) (0). But here

h(p—l) (0) = (Yp+l (x2 _ Y2)p-l) ¢ =0 b3p—l
= 0.
Therefore
F(x) =mp

for somem € 7.

Assume henceforth that
05 (x) =% c,deZ, da>0.
Then
fo £®sin(X)dX = - mp(@) + g
or still,
dfy £(X)sin(X)dx = - mpe + dq.
However for 0 < X < x,

X2p (xz) -1

3p-1
monT b

0< £f(X) <



4p-2
T T (p-D!

4 J§ £(0) sin(x)ax |
= d|fy £(X) sin(x)ax |

<dfy £ |[sin®) |ax

dfy £ |sin(x) |ax

< d/’é £ (X)dx

Il
R
o

where

Since
p-1
K2

W =0 (cE£. 80) 7

Llim
P—>oo

it follows that

lim df’é £ (X) sin (X)dX = 0.
p~+ o]



6.

To arrive at a contradiction, choose p > > 0:

-mpc +dg € Z - {0}

while similtaneously

|ary £(X) sin(ax| < 1.

5: APPLICATION The values of the trigonometric functions are irrational
at any nonzero rational value of the argument.

[E.g.: If sin(x) € Q for some 0 # x € (Q, then

cos(2x) = 1 - 2sin®®) €

cee o]

6: N.B. The squares of these mumbers are irrational.
[E.g.:

c052 ®) = 1 +2cos(2x) R



§13. IRRATIONALITY OF cosh(x).

Iet x be a nonzero rational rumber.

1l: THEOREM cosh(x) is irrational.

The proof is similar to that in the trigonometric case. Thus, as there,
assume that x = %, where a,b € N (gcd(a,b) = 1) and define £(X) as before. But
this time let

FX) = £(0) + £2(X) + £500 + --- + £3P2) (x99,

Fx) - FO () = £(x).

Moreover
d% (F(X)cosh(X) - F'(X)sinh(X))

= F() sinh(x) - F?) () sinh(x)
= £(X) sinh(x)
=>
[y £X) sinh(X)dX = F(x)cosh(x) - F' (x)sinh(x) - F(0).
Note that for 0 < X < x,
£(X) > 0 and sinh(X) > 0,

thus the integral on the left hand side is positive, a point that serves to
simplify matters.
Proceeding,

') =0, Fx) € Z, and F(0) € 7.



Assume henceforth that

cosh (x) =% (c,d e Z, d>0).

Then

ﬁé f (X) sinh (X)dX = F (x) % - F(0)

or still,

df’g £(X) sinh(X)dX = cF(X) - dF(0).

The RHS is an integer while the ILHS admits the estimate

0 < df’g £ (X) sinh (X) dX

< ax X4p—2b,3p—l &K eX
PpP-D! ) 2
_ dx3b2 (ex _ e—x) '(x4b3)p—l
2 T (p- D!

which is < 1 if p > > 0 (for this, p could have been any positive integer).
Contradiction.

2: APPLICATION The values of the hyperbolic functions are irrational

at any nonzero rational value of the argument.

[Use the identities

Il

cosh(2X) = 1 + 2sinh® (%)

1 + tanh® (X)
1 - tanh? (%)

.1



§14. ALGEBRAIC AND TRANSCENDENTAL NUMBERS

1l: DEFINITION A complex number % is said to be an algebraic muber if

it is the zero of a nonzero polyromial P(X) in Z[X].

2: EXAMPLE /-1 is algebraic (consider P(X) = X% +1).
complex B
3: N.B. If x is algebraic, then = is itsAconjugate x and its absolute
value |[x]|.
4: N.B. If x =a + /~L b (a,b € R), then x is algebraic iff both a and

b are algebraic.

5: NOTATION 6 is the algebraic closure of Q in C.

6: TEMA Q is a countable subfield of C.

7: LEMMA Suppose that x is an algebraic mumber — then there is a unique
nonzero polynomial fX € Z[X] such tlat fx(x) = Q, fX is irreducible in Q[X], the
leading coefficient of fx is positive, and the coefficients of fx have greatest

common divisor 1.

[Note: Spelled out,

£.(X) =aj+aX+ ---l-aan (2, > 0

with

gcd (ao,al, e ,an) = 1.]

8: DEFINITION The polynomial fX is called the minimal polynomial of x.




Its degree is the degree d(x) of x, hence

dx) = [Qx):Q].
[Note: The set of real algebraic mumbers of fixed degree n (> 2) is dense
in R.]

9: DEFINITION The zeros of fX are called the conjugates of x.

[Note: They too are, of course, algebraic,]

10: FEXAVWPIE Take x ratiomal, sayx =¢ (a,b € Z, b > 0, god(a,b) = 1) —

fx(X) = bX ~ a.

11: DEFINITION An algebraic number x is said to be an algebraic integer

if its minimal polynomial fX has leading coefficient 1.

12: EXAMPIE /5 is an algebraic integer (consider X2 - 5) but /5/2 is not
2

an algebraic integer (consider 4X” - 5).
13: EXAMPIE The integers 7 are algebraic integers and if x is a rational
number which is also an algebraic integer then x € Z.
[Note: Accordingly, a ratiomal muber which is not an integer is not an

algebraic integer.]

14: IEMMA Under the usual operations, the set of algebraic integers forms

a ring.

15: IEMA If x is an algebraic mumber, then a x is an algebraic integer.



PROOF In fact,

1 -2

+ eee + a7 -1
n

n
a + a
1 (anx) n a

il
o
.

n n-
1 (anx) + an—-l (anx)

Given an algebraic number x € 6, let Dx be the set of integers n € Z such

that nx is an algebraic integer —— then D, is a nonzero ideal of Z.
16: N.B. That D is ronzero is implied by #15.

17: DEFINITION A positive element of DX is called a denominator of x.

18: DEFINITION The positive generator dx of DX is called the

denominator of x.

19: N.B. The a_of #15 needn't be d_ (consider 4% + 2X + 1).

" 20: DEFINITION A complex number x is said to be a transcendental mumber

if it is not an algebraic number.

Therefore the set of transcendental numbers is the complement of the field

Q in the field C.



21: N.B. In general, the sum or product of two transcendental numbers
is not transcendental. However the sum of a transcendental number and an algebraic
nunber is a transcendental number and the product of a transcendental number and

a nonzero algebraic mmber is again a transcendental number.

22: EXAMPIE e is transcendental (cf. §17, #1) and 7 is transcendental
(cf. 8§19, #1) but it is unknown whether e + 7 and em is transcendental (cf. 8§82,

#29) .
APPENDIX

Given an algebraic number x # 0, let Xy =Xy Kypeee Xy (n=dx)) be the

conjugates of x (cf. #9) and put

H(x) = max ]Xj|,
1<j<n
the house of x.

IEMNIAIetTEDX (T > 0) —— then

1
%] > ———.
() 2L



§15, LIOUVILLE THEORY

1: RAPPEL (cf. §7, #17) Givenx =2 €Q (a,b €Z b > 0, god(a,b) = 1,

for any coprime pair (p,q) (g > 0) with

#

oo
Qo

there follows

|
Qo

> == .

bg

oo

2: THEOREM If x is real and algebraic of degree d(x) = n (cf. 8§14, #8),

then there is a constant C = C(x) > 0 such that for any coprime pair (p,q) (@ > 0),

> £
n
q

-
g

PROCF The case d(x) = 1 is 41 above (choose C = C(x) < ), = take d(x) > 2
and recall that
fX(X) =agta X+ .-+ aan
is the minimal polynomial of x. Let M be the maximm value of lf}'{ X) | on

[x -1, x+ 1], let {yl,...,ym} (m < n) be the distinct zeros of fx which are

0 < C < Iﬂin. {l - lx - l IX - l}
Y Y] recey 'Y']., .

To arrive at a contradiction, suppose that for some coprime pair (p,q) (g > 0)

<<
= n




or still,
<C<min {1, [x yl| x -y |}
Of course,
!x-—g > 0,
q
X being irrational. And
’x——g—|=lg—x <l—>x—l<-§-<x+l
In addition
p
0 < X~ g < |x~yl|,..., |x—ym|

= P -
=> a# Vi k=1,...,m

= P
> fx(q) # 0.
Owing to the mean value theorem, there is an X between % and x such that
By =
£, - £, @ | = k- Bl 1Eixp) |,
i.e.,
£, @ | = | I£2 (2 |

=> £ (xg) | #0

1£. & |

P =_%X9
[ - &l Py
X0

£, <Pl



g Py J
T oa.®
| aj(q) |

0 < |fX(§)| E
j:

n . .
|z apd™ ]/ o

3=0

Since the numerator of this fraction is a positive integer, it follows that

n . .
l X ajqun~:]| 21,

J=0
thus
1
£ &)z =.
X'q qn
Finally
F (&
opy,
g M
> L
M

C
>4 2 IX‘%l

Q

from which 1 < 1, contradiction.

3: REMARK The preceding proof goes through if £(X) € Z [X] has degree

n >1 and x is an irrational root of f£(X).

4: DEFINITION A real number x is a Liouville number if for every positive

integer k there exist p,ge Z (g > 1, god(p,q) = 1) such that

0 < lx-p.gl<
q



5: NOTATION L is the subset of R wipse elements are the Liouville

numbers.
6: LEMMA Every Liouville number is irrational.

PROCF Suppose instead that x =% (a,b €Z, b >0, gcd(a,b) =1). Let k be

a positive integer: 2k—l > b and take p,q:% # % -— then

1
X -
d

So x is mot a Liouville nmumber.

Therefore

L <P.

7: THEOREM Every Liouville mumber is transcendental.

PROCF Assume that x is an algebraic irrational mumber with d(x) = n, hence
per #2, for any coprime pair (p,q (g > 0),

- B> <.
n

5 g



and then, using the definition of Liouville

o=

Choose a positive integer r:2° >

number, choose p,q:

o) 1 _
0<[x—a|<n+r (k =n +1x).
q
But
e E
qd 2°q g
=>
P C
IX - '—‘l < —n .
RS
On the other hand,
o) C
IX - al % —n (Cf. #2) .
q
Contradiction.
Therefore
LT <P,

: REMARK Not every transcerdental number is a Liouville number, e.g.,

e and T are transcendental but not in L.

: EXAMPIE Iet a be a positive integer > 2. Put

8

2+

X = T
.laj.

J

It

Then x is a Liouville number.

[Define a sequence of rationals % (k=1,2,...) by the prescription
k



P k i
q—k— z —-:——::Ij'l , qk—ak'.
Kk §=Ll al*
Then
P o0
Ix - K- 3 1.
% g=k+l &7°
But
[e's] [o]
S N |
j=k+l ad°  J=(k+l)! a’
__ 1 1
a(k+l)! =0 aJ
_ 1 a
a(k+l)! a-1
-1 . _a
T kL a-1
i
2
T %
1
S _k (qk Z 2) .
%
So, ¥ k € N,
P 1
0 < lX - -q——l < _E .
9

Therefore x is in L (cf. #4).]

10: N.B. The preceding discussion can be generalized. Thus fix an integer



n > 2 and a sequence of integers mj e {0,1,2,...,n~1} (3 =1,2,...) such that

mj # 0 for infinitely many j. Put

Then X is a Liouville mumber.

P
[Define a sequence of rationals q—k (k=1,2,...) by the prescription

k
Pp Kk omy _ k!
g L T &SR
kK J=1n"
Then
D ® m.
\X"—k = —ﬁgro
%l gkl 0l
But as above
co m_ [ee]
5 _g_'_ <3 n-1

< 5 n-1
j=(k+1)! nJ

_ n=-1 1

l ———

n(k+l)' 3=0 n’

_ n-1 . n
)T =1

= .
L)

k!
< B

n (k+1) !



=nk!—(]<:+l)!
-k!. k
= ()
_ 1.k ., 1.k_ 1
= (g ) = (R =%
q A
So, Yk €N,
p
0 < x—q—k <Lk-
k qk

Therefore x is in L (cf. #4).]

11: EXAMPIE Put

Then x is a Liouville number.

In #10, it is traditional to take n = 10, hence mj e {0,1,2,...,9}

J=12...).

12: IEMMA Put

*© | @ -1
x= L m 103", y= T n, 107",

Assume: mjyfnj for some j and let k be the least index j suchthatmj#nj -

then x # y.

PROCF

m .
|x - y| = (my - nk)lo_k! + I (m. - n.)lO—j!
j=k+1 I J



k! ot -3t
2|m - n 107 - ljik+1 (mj - n;)10 3%

(o]

| my - nk]lO_k! - I |m.j - njllo"j!

v

j=k+1
>0 - 1 (@103t
5=kl
k1 ® -5
> 107K _ g (8)10
5= (k1) !
= 1078 = (g0/9)10” D!

13: SCHOLITUM The set of Liouville numbers is uncountable.

[The Liouville numbers of the form

[s0] _.'
s m. 10 3°
=1 J

constitute an uncountable set (use a Cantor diagonalization argument).]

14: THEOREM Suppose that £(X) € Z[X] has degree > 1 and let x € L —-

then £(x) € L.
To begin with:

15: LEMMA If the degree of £(X) € RI[X] is > 1 and if a € R, then there

is a polynomial g(X) € RI[X] such that

f(X) - £(a) = X - a)gX).

PROOF Write

r .
f£X) = ¥ C.X7.
j=0



lo.

Then for j > 1,

X:l —a:J

2 j—2

- @ T rald a3 1 -1

X + ad o)

= (X - a)gj (X).
Therefore
fX) - £(a)

r r

J e - J
CO + E CjX C0 E Cja
j=1 j=1

r . .
p) C.(XJ - aj)
=1

r

r
= (X - a) JE]_ ngj (X)

X - a)g(X).

To set up the particulars for #14, note first that {X:X#x & £(X) = £(x)}
is a finite set (the degree of f£(X) being by assumption > 1). Fix § > 0 subject to
0<§d<min {|[X~-x|:X#x & £X) = £(x)}
and put

M =max{|g(X)[:]|X - x| < §}.



11.

Bearing in mind the definition figuring in #4, let k be a positive integer and
choose a natural number m > kr (r the degree of f) such that

1 < 6™ ang 2T < M,

Next, determine p,g € Z (g > 1, gcd(p,q) = 1):

0 < |x—§|<—lﬁ.
d

Step 1:
]x - E l < _.l_ i i_ < (S
q F-R
=>
lg®| <mand £B) # £(x).
q q
Step 2:
KT < o sy < oK
=>
lg(%)l <M< ke < ke
Step 3:
0< |f -£® = b 12
£ - £@1 = [x- &9
1 mkr
< —m-q
g9
= b~
g9

Step 4: Write

Y .
FX) = &L C.¥X (C. €.
3=0 J J



12.

Then
P T Py J
f(& = & C.(®
g 4=0 Jd
= ($ c.pqd N/d
=0
- <
r 14
q
where C € Z.
Step 5:
0< |flx) - £&
| £(x) (q)l
B _c 1.k
= | £(x) :Ii-|<(-f).

To fulfill the requirements of #4, it remains only to take

upn =C
Mo — L
=49

16: APPLICATION If a # 0, b #.0 are integers and if x € L, then

a+bxel.

[Consider

f(X) = a + bX.]

17: APPLICATION If x € L, then vn € N, ¥ € L.

[Consider

£(X) = X1



13.

18: IEMMA If x is a Liouville number and if r € Q is nonzero, then

rx € L.

PROCF Write r = %-(a,b €Z, b >0). Given a natural mumber k, choose a

natural number m > k:
la| BT < K
Next, per the definition of L (cf. #4), there exist p,g € Z (g > 1, gcd(p,q) = 1):

“B L
0< |x q|<qm.

Therefore

in
.

[Note: The assertion may be false if r is merely algebraic. For example,

consider

o

A2 5 .

1

j=1 107°



14.

19: APPLICATION Every interval Ja,b[ (a < b) contains a Liouville number.

[Take a positive Liouville number x and consider

[

[

b
X

Xl

Fix a nonzero rational number r:

<r <§- (cf. 52, #15).

|

Then

a <rx <b.]

20: SCHOLIUM L is a dense subset of R (cf. §2, #14).

2l: THEOREM Let f£(X) € Q[X] be nonconstant and suppose that x € | —-
then f(x) € L.
PROOF Choose n € N:
(nf) X) € z[X].
Then

(nf) (x) € L (cf. $14) = T (nf) () € L (cE. $18),

i.e., f(x) € L.

[Tn particular, the sum of a rational number % and a Liouville number x is

again a Liouville number:

+x = (a + bx).]

ol
o

22: THEOREM The set of Liouville numbers in [0,1l] is a set of measure 0.

PROOF Fix € > 0. Let k be a positive integer such that

4Z_k_—I<€'
g=2 g
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That such a choice is possible can be seen by noting that

[ee]

1 1 1

4 5 =4 (et
q=2qkl 2kl 3kl
1 1
=4.—(_+

2k—3 22

This said, let x be a Liouville number in [0,1] and per #4,

jo) 1
0 < X - = < =
k
ER R
or still,
pP_1 <Ry 1
k k°
1 g 1 g
Put
1 P 1
I, =12-= 24 o
k' k
P/q a K'a 4
an open interval of length
P 1 P 1 _ 2
E4r a2 =L
k k k
LR S B G
Since x € [0,1] andikg%, it follows that
q
P 13
qe] 51 5 L
i.e.,
_l.p.3.,_4 3q
Therefore the total number of I is < 2q.

©/q

+ oeee)

— 4+ ---),
3

write
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put

a set of measure

p/q q p/q
2
< X 2q
q
= 4
—E-
q

The set of Liouville numbers in [0,1l] is contained in

U I(q)),
g>1
a set of measure
< I 4—%=4 z kl—l<€'
2 q =2 q

from which the assertion.

23: APPLICATION There are transcendental numbers that are not Liouville

numbers.
[Let S be the set of algebraic numbers in [0,1] and let T be the set of trans-
cerdental numbers in [Q,1] — then

[0,1] =sSUT, SNT-=4d.

Since S is countable, it is of measure 0, hence T is of measure 1.]

[Note: Almost all transcendental mmbers in [0,1] are non-Liocuville.]



17.

Working within R, it follows that | is a set of measure 0.

4: NOTATION Given k € N, put

1
U= u ulB-5, Brpi-(B
ax2 pez q q
or still,
P 1
U = U U {x €R0<ix-= <-—k}.
922 pez 41 g

25: IEMMA Uk is an open dense subset of R.

[Each —g— € Q belongs to the closure of Uk.]

26: LEMMA

7: RAPPEL A G 6—subset of a topological space X is the countable inter-

section of open dense subsets of X.

Therefore L is a Gé—subset of R.

28: RAPPEL If X is a complete metric space and if {Gn} is a sequence

of open dense subsets of X. then

[0

n Gn
n=1

is not empty and, in fact, is dense in X.

Therefore L is a dense subset of R (cf. #20).
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29: RAPPEL If X is a complete metric space without isolated points and

if S is a Gd-subset of X, then S is uncountable.

Therefore L is an uncountable subset of R (cf. #13).

0: THEOREM Every real number X is the sum of two Liouville numbers:

= a+ B (e Bel).

31: THEOREM Every nonzero real mumber x is the product of two Liouville

numbers:

x=o0B (yBe L).
It will be enough to sketch the proof of #30.

Step 1: Put
o= % 10 -,
J=1
Then
O=oa+ (-a, L=a+ (1 + (-1)a).
Recalling #21, these representations take care of the cases when x = 0, x = 1.

But then matters follow if x is any rational.

Step 2: Take x irrational and without loss of generality, suppose further

that 0 < x < 1 — then x admits a dyadic expansion:

x= I m29 (m e {0,1}).
3=1 J J

Define

. mj:ifjisodd

0 if j is even
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and put Bj = mj - ocj. Introduce
o= I 0.2 and B= T B.277.
j=1 j=1
Then

x =0 + B.

Step 3: Assume that the series defining o is infinite -- then in this
case, o is a Liouville number.

[For k > 1,

- 5 ajz—j < 2l —(2k+l)!.

Jj2(2k) !

Define a sequence of rationals I (k=1,2,...) by the prescription
k

1 -
Py (&t -1 -3 2K -1
L= 3 .27, q =2 .
% =1 J
Thenpkanqu are integers, qk>l, and
jo
0<oc—q—k-<ik.
k %

Therefore 0 is a Liouville number.]
[Note: Tacitly

Sl (k)L kek(2K) L
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In fact,

1-(2k+1)! +k(2k!

1 - 212k + 1) + k(2k)!

1-(k+k)2K! - (2k)! + k(2k)!

1 -k(2k)! - k(2k)! - (2k)! + k(2k)!

=1-k(2k)! - (2k)! < k.]

Step 4: Assume that the series defining g is infinite —-- then in this

case, R is a Liouville number.

Step 5: So if the series defining o and the series defining g are infinite,

we are done.
Step 6: If the series defining a is finite, then o is rational. If the
series defining B is infinite, then B is a Liouville number, thus x = a + g is a

Liouville number, thence }% is a Liouville number and

b
i
+

Step 7: Reverse the roles of o and B8 in the previous step.

Step 8: The case when both defining series are finite cannot occur (for

then o and B are rational, contradicting the assumption that x = o + B is irrational).

32: THEOREM If x is a Liouville number, then for any algebraic number

o >0 (a# 1), the power o is transcendental.
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It is a question of showing that o # o' for every algebraic o' > 0, i.e.,
that fn (™) # fn(a'), i.e., that xfn(a) # &n(a'), or still, that

|xn(a) - fn(a')| > O.

If

were rational and if
|xfn(a) - fn(a') | = 0,
then it would follow that

< = )
In(o)

which is impossible (x, being Liouville, is transcendental (cf. #7)). So assume

that

is irrational and write

|xfn(a) - fn(a') |

|xén (o) - -g»tzn(a) + gen(oc) - fn(a') |

= & - Bin) + Em - @]

P - 1y o - _ B
| §in(@ - ') (x - Pen(a |

N%mm-mmw—|-m-§mmu

=B - )] - [& - Denw]
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= 1P - ' - -B
lalin(oc) )] - [x qlllin(on)l

> |§,€n(ot) - n@")| - (i)
q

_ |ptn(a) - gfn(')| _ Lﬁnlion)l
a d

Q-

(Jpta(e) - gt | - Lol
g

thereby reducing matters to the positivity of

[pen(@) - atn(a’)| - —k—lén_(i"' :
In any event,
|ptn(a) - gfn(a') |
is positive since otherwise
p_ fn(a')
qg @)
contradicting the supposition that
n(a')
£n (o)
is irrational.
B: IEMVA
ptn(@) - an(a ]z ——o0,
max{ |p|,q}

where ¢ > 0 depends only on £n{a) and Zn(a').
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[This estimate will be established later on (cf.8§32 , #4 ).]
Assume that x € [0,1], choose k > > 0:

Zn(oc)|<l 2,¢ l}’

FLe Fmin {@)7, 5

and take |p| # 0, hence

There are now two possibilities:

lptn(e) - gln(@') | >

_ pl®

e Work with Lc -— then the issue is the positivity of

q
1 _ ||
C k-1
q q
or still, the positivity of
|[n (o) | 1 1.3
1 1 >1 - = 5=7>0.
e Vbrk with Lc —-— then the issue is the positivity of
|p|

- Lol

lp[©
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or still, the positivity of

de - Lol
d
- ge Lo lagl
q
or still, the positivity of
2,¢ _ [In(a) 2¢ 1 2c¢c_1 ,2.¢c
B g T8 T2@ Tz 0

33: REMARK Take o as above and assume that x is positive —- then

In(xe) and xfn(q)

are transcendental.



§l6. THE MAHLER CLASSIFICATION

What follows is a proofless summary of the relevant facts.

1l: DEFINITION Let P(X) € CIX], say

P(X) =a +aX+---+aan.

0 1

Then the height of PX, . demoted H(P), is

max{ |a

ol Jaglreeer fa |3

real numbers w such that

0< P& | <HE)

has infinitely many solutions P(X) € Z[X] of degree at most n.

3: LEMMA For any nonzero rational number % '
- a
w (%) =
a
Wn (B X) .

A: LEMMA For any positive integer n,

0< wn(x) < o,

5: N.B. The sequence {wn(x)} is increasing: Wy (x) < w, <

2

2: NOTATION Given a real number x, W (x) (mn € N) is the supremm of the

andwn(x) > n.



6: MAIN PROBLEM Suppose that {wn} is an increasing sequence of real
numbers with W >n vVn € N. Does there exist a real number x such that for all n,

W =w_?
n(x) n

7: NOTATION Put

w_ (%)
w(x) = lim sup
n >

Therefore
0 Swix) <=

[Note: Real numbers with 0 < w(x) < 1 do not exist.]

8: DEFINITION A real number x is an

® A-number if w(x) = 0;

® S-number if 0 < w(x) < o

Il

® T-number if w(x) ©&Vn>1, wn(x) < o

e U-number if w(x) =°°&Vn>>l,wn(x)=°°.

Write A, S, T, U for the corresponding sets (termed Mahler classes) -- then

R=AUSUTUU,
a disjoint union.
[Note: The transcendentals T decompose as

suUuTUTU.]



|0

THEOREM The A-numbers are exactly the real algebraic mumbers.
10: THEOREM The Mahler classes S, T, U are not empty.

1: REMARK A(= Q) is a set of measure 0 (being countable). It can be

|

shown that T and U are als sets of measure 0, hence almost all real murbers are

S—-mimbers.

12: EXAMPLE Suppose that o is a nonzero algebraic mumber —- then e is

an S-number, thus in particular, e is an S-number.

13: EXAMPLE For any positive integer d,

y o (@+1)]
j=1

is an S-number.

14: EXAMPLE 7 is not a U-number, so0, being transcendental, is either an

S-number or a T-number but no one krmows which one.

15: N.B. Exhibiting explicit T-numbers is complicated business.

16: DEFINITION A U-number x is a Un—number if n is the smallest positive

integer such that W (x) = o,

Write Un for the set of such.

17: THEOREM Each Un is nonempty and

co
U= U U,
n=1

a disjoint union.



18: EXAMPIE Vn €N,
ng7y . 3 1079
j:

is a Un—-number.

19: EXAMPLE Lel:mj € {2,4} 3 =1,2,...). Put

x= G+ 3 m 107%)/a.
=1 J

Then for all n > 1, the positive real nth root of x is a Un-number.

20: SCHOLIWM Vn > 1, Un is uncountable.

2l: N.B. U, = L.

22: DEFINITION Two real numbers x and y are algebraically dependent

if there is a nonzero polynomial P (X,Y) € 7[X,Y] such that P(x,y) = 0 (cf. 8§20, #1).

[Note: The denial is algebraically independent. ]

23: THEOREM Algebraically dependent real numbers belong to the same

Mahler class.

24:; EXAMPIE If x is a U-number and y is not a U-number, then x and y are
(o) 2
algebraically independent. So, e.g., I 10 J* and 1 are algebraically independent.
J=1
[Note: x + y is transcendental: Given
n

z a.(x+y)j = Q,
j=0



consider

n .
P(X,Y) = & a.(X+ Y)7.]
j=a

25: REMARK In general, if x arnd y are transcendental numbers, then at
least one of x + y and xy must be transcendental (cf. §2, #29).

[To see this, consider the polyncmial
X2 - (x+ V)X + xy.
Tts zeros are x and y. So if both x + y and xy were algebraic, then x and vy
would be algebraic which they are not.]
26: EXAMPLE It can be shown that the numbers m and e" are algebraically

independent but it is not known whether e" is or is not a U-number (recall that

7 is not a U-number (cf. #14)).



§17. TRANSCENDENCE OF e

We have seen that e is irrational (cf. §8, #3) but more is true.

1l: THEOREM e is transcendental.

2: SCHOLIUM vn €N 1, e, e2,...,er1 are linearly independent over (

(cf. 88, #11).

: LEMMA Given f € RI[X] of degree M,

& 5 fFr)e tat = F(0)eX - F(x),

where
M
Fix) = 1 £9 ().
£ =0

PROCF Integrate by parts to get
IS Fl)e Tat = £(0) - Fx)e X + e e Tat.
Then interate this.
[Note: If f has integer coefficients, then the same is true of F.]
Consider now a relation of the form
a +ae+ae2+ +aem=0
0 1 2 m r
where a, > 0, am;é 0 (ak € Z) —— then from #3,

0

F(O)e® - F(k) = e~ f]g‘ fit)e Tat (k= 0,1,...,m),



m m m

F(O) akek - I aF® = 3 akek ﬂg £(t)e Cat
k=0 k=0 k=0
or still,
m m
- E aF( = 3 akekﬁgf(t)e'tdt,
k=0 k=0
i.e.,
m m
~aF(0) - % aF®k = I akek ﬂg £(t)e Cat.
k=1 k=0

The polynomial f is at our disposal and the trick is to choose it appropriately

in order to reach a contradiction. One cloice is to put

g@ =T -1 s ®-m?
and let
- _9X
£(X) “m-DT’

n € N to be determined in due course.

FACTS
deg f= M+ 1L)n-152M
£ =0 (0<e<n-2),
£ ) = 1™ @n?,
n)e®) we#En-1).
[Write

~1
o g®  _ X




= _(‘n—%_"m_ (boxn_l + len + oo + bmnx(m'l-l) n—]_)
M
__ 1 ) )
Gl ll:Zn—l CZXI( (cn_l_bO' Cn_blr--.).
Then
£< n-l=>f(£)(0)=0.
And
(£) c
1= P70 _ 2
£L>n 1 => 71 - o
_s 0 _ Cp
Therefore
£ >n=> nlf(l’-) 0)
but
t=n-1=¢£"0) =c
=by = 1™ @)™
Consequently
M
r) = & £9 (0
£=0
M
-1 %
£=n-1



= )™ @)™ + nc,
C an integer.
The next step is to get a handle on the F(k) (1 <k <m). To thisend, let

g(x

9 (X) = R

m
= X"t I - ™,
o

a polynomial with integral coefficients. Using now the formula for differentiating
a product, -

. 'y | .
V@ =t Aix-wH® gm0,
i=0

Due to the presence of the factor X - k, it follows that

g3 ® =0 <n.

On the other hand, if j > n, then

g(j) k) = (31) n! glij_n) (k) .

So, for all j, g(J) (k) is an integer divisible by n!, say
g9 1) =m n (o).

And then

M
F) = ¢ £9
£=0

M
r £9 x
£=n

_r e

f=n (n-1)!



M n!nz(k)

Z - .
f=n (n-1)!

M
n X n,k)
£=n L

= nn, (nke 7).
Taken > > 0 (n prime):

n > aO and ged(n,m!) = 1,
hence

n/ aF(0)  (cf. 57, #1).

And this implies that

m
- aOF(O) - E akF(k)
k=
m
=-aF(0) - ¥ a, (on)
o g 2k
m
=-aF(0 -n (X an,)
0 k=1 Kk
# 0.
To recapitulate:
m
-aF(0) - X a F(k)
0 =1 K
is a nonzero integer, thus
m
| = a Fk | > 1.
=()
Return now to
m
k .k —~t
z a,e fo f(t)e dat,

k=0



an entity that deperds on n and which can be made arbitrarily small (leading
thereby to the sought for contradiction).
To see this, note that

I£(x) | 5-(-n—¥l)—! O<x<m@®M= fm+Ln-1),

o)
m k -t
|1ch e jlgf(t)e at |
m
M k-t
S @W=-DT kzolakl rp ¢t
m+1)n m K
< Fm—=7 L (e -1)
S Tm-D1 kzolak|
m+ 1l)n m
<X ____ 1 la ek
- (n-1)! k.=0l kl
(m+ 1)n m
m m
S @m-Dpr ° kiolakl
(ol m o
— e z |a ’
n-1)! k=0 k|
where
C=mm+l
But
I
m-1)! m - 1)!

+ 0 (n > ) (cf. 50).



Here is an application of #1.

4: SCHOLIWM Let g be a nonzero rational mumber —- then e? is tran-

scendental (cf. §9, #1).

[Take g > 0 and suppose that e? is algebraic. Write g = % (a,b > 0) —
a
then (eb)b = & is algebraic, which implies that e is algebraic (cf. §2, #37),

a contradiction.]

APPENDIX

Consider the transcendence status of the three examples figuring in the

Appendix to §8.

e Is the number
® k
Z r
k=0 2k(i§ - 172

transcendental? Ans: Unknown.

e Is the number

[ k
L r2
=0
transcendental? Ans: Yes.
® Is the number
> __12
k=1 Mk

transcendental? Ans: Yes.



§18. SYMMETRIC ALGEBRA

1: RAPPEL Iet A be a commutative ring with unit -- then a polynomial
P(X ,o--,Xn) EA[}%,’...’XD]

is symmetric if for any permutation o of {1,...,n},

P(XG(l)""’XO(n)) = P(Xl,...,Xn) .

2: DEFINITION The elementary symmetric polynomials S1rSyre0-18, inn
variables X1 1%y -0 <)X APpEAr as coefficients in the monic polynomial of degree

n and roots Xy rXgreee Xt
- -1 _\n
X - l)(X-:xz)---(X—xn)—Xn—len + eee + (~1) S,

Explicated:

X, + X+ ees +X
1 2 n

N’
||

52 =xlx2 + xlx3 + e +X‘2x3 + x2x4 4+ eee 4 Xr-1%n

::,m TR
1l

X:LX2 e Xn.

3: THEOREM Every symmetric polynomial can be written as a polyromial
in the elementary symmetric polymomials: If P € A[Xl,...,Xn] is symmetric, then

there exists a polynomial F € A[sl,...,sn] such that

P = F(sl,...,sn).



E.g.:
P(X,X) = 3(XX)° - (X +X.)2 - 2%X.)
1% 1% 1t % X%
a2 2
—-352 sl 252

= F(sl,sz) .

4: ILEMMA Iet o be an algebraic number, let d = deg a (Z d(a)), let

O reeerCg (o = onl) be the zeros of foa (cf. 8§14, #7), and let
F = F(X;ocl,...,ocd) € Q[X;onl,...,ocd].

Assume: As a polynomial in Oy renerl with coefficients in Q[X], F is symmetric —-

d
then
F=F(X € Q[x].
PROOF Write
_ a
fa(z) =a, + a,z + + asz (ao,al,...,ad € 7)
= ad(z - OLl) (z - 0(.2)---(2 - ocd)
_ d _ 4-1
= ad(z (ocl + o, + + ocd)z
d-2
+ (ocloc2 + ocloc3 +~ eee + ocd_lcxd)z
+ oo+ (D00 --0))
172 a’’
from which
a
= LI IR} = = d—l
S =0y + 0, + + oy S




- - a2
s, = o0, + aloc3 + + 03-1% a
. a

—_— . s e —_— — d 0
sd—onloc2 ocd—(l) a:i-,

implying thereby that the elementary symmetric polynomials in the O 1Oy ess sy

are rational numbers. Turning now to F, being a symmetric polynomial in
O 1O e 1 Ogy it can be written as a polynomial in the elementary symmetric

polynomials s,,S,,...,S, with coefficients in Q[X]. But s,s,,...,S; € Q, hence
2 a 51152 a

F=F(X) € QIx].

5: N.B. Suppose that o is an algebraic integer and let

F = F(X;Ocl,...,ocd) € Z[X;Ocl,...,ocd].

Assume: As a polynomial in Oy reenrOyg with coefficients in Z[X], F is symetric —-

then

F=FRX € Z[X].



§19. TRANSCENDENCE OF m

Here is the objective:

1: THEOREM 7 is transcendental.

Suppose that m is algebraic —— then o = m/-1 is algebraic. Agreeing to use

/=1

the notation of §18, #4, in view of the relation e + 1 =0, it follows that

o ol o
LreD@l+e?) «ee (L+ed =0

or still, upon expanding the product,

1 1 1 €.0, + €0, + *°* + £.0
5 5 5 ell 272 dd=0.
el=0 €2=0 €d=0
__:E}MLETakeel=l,32=---=ed=0—-then
€109 + €50 + ee- + €40 # 0.
Takeel=62=---=€d=0-—then

slocl + €20‘2 + eee + Edad = 0.

Denoting the exponents by Bk’ rewrite matters in the form

a

1+ Z e =0,
k=1

where things have been arranged so that the nonzero Bk are placed first:

By # 0, By # 0,eeny B_#0, 0,...,0.



Put
A=1+ 29 -1) - 1.
Then A > 1 and

29 8
1+ e

k=1

B B B

=A+el+e2+---+er=0.

3: LEMMA The nonzero mmbers Bl’ ceey Br are the' set of roots of a poly-

nomial (X) € Z[X] of degree r (hence are algebraic).
PROCF Iet
1 1 1
&) = 17 TT --- TTl (X = (8909 + ep0, + *o0 + £404)) .
.=

el=0 €2=0 5

Viewed as a polynomial in O 7Oy = e 10y with coefficients in Q[X], it is symmetric.

Therefore §(X) is in Q[X] (cf. §18, #4). On the other hand, the roots of ¥(X)

aretheBk (1 <k <r) andOwithmu.ltiplicityA(r+A=r+2d—r=2d, the

degree of (X)), thus the roots of the polynomial

X Py (x)

are Bl,. .o ,Br. Denoting by m the least cammon dencminator of the coefficients of
this polynomial, take

mx P (%)

p(X)

C X" + --+ +CX+C,

€ ZIX] (Cr > 0, Co # 0).



4: RAPPEL Given f € R[X]of degree M,

& 2 ft)e Tt = F(0)eX - F(x)  (cf. 6§17, #3).

[Note: Complex x are admitted in which case the integral /X is calculated

0
along the line segment joining 0 and x.]
Feed into this relation x = Bl,..., X = Br to get:
B, B _ B
el fol ft)e tat = F(0)e T - F(8))
B B ) g
e’ s fe T at = F(0)e * - F(B,).
But
8 B
A~,+e1+ -+ef=o0.
Therefore
r r B
- AF(0) - L F(B) = X jk%kﬂuéﬂw
k=1 k=1

Just as in the proof of the transcendence of e, the modus operandi at this

juncture is to choose £ judiciously =0 as to bring about a contradiction. To

this end, let

1

£®) = g7 €7 e
or still,
£®) = ey T e, x - 8-k - 8 )"
1 n(r+l)-1 _n-1 N, _ o.n
" m =T (Cr) XK - Bl) X Br)



n € N a "large" natural number to be held in abeyance for the moment.

FACTS
deg f=n(r+1) -1:=MNM,
£0©0) =00 <2<n-2),
(n-1) _ nr-1
£ (0) = (¢ )™,
n|t@ ) (ve#n-1).
Consequently
M
F) = 2 £9 (o)
=0
M
=z %W
£=n-1

= £ 0) + @) ) 4 ... 4 OED)

= (Cr)m’:_l Cg + nC,

C an integer.
Moving on, from the definitions,
M
(£)
F(B)= - £ (B).
% 75 B
And Bk is a root of £(X) of multiplicity n, thus
£ @)=0 ©0sLsnl, 1sks),

leaving
M
rig) = ¢ £P(g.

2=n



5: LEMMA If p(X) € ZIX], then v £ € N, all the coefficients of the Kth

derivative pw) (X) are divisible by £!.
PROOF Since differentiation is a linear operation, it suffices to check this

on the powers Xk, restricting ourselves to when 1< £ < k, in which case the &

derivative of Xk is equal to

zu@£*£

and the binomial coefficient (]z) is a positive integer.

It therefore follows that for £ > n, the coefficients of f(z) (X) are integers
divisible by n(c,) nr-1.
[In detail, the polynomial
L™ € 21 (cf. #3)
and its !Lth derivative has all coefficients divisible by £!, so for £ > n, its
£ gerivative has all coefficients divisible by n! (£! =n! (@ + 1)...2). If

£ > n and if generically, n!W (W € Z) is a coefficient of

&L omn™ 9,

then

1

—(ﬁ——:l—)!— (Cr) nr_‘ln!W = n(Cr) I]I'—lw

is a coefficient of £ (%).]

6: LEMVMA ILet P(X,,. "'Xr) be a polynomial with integer coefficients of

degree s < t symmetric in the X, — then

cp(6y,-.-/8,)



is an integer.

PROOF The algebraic numbers CrBl,. .o ,CrB . are the roots of the monic poly-

nomial
CRERES
r

) 1 2, ..,
=X +C X +CC X -+ +CC,,

thus the elementary symmetric polynomials per CrBl,... ,CrBr are integers, since

-1
- _ a1 s = 2 s = Ci <o
il ) T 5 i -

If p(Xl,...,Xr) is a homogeneous symmetric polynomial of degree s < t with integer
coefficients, then
Cop(BysevsB) = DP(C_Bs--0sCB).

But the right hand side can be written as a polynomial with integer coefficients
in the elementary symmetric polynomials per CrBl,. .. ’CrBr’ hence

Cp(By,---/B))
is an integer, hence a fortiori

Cio(By,. .. sB)
is an integer. To treat the general case, simply separate the polymaomial P into
a sum of hamogenesous polynomials p.

Fix £:n < £ < M and pass to

r

(£)
L £ (B,)
=1 k



or still, in suggestive notation,

nr-1 T
n(Cr) Z gz(Bk)

7: N.B. The degree of f(n) is

M-n=(nir+1) -1 -n=nr -1,

so the degree of f(z) (n<£5M)is§_nr-l.

Applying #6 to

(c )L r g,(8,)
r =1 LK

legal since the sum is symmetric in the By W conclude that

r

: £%9 @) =m

k=1 4
N ) an integer.
Therefore
r M
p Ry -z 1 P
k=1 k=1l £=n
M r
=n k=1
M
=n Y N, =nB
£=n £

Now assamble what has been established thus far:

AF(0) + Z F(R,)
k=1 "



A((cr)nr'l cg + nC) + nB

=2 )™ P ¢ n@ac+B).
r 0
Choose n > > 0 (n prime):
n>~>Ag gcd(n,CrCO) =1,
Then
A(cr)nr—l Cjy + n(aC + B)

is an integer not divisible by n, hence in particular is nonzero, hence
r
|aF(0) + = F(B)] 2 1.
k=1

It remains to estimate

r B :
1 oeX /y £(t)e Cat.
k=1
Suppose that
]Bk[ <R (k=1,...,r)
and put
1
T= mx [C) 0(z)] (C 21=>F<1).
|Z|_<.R r r Cr
Then
max |£(z) |
|z|<r
< max _(n_ET)—! I(Cr)nr-l Zn_l((p(Z))nl

|z|<Rr



1 n-1 1 n n
S m w- T 2 e | €)™ 0=
Rn—.:L cr n n
< — max | (C)" (9(z))
(n l)! IZISR r l
. g1t
= (n-1)!

Consequently, for all n per supra

r
| = ok fsk £(t)e Cat|
k=1

By

IA

B
le fok £ (t) e tat [

r
z
k=1

Tk

|,

(B, —t)
£@®) ] e *

IN

lat]

ep r B G
ftm-Dpr > |fok le ® 7 at]
k=1
n— r B
5-(%_—1%1—, & I |rfatl
° k=1
n-1
< (_1;____%; Rizm)
n n-1
R (RT R RT
= re (1(1 -)1) 1= re (RD) _E__n L T -

which leads to a contradiction in the usual way (cf. §0).



§20. ALGEBRAIC (IN)DEPENDENCE

1: TERMINOLOGY Let L be a field, K <L a subfield.

e A finite subset S = {Otl,. .o ,ocn} € L is algebraically dependent over K

if there is a nonzero polynomial P € K[Xl,.. . ,Xn] such that
P(al,...,oan) = 0.

e A finite subset S = {0!1,. .. ,an} ¢ L is algebraically independent over K

if there is no nonzero polynomial P &€ K[Xl,...,Xn] such that

P(Oll,...,onn) = 0.

: N.B. Take S = {a}, a one element set —- then by definition, o is

algebraic over K if S is algebraically dependent over K and o is transcendental

over K if S is algebraically independent over K, i.e., o € S is algebraic or .
transcendental over K according to whether it is or is not a root of a polynomial

in K[X] (cf. 82, #25).

3: LEMMA Suppose that S is algebraically independent over K —— then the

elements of S are transcendental over K.

The setup for us is when
L=Cand K= Q,
in which case one can work either with polynomials P in Q[Xl" .o ,Xn] or in

L[X ,...,Xn].

[Note: Here, of course, "algebraic" means algebraic over Q and "transcendental"

means transcendental over (Q and to say that the complex numbers Xyreee %, are



algebraically dependent or algebraically independent means that the sst
{xl, cee ’}S'l} is algebraically dependent over () or algebraically independent over

Q.1
4: REMARK A complex mmber x is transcendental iff the numbers 1, x, x2,...
n

are linearly independent over (. 2And, in general, the camplex numbers XypeenrX

are algebraically independent over Q iff the powers

kl k
n
X7 e X (kiez, kizo)

are linearly independent over Q.

5: LEMMA Suppose that S < C is algebraically independent over Q —— then
the elements of S are transcendental over ( (cf. #3).
[Note: 1If any of the elements in S are algebraic over (, then S is algebraically

dependent over (.]

6: REMARK It can happen that all the elements of S are transcendental
over Q, yet S is not algebraically independent over (.
[The real numbers 7 and 27 + 1 are transcendental but{/w, 27 + 1} is not

algebraically independent over Q. Thus consider
P(X,Y) = 2%° - ¥ + 1.
Then
P(/T , 2m + 1) = 0.]
7: LEMMA If {Xl,. .. ,xn} is algebraically independent over (Q, then

{xl, . ,xn} is algebraically independent over 6 and for any nonconstant polynomial



P e (_I[Xl,...,Xn], the number

P(xl, .es ,xn)
is transcendental.

8: EXAMPLE The numbers e‘/z—, e3"/5 are algebraically dependent.

[Consider

P(X),X,) = & - X,
Then
V2 372, V2,3 3/2

Ple™, e ") =(e7) —~¢e

e3/2‘ _ e3/2‘= 0.1

9: EXAMPLE Ilet a and b be relatively prime natural mumbers > 1 —— then

the Liouville numbers (cf. §15, #9)

x= % S-andy= I —=
j=1 al” j=1 bI*

are algebraically independent over Q.

10: EXAMPIE Nesterenko proved in 1996 that the numbers 7, e" are

algebraically independent over Q.

11: REMARK The question of whether the numbers e,m are algebraically

dependent over Q or algebraically independent over Q is open.
Instead of numbers, one must also deal with functions.

12: DEFINITION A function f(z) of a complex variable z is algebraic



if there is a nonzero polynomial P € C[X,Y] such that V z,

P(z,f(z)) = 0.
13: THEOREM An entire function is algebraic iff it is a polynomial.

14: DEFINITION An entire function which is not algebraic is said to be

transcendental.

15: EXAMPLE eZ, cos z, sin z are transcendental, as is the function

zZ > fg e_t dt.

16: DEFINITION A collection of entire functions fl,. .. 'fn is said to be

algebraically dependent over C if there is a nonzero polynomial P € C[X,,... 'Xn]

such that P(f fn) is the zero function.

17!

17: DEFINITION A collection of entire functions fl’ cen ’fn is said to be

algebraically independent over C if for any nonzero polynamial P € C[Xl, ces ,Xn] ’

the function P(f fn) is not the zero function.

jrectr

18: EXAMPLE Let I(z) = z be the identity function — then an entire

function f is algebraic (transcendental) iff T and f are algebraically dependent

(independent) over C.

19: EXAMPLE sin z and cos z are algebraically dependent over C.

[Consider

P(X,Y) = X° + Y% — 1.



Then

P(sin z, cos z) = (sin z)° + (cos z)2 =1 =1 -1 = 0.]

20: EXAMPIE Take
1,
z

£,(2) = &7, £,(2) = e?

Then the functions fl, f., are algebraically dependent over C.

2

[{Consider

P(X) %) = X5 - XX + KK - X
Then

s
P(ez, e2 )

Il
0
|
0
+
]
[}

I
o
L]

S

£,(2) = €%, £,(2) = Lz

Then the functions f£,, f, are algebraically independent over C (cf. #26 infra).

17 =2

[Fix a nonzero P € C[Xl, 2] and choose z, such that the polynomial

V-1 z
P(e?, e O) in z is not identically zero. Use the periodicity of e” to infer

- /L z
that if P(ez, en Z) is identically zero, then the polynomial P(x, e 0)

0

in x has infinitely many zeros, namely v k € Z,

zo+2m/:£k /:.Ifzo
P(e y € )

=Ple , e ) = 0.]



22: EXAMPIE The functions 1, z, 22,. cer z" are linearly independent
2 n

over G and the functions z, ez, et resey e are algebraically independent over C. -

23: LEMMA Let AMoreeerdy be distinct complex numbers —— then the entire

functions
R
are linearly independent over ((z).
PROCF The case n = 1 is trivial. Proceed fram here by induction, assuming

that the statarent is true at level n - 1 (n > 1) and consider the dependence

relation

Alz >\nz

F,e + <.« + Fe = 0,
n

where F

1 ..,Frl are nonzero elements of C(z), the objective being to derive a

contradiction from this. Divide by Fn:

F A2 F AZ A2 Az
1 "1 n _'n _ 1 n _
Fe +oees b e -Gle + +1le (G, =1)
n n
=0
or still,
Az A - 2Dz
en(Gle I 1% -
or still,
A - A)z
Gye 1" n + e+ 1% =0
or still,
QlZ g.2z
G- + .- +1le™ =0,



where

Now differentiate:

_ .z
G + oGe ™ + e+ G+ G et =,

thereby leading to a dependence relation at level n - 1 with distinct exponents

OpreessTy_qr SO

1 = 1 =
G + 016 = 0,...,G 1 + o G

0.
But each of these coefficients is nonzero, hence the purported dependence relation

Alz Anz
Fle + eee + Fne =0

has led tc a contradiction.

24: APPLICATION Let >‘l" .. ’)‘n be distinct complex numbers —— then the
entire function

Alz Anz
18 + °-°+cne (cl,...,anC)

is not identically zero if the c, are not all zero.

25: IEMMA Let >‘l" .. ’>‘n be distinct complex numbers which are linearly

independent over Q ~- then the entire functions

Alz Anz
e reae,@

are algebraically indeperdent over C.

PROCE Let

P(X ,...,xn) € CIx ,...,xn]



be a nonzero polynomial —— then the claim is that

Klz Az
£(z) =Ple ~ ,...,e ™)

is not identically zero. To this end, write

kl k

P(X,...,X) = X a X, " .x B,

ol reeesk 7L n
(kl,...,kn) 1 n
where the akl x € C and not all of them are zero, thus
reeey
n
£(z) = T a exp((k, Ay + -+ k A )z).
oy Ky k1A n*n

1 o}

But, due to our assumption on A Kn, the complex numbers

qreees

klxl + eee + knkn

are distinct:

klAl + eee + khkn = ZlAl + eee 4+ @nkn

k

1~ ADA et (k - L)IA =0

(ky - I—l) = 0yeeu, (k- Kn) = 0.
To conclude that f(z) is not identically zero, it remains only to quote #24.

26: EXAMPLE Take A Bz

262 1 are algebraically

=1, A2 =B & Q — then ez, e

independent over C (take 8=/-1 to recover #21).



§21. THE LINDEMANN-WEIERSTRASS THEOREM

This is the following statement.

o
1l: THEOREM Let OlyrOq 7o+ 1Oy be distinct algebraic numbers —-- then e 0,
0 Oy _ - _
e ,...,e  are linearly independent over Q, i.e., if bO’bl"" ,bt are algebraic

numbers nct all zero, then

a o o,
0 1 t
boe + ble + + bte # 0.
[Note:
o o o
0 1 t
boe + ble + + bte

is a transcendental number. For suppose it was algebraic, say

o, o Q.
0 1 t _ = _ 0
bOe + ble + + bte =c(e ) =ce .

Then

b,e ~ + b.,e +---+bte —ce0=0.

There are now two possibilities:

® o #0vi=0,1,...,t, s O rQqreee s ,0 are distinct, from which

the obvious contradiction.

® 3 i:oci=0, say 1 = 0, hence

0 %1 %
(bo—c)e +ble +---+bte = 0,

where 0,0Ll,. ..,0, are distinct, a contradiction once again.]

t



2: N.B. We are working here in the camplex domain, hence v-1 is algebraic

(consider X2 + 1 =0) and 6, camputed in C, is a field.

3: LEMMA Suppose that a and b are real —- then a + /-1 b is algebraic
iff a and b are algebraic (cf. §14, #4).
PROOF If a and b are algebraic, then the combination a + /-1 b is algebraic
(Q being a field). Conversely, if a + /=1 b is algebraic, then p(a + v=I b) = 0,
where p(X) is a polynomial with rational coefficients, thus also p(a - /-1 b) = 0.

Therefore

@+ /~Ib) + (a-/~Ih) =2acQ T () =aeq

_o= ST -
@+ /~Ib) - (a-/~1Ib)=2/~IbeQ( ——2—(2/—_lb)=b€Q,

i.e., a and b are algebraic.]

Before tackling the proof of the theorem, we shall consider some applications

and examples.

: LEMMA If o is a nonzero algebraic number, then e® is transcendental

(Hermite-Lindemann) .
[A nontrivial relation of the form
q0+qleoc+ oo +qnem=0 (quQ)
is impossible, or, alternatively, consider the formula
1%e® - (el =0

which, if &* were algebraic, would be impossible. ]



[Note: Consequently, if a is a nonzero complex number, then at least one

of the numbers a or e is transcendental. ]

In particular: e is transcendental (cf. §17, #l1). And if a,b € N, then & # b.

5: EXAMPLE e‘é— is transcendental.

6: EXAMPLE w is transcendental (cf. §19, #1).

[For if 7 were algebraic, then m/~1 would be algebraic, hence eﬂ‘/:l_

V=T _

would

be transcendental (cf. #4), contrary to the fact that 1 + e 0.]

7: EXAMPLE Iet o be a real nonzero algebraic number —- then cos(a) is
transcendental (cf. 8§12, #1).

[Suppose instead that cos(a) = B was algebraic. Write

av—1 + e-.oc/:f _ eoc/:]f —av/~1

cos(a) = € + &
2/-T 2/-1 2/~T
or still,
(- 5L oy L) I (el = o,

a contradiction (cf. #1) (/=lo and - /~Ia are cbviously distinct).]

[Note: Consider the unique real fixed point of the cosine function, thus
cos(x) = x = 0.739085... —— then x is transcendental. For suppose that x is

algebraic —-- then cos(x) would be transcendental. But cos(x) = x.]

The story for sin(a) is analogous, as are the stories for
— cosh(a)

sinh(a) .



8: EXAMPIE Let o be a real nonzero alcjebraic number — then tan(®) is
transcendental.

[Assuming the opposite, write

av~1  —a/~l
tan(q) = -< - ¢ =B

/_T(eOLl/:f + e—Oi/:]T)

1 - g De™ T - 1+ gL

and note that 1 - B/~1 and 1 +8/~1 cannot simuiltaneocusly be zero.]

9: EXAMPLE Iet o # 1 be a positive algebraic mumber -- then n(o) is

transcendental.

In (o)

[Tf £n(a) were algebraic, then e would be transcendental (cf. #4).

But eﬁn(oc) = 0 see

10: LEMMA Let o be a nonreal algebraic number -- then

Re(e%)

Im(e®)
are transcendental.
PROOF Write a = a + V-1 b (b # 0) — then a and b are algebraic (cf. #3).
Moreover, by definition,

=2t /qb=ea(cosb+ Y-1 sin b)
and the claim is that

e cosb

a .
e sinb



are transcendental. To deal with the first of these, proceed by contradiction

and assume that e cos b = B is algebraic, thus B # 0 (the zeros of the eosine

are transcendental). Next

ea+/-ﬁ.—b+ea—/—Tb

a, /<Ib, - /Ib

=g (e + e )

= e?(cos b + /~L sin b + cos(-b) + V=T sin(-b))

= 2¢% cos b = 28,

0 a+ /-1 b a-/-1b
~-e - e =

2Re 0.

Owing to #1, the algebraic mmbers 0, a + V-1 b, a - ¥=1 b are not distinct,

hence b.= 0. On the other hand, o is not real, o b # 0.

11: N.B. If in #10, o was real, then matters are covered by #4.

12: THEOREM Suppose that Bl,. .e ’Br are nonzero algebraic numbers which

B8 8
are linearly independent over () -- then the transcendental numbers e l,...,e r

are algebraically independent over Q.
PROOF Assume instead that for some nonzero polyrnomial

P(Xyeee %) € Q Xppeen s,

say

P(X.,...,X ) = 5
(XyreeesX)) (eppo%enk) P peenrk, 1

we have



P(e 7,...,e r)

or still,

By o+ K,

% e =0,
(epr-serk) T oenn ke

where the akl k € Q and not all of them are zero. To settle the issue and
TN
r

arrive at a contradiction, it suffices to check that the exponents
lel oot krBr
are distinct (since then one can quote #l). So suppose that
(klr LR rkr) 7£ ('ell LR I’er)

with

k181 *ooee krBr = z’lBl Foeen ot I‘rsr’
thus

(g - £)By + oom t (b, = £)B =0,

a nontrivial dependence relation over f.

13: EXAMPLE The transcendental numbers e, efz_ are algebraically independent
over Q.
[For it is clear that the algebraic numbers 1, v2 are linearly independent

over Q.]

14: THEOREM Suppose that Bl,.. . "Br are nonzero algebraic mumbers for

g B8
which the transcendental mumbers e l,. e, T are algebraically independent over

Q — then 8,,...,B_ are linearly independent over Q.
1 r



PROOF Consider a nontrivial dependence relation over Q:

b +”'+er1:‘=0’

al

Clear the denominators and take the bk integral —-- then not all of them are zero

and
b,g, + -*+ +b_ g
P I A 2
Define
P(Xp,...0X) € QX 00X ]
by the prescription
bl r
P(le_...,Xr) =Xl Xr - 1.
Then
B B b.B b_B
P(el,...,er) =ell---err—l
b g, + --- +Dbpg
—et? T _1=1-1=o0.
Bl B

But e 7,...,e L are algebraically independent over (. Therefore
P(X,...,X) 20=>Db =0,...,b_=0,

a contradiction.

15: SCHOLIUM Nonzero algebraic numbers Bl" .. ’Br are linearly indeperdent

8 B
over ( iff the transcendental numbers e l,. - T are algebraically independent

over Q.

16: LEMMA Let o be an algebraic number whose real and imaginary parts

are both nonzero —- then the transcendental numbers Re(e®), Im(e%) are

algebraically independent over Q (cf. #10).



We need a preliminary.

17: SUBLEMMA let x and y be nonzero real numbers -- then x and y are
algebraically dependent over Q iff x + /~I y and x - /I y are algebraically
dependent over (}.

PROOF To deal with one direction, assume that there exists a nonzero poly-

romial
PXY) = % a XY €QIXY]
m,n
such that
Px,y) = 0.
Iet
T oa=x+v/-ly —x=d;a
=>
= [ a
o=x-7/1y y = .
_ _ 2/-1
Then
1, mn n ~.m -n _
Loa @70 (/DT @+ o)t @-ot=o,
m,nh
Introduce
0x,Y) = I a_ GH™? - /[D° O
m ‘2
m,n
XY = I a_ (H™" D" Y
mn 2
m,n
Thus

0,0 € CIX,Y]



but
0 e QIX,Y].
Put now
P (X,¥) = QX + Y,X - VI(X + ¥,X - Y).
Then
Qla + ava— ) =0,
SO

+ -
P (OCIOL) = OI

thereby establishing that ¢ and g are algebraically dependent over Q.

Passing to the proof of #16, write g =a + /~L b (thusa # 0, b # 0 are

algebraic (cf. #3)) -— then e? cos b and € sin b are algebraically dependent
over (Q iff

. a , )
% =¢e" cos b+ /L e sinband e =e® cosb - /T & sin b

are algebraically dgpel;xdent over Q (cf. #17), i.e., iff o and @ are linearly

dependent over Q (cf. #15), i.e., iff a = 0 or b = 0, which cannot be.

We shall conclude this § with an indication of the steps leading up to a
proof of #1. So let as there bO’bl"“’bt be algebraic numbers not all zero but

with

Step 1: By discarding terms whose coefficients are zero and rearranging

the notation, it can be assumed that no coefficient is zero ard

o o,
1 t _
ble +---+bte = 0.



10.

Consider the Taylor series expansion

z 0, Z © 1
bleal + een +bet = I —Ezn.
t nl
=0
Step 2: vn=20,1,...,
u = I b.af.Ll.
=1
Define Ay reeerdy by writing
—_ t — t—l — LA I 3 —
(X ocl) X oct) =X alX a, .
Step 3: Van=0,1,...,
tn _ t+n-1 n oL, _
a; = a0y + +at0Li (i=1,...,t).
Step 4: Yn =0,1,...,
Yot = Yae-1 Tt A

Step 5: It suffices to treat the case in which the u € Q n=0,1,...)
and the aiEQ (i=1,...,t).

[Consider the product

a(ocl)z o(cxt)z

1T (ape + eoe + Olby)e )/
G-

where

0 € GaL(Qby, ... by, Gyseee,0)/Q).



11.

This expression is still 0 (one of its factors is zero) and upon expanding has
the form

Z'b:!Lel.
1

Since the sets {b;_}, {0‘:'1} are Galois stable, the numbers uI'1 and aJ!_ are rational.]

Step 6: Upon clearing denominators if necessary, it can be assumed that

Ugree-sly 1 € Z, thus using Step 4 recursively, v n > 0,
dnun € L
where d is a comon denominator of the a; (i=1,...,t).
[So, if 4 = 1, then the u are integers. ]
Step 7: Put

A = max{l, loalI,..., \oct‘}.

Then there exists a positive constant C such that vn > 0,
o, | < ca" (use Step 2).

Recall now that the assumption is that

o, o,
el+--.+btet=0,

hence

Given k € N, put



12.

Step 8¢ VkiA<k+1,

k._,un
kt [ 5]
n=0 °

il

A
5
[ng]

_E

IA
5
o g

k+1 k+2

=Ck Tt ®F T

F oeee )

o Ak+1 N Ak+2 )
k+1 k + 1)k + 2)

Ak+l Ak+2

+
k+1 (k+l)2

2
k A A LN 2
CA(k+l+ + )

k + 1)2

2 C( + eee)

= () ET <D (cf. B, #2)

R e

Step 9: Vv k:2A <k +1,

0<k+1-2A



13.

k+1 <2(k+1) -2A

2
“A “k+1°

=

k+

To recapitulate: V k:2A <k + 1,

K+l
| CE%T—A

IA

Ak+l

<XprT
[Note: If d =1, then the vy € Z (cf. Step 6) and if in addition, A =1,
o«

=0 (thus Z kak is a polynomial) and we would have a contra-
k=0

the.nd>>0,vk

diction but, of course, in general d > 1 and A > 1.]

Step 10: Define vk(n) by the stipulation

[oe) (o]

I v X = (L-ax- - -ax)? 1 ovxS
k=0 k=0
Then Vn > 0,
Vk (n+1) = vk(n) - alvk_l (n) - et = atvk-t (n) (k Z t) .

Step 11: Iet
T=1+|a)| + -+ + [a].

Then Vv k > nt,



14.

v @ | < (0A T
Moreover

k
d vk(n) ez
and

n! divides dkvk(n) .

Step 12: If k > nt and if vk(n) # 0, then

n! Idkvk (n) |

1A

& v, @) |

a* (20) akr?

IA

(20) (dn) 5P,

1l

SO,j-f

nl > (20) (da)
and if k > nt, then vk(n) = 0,

Step 13: -Choose n, =0 large that v n >n

0 0’
nt > (20) (@) 0t
Step 14:
v, (n) =0vn2n,, nt < k < 10nt.
In particular:

Vk(nO) = 0 if nyt < k < lOnOt.



15.

Step 15:

thus

vk(no) = 0 if 10n.t < k.

0

Step 16: v k >n t,

0

Vi (no) = Q.

Recall now the definition of Vi (n), viz.

X vk(n)Xk = (1 - alX - see — atXt)r1 z Vka.
k=0 k=0
Take n = ng - then in view of Step 16,
L v (X" € QIxl.
k=0
Therefore

3 vX e Q,
k=0

i.e.,

is a rational function.

To finish this sketch, let

v = 3 kak.
k=0

Then from the definitions



le.

z (vk--kv_‘l)xk=ki0 uka

z uan

n=0

<) t n

= 3 (£ b.onx" (cf. Step 2)
. i1

n=0 1i=1

t o
L b (z ofi‘x“)

i=1 n=0
i=p 17 %X
On the other hand,

I

V() - X S (v(x)

_ _ _ L2 d
= (1l -XvX -X ——HXV(X).
Accordingly, if
2
L=-X ‘—3d::+ 1-x,

then v(X) satisfies the differential equation

t b.
Iv{X) = I



17.

And v(X) is a rational function, thus the order of the nonzero poles of Lv(X)

is at least 2. But the poles of the rational function

t b,
7 o1
= b

are at the ozi and are simple. Contradiction.
i



§22. EXCEPTIONAL SETS

Is it true that "in general” a transcendental function takes transcendental

values at algebraic points?

1l: DEFINITION The exceptional set E £ of an entire function £ is the set

of algebraic numbers o such that f(o) is algebraic:

Ee = {0 € Q:f(a) € Q-
2: EXAMPIE Take £(z) = ” — then E. = {0} (cf. 521, #4).

3: DEFINITION A subset S of Q is exceptional if there exists a trans-

cendental function £ such that Ef = S.

4: EXAMPLE An arbitrary finite subset

{ocl,. .. ,ocn} <qQ
is exceptional.
[Consider

(z2=0p )+ =+ (2—0 )
fF(z) =e T n

If o € Q and if a # a; (i=1,...,n), then

(o - ocl)...(oc - onn) €qQ

is nonzero, hence f(a) is transcendental (cf. 8§21, #4).]



f(z) = e + ez+l.

[First, £(0) = 1 + e is not algebraic (since e is transcendental) (cf. §17, #1).
Suppose therefore that o is a nonzero algebraic mmber. In §21, #1, take

=0L,ocl=oc+l,b =l,bl=l,

% 0

thus

o+l

is transcendental.]

6: THEOREM Given any subset S < 6, there exists a transcendental function

f such that Ef= S.

7: N.B. It was proved in 1835 by Stackel that there exists a trans-

cendental function f such that E. = Q.

: DEFINITICN The exceptional set E £ (mil) with multiplicities of an

entire function £ is the subset of C_z X Z>0 consisting of those points (a,n) such
that £ () € Q.

[Note: Here f(n) is the nth derivative of f£.]

9: THEOREM Given any subset S € Q x Zoor

function £ such that Ef(mul) = 8.

there exists a transcendental



§23. COMPLEX LOGARITHMS AND COMPLEX POWERS

l: DEFINITION Given a complex number z # 0, a logarithm of z is a

complex number w such that e’ = z, denoted log z.

[Note: log 0 is left undefined (there is no complex number w such that e = 0).1]

Therefore
log z = fn(|z|) + /L arg z,
where Zn(lz!) is the natural logarithm of |z| (cf. §l0, #3 & #4) and arg z is
given all admissible values. Since the latter differ by multiples of 27, it

follows that the various determinations of log z differ by multiples of 2y /~I.

2: DEFINITION The principal determination of the logarithm corresponds

to the choice

- T<Arg z <,

-7 <Im(log z) <=

and one signifies this by writing Iog z, thus Log]R>O = fn.

3: EXAMPIE

1og(—3/—‘1)=m(3)—“ff.

4: N.B. The restriction of the exponential function to the horizontal

strip S consisting of all complex numbers x + /=L y (-~ 7 < ¥ < 7) has an inverse:

exp|S maps S bijectively to ¢* = C - {0} and the inverse of this trestriction is



Iog:cx+s, hence
~ Log o expls = id

exp°Log=idx.
C

[Note: ILog is discontinuous at each negative real number but is continuous

everywhere else on €]

5: REMARK It is always true that

Iog(zlzz) = Log 2z, + Iog z, (mod 27/~1)
but the relation
Log(zlzz) = Ing zq + Log Z,

can fail. E.q.:

Log ((-1) /1) = Log(- /-I)

|- /T - 2L

(1) -

TV=L
2

/-1
2

while
Log(-1) + Log(/-I)

= (a@) + D + (@ +Lh

3m/~L 7,S_m/—_l 1
2 2 )




Iogz=ji(?'t—t (larg z| = m,

the integral being taken along the line segment [1,z].

7: ILEMMA
) n-1
Iogz-z(—_l)n—(z l)n (Jlz - 1] <1).
n=1

8: DEFINITION Iet D be an open simply connected region in the complex

plane that does not contain 0 -- then a branch of log z is a continuous function

L with domain D such that L(z) is a logarithm of z for each z in D:

eL(z) = 2.

9: EXAMPIE Take D = C - R_j —— then the restriction of Iog to D is a

branch of log z.

0: CONSTRUCTION A branch of log z with domain D can be obtained by first

fixing a point a in D, then choosing a logarithm b of a, and then defining L by

the prescription
_ Z dw
L(z) = b + fa el _

Here the integration is along any path in D that conmnects a and z.

11: IEMMA L(z) is holomorphic in D, its derivative being = -

[Note: Different choices of b will in general lead to different functions.]

12: RAPPEL If o is a nonzero algebraic number, then e% is transcendental

(cf. 8§21, #4) (Hermite-Lindemann) .



13: EXAMPIE (cf. 8§21, #9) Let ¢ be a nonzero algebraic number -~- then
1og o is transcendental.

[The point is that g9 o - Oe

Iet a be a complex number with a # 0, # e.

14: DEFINITION The principal power of a is the holomorphic functidn

z z Iog a

zZ+a =e

th

15: DEFINITION The k' associate of a® (k € 7) is the holomorphic function

z(log a + 2kn/~I)

Z > e

16: N.B. The reason for excluding e is that we want e® to remain single

valued and to mean the power series

T
S!NS

1Z - 2Tog1_ zlen) + /L0 _ 10 _

and its kth associate is

oZ (Iog 1 + 2km/~1) _ eka/;I z

/-1 and take z = - 2/~I —— then with this data,

|
:
°:.

s 2T - 2/ Log (V=D



- 2/-1(AL 3)

= e .
Therefore the associates of /=L ~2v-1 are the

-2 /—‘1‘(/-_1125+ 2kmv/=1)

o _ oT(4ktD)

(k € 2).

19: EXAMPIE Iet n be a positive integer and write
/-1 8

o
il

lale - T <0<,

Then

%I_oga
e

miﬁn—'

% #n(lal) +/~1 o)

= e
Le(la)y L/To0
. L
1
taflal™ L g
=e en

/-1 8

S+

1
la]? &

1
Therefore the associates of an are the

= I /FI(e + %)
la|? & (k € 7).

2And there are only n different values for

exp (% 2knw/-1) .



The laws of exponents spelled out in §4 over R do not hold without qual-

ification over C.

e In general, (ab)C has more values than abc.

e In general, abac has more values than ab+c.



§24. THE GELFOND-SCHNEIDER THEOREM

This is the following statement.

1l: THEOREM If a # 0, 1 is algebraic and if 8 ¢ Q is algebraic, then o

is transcendental.

B

[Note: Here o~ is the principal power (cf. 8§23, #14):

B_ BIeg o

o
Nevertheless it can be shown that the Gelfond-Schneider theorem goes through

B

if the principal power o" is replaced by any of its associates (cf. §31, #16).]

Special Cases:

2: EXAMPLE 2/2— is transcendental.

EXAMPLE v3 2 is transcendental.

I w

1: EXAMPLE /T L is transcendental.

5: EXAMPLE e1T is transcendental.

[Starting from the fact that

and using the principal determination of the logarithm:
Iog v-1 = £&n(|/~I|) + /-1 Arg /-1

=£n(l) + /—Tg

=/1TX
= /-1 5



mT= =2 /-1 Ilog /~1

B o2/l Iog /T _ /_-I—2:/:1‘ (cf. §23, #18)

and the entity on the right is transcendental.]

6: EXAMPIE Take f(z) = 2%, thus 2% = &% ™9 2 | 2 mQ2)

If o = 2 in Gelfond-Schneider and if z ¢ Q is algebraic, then 2% is transcendental.

On the other hand, the 21/n (n € N) are algebraic, as are the (21/n)m me .
Therefore the exceptional set E. of £ is equal to Q.
[Note: £'(z) = 2% fn(2), so

Ec NEgo =4

since ¢n(2) is transcendental (cf. §21, #9).]
7: EXAMPLE Take £(z) = e™ T ? — then

e'rr/:I Z _ (_l)z,

principal power. In fact,
(_l)z = &% Iog -1
- eZ(«’Ln(I—ll) + m/=1)
_ em/:I z
/-1 z

So, if o = -1 in Gelfond-Schneider and if z ¢ Q is algebraic, then e is



transcendental. As for what happens if z € Q, write

em/—E Z = cos(mz) + V=1 sin(m2)

and quote the wellknown fact that the trigonometric functions cos and sin are
algebraic numbers at arguments that are rational multiples of w. Therefore the
exceptional set Ec of £ is equal to (.

: THEOREM Given nonzero complex mumbers a and b with a € Q, then at

least one of a, eb, eab is transcendental.

: N.B. #8 <=> #l.

[To sce that #8 => #1, take a = B, b = Log o —— then at least one of the

following numbers is transcendental: B8, eIog o= o, or eEch %= ocB. But the

B

first two of these are algebraic, hence o must be transcendental. That #1 => #8

is analogous. ]

10: EXAMPIE Iiet &, 8 be algebraic numbers not equal to 0 or 1. Suppose that

2Ileq.
Then
Log 8
Log O
is transcendental.
[In #8, take
Iog B

and b = Log o.

g



Then at least one of the following numbers is transcendental:

Iog 8
Ing B Iog o _ eLogaIOga=eIog8=B.]

[Note: If Log o and Log B are linearly independent over Q, then

LIog 8
A

as can be seen by putting

13

§ll

o

and considering the dependence relation

Y Iog o - Log B8 = 0.
Consequently

Iog B8
Iog o

is transcendental, thus for any nonzero algebraic numbers p and v,

u log o+ v Iog B # 0,
i.e., Iog o and Log B are linearly independent over 6.]

11: EXAMPIE Iet r be a positive rational number. Write (see the Appendix

to §810)

_ n(x)
1og10) = Im@@oy -

Therefore, if log]_0 (r) is not rational, then by the above it must be transcendental

(c£. 85, #15).



Question: For what pairs (8,t) (B € 6, B#0) and t € Rx) is etB algebraic?

12: EXAMPIE Take 8 € Q N R (B # 0) and

_ £n(2)
t == B .
Then
etB = e'en(z) = 2.
13: EXAMPLE Take 8 € QN v-IT R (B # 0) and
/-1
t = g
Then
etB = e/——l T= 1.
14: THEOREM Let B € Q (B# 0) and t € R*. Assme: B ZRU /IR —
tB .
then e 1is transcendental.
PROCF Put o = etB —- then the complex conjugate & of o is etB = OLB/B. The

algebraic number B/B is not real (for [é/B] =1but B/B # + 1) , hence is not
rational. In #8, take

a=g/8, b= ts,
leading thereby to

B_  _tB

d.,e = O

B/8, e

Since /B is algebraic, either o or o must be transcendental. But o is trans-

cendental iff o is transcendental.

It remains to give a proof of Gelfond-Schneider, a task that requires some

preliminaries.



825. INTERPOLATION DETERMINANTS

;L_:_ NOTATION Givenw € C, R € R>0, let
"~ D(R,w) = {z € Ci|z - w| <R}

D(R,w = {z € Ci |z - w| < R}.

[Note: Write

D(R)
D(R)
if w = 0.]
2: NOTATION Let [fIR stand for the maximm value of |f(z)]| when |z| = R.
3: RAPPEL If f(z) is a function holomorphic in D(R) and contimuous in
D(R), then

£ ] < [£l

for every z € D(R).

4: LEMMA Let T be a nonnegative integer, let r and R be positive real
numbers subject to 0 < r < R, and let F(z) be a function of one complex variable
holomorphic in D(R) and continuous in D(R). Assume: F has a zero of multiplicity

at least T at 0 — then

Pl s @7 P

PROOF Put

G(z) = Z—T F(z).



Then
G6l, < l6lg
or still,
rUEL < RTIR |
or still,
Fl, < ©FIF g

5: THEOREM Let r and R be positive real numbers subject to 0 < r < R,

let fl(z) reoe ,fL(z) be functions of one complex variable which are holomorphic in
D(R) and continuous in D(R), and let Zyre-- 5, belong to the disc |z| < r. Put

fl(c']_) e o o o o o fL(z;l)

A = det .
~ fl(CL) ...... fL(gL) ~
Then
L
R, ~L(L~1)/2
al < & a2y, JEL £ Ige

PROOF Iet F(z) be the determinant of the L ¥ L matrix

(£ (£32)) (= F() = b).

1<j,ighk
Since the . satisfy ]cii < r, the functions fj(ciz) are holomorphic in D(R/r)

and continuous in D(R/r). And since the determinant is a sum of products of the



fj (z;iz), the determinant F(z) itself is holomorphic in D(R/r) and continuous in

D(R/r). The claim then is that F(z) vanishes at 0 with miltiplicity at least

L(L - 1)/2. To see this, put

K=LL-1)/2
and consider the expansion
R-1

_ L kk . K
f] (Clz) - kzo ak(j) Clz + z gl:l (Z) r
where a,_(j) € C and 9ij (z) is holomorphic in D(R/r) and continuous in D(R/x).

Since the determinant is linear in its columns, one can view F(z) as zK times a

function holomorphic in D(R/r) plus terms involving the factor

n+4n, + - + n.
i.e., _ _
n
1 ny,
E]_ ...... Cl
n+n + e + i . - 7
zl 2 nLdet , . .
n
1
CL c e e e o CL

where Ny Myyees Dy € Z>0 and nj e {0,1,...,K-1}. The determinant vanishes if
two of the nj are identical, so the nonzero terms satisfy

_L(L-1)

ng+n,+ .o dn p 0+ 1+ e+ (L-1) 5 .



Take now in #4
T=LL =~ l)/2

and replace r by 1 and R by R/r, hence
Al = JF@) |

- - L(L=1)/2
< frly < GOEEVZ

It remains to bound lFlR/r From its very definition, the determinant of a

L x L matrix is the sum of L! products, where each product consists of L entries
such that for each row and column only one entry is a part of a product. Since

|z| = R/r => |a;iz| < R, for each .columm index j,
€52 | 5 E5lp (= 1,200,

Therefore

L
lFlR/r < L! ]'L'[:‘L [fle.
So finally

L

£.1..

6: REMARK The derivatives of F(z) can be calculated via an application

of the product rule, viz:
a
(D F(2)

mi
k! a :
= E — det((xx) £.(z. ,
Kyt ooet =Kk gyl ooe i ! & J(clz))lsm
l 3 L(:L l- _L.

.

i<k



The foregoing can be generalized by incorporating detrivatives.

7: THEOREM Let r and R be positive real numbers subject to 0 < r < R,

let Oyrees ,O‘L be nonnegative integers, let fl,. .. ’fL be entire functions, and let

Lyre-.s5p, belong to the disc |z| < x. Put

g

d, i
A=detlg) " £500)) ¢ 5, 5 <1

Then
—L(L—l)/2+ol+ see + @ L

L a, i
Lt 7 max sup l(d—z- £.(2){:
j=1 1<i<L |z|=R J

R.

la] < @

APPENDIX

Supposethatls_jgpk(EN),ls_-kgﬂ,lgign——then

dl—l . W, Z dj -1

-1 "k i-1
3 (Z:I e ) B S I (z ) ’
dzl—-l z=0 dzj 1 Z=w)
their common value being
(i—l)!wl—j i i3

(1 -3)! "k

0 if i < j.



826. ZERO ESTIMATES

1: IEMMA Let 202 -+ /P be nonzero polynomials in R[X] of degrees -
dl,...,dn and let Wygeee W be distinct real numbers —— then
n W.X
F(x) = I P.(x)e>
=L
has at most

d, + e +d +n-1
1 n

real zeros counting multiplicities.

To begin with:

2: SUBLEMMA If a continuously differentiable function F of a real variable
X has at least N real zeros counting multiplicities (N a positive integer), then
its derivative F' has at least N - 1 real zeros counting multiplicities.

PROCF Let KyreeerXy (k > 1) be distinct real zeros of F arranged in increasing
order: Xy < eee <X with ny the multiplicity of Kypeeer Oy the multiplicity of
% and ny +osee +y >N - then X; is a zero of F' of multiplicity > n, - 1
(L <1i<k). Owing to Rolle's theorem, F' has at least one zero in the open interval
Ix..x. l[ (L <i<k), s0all told, F' has at least

(o - 1) + oo+ (@ - 1) + (k- 1)

1
>N-k+ (k-1) =N-1

real zeros counting mmltiplicities.

-W_X
Passing to the proof of #1, upon multiplying through by e o , it can be



assumed that W, = 0 andwj #0for j=1,...,n1. Put

b=d

g Foeee+d +n

and proceed from here by induction on D, matters being clear if D = 1 (since

=landdl=0) so0 in this case there are at most D ~ 1 = 0 real zeros. Suppose

now that the lema holds if k = 2,...,D = 1 and consider the situation at level

k = D. Take the first derivative of F(x):

n-1 a a
F'(x) = jil (Wij ) + 5 Pj (%)) + o= Fn X -
Then
d

is a polynomial of degree dj whereas % Pn(x) is a polynamial of degree d‘n - 1.

It therefore follows from the induction hypothesis that F'(x) has at most

d

MR-

l+dn—l+n—l

=dl+---+dn+n—2

real zeros counting multiplicities. Let N be a positive integer such that F has

at least N real zeros counting multiplicities, hence by #2,

N-1lgd +---+d +n-2

=>

Ngdy +---d +n-1.

: REMARK lLet d ,...,% be nomnegative integers and let Wyreee Wy be

distinct real numbers. Fix distinct real numbers Xy reee Xy where

N=d, + - +d_+n - 1.
1 n



Then there are polynomials Pl,...,Pn in R[X] of degrees d r++-,4, such that the
functien
n W.X
F(x) = 3 P.(x)e’
j=1

bas a simple zero at each point X reer¥y and no otler zeros.
[Note: This can be generalized by dropping the requirement that the Xy re-er¥y

be distinct and incorporating multiplicities.]

4: N.B. The upper bound in #1 is thus the best possible.

There is also an estimate in the camplex domain.

5: LEMMA Let Pl” .. ,Pn be nonzero polynamials in C[X] of degrees dl"‘ "dn

and let Wy pese W be distinct complex numbers. Put

Q =max{|wi[,..., Wn|}.

Then the number of zeros counting multiplicities of
n W.Z
F(z) = 1 P.(z)e J
=17
in the disc |z| < R is at most

3(dl+---+dn+n—l) + 4RQ.

: NOTATION If f(z) is a function holamorphic in D(R,w) and continuous

in D(R,w), put

MR,w,£) = max [£(2) |.
zeD (R, w)



[Note: Write

M(R,£)

7: NOTATION If f(2) is a function holomorphic in D(R,w) and continuous
in D(R,w), denote by
N(r,w,f)
the number of zeros counting multiplicities of f(z) in D(R,w).
[Note: Write
N(R, L)

if w= 0.]
8: RAPPEL (Jensen) Let R > 0, s > 1 — then

SR N(r,w,f) 4. _ 1 2r /T ¢

o = 7= /0 Mm(|f(w + sRe

)|)de - en(|Ew) |).
9: SUBLEMMA Let R,s,t € R>0, s > 1, and let £ Z 0 be holomorphic in
D((st + s + t)R) and continuous in D((st + s + t)R) — then

M((st + s + t)R,£f),
M(tR,£) ’

N(R,£) < —=

N G

PROOF Choose w € D(tR) : [E(w) | = M(tR,f) (cf. §25, #3) —- then |w| = tR. So

1l
v
~
|
£
A

< Jzl + ]

IA

R+tR= (1 + t)R



e D(R) < D((1+ t)R,w)

and
z € D((st + s)R,w)
=>
lz| = |z = w + w]|
< |z ~wl + vl
< (st + s)R+ tR= (st + s+ t)R
=>
e D((st + s)R,w) < D((st + s + t)R).
Next
N9 = gty s ME o
1 sR N(r,w,f)
-Zﬁ(s) f r dr
1 1 2 /—6
= n(s) [_Z:TF fO zI'l(lf(W )l)de -'en(1f(W)l)I
1 /-1 9
= InteT [21T 0 T fn(|£w + sRe )|)de—2—ﬂf0 In(|£ (w) |a8]
=1 (L, (|f(w+ sRe/—e)[\de]
In(s) 21 "0 lf(W)l
Take
V-1 6

zZ =w + sRe



Then
1z ~w] = |w+ sre”L Oy
= lsRe'/_ e| = sR,
Therefore
NR,WE) < o M(SR,W, 20 ek )
TRl = In(s) O fo) |77
Spelled out
NR,w,f) = [NR,w,£) |
/=1 6
_ 1 1 .2« |f(w + sRe ) |
/-1 6
1 1 .27 |£(w) + sRe ) |
Sme o M T a0
1 1l 2 £
< Zn_(s)— o fo M(SRrWr'e'n(‘,%'(‘J,W))de
= ﬁM(SR,W,Kn( ff(w) )).
Finally
N(R,£) < N((1 + t)R,w,£)
since

D(R) <D((L + t)R,w).
And working in the above with (1 + t)R rather than just R, it follows that
N((L + t)R,w,£)

is majorized by

m(s) M(s@ + t)R,w,Zn(TL



or still, by
L M((st + )R, w, £n( )
£n(s) v M(tR,
which in turn is
< = _M((st + s + t)R G £ )
- In(s) ’ M(tR,£)
because
D((st + s)R,w) <D((st + s + £)R).
Accordingly
f
N(R,£) < Zn( o) M((st + s + t)R, Kn(—(tlﬁlﬁ
M((st + s + t)R,£)
< e 2 e )

Keep to the notation and assumptions of #5 and set for simplicity
n

L d., +n.
J_lj

FACT Tet R,y € R>0, Yy > 1 — then

- 1 _RQ(y+l)

ra— M(R,F) .

MHR,F) <
(YR,F) Y
‘fThis technicality is dispensed with in the Appendix to this §].

With this preparation, let us take up the proof of #5. In the preceding,

work with tR rather than R, hence

M(YtR,F) < ; L= 1 Dy g,y



Now specialize and take

Y = (st + s + t)/t.

Then

t (st+s+t\D
s(t + 1) t /

t (st+s+t)D—l(st+s+t)
s(t + 1) t t

1 __ st+s+tD1
s(t + 1) t !

(s(t + 1) + t)

t )(St+s+t)D—l
s(t + 1) t

= 1+

st + s + £, D-1
—t) .

IA

1
@+ 2

Therefore

M((st + s + t)R,F)

st +s + t,D-1 (st + s + 2t)R?
T ) €

IN

(L +3)( M(ER, F)

M((st + s + t)R,F)
M(tR,F)

st + s+t D1 (st + s + 2E)RQ
r 0 °

IA

1
(l+§)(



1 M((St + s + t)R,F)

N(R,F) < 75 m( M(ER,T) ) (cf. #9)
=>
N(r,F) < Kn](-s) l:zn(l + é—) + (D - 1)£n(£i—i-i—f:) + (st + s + 2t)RQ]
1 L + (D - ]_)gn(ﬂ:_ii"'_t) + (st + s + Zt)RQ_‘
= /n(s) | s t ]

Into this relation insert s = 5 and t = —é— Toss the "-‘i—“ and note that

32
5/n(5)

fn(31)

i) < 3.9

< 2.2 and
giving
N(R,F) < 3(D ~ 1) + 4RQ,
the assertion of #5.
10: N.B. One can replace the origin by any complex mumber w and, upon

consideration of F(z - w), conclude that still

N(R,w,F) < 3(D - 1) + 4RQ.
APPENDIX
Recall the sekup of #5. Thus, as there, let Pl,. .. ,Pn be nonzero polynomials

in C[X] of degrees dl,. .. ,dn and let Wy peee W be distinct complex numbers. Put

n
Q=max{|wl[,...,|wn[}, D= jEl dj + n,

and form



10.

n W.Z
F(z) = I P.(z)e J .
=1
PREFACT Fix a point z, € C -= then
(|z4] + 1)@ D-1 3 -1
Pl <o (2 gl mex | Eo 0
k=0 j=1,...,p ¢+ (G- D!

FACT Iet R,y € R Yy > 1 — then

>0’

D
M(YR,F) < z—}-:lL- SO+ Dyrmy.
PROCF Choose z (|z,| = v):
|F(zR) | = max |F(z)].
|z [< YR
Cénsider
n W.Rz
G(z) = F(zR) = & P.(zRle J .
=1

Then by the above applied to G (hence now it is a question of ij rather than wj

and it is also a question of Rl rather than (1) we have

D-1 o) = 1.0 - 1)
k=0  §=1,...,D ] :
But
D-1 K YD‘ 1
k=0

and, thanks to Cauchy's inequality,



11.

j-1.(-1)
| max S (;'?F_ 1)1 © < max |F(z)].
j=l,...,D * lzIER
Therefore
M(YR,F) = max |F(z)|
|z] <YR
= [F(zOR)l
= |6(zy) |
YP- 1 Rty + 1)
<y-T*€ max |F(z) |
|z| <R
YP- 1 me(y + 1)
=1l " —qa M(R,F).

Yy -1

REMARK The estimate figuring in #5 can be sharpened to

N(R,F) €2( - 1) + = R,



§27. GELFOND-SCHNEIDER: SETTING THE STAGE

Recall the claim:

l: THEOREM If o # 0,1 is algebraic and if B ¢ Q is algebraic, then of
is transcendental.

B

[Note: Here o" is the principal power (cf. 8§23, #14):

B _ oy e 4

o

Methodology: Assume that o # 0,1 is algebraic, that B is algebraic, and

that ocB is algebraic -~ then the theorem will follow if it can be shown that

B € Q.
2: NOTATION Given a positive odd integer N > > 0, put
L= s=2m" - 1),
and
- L, =N° - 1
L1=N2—l.

[Note: Restricting N to be odd guarantees that S is an integer.]

3: IEMMA
_ 2
L= (L, +1 @ +1 = @25+ D7
PROOF
- 6
LO+]_—N
_ -
= (L, + D@ + 1) =
L +1=nN



And
(28 + l)2 = (N4 -1+ 1)2 = .
During the ensuing analysis, there will emerge a positive absolute constant C.

: LEMMA Given C e R>0, 3 NO(C) >>0:¥y N > NO(C),

CLOZn(S) < L and CL;S < L.

'5:- N.B. Therefore

CL(LyLa (S) + L;S)

L (CLOﬁ'i (8) + CLlS)

L(L) + L(L) = 212.

IA

e Choose an ordering of the integral pairs (sl,sz) with [sll < S and
. . 52 -
[szl <8, i.e., (sy,s)) € 7" and - 8 < 5,8, < S.
[Note: There are S + (S + 1) choices for S, and S + (S + 1) choices for Sy

hence there are all told
25 +1) x (25 +1) = (28 + 1)° = L,
integral pairs (sl,sz).]
e Choose an ordering of the integral pairs
(ulv) € {Ol LI ILO} x {01 L ILl}'
[Note: There are LO + 1 choices for u and Ll + 1 choices for v, hence there

are all told
(Lo + D@ +1) =L (= (25 + 1)%)



choices for (u,v).]

6: NOTATION Introduce a L x L matrix M via the prescription

(l) + s (L)B 5
M= (s, () +s, @ e ) vy
and let

A= det(M).

[Note: j is the colum index and i is the row index.]

7: N.B. The orderings for the colums and rows has not been explicated

but a change in these orderings simply changes matters by a factor # 1, which

has no effect on the absolute value |A| of A.

Define a function of one complex variable z by

£(2) = 202 1 <5<
and put
g; =s1(d) +s,(1)8 (1 <ic<L).
8: SUBLEMMA V complex numbers 21125,
Iezlz2| _ Re(z,2,) lZl 2| _ lz | lzzl.

9: LEMMA VR E R,

M(R, f ) < &% u () V(])RIIog a[
PROOF For by definition,

uV(j)Z = exp(v(i)z Iog a).



choices for (u,v).]

6: NOTATION Introduce a L x L matrix M via the prescription

.y S,(1) +s,(1)B__,.
W= (s, @ + s, ot 27 yva),

and let

A=det(M).

[Note: Jj is the colum index and i is the row index.]

7: N.B. The orderings for the colums and rows has not been explicated

but a change in these orderings simply changes matters by a factor + 1, which

has no effect on the absolute value |A| of A.

Define a function of one complex variable z by

£5(2) = L2032z g 5 <
and put
g; =s1(d) +s,(1)B (1 21iz21).
8: SUBLEMMA V. complex numbers Y
L 2 a5
9: LEMMA V R € R

>0’
MEE) < () v (I)R[Iog af
PROOF For by definition,

o7 ? = e ()z Tog o).



Therefore

MR L)) <u()a® + VR of

< Ly (R) + LyR[Log of.

10: RAPPEL In the notation of §25, #5,

R -L(L - 1)/2

Ll l

L! I£. |5

=1 IR

[Note: The symbols |fj IR and M(R,fj) mean one and the same thing.]

In the case at hand,

A= élet(fj (Z;i)) '

thus the foregoing generality is applicable.

e Take r = S(1 + |B8]) and note that

Iz,

;1 =15y (1) + s, (1) 8]

INA

|s; (D) ] + [s, (D) 8]

IA

S+ s|8] =s@+ |8]).
® Take R = e2r and note that

-L(L - 1)/2 2 -LL-1)/2
- =

r r

I AL A N

L
1a] < e~ 1 T Mw,£),



R=e’s + |B]).

12: IEMR
2
mla]) < - 5‘2— .
PROOF Starting with #11,
L
m(lA]) < -LL-1) + m@!) + : £ (M(R,£5))
j=1
< - 12+ L+ Len() +Lmex MMERE))
1<i<L ]
2

IA

- L” + L(1 + fn(L) + Ly (R) + LR|Iog af).

° LLOm (R)

LLOm(eZS(L + |81))

IL,(en(e”) + (s) + (L + |8]))

= LLOm(ez) + LLyen (1l + gy + LL,&n (S)

A

clLLOJZn (s).

e IL,R|Iog af

i

]'_Il'_.lezs(l + |8]) |Log af

@+ |g]) |1og ols

CZI'LlS .

IA



Therefore

- L° + L{ + (L) + Ly (R) + LR[Log af)

L2 + L(1 + (L)) + ClLLOZn(S) + CzLLls

A
I

< - 17 + C3 (LLyén(S) + LLS)

+ clLLOZn (s) + chLls

< - L2 + c4(LL0£n(S) + LLlS),

the positive absolute constant C, being independent of N > > 0. Take now C > 4C

4 4

and unravel the data:

Mm(|A]) < -1 + C, (LLyn (S) + LL,;S)
<- 12+ $ (qwa + L9
=~ L% + L CL(L A (S) + L;S)
-3 @) (cf. #5)

thereby campleting the proof.

13: LEMMA

2

mja)) 2 - %

if A # 0.



|+

'14: N.B. Granted this, we have a contradiction: % > 5. Thus the

N

conclusion is that

A= det(M) = O.

Bearing in mind that for #13, A # 0, fix T € N such that To, T, and TozB
are algebraic integers (recall that V x € (, D, is a nonzero ideal of 7 (cf. §14)) —

L. + 2L.5

then T 0 1 times any element of the matrix M is an algebraic integer. More-

over the algebraic integer

L(L, + 2L,8S)
R

is a zero of a monic polynomial of degree d, where d is at most the product of the

degrees of the minimal polynomials of «,8, and oaB.

15: SUBLEMA

L.L L.L LIS LS
H(A) < Lt S “wrren P a+ren t @ +H(oa6))Ll .

[Note: The house of an algebraic mumber x # 0 is, by definition, the maximm
of the absolute values of x and its conjugates (see the Appendix to §14, in par-

ticular the result formulated there, to be used infra).]

On the other hand,

L(L0 + 2LlS)
A#F0and T € DA’
hence
—dL(L0 + 2LlS) 1-4a

Al > T H(A)



—dL(L0 + 2LlS)

> T n(y)~ @

~dL(L, + 2L,S) —dr, L
|A] > T 0 Pandg 0

—dLOL —dLlI.S

(1 + H(o))

—dLlIS

x (1 + H(B)) @+ H@)

=>
La(|al) 2 - aL(L, + 2L;S)n(T) - dLen(L) - AL,Len(s)

- du Lea(l + H(B) - AL ISt (L + H(®) - AL ISt(L + 1Y)

=>

n(|Aly > - KL(Ly + (L) + Lyfn(S) + L;S)
=>

La(]a]) 2 - RL(LD(S) + LS),

the positive absolute constant K, being independent of N > > 0., Take now C > 6K2 -

then

Ln(|A])

v

c
-z L(LOJZn (s) + LlS)

(

CL(LOZn (s) + Lls) )

202)  (cf. #5)

v
| =
~~

I

W

the assertion of #13.



§28. GELFOND-SCHNEIDER: EXECUTION

Under the assumption that o # 0,1 is algebraic, that B is algebraic, and

B

that o~ is algebraic, the central conclusion of §27 is that

A= det(fj (El)) = 0,

the goal being to show that B € Q.

B

Proceeding, assume momentarily that o,B8,a" € 6 N R (¢ >0), hencé all data

is real and the colums of the matrix (fj (gi)) are linearly dependent over R,

thus there exist real numbers b.,...,b. not all zero such that

1 L
L
I b.f.(z.) =0 (1<i<L).
ju1 J3E
But
.y v(3)C.
— () i
so
L .y v(3)C.
r b2y o0 @<i<m
Ny Bt 1 - =
J=1
or still,
L I o Ve
Z (% b z.) = 0.
v=0 u=0 (LO+l)v+u+11
Introduce
L0 “
a,(8) = L b L hva+u+1t
=0 0
vhere t € R, and consider
L]. w t

V-EO av(t)e v (wV =v Log o).



Since
Ll chi . .
0= VEO av(ci)e (¢, = sl(l) + sz(l) B) ,

it follows that each of the L values of ] is a zero of

Ll wvt
A(t) = ¥ a_(t)e " .
v
v=0

At this point, #1 of §26 is applicable:

® The degree of av(t) is < LO'
e The v are distinct real numbers.
® The sum defining A(t) consists of Ll + 1 polynamials.
Accordingly A(t) has at most
LO(Ll + 1) + (Ll +1) -1
real zeros counting multiplicities. And:

LO(L1+1)+(Ll+l)—1

il

LOL1+LO+L1+l—l

(L0+l)(Ll+1) -1
=L-1 (cf. 827, #3)

~
<

L.

Consequently two of the Ci must be the same, so
s1(1) +5,(1)8 = 5y (') +5,(i")8

for some i,i' with 1 € 1 < i' < L. However, since the pairs (s; (i) ,s,(1)) and



(sl(i'),s.2 (i')) are distinct, either

Sl(i) - sl(i')

B = sz(ll) - Sz(l) if Sz(i') # Sz(l)
or

1 S@AN -5 @) . .

= S]_(i) — sl(i.) if Sl(l) # Sl(l ).

In any event, B is rational... .
To discuss the general case, it is necessary to elaborate on what has been

said in §27.

Step 1: Redefine S and replace % N* - 1) by 2N — then

2
S _ 4__ ss _ .8 _
S=N = =N =L
And
28 + 1)2 = 45® + 45 + 1
- 1a0 + an* + 1
8 _
» 16N = 16L > L.

Step 2: Define the (25 + 1) x L matrix M as in §27 and note that all
the L ¥ L submatrices of M have determinant zero, as can be gleaned from the
argumentation used there.

Step 3: The colums of the matrix M are linearly dependent over C,
thus there exist complex numbers bl’ .o ,bL not all zero such that

L

_ . 2
jﬁl bjfj(ci) 0 (1e {1,...,28+1)7}).



Step 4: Introduce as before

Ll wvt
Alt) = = a_(t)e
\V
v=0

and observe that
Alg) =0 (€ {l,...,5+1)7).

Owing to §26, #5,

N(R,A) < 3(D - 1) + 4RQ
or better, its improvement
4
N(R,A) < 2(D-1) + = RQ,

as noted in the Appendix to §26. Here

DLy +1) + (L +1) =L

Cl = Sl(l) + sz (1) 8,

vhere a priori B is complex and |s.|,|s S, the choice

IA

1l ls,l
R=S(1+ |8])
ensures that the disc of radius R centered at the origin contains all the points

.. In addition

i
Q= -~mex IWV[ = nax |viog al
v=0,...,Ll v=0,...,Ll
=L, |Iog af.
Therefore

NRA) < 2(L - 1) + 280+ gL |Log of



or still,
N(R,A) < 2(L - 1) + KSL,
where
4
K== (1+ [8]) [Log af.
But:
2 2

e 2(L - 1) <2L=2(ST)=-82—

e KSL, = K(2N) (¥ - 1)

2

N(R,3) < + ST-

52 < (28 + 1)2.

| W

Since A admits (2S + l)2 ZEXOS Ci, two of them must be the same, forcing in the

end the rationality of 8.



§29. THE SCHNEIDER-LANG CRITERION

Fix an algebraic number field K.
[Note: Therefore K is a subfield of C which, when considered as a vector
space over Q, is finite dimensional, denoted [K:Q] and called the degree of K

over (.]

1l: THEOREM let fl,f2 be entire functions of finite strict orders

< Bl' < 62 Assume: £ f2 are algebraically independent over C and that the

l'

. . d d . . .
derivatives 3z fl, = f2 belong to the ring K[fl'fz] (i.e., can be written as

polynamials in fl'fz) —— then the set
S={we C:fl(w),fz(w) € K}
is finite.
There are two "canonical” examples that illustrate this criterion.

2: APPLICATION Schneider-lang => Hermite-Lindemann

I.e.: If o is a nonzero algebraic mumber, then e% is transcendental (cf£. 821,
g

#4).

[Suppose instead that e is algebraic, let K = Q(oc,ea') , and take fl(z) =
z(D1 = 0), f2 (z) = ez(ri2 = 1) (which are algebraically independent over C (cf. §20,

#18)). Since it is clear that

d

ad 2
3z % 3z € € KIE (2),£,(2)],



the assumptions of #1 are satisfied. On the other hand, v n € N,

£, (n0) = no €K, £,(na) = &% ¢ g,

an infinite set of conditions, from which a contradiction.]
3: APPLICATION Schneider-Lang => Gelfond-Schneider

I.e.: If o # 0,1 is algebraic and if B € Q is algebraic, then ocB is trans-

cendental (cf. 8§24, #1).

[Suppose instead that OLB is algebraic, let K = Q(a, B,OLB) , and take fl(z) = &%

Bz

(pl =1), f2 (z) =e (p2 = 1) —- then fl (z) ,£,(z) are algebraically independent

over C (B € Q) (cf. §20, #26). Moreover

df_:fd

zh=fH &t

o = BEys

='e) K[fl(z) ,f2 (z)] is closed under differentiation, thus in view of #1 there are

but finitely many points w € C such that fl (w) € K and f2 (w) € K. But for all

k=12,...,

£, (og o) = o € K and £, (kiog o) = (V) €%,

an infinite set of conditions, from which a contradiction.]

: REMARK The objective is to show that the set S figuring in #1 is finite.

In fact, it will turn out that the cardinality of S is bounded by
(pl +05) [x:Q1.

As for the proof, we shall not provide all the details but will say enough to



render the whole affair believable.

Iet N > > 0 be a positive integer.

5: NOTATICN Put

Py
by + P 1/2
R (= R, () = [N (en ()21
and
P
Py T 0 1/2
Ry (= R,(N)) = [N (en o) 2.
6: N.B.
P2 L
o, T o o, ¥ 0o
RR, <N 2 nemZint 2 a2
= N¢n(N) .
Therefore

Ry + (R, +1) > Nen(N).

[Note: If C e R> then

0'
Nfn(N) + CN < 2N¢n (N)
provided N is large encugh:

_ N 1
N>>O_>NWI\_IT<E']

Iet Wyreeo W, be elements of S.

7: SUBLEMMA There exists a nonzero polynamial Py € Z[Xl,X2] whose degree



w.r.t Xl is < R1 and whose degree w.r.t. X2 is < R2 such that the function

has the property that

&

—5 N(wj) =0 m=0,...,N-1; j=1,...,r).
dz

[Note: Explicated, there are integers

0 < >\l < Rl
C :
)\l’>\2
ViR
with
R A A
FN= z z C>\ A £ f2
)\1=0 )\2=0 1772
Moreover
0 < max |C |<'e3[K:Q]rN.]
A r A

Bearing in mind that, by assumption, fl (z) ,f2 (z) are algebraically independent

over C, let M be the smallest positive integer with the property that for same

Jgil £ Jg S Ty

at
—F_(w. ) # 0.
azr N3

N

8: N,B. Yy € K is an algebraic number. In addition



=
A

.

IA
a}

Ultimately, all relevant data depends on N > > 0. 'This said, choose N > > 0

so as to force M > > 0O:

R ,.
]wjl < G=1,...,1).

10: LEMMA If |z| =R, thenv j =1,...,r,
1 < 2
z—wj| =-R°
PROOF
|z = wyl > |lz] = ]
=>
1 < 1
2 =] = T2l = [w ]|
_ 1
R~ |w.
J
But
sl < 3=~ |l > -3



R_R
=>R—lel>R"‘-2—=’2—
=> 1 <.2_

IR - |w R

The function

r
Gy(z) = Fy(2) (z -w,) M
N T J
j=L

is entire and

M
Y., = M! (w. ) '|T|(w. -w.) .
N GN ]0 3#30 ]0 J
To estimate |YN] , write
M r -M
IYNI < M! g |w: ~w.|" - sup ] |2 - w] < |Fyl
#, 0 0 |z|R 31 ] NR
e M! g_MM
° _[T le —ijMECM(C€R>0)
373, 70
1 2.M
® < @
[z = w.|
J
=>
r
sup T |z -w M. (%)rM
[z] =R F=1 ] -
°
BRR A A
Fylg=1] £ I Sy, T2 f R



BB A
< ozl | IgT f>\2|
=0 A0 M2
e ol it 5
< (R, +1)(R, +1) max |C £.7 £
< By ® oy 2 1 Blg
Cm D@D SEUM L Y 12
|£;(2) | < KR
e |z|] <R=> ( 3 K/K €Ry)
P2
~ |£,(z) | < K,R
=>
([fl|R+1)Rl (15, ] + 1)R2
ST DL S

< KR +1) TER S+ 1)

e P
1 2
<K (RlR + RR ).

The next step is to use these majorants and derive an estimate for £n( |YN]) .

FACT For N > > 0,

/4

r 3
mlygl) ¢ @ - —% pz)M&n(M) + M(en (M)

P1

11: IEMMA Iet X € K be a nonzero algebraic number -— then

m(|x]) + [K:Qlen(d) + ([K:Q) - Den@E) > 0.



[Bere dx is the denominator of x and H(x) is the house of x (cf. §14).]
Take x = Yy in #11.

FACT (@ ) < Ml )) 2.
N

FACT fn(H(yy) < MEQ0) + M(eae0) 2.

Therefore
n(lygl) + [K:QIM(en )/
+ (R:Q) - 1) Men ) + M(en (M) Y?)
> 0
or still,
_ r 3/4
Q - 55ommen +uunen)
+ [K:QIM(en () /2
+ (R:Ql - 1) (en () + M(en w2
> 0
or still,
N r 3/4
(IK:Q] oy pz)M&n(M) + M(£n (M))

+ [K:QIM(en 00)) /2

+ [K:QIM(£n (M) 3 M(£n (M) 1/2)

>0



or still,
3/4
([K:Q] = ——— )M (M) + M(n (M)
Bt e
+ Q2IK:Ql - LM(m D)2
> 0
or still,
([K:Ql - ————)M¢n (M)
oAate

> = Mm% - x:q - DM n) 2

or still,
r
g, Qe
<) + @Ex:Q - DM )2
or still,
Y
G, - e
< ;¥4 4 Q1 - 1) (enon) 2
or still,
i - K:Q) < (e Y+ @) - 1 (emen)” V2,
17 P2

But N + ©« => M > «, hence

- [K: < 0
Py + 0y [&:Q1 <
=>
r .
< [R:Q]
Py T Py



10.

r < (o + 0,) [K:Q1,

from which the claimed bound on S (cf. #4).
12: EXAMPLE Take K = Q, £;(2) = z, £,(2) = e® — then

s = {w € C:w,e” € Q}.
But
wEQ W#0) =>e” €P (cf. §9, #1),

so S = {0}, a set of cardinality 1. On the other hand,
Py =0, pp=1=>p +p, =1,
thus in this case, the estimate

(b + 0,) [K:(Q]

is the best possible.

APPENDIX

We shall indicate the derivation of the estimate

_ r 3/4
(lygl) 5 @ o R, Qz)Mzn(M) + M(en(M) ™ "

First of all, the term
M(en (o)) 374

results fraom the discussion of IFNIR’ hence can be set aside. As for

r
(]. - W)M&I(M) ?



11.

note that
e In(M!) < Min(M)
o () < Mn(Q)
® Kn(%)rM
rM

p; +p
- kn(ZrM) _ [n(Ml 2)

_ _ r
= Mrfn (2) 5+ oy Min (M) .

One must then add these terms. But since N > > 0 => M > > 0, one can ignore

Mfn(C) and Mrén(2),

leaving

r
MnM) - T, Mln (M)

r

YMen (M) .
17 P

=(]_—-p



§30. SCHNEIDER-LANG CRITERIA

There are extensions and variants of the Schneider-ILang criterion (cf. §29,

#1), e.g., work with meramorphic functions (i.e., quotients of two entire functions)

or raise the variables fram 1 to n (i.e., replace € by Cn) .

Fix an algebraic number field K.

1: RAPPEL A meromorphic function is said to be of finite strict order

< p if it is the quotient of two entire functions each of finite strict order < p.

2: THEOREM Let £, f

2: 17 2"“’fn (n > 2) be meromorphic functions such that

£,,£, are of finite strict orders g p1s < ppe Assume: f£,,f, are algebraically

independent over (¢ and that the derivative 4 maps the ring K[fl,f

dz fn] into

sreses
itself —— then the set S of w € C which are not among the singularities of
fl’f2"'° ,fn but such that
£,w) €X (1 <ix<n)
is finite and in fact the cardinality of S is bounded by
(pl + 02) (k:Q].
[The argument is a straight forward extension of that used to establish the

Schneider-Lang criterion. Thus let Wy reee W, be elements of S which are not among

the singularities of fl,f fn but such that

Dt

Choose entire functions 919, of finite strict orders < Pyr 2 Py with the property



that glfl, ngz are entire and

gl(Wj) 70 (1

A
.
A

r)

xr).

IA
.
A

gy00) £0 (@

Define FN as in §29, #7 and form

55

an entire function admitting Wysese,W_ 8S Zeros of order at least equal to M. Put

r
Gy (2) = gl(z)R:L gZ(Z)R2 Fy;(2) T = - wj)_ M,
j=1
take R as in §29, #9, and note that
- R

B B M
Yy = M Gy gy (WL ) g, (W, ) T W -w).
N Jg 71, 273, g o 3

Proceed from this point as before.]

There are also versions of Schneider-Lang where C is replaced by ™.

To set matters up, fix an algebraic number field K and suppose that f £

l,---, m

are entire functions of the camplex variables ZyreeerZy withm > n + 1. Assume:
fl,.. . 'fn+l are algebraically independent over C of finite strict orders < Ppreeer

< Pral and that the partial derivatives 52—1- (1 < i < n) map the ring K[fl,...,fm]

into itself. Denote by S the set of w € C* such that

fL,w) €EX (1 <k <m.



: REMARK Tt can be shown that S is contained in an algebraic hyper-

surface of degree at most

n(pl + ... + pn+l) [K:qQl.

[Note: This means that S is the set of zeros of a nonzero polynomial in

C[Xl, cee ,)gn] , its degree being the minimum of the degrees of the nonzero poly-

nomials which annihilate S.]

4: THEOREM let el,...,enbeabasis for Cnover Cand let S

l""'sn be

subsets of C. Suppose further that

S D{sle1 4 oese + snen:(sl,...,sn) c Sl X see X Sn}.
T.e.: V (Sl,...,sn) ESl X see X Sn:

fk(slel + -0 + snen) ek (1 <k 5m).

min card S, < n(p; + *** + p_.)[K:Q].
lfi_<_n i 1 n+l

[Note: Take n = 1 to recover the Schneider-Lang criterion.]

5: N.B. Therefore the set S cannot contain a product Sl X *ee % Sn'

where each S; is infinite.

Let T be an additive subgroup of ¢™ which contains a basis for ¢ over cC —
then the points of ' are linearly independent over the camplex numbers and this

allows one to change coordinates so as to render ' a product:

I‘lex"'xSn.



Consider the values

£ (Cyreenrly) LSk <m),

(Cl""'cn) e r.

Then the set 8 camnot contain I' (cf. #5).

6: EXAMPLE It is shown in §31, #13 that

1 1
fO

3

& =1 (@ +5
1+x V3

is transcendental. Here is another approach. Suppose that
T n@ + 5
V3

is algebraic —— then

1

o

3/3_/:]T-%(ﬂn(2)+i)
V3

=/3/~-14n(2) +3/-17
is algebraic. Work in C2 with the functions
£1(21,2,) = exp(zq), £5(2q,2,) = exp(2,), £3(27,2,) =2 + /3 /-1 Z
_ sy 2
and let X = Q(¥3 v/-1,a). Denote by T' the additive subgroup of C“ generated by

the points
u= (3r /-1, £n(2)), v = (-3 £n(2), 3w /-1)

=T =7u+ Zv.



Then these points are linearly independent over C since their determinant
3m /-1 n(2)

= - 9m® + 3(4n(2))2 # 0.
— 34n(2) 37 /T

The claim now is that S ¢ T, a contradiction. It is trivial that
fl(l“) <K, fZ(I’) < K.
As for f3, we have

£5 (31 /=1, £n(2))

31 /-1 + /3 /-1 fn(2)

/3 /-1 &n(2) + 3/-In

and

- 3n(2) + v3 /-1 3n/-1

Il

f3 (- 3tn(2), 37 /~1)

= - 3fn(2) - 3/3m.

By construction, ¥3 /-1 € K. With this in mind, consider

V3 /=1 (- 38n(2) - 3/37)

- 3(/3 /~1&n(2) + 3/-1w)

= - 3o
or still,

- 3¢n(2) - 337 = -3 o
V3 /-1

€ K.



7: NOTATION Given
z = (zl,...,zn)
W= (wl,...,wn)

. n .
in ¢, write

= Z. W, + eee + 2 .
o™ "M nwn

Iet dO’ dl, and n be integers with

05d0§n<d0+dl.

8: N.B. The role of m above is played at this juncture by

dEd0+dl>n=>n+15_d.

Iet X.,...,%x, be @-linearly independent elements of Q' and let y.,...,y
= —dl =1 <n

be a basis for Cn over C. Write

y_j:" (Ylj,---rynj) (lf_] fn)

and call T the additive subgroup of c” generated by the Zj'

: THEOREM At least one of the following numbers

Xy

SES| . .
yhj(lfhfdo)’e (1§1§dl,1535n)

is transcendental.

PROOF Consider the functions

£(2)=z (L<h<d), fd0+i(3) =e " (MLc<igd).



The condition on the "finite strict orders" is certainly satisfied and since

XyreeerXq are linearly independent over 0, the functions fl,...,fd are
1

algebraically independent over the field Q{zl,...,zn:. Moreover

0if h#3
3 __ - (1L <h<d,)
§'z_jfh'6hj_ =<9
. Yithe3
and
'é'g"fd-l-i:xjif 41 (liigdllr
%5 % 4o

where x; = (X);,..+0%;) (1 €1 <d,). Therefore the partial derivative require-

ment is satisfied. Now let K be the field generated over 0 by the (@, + 2d1}n

numbers
X5
xji: fh‘}:j) == th! dn+1 ‘Y—j) =e ’

the range of the parameters being

lchg<dy,, 1<icd, 1<) <n.

1!
To arrive at a contradiction, assume that these numbers are algebraic, hence
that K is an algebraic number field. Take a typical point
YEsy, +--+sy (5= (s,...,8) € )
on I' — then
£, eK,... £5¥) €K

I.e.: T ¢ S, an impossibility (cf. supra). Accordingly the supposition that K



is an algebraic number field is false. Since the in are algebraic (by hypothesis),

it follows that at least one of the following numbers

X.Y.
= . -
yhj(l_<_h5d0),e 3(1515dl,1_<_35n)

is transcendental.

10: APPLICATION Take d, = 0, so d = dl > n (formally, this just means

0

to ignore in the above anything involving do) , hence yhj is no longer part of the

theory and the conclusion is that at least one of the

X.V.
e (1<ic<d 1<J<n)

is transcendental, hence at least one of the

xyy (Lgicd 1gisn

does not belong to L.

[Note: Tt suffices for the analysis that the set {zl,. e ’Zd} contain a

basis for C" over C.]
1l: EXAMPLE lLet >‘l’>‘2'>"3 be elements of [ and assume that

3 3
Mt /2_>\2+ /4T>\3=0.

Then

23 3
1, V2, /&

belong to Q and we claim that

>\1=0, >\2=0, A3=0.



3 3
To see this, start by multiplying the given relation by v2 and /4:

3 3 3 3
2}\3+/’Z_Al+/4—>\2=0and2)\2+2/7)\3+/4_)\l=0.

Put

e
Il

x = (1,00, %, = (0,1), %= (2, /B)

Here d = 3, n = 2 and
XYy T Ay X5 = A X)¥3 = Ay
XYy = A By = Apr X¥3 = Ay
Xg¥y = = My XYy = = 2y X3¥3 = = 2y

Moreover if >‘l # 0, )‘2 # 0, >\3 # 0, then the matrix

has rank 2, thus {21,22,13} contains a basis for C2 over C. Therefore this data
realizes the setup of #10, hence at least one of the

x¥s 113, 153 <3)

does not belong to [, an impossibility. Since the supposition that M # 0,

AZ # 0, >\3 # 0 has led to a contradiction, at least one of }‘1’>‘2’}‘ is 0, say

3

)‘l = 0, leaving >\2 and >\3:



10.

Obviously

g
I

O=:~>)\3=O

A3=0=>A2 0.

If now both A and Ay @re Ronzero, then on general grounds (cf. §24, #10), the

ratio >\2/ >\3 is either rational or transcendental. But }‘2/ >\3 is not rational but

is algebraic... .

21 APPLICATION Take dy =1, d) =n {=>d& =1 +n). Vork this time
with X,,...,% Q-linearly independent elements of Q" and Yyre--sY, @ basis for

cnover C. Write

Yy = Wygree-r¥pg) (123 5n)

and assume that the numbers

vy <3 <m) =1

are algebraic —- then the conclusion is that at least one of the

X.Y.
e (Lgi<n, 1<3j<n)
is transcendental, hence at least one of the

}_c_].zj (1<i<n 1<3J<n)

does not belang to L.

[Note: This is a literal transcription of #9 to the current setting. For
later use, observe that the symbol d does not appear in any of the formmlas.
Because of this, one can replace n by d thru ocut, so now at least one of the

2y, l<igcd 1<3<4q

does not belong to L.]



§31. BAKER: STATEMENT

1: NOTATION Put
L=1{ec: el
or still,

“1@.

L =exp
2: LEMMA L is a Q-vector space.

IEMAQn L= {0} (cf. §21, #4).

|

>

N.B. Therefore every nonzero element of L is transcendental.

5: THEOREM The following assertions are equivalent.

e If a is a nonzero algebraic mumber, then e” is transcendental (Hermite-
Lindemann) .

e If A € L is nonzero, then 1,\ are Q-linearly independent.

e If a is a nonzero camplex number, then at least one of the two numbers

a, e is transcendental.

6: THEOREM The following assertions are equivalent.

e If o # 0,1 is algebraic and if B £ Q is algebraic, then OLB

is trans-
cendental (Gelfond-Schneider).

e If >‘1 €L, >\2 € | are nonzero and Q-linearly independent, then >‘1’>‘2

are a—linearly independent.
e If a,b are nonzero complex numbers with a g Q, then at least one of

ab

the three numbers a, eb, e is transcendental.



: REMARK | is not a 6—vector space.

Ttems 5 and 6 serve to motivate the central result which is due to Baker.

: THEOREM If N € Lieees n € | are nonzero and (Q-linearly independent,

then 1, ,.0., )h are 6—linearly independent.

9: N.B. This is the so-called "inhomogeneous case". Dropping the "1"

gives the "homogeneous case". I.e.: If }‘l € L,...,)\n € | are nonzero and

Q-linearly independent, then );,...,) are Q-linearly independent.

We shall postpone the proof of #8 until 833 and simply assume its validity

for the remainder of this §.

10: scHOLIUM If >‘l €ELl,... ’)‘n € L are nonzero and (-linearly independent,

B+ BA + ees + B2 20

for every tuple (80,81,.. . ,Bn) of algebraic numbers different from (0,0,...,0).

1l: LEMMA Every nonzero linear cambination

A F ek BA (O € LA €D

By
with algebraic coefficients is transcendental.
PROOF Argue by induction on n, starting with n = 1, the validity in this
case being ensured by #4. Proceeding, suppose first that AQr+-« s}, are nonzero
and (Q-linearly independent and suppose that

Bjry F oo h BN = - By



is algebraic, hence

Bp ¥ ByAp + s T BN =0

Contradicting the assumption that

B Ay + vt + B, # O

If now instead there exist rationals dyree-rdy such that
ql>‘l + eeo + qn>‘n =0
with a4, # 0, then
Gy (Byry + oom BN
= Byt Y GBA,

B T R Y A T R U

(@8) =~ @BIA + oo+ (qB) - A BN,

Il

(@8 — GBI + oo+ (B = BN

a number which, by the induction hypothesis, is transcendental.

12: APPLICATION If ¢,B are nonzero algebraic numbers, then
Bm + Log o
is transcendental.

[In #11, take

21 /-1 (e =l),_>\2=logoc

/1 8, 82=—2.



Then
/AT g2 v~I) + (- 2)Iog &
is transcendental, i.e.,

- g7 + (- 2)Log o

is transcendental, i.e.,

-5 (- @1+ (- 2)Iog o)

is transcendental, i.e.,
gr + Log o
is transcendental.
[Note: Take g = 1, B = 1 and conclude that 7 is transcendental (cf. §19,

#1). On the other hand, if ¢ # 1, then ILog o is transcendental (cf. #4).]

13: EXAMPIE Put

Then

H
|

=1 @ + 5
3

is transcendental.

14: IEMA If QypeeesO and BO’B‘l""’Bn are nonzero algebraic numbers, then

esoafl oo ocrsln (principal powers)
is transcendental.
PROOF Suppose that
" EeBO usl uBn
n+l 1 n



were algebraic. Take Log's -- then for same k & Z,

By B
107 oy = 109 " eyt e o

=80+Bllogocl+...+%qlog%+2ﬂ/:l—k(0f. §23, #5).

But
Log -1 = gn( |-1]) + /AL
= 1 /~L.
Therefore
Log oy = Bg ¥ B 109 o + v0r + B, TOg oy * 2k Iog -1
or still,

Bllogal+---+ Bnl'_ogocn+2k]'_og—l—logun+l=— BO.
But the RHS is algebraic and nonzero, thus so is the IHS, which contradicts #11.

15: EXaMPLE eﬂ— 2‘/j is transcendental.

16: EXAMPLE Consider

€™ * Blo,8 € f o #0, BF0).
Then
™ = (-1)” -1 o _ o /1o Log -1
In the preceding, take
op = -1, By =8 8 = - /T a
Then
| Bo B

oy — eB (—l)_ -1 o — &PaTo eTTOH‘B

e



is transcendental.

8

[Note: Take o = 2 V=1 and conclude that e” is transcendental (cf. §21, #4).]

17: LEMVA If o # O,l,...,ocn # 0,1 are algebraic numbers and if Bl,...,Bn

are algebraic numbers with 1 ,Bl, eee 'Bn Q-linearly independent, then

n c
RN (principal powers)

is transcendental.

PROOF Suppose that

Q
It

Q
.

Q

were algebraic. Write

Bl Bn B1 Log % Bn Leg %

cee (O = e es e
n

eBlIogocl+---+BnIogocn

Il

_ A
= e
if
A= BlI.ogocl+--- +BnLogonn.
Then
A _ -
Put
>‘l = Log ocl,...,)\n = Log OL'n’An+1 = A
to get

Bl)\l + ees + Bnkn + 1(~ )\n+l) = 0.



On the other hand, thanks to the assumption that 1,81,. .. ,.Bn are Q-linearly
independent, the entity

Bl)\l + .o + ann + 1(- Kn_l_l)

is nonzero (cf. §32, #3 (ii)). Contradiction.

18: REMARK Consider Gelfaond-Schneider (cf. #6). Here ocB = eB Log @

is the principal power. Pass to its kth associate:

B L8 c7) (cf. 523, #15)
and write
o2km /<1 8 _ m(2k /-1 B)
= (- 1)~ v=1(2k /=1 ) (cf. #16)
- (128,
Therefore

oB 2™ LBy _ (B 1)2K8

is transcendental.

APPENDIX
For the record,
9% =,
but
LogeZEz (mod 27 /-1).

EXAMPLE Consider ocB — then 3 k € Z:



B Log

Log &b 109 @

BIog a + 2m /-1 k

+21r/lTk=eBLogoce21T/—_lk



§32. EQUIVALENCES

In this §, we shall formmlate various statements that are equivalent to

inhomogeneous Baker or hamogeneous Baker.

: THEOREM The following assertions are equivalent.

(i) £ >‘l € Lyeee ’>‘n € L are nonzero and Q-linearly independent, then
L, Apreees A, are Q-linearly independent (inhomogeneous Baker) .
(ii) If )‘l eL... ’>‘n—l € L are nonzero and Q-linearly independent and

if Byr Byre--rBy_q are algebraic numbers such that
Bo ¥ Bl Tt Byt
is an element of [, then BO = (0 and Bl""'Bn—l are rational.
(iii) If )\1 € L,... rA-1 € L are nonzero and Q-linearly independent and
if 50, Bl’ ceey Bn—l are algebraic numbers such that

Bop t ByAy * oo B 1A

is an element of [, then BO = 0 and Bl"’ . ’Bn-l are (Q-linearly dependent.

The proof proceeds according to the scheme:

(ii) => (iii), (i) => (ii), (iii) = (1).

(ii) => (iii): CObvious.

(1) => (ii): Fix the data per the assumption:

By + ByAy + -0 + B

n—l>‘n—l € L.



Then there exists }\n € L:

By F Bd Ferm B T AR S0
Therefore 1, Aj,...,) ave Q-linearly dependent. But Mreeer),_; are Q-linearly

independent, so by (i), there are rational numbers Aqree-rd_q not all zero such

that
A = O™ Tt A
hence
By ¥ Byt P By T (@A e P gA ) =0
or still,

Bp * (Bp — @Ay * ot By ~ Gy Ay = O
Finally, appealing to (i) once again, it follows that BO = 0 and B; =gy
(L <i<n-1), thus Bl""’Bn—l are rational.
(iii) => (i): Denote by P(lL) the set of finite nonempty subsets S of L

subject to:

1. The elements of S are Q-linearly independent.

2. The elements of S U {1} are ﬁ—lj.nearly dependent.
Then the claim is that P(L) = @, which will do it. Suppose instead that P(L) # § —-
then

n = inf{card S:5 € P(L)}

is » 1. Fix an element S = D‘l"“’}‘n} € P(L) at which the inf is attained —-
then the Ai(l < 1 < n) are Q-linearly independent and by definition of P(L)

there exist algebraic nmumbers BO’ Bl’ ooy Bn with Bl’ eeesB " not all zero:



Bo * BpAp e * Byl = 0

Assume now without loss of generality that By # 0, so

By Bl Bn
——+———->\ +o--+— =0.
By By L By
Adjusting the notation, one can suppose from the beginning that By =~ 1 and work
with
BO + Bl>‘l 4 ees + (—l”‘n = 0,
hence

Bo T B T P B T A E L

Therefore BO = 0 and 81,... ’Bn—l are Q-linearly dependent (cf. (iii)), thus

there exist rational numbers yreserdy g not all zero such that
Gy * oot Tt G By = 0
Choose

9 € {ayseeerq 4} g #0

- (- by
Bk ik G i

implying thereby that not all the 8; (i # k) are zero. Meanwhile, since Bg = 0,
Bl>\l + e + ann =0 (Bn = _1)

07 B T A



N I o
Z A:B. - L — B
iAe 1L kifl g L

9

i#k
Put
3 .
Yi"‘i'*k?;; (i # k).

Then the Yi € L (i # k) are Q-linearly independent (see infra) and

B 0.

Because the Bi (i1 # k) are not all zero, we have reached a contradiction to the
minimality of n.
[Note: To check that the Y; (i # k) are Q-linearly independent, consider a

dependence relation

L CY;=0 (€.

i#k L
Then
Oy = oy = 0
T C:(h: - —) =
i#kl i qu
=>
d. 0
TCA: = LA —=
ik T A& K%
=>
% C.As - CA. =0,
i#kll k
where



But the A (1 < i <n) are Q-linearly independent (by hypothesis), so C; = 0

(1 #%k) (and C = 0).]

2: N.B. The proof that we shall give of Baker in §33 does not go thru

items (ii) or (iii).

: THEOREM The following assertions are equivaient.

(1) It >‘l € L,...,An € L are nanzero and (Q-linearly independent, then

A

,.+es A are Q-linearly independent (homogeneous Baker).
1 n

(ii) If Al € L,...,An € L are nonzero and if Bl""’Bn are (Q-linearly
independent elements of Q, then
Blkl + ..o + gn;n # 0.
(iii) If >‘l elL,... ’An € L are nonzero and Q-linearly independent and
if By,...,B, are @-linearly independent elements of Q, then

Bidy + e+ BA # O

The proof proceeds according to the scheme:
(1) => (iii), (ii) => (1), (iii) => (ii).
(1) => (iii): (cf. §31, #10).
(ii) => (1): To derive a contradiction, assume given (Q-linearly independent

nonzero >‘l € L,... ’7‘n € L and a dependence relation

By e kB = O

Observe that since (ii) is in force, 8,,...,8. are not Q-linearly independent, so
1 n



let Yyreeer Yy (m < n) be a basis for the Q-span of {Bl,...,Bn}, thus
B; = I Ciuy: (1<ig<n).
Here the cij €Qandvi, Bj:cij # 0. Next

0= B]_}\l 4 eee ann

m m
=(Z CraYa)dAy + eee + (X c_Lvi)A
3=1 15'3°°1 jlnjjn
m n
=ZY(ZC>\)
j=1 J i=1

(n the other hand, a rational linear combination of the )‘i remains in [ (cf. #2})}

thus in view of (ii),

m n
jEl Y5 (lEl ClJKl) #0
provided
n
iil cilxi’ ceey 151 C. >\

are nonzero (granted this, we have our contradiction). But A, € L,... ’)‘n €L

1

are nonzero and Q-linearly independent. Therefore

n
E CiIAi= 0 =» Ci1 = 0 i=1,...,n)
i=1
n
_Z cimki= 0 => Cin = 0 (i=1,...,n).
i=1




And this implies that Bl = O,...,Bn = 0, a non 'sequitur.
(iii) =» (ii): If
lel toeee ann =0
where Bl" .oy Bn are (Q-linearly independent elements of 6 , then it will be shown that
Al = 0,...,>\n =0,
from which the result. Renumbering the data if necessary, assume that >‘l" .e ’>‘m

(0 <m < n) is a basis for the Q-span of {Al,...,)\n}:
A, = I ocLLhl m+1<4ic<n),

where the cij € Q. Then

m n
0= 2 Y.A: (Ys=B.+ L  c;.B.).
=1 JJ I T e Y7

Now apply (iii) (with n replaced by m): >‘l’ een ,Am are Q-linearly independent,
hence YyresesY, are 0-linearly dependent. However Bl' ceey Bn are Q-linearly
independent, so the only possibility is m = 0, implying that

Ay =0,...,A_ = 0.

1 n
[Note: If Cj €Q (1<j<m, then
m m n
L C.Y.= I C.(B. + Z c..B.)
=1 ) 5= ) i BT
m n m

i

T C.B.+ I (£ c..C.)B.:.]
=1 9 ) imm1l =1 P IF



4: REMARK One can add a fourth condition, viz.

(iv) If Al, e ,xn

4] @re nonzero elements of [ such that A A

1'°°"""n

are Q-linearly independent and if Byre+.,B, are elements of Q such that

Bidy £ oo BN = Ay

then Bl’ veey Bn are rational.

[Note: Suppose that hamogeneous Baker is in force. Consider item (ii) of

#1 -— then the crux is to prove that BO = 0.]

5: N.B. Consider the arrow of inclusion:
L »C.
Then it lifts to an arrow
L @Q 6 +C

which remains injective iff item (iv) supra is in force.

6: LEMMA Baker's inhaomogeneous theorem is equivalent to the conjunction

of 831, #11 and §31, #l6.

7: 1EMMA Baker's hamogeneous theorem is equivalent to 8§31, #11.

[es]
=
¥

|
|

§31, #11 <=> 8§31, #14.



§33. BAKER: PROOF

Our objective is to establish that if >‘l elL,... ,)\n € L are nonzero and
Q-linearly independent, then l,kl,... ,An are é-linearly independent (cf. §31, #8).
I.e.: If YorYyreeerY, are algebraic numbers and if

YO + Yl)\l + .. + Ynkn = 0,

then

1: THEOREM Let K be an algebraic number field of degree 4 over Q, let

{Bl,...,Bd} be a basis of the Q-vector space K, and let )\l,...,ld be elements of

L. Assume:

Bjhdy + or + BA5 € Q.

)\l = 0,...,>\d = 0.

2: REMARK Granted Baker's theorem (in its inhamogeneous version), it
follows that #11 of 8§31 is in force. So, if
Bl>‘1 4 eee + Bdkd
is nonzero, then
B‘l)‘l +oeer o+ BaAg
mast be transcendental. On the other hand, under the assumption that it is

algebraic, it must be zero;

ByAy + ++e + Bghg = O-



Still, this does not imply that

A= 0,...,>\d= 0.

The foregoing result can be used to give a quick proof of Baker's inhomo-

genecus theorem. So suppose that
Yo T YAttt A, = 0
Put K = Q(Yl,...,yn) , choose a basis {Bl,... ,Bd} for the Q-vector space K, and

write
d

Y. = L C..B. (1 <j <n)
RS -

with cji € Q — then

= Yole Q)

jEl Y424

n d

% L BaYAL

L B. L CL.h
i=1 * j=1 It

ZOBAL S

M= L ci €L
SR



Owing to #1,
xi = 0,e00s0y = 0.

But Apre-+s), are nonzero and (Q-linearly independent, thus the relations

n
T oc.:d. =0

j=1 Jj1]

imply that
cji=0 (1<i<d, 1<3<n),
hence

Yy = 0,...,'Yn =0

=> YO = 0.

2: RAPPEL let K be an algebraic number field —- then the trace K -+ Q

is the Q-linear map

Y~>2X YO.
(0]

where g runs over the set of camplex embeddings of K (a set of cardinality [K:Q])

and YO is the image of y under o.

3: NOTATION Iet K be an algebraic number field, let {51,... ,Bd} be a

basis for the Q-vector space K, and let cl:K > C,...,cd:K »+ ({ be the carmplex

embeddings of K (label matters so that o1 is the arrow K » C of inclusion).

4: IEMMA

det: (tx (88, = (det B)?,

))l < i3 < d



where
C.
_ i
B= 1 cik<a
is nonsingular.
We shall now take up the proof of #1l.
5_: NOTATTION Put
d o
Ay = £ B A (1 <ic<d.
1 =1 k"k

Case 1: At least one but not all of the Ai vanish.

[Arrange the notation so that
Al # 0"“’1\‘:1 #0, An+1 = 0,...,Ad = 0.

e Define x. ¢ Qn by
a o)
_ 1 n .
x, = (B;7/---48;) (A <igd.
If dyre--,94 are rational numbers such that

QF f ot Agg < O
then

ql= 0,...,qd= 0.

Therefore X,,...,%4 are Q-linearly independent elements of ﬁn .



e Define y, € " by

a

(0]
_ 1 n .
Z—j -_ (Bj Al,---,Bj An) (l S. j S d)'

Since the matrix

has rank d, the d X n matrix

9
By=@® )1 cx<d, 1<i<n

has rank n (its n colums are independent in Kd) . The product of Bn by then X n
diagonal matrix

diag (A A)

1718

is the d X n matrix whose row vectors are Yyr-e-0¥gt

- -
By Ay = By

a a
1 n
By A B
— 5 5 = — —
1 n
Bl Bl Al see 0
_ ) Lol x| Z
(e} o)
1 n
Bd Bd 0 o--. ‘An .

Therefore the set {Xl""’zd} contains a basis for C° over C.]

The preceding considerations set the stage for an application of §30, #10,



hence at least one of the

%y, (@Q<ic<d 1<j<n)

does not belong to [, which, however is false. To see this, recall that

gy = Orenerlg = O

and write
n g_og
_ m_m
575 = I8 By
d ao g
m, m
= ¥ R, B.
Ik 5 M
d g o d g
= IoaT8 B BTN
m=1 J k=1
d
= ¥ Caaq s
k=1 ijkk
where
d g o a
_ m, m, m
cijk“mﬁl By By By

But L is a Q-vector space (cf. 8§31, #2). Consequently
X;¥5 €L,
a contradiction.

Case 2: None of the Ai vanish.



=

I

P

W>’

I

T o
—

;éI)

2

m

by hypothesis.
e Define x € Cd by

Since the matrix

0.
B=(8 ) 1<i kca

is nonsingular, Xqreee Xy are Q-linearly independent elements of &d .

e Define zj € (:d by

9 % :
Yy = (B Ay B ) (1S3 <a.

Since B has rank d and since

(o} o
1 a
By by - st BpAy
(o} [0}
1 'q
By Ay - By Ay
- . - _ _
1 a
By -t B Ay - 0
= . ) < ) i
o} o. 0 A
1 a a
Ba = 0+ Ba




it follows that Yyreees is a basis for Cdl over C. In addition,

Ya

Ql o
Ygu = Bj Al=ﬁjAl€Q.]
Therefore the assumptions of §30, #12 are satisfied, hence at least one

of the
Xy, (<£i<d 1<3<d

does not belong to L. On the other hand,

a
Xys = I BRI €L

and we again have a contradiction.

Case 3: All of the Ai vanish. Consider the system:

(3] o
1 1.
A28y + wen F ByAg =0
9] [0}
a a
. eee + =
Ad.Bl >‘1 + Bd Ad 0.

Its matrix is the transpose of B, thus is nonsingular, thus

)\l = 0,...,>\d= 0,

as desired.



§34. ESTIMATES

Given algebraic n S o L,ees, ;1 and nonzero integers Feosy
i lgebrai umber l71501 OLn#Ol d integ bl

bn,put
A=b; Iog o) + --- +Db Log o .

Then for the applications, it is important to estimate |[A| from below.

1l: NOTATION Put

B = max {2,[bl

yeeer b |}

: THEOREM Assume: A # 0 — then

INES-ne

where C > 0 is a constant depending only on n and Ok re= s rO -

REMARK The reason for introducing the "2" is to accommodate the case

B

when all the bi are = 1 since then

C
max{[bl[,...,lbn|} =1land 17 = 1.

: EXAMPLE Suppose that % is a nonzero rational number with g > 2. Let

a>0 (a#1), a' >0 (o' # 1) be algebraic numbers —- then

lptn(e) - gen(a’)| » ——=——  (cf. §15, #33),

max{ l“PI ’q}C
where ¢ > 0 depends only on £n(a) and £n(a').

[Note: In the context of §15, #32, it is automatic that ¢' # 1. For if



o(,x=o(."=l,then

me™) = () => xma) =0=>pnla) =0=>q=1,

which was ruled out at the beginning.]

Obviously
eA=exp(blIogo¢l+ ---+anog0Ln)
_ bl . bn
_O(-l b % -

1 bn
o ceea A L

b
IOL l e OLbn -1 . N B"C
1 n I !

where C > 0 is a constant depending only on n and Oy reeerOpe

Some elementary preliminaries are needed in order to make the transition from
#2 to #5.

[Note: The "C" in #5 is not the "C" in #2.]

6: RAPPEL

n-1
legz= 1 S -1" (jz-1] <D (f. 523, #7).
n=1

Put z = 1 + w, hence



7: LEMVA
o1
[ | <5 => [Log (1 + w)[ < 2jw].
. bl bn
Passing to the proof of #5, put w =op ttt o, T then there are two possibilities.
1 e
o |w|> > - By definition,

B=max{2,]bl[,...,[bn[}

— __1 1_.1
=> B22—>§£§'—>§<|W|,

so C = 1 will work.

° ]w[g%. To begin with, for some k € 7,

bl bn
Log(l + w) =Iog(o¢l ce ocn)

b b
=Iogocll+ +Iogo(nn+27r v-L k (cf. §23, #5)

=blLogal+---+an_ogan+21r,/:Ik.

But

]

(] -1]) + m/ T

7/-1.

1l

Therefore

Iog(l + w) =bllogql+ +bnlogan+2klog—l.
The right hand side has the form needed for an application of #2 (ignore 2k Log -1
if k = 0), thus setting

B, = max{2, |by|,..., [b, |, |2k},



it follows that

—C

|Log (1 + w) | ZBOO

for some C, > 0. Now estimate [2m /<L k|:

0
n
[2m /<L k| < |[LlogL +w) | + £ [|b;| |Iog o]

i=1

n

s2fwl+ & b |Log o4
i=1 '
n

IN

1+B _Zl [IDg ail

1=

n
B(L+ I |Log oci|)
i=1

IN

n

|2k| < B(L+ I |Log a;|)/m
i=1
n
<BQ+ I |Log o4))
i=1
= ClB(cl > 1)
=>
B, = max{B, [2k|}
imax{B,ClB} = ClB
=>
2[w| > |Log(l + w) |
-C -C
> B 0 0

0o (ClB)



Write
C C. C
0 0.0
2(C1B) z(cl) B .
Choose D:
C
2(c)) ° < B
Then
C. C C DHC
2(¢y) 00 . gPg0-5 O,
Iet C=C + CO to conclude that
_C
1 0 -C
SO
w] » B8

thereby completing the proof of #5.

Under certain circumstances, one can go beyond #5.

8: THEOREM Let

a1re-serdy
bl" .,bn

be nonzero integers. Assume:



Then

b b
Iall ann -1| > exp(~ C(n) M (B) nfa;) --- fa(a)),

where C(n) > 0 is a constant depending only on n.

9: REMARK According to Waldsclmidt,an admissible value for C(n) is

226n n3n.

FACT If |b,| > 2, |b,| > 2, then

-13.3
b n(2) + byen(3)| > B 7.

APPENDIX

DEFINITION Complex numbers Qre-- 04 are maltiplicatively independent if

none are zero and if for any relation

a
%

a
l co e qun=l’

where (al,...,an) € Zn, there follows
a; = 0,...,an = 0.
ILEMMA Suppose that OhpreeerOy are multiplicatively independent -~ then for

As
any choice (>\1,...,>\n) € c® with e l=0(..i (1 <i<n), then+ 1 complex numbers



2 /-1, Apreses) are Q-linearly independent.

Suppose given algebraic numbers 0 #0,1,... 1O # 0,1 and assume that they

are multiplicatively independent, hence that
k k
1 n
SRR #1
if the exponerts are not all zero.
Turning to #2, it can be shown that if

|a| < B

for a sufficiently large positive constant C depending only on n and Oy reeesy

then Qg reee s must be multiplicatively dependent... .



§35. MATRICES

let A be an m x n matrix with entries in the camplex numbers (m rows and

n colums).

1: DEFINITION The column space of A is the vector space spanned by its

colums and the colum rank of A is the dimension of the colum space of A.

2: DEFINITION The row space of A is the vector space spanned by its rows

and the row rank of A is the dimension of the row space of A.

3: THEOREM The colum rank of A equals the row rank of A.

Therefore the number of linearly independent columns of A ecuals the number
of linearly rows of A, their common value being the rank of A: rank A.

[Note: Only a zero matrix has rank 0.]

4: EXAMPLE
Tl 0 1
rank -2 -3 1 = 2.
3 3 0

— pu—

[The first two rows are linearly independent, so the rank is at least 2 but
the three rows in total are linearly dependent (the third is equal to the second

subtracted from the first), thus the rank is less than 3.]

T
5: N.B. Denote by A the transpose of A —— then

T
rank A = rank A .



|2

rank = ].

-1 -1 0 -2

— f—

In fact, there are nonzero columns so the rank is positive. On the other hand

1 -1
, 1 -1
rank = 1.
0 0
2 -2

7: LEMMA The rank of A is the smallest integer k such that A can be

factored as a product A = BC, where B is am x k matrix and C is a k x n matrix.

8: LEMMA The rank of A is the largest integer r for which there exists a

nonsingular r x r submatrix of A.

[Note: A nonsingular r-minor is a r x r submatrix with nonzero determinant.]

9: LEMMA The rank of A is the smallest integer k such that A can be written

as a sum of k rank 1 matrices.

[Note: A matrix has rank 1 if it can be written as a nonzero product CR of

a colum vector C and a row vector R:



1'1 1™n
CR = .
c ry - - St .]

Take A as in #6 - then

[
o

l 1 ‘[11021
-1

is rank 1.

11: LEMMA The rank of A is < minfm,n}.

12: DEFINITTON If
rank A = min{m,n},

then A is said to have full rank; otherwise A is rank deficient.

13: IEMMA If A is a square matrix (i.e., if m = n), then A is invertible

iff A has rank n, thus is full rank.

14: IEMMA If B is a n x k matrix, then

rank AB f_min{rank A, rank B}
and if rank B = n, then

rank AB = rank A.

15: IEMMA The rank of A is equal to r iff there exists an invertible



m x m matrix X and an invertible n X n matrix ¥ such that

where Ir is the r x r identity matrix.

16: NOTATION A is the complex conjugate of A“and A* is the conjugate

transpose of A.

17: IEMA

rank A = rank A

rank A*

I

rank A*A = rank AA¥,
Attached to A is the linear map
fAzCn -> Cm
defined by
fA(x) = AX.
18: LEMMA The rank of A equals the dimension of the image of fA'
19: LEMMA
° fA is injective iff rank A = n.

e fA is surjective iff rank A = m.



§36. SIX EXPONENTTALS THEOREM

This is the following statement.

1l: THEOREM Suppose given (-linearly independent complex numbers
{xl, ces ,xm} and {yl, .o ,yn}.
Assume!

m > m + n.

Then at least one of the numbers
expleyy) (L<icm 1<jsn)
is transcendental.

[As regards the proof, one can extend the ideas used in the proof of Gelfond-
Schneider but we shall omit the details opting instead for a “"geometric argument”

later on (cf. §41, #1).]
Special Cases: m=3, n=2o0orm= 2, n= 3.

2: EXAMPIE Take

2 3
3=l = vy, =€ y,=,y;=¢,

where §17, #2 has been silently invoked -- then the six exponentials are

2 3 2 3 4
e e e e e e
e ,e ,e ,e ,e ,e

thus at least one of the numbers

is transcendental.



, =Ty = (@), v, = n(2), vy = 7en(2).

Then the six exponentials are

is transcendental.

[Note: Consider a dependence relation
qn(2) + q,mn(2) + qr°en(2) = 0,
where qllq21q3 € Q — then

2 _
ql+q2’rr+q3'rr =0

ql =0, qé =0, q3 = 0,

m being transcendental (cf. §19, #1).]

4: REMARK It is unknown whether one of the numbers

is transcendental.

5: EXAMPIE Fix t € R, t ¢ Q. Take

X, = 1, X, = t, Y, = Mm(2), Y, = In(3), Yy = £n(5) .



Then the six exponentials are
2, 3, 5, 2%, 3%, s%,

thus at least one of the numbers

is transcendental.
[Note: £n(2), £n(3), fn(5) are Q-linearly independent. To see this,
consider a dependence relation
qun(Z) + qu.n(3) + q3£n(5) =0,
where 91:9,,93 € Q. Write

ini

ql=nl

P9y =
nl#o,nz#o,nB#O

and the claim is that

ml=0,m2=0,m3=0.
Clear the denominators and exponentiate to get
e B K B e S

2 1

mn,ng = 0, nmn, = 0, nn.m, = 0,

ml=0,m2=0,m3=0.]



E_ = {t € R:2%, 3%, 55,... e .
Then E_ = N
[Introduce
B, =1{te R:2b € M}
E, = {t e R:2t,3t e N}
E; = {t € R;2t,3t,5t € NI.
Then
N <E, <BEy ©E, ©E

= < =
N—NﬂQCE3ﬂQCE2r’1Q ElﬂQ—N

=>

But, in view of #5,

Therefore

NcE

E, NnQ U E N R-~-0Q))

S (E,NQ U (E;N R-Q)

E,NQ SE;NnQ=N]

[Note: True or False: E2 = N (cf. 844, 46).]

7: N,B. By definitien,
E = {t € R;2% & N}.



And
_ t
2"=neN=expn(27)) =n

= m@% = mm)

= £ = In(n)
= T2
And if £ = m € N, then

_m@ __ mE) _
“me  tmey ™

m
8: EXAMPIE Let X] 1%, be two elements of R U /~1L R which are @-linearly

independent. ILet ¥q1Yy be two complex numbers subject to yl,y2,§2 being Q-linearly

independent —— then at least one of the numbers
Y1 *i¥y XV XY
e , € , e , e

is transcendental.

[Taking Y3 = 3—/2, #1 is applicable so it is a matter of eliminating e ’

*5Y3

e from consideration. E.g.:

(1) Suppose %y € R -~ then

XYz XY, XYy KXYy XY
e = e =e = = e .
1Yo XY,
But e is transcendental iff e is transcendental.

(2) Suppose x; € Y-1 R —— then

Y2  *1¥2 = Yo

X)¥3 Xy, X
e e = e

i
o0
Il
0]



But

Y 1
e T X
1¥2
e

e Y2 TX1Y7
is transcendental iff e is transcendental. Meanwhile e is transcendental

1Y)
iff e is transcendental.]

[Note: o transcendental <=> o transcendental and o transcendental iff é—

transcendental. ]

: LEMMA Consider a nonzero m x n matrix

Ayt Mn
M= . :
- >‘ml . .. >‘mn L
where Aij € L. Assume:
® The m rows
D\ll Aln],...,[kml eee A ]

m
are Q-linearly independent in ™.

e The n colums

M1 L Mn
[ ] , * o @ , »
>‘ml m

are Q-linearly independent in c™.



m >m+n
implies that the rank of M is > 2.

PROOF To get a contradiction, suppose that

Il

rank M = 1.

Write (cf. 8§35, #9)

xij xiyj.

The point then is to check that the conditions of #1 are satisfied, i.e., that

XyreeerXy
are Q-linearly independent.
Yyreee1¥p

For then the conclusion is that there is a pair (xi,yj) such that
exp (x;v,)
is transcendental. But
( = exp(A,.) €Q

a contradiction. So consider dependence relations

il
o

fF t o T Gy

plyl + eee +pnyn= 0

and for the sake of argument, set down a generic rational dependence relation for



the colums:

XYy XYy 0
A _ + e+ A : = e ¢
me 1 xmyn 0

Alxlyl+-~-+Ax 0

n lyn=

Bjxyy + o0t FAxy, = 0.

We have
plyl toeee d pnyn =0
=>
Py o * Xlpnyn =0
=>
Pi¥1y; + oo t P Xy =0
melyl + ... +xmpnyn= 0
=>
P1¥e¥1 Foeee F Pr¥mn = 0.
Take now

Al = pl,...,An = pn.
Since by hypothesis, the colums are Q-linearly independent in c™ , it follows

that Al = O,...,An = 0 or still, P = 0,...,pn = 0.]



10: SCHOLIUM Take m = 2, n = 3 and consider a nonzero 2 X 3 matrix M

with entries in [:

11 12 713

>\21 A22 >\23 .

Suppose that its rows are Q-linearly independent and its colums are Q-linearly
independent -- then in view of #9, the rank of M is > 2. However, on general
grounds (cf. 835, #11), the rank of M is < min(2,3) = 2. Therefore

rank M = 2,

hence M has full rank (cf. §35, #12).

1ll: N.B. We have seen above that #1 => #9. The converse is also true:
#9 => §#1.

[To begin with, the assumption that
{xl, .o ,xm} and {yl, . ,yn}
are Q-linearly independent implies the . Q-linear independence of the rows and

colums of M. E.g.: To deal with the colums, note that there is at least one

X, # 0, say Xy # 0, thus from
MXq¥y * oo FAXY, =0

there follows



10.

Put A, . =X,y

i3 . and suppose that V i,j:)xij € L — then the rank of

J

All...k

Xml"'}\mn

is > 2 (bear in mind that mn > m + n). But this is false: rank M =1. Con-
sequently 3 i,j:kij Z L, so
exp(?\ij) = exp(xiyj)

is transcendental.
APPENDIX

QUESTION If mn/(m + n) is large, can one find a lower bound for the
rank of M which is > 2? Without additional conditions, the answer is "no". To

see this, consider

n(2) n@) ... Zn(pm)
Mm= £n(3) 0
In(p,)

wherepmisthemthpr:ime ——thenranka=2foreachm>2 (here m = n and

m2 >2m =>m > 2). Therefore the mere Q-linear independence of the rows and

colums does not suffice.



11.

CRITERTION Let

S W
M = ) )
A - A

be an m X n matrix with entries in L. Assume:

Vo(t,...,t) € ™ - {(0,...,0)}

Y (Sseees8.) € - {(0,...,0)},

the sum
m n
iil jil (tisjkij # 0.
Then the rank of M is
> m_
- m+n

[Note:

Mg # 0 (Y 4,9).]

EXAMPIE Takem=d > 1, n=d > 1 ~- then

LFMMA Under these circumstances, the rows and colums are Q-linearly

independent.



12.

PROCF Consider

M1 Mn
Al ) +...+An ' ’
>‘m.'l. >‘mn

where without loss of generality, the Aj € 7 are not all zero -- then the claim

is that this expression is # 0. To be specific, assume By # 0 and tailor the
expression

m n

t.s.s2
151 jEl 1°3%43

as follows: Choose

t, =1, t,=0,..., t_ =0

1 2 m
to get
n
jil Sj>‘lj = sl>‘ll + sz>\12 F+ eee + Sn>‘]_n
# 0.
Take
sl = Al’ 52 = AZ""’ sn =An,
hence

Aﬂu + A2>\12 + eee + Anxln # 0.

Assume in addition that
m > m + n.

Then what has been said above implies #9 which in turn implies #1 (cf. #11).



13.

EXAMPIE Take m =d > 1, n =d > 1 — then the foregoing says that the

Re]]

rank of M is > 5. On the other hand, the theory also says that the rank of M is

N

> 2 (cf. #9). To check consistency, note that

nm>m+nbeoonesd2>2d=>d>2=>%>1.

Case 1: =2r (r =1,2,...) — then

2 <r < rank M.
Case 2: d=2r+1 (x=1,2,...)

r=1: Here

= 35 rank M,
2
But rank M is a positive integer, so rank M > 2.

r > 1: Simply write

2<rfg

Therefore matters are in fact consistent.



§37. VECTOR SPACES

Let K be a field, k < K a subfield.

1l: N.B. Typically,

K=, k=Qor Q.

2: LEMMA Let V c Kd be a K-vector subspace —- then the following
conditions are equivalent.

(1) V has a basis whose elements belong to kd.

(ii) V is the intersection of hyperplanes defined by linear forms with

coefficients in k.

[Note: Such a subspace V is said to be rational over k.]

3: DEFINITION Let I be a K-vector subspace —— then a k-structure on V

is a k~vector subspace V' of V such that any basis of V' over k is a basis of V

over K.

4: IEMMA Iet V c Kd be a K~vector subspace —— then V n kd is a k-structure

on V iff V is rational over k.

5: EXAMPLE

° Qd is a Q-structure on Cd.

-

e ( is a Q-structure on <.

6: DEFINITION Given K-vector subspaces



endowed with k—structures

VI

1 -V

1

Vé C'VZ,

a K-linear map f:Vl -+ V2 is rational over k if f(V]'_) S Vé.

da da
7: EXAMPLE Take Vl =C l, V2 =C 2 to arrive at the notion of a (-linear

which is rational over Q(or ﬁ) .
APPENDIX

NOTATION ILet € re--18g be the canonical basis for Kd.

Iet V < Kd be a K-vector subspace of dimension n. Consider the following

properties.

d

. a,, - . N
(1) If 'ITV.K + K°/V is the canonical projection, then (ﬂv(gl) ,...,ﬂv(gd_n))

is a basis for Kd/ V.

(2) Given z = (zl,...,zd) € |, the conditions

= e + Z =0=>z=_0_‘

23-n+1 a z

(3) The restriction to I of the projection Kd + K* of the last n coordinates
is injective.
(4) V is the intersection of d - n hyperplanes defined by the equations
d

zZ. = X a

(1<3sdm).
J i=g-ntl

B
ij71i

FACT Properties (1), (2), (3), (4) are eguivalent.



§38. VECTOR SPACES: L

Recall that in §32, #3, various conditions were formulated which are

equivalent to homogeneous Baker. What follows is a supplement to that list.

1: THEOREM The following assertions are equivalent to homogeneous Baker.

d

(i) Let V < C” be a C-vector subspace rational over Q with V N Qd = {0} —

then V n 19 = {0}.

(ii) Tet v < ¢

be a C~vector subspace rational over § — then there
exists a C-vector subspace VO of Cd rational over Q and contained in V such that

VnLd=VOnLd.

[E.g.: To see that (ii) => (i), note that if v n Q< = {0}, then the only
C—vector subspace VO of Cd rational over ( and contained in V is {0}, hence

VnLd=VonLd={0}nLd={0}.]

2: REMARK One can replace item (ii) by a weaker assertion, viz.: If

V c Cd is a C-vector subspace rational over Q, then

votd=u v ntd
VO
where V0 ranges over the C—-vector subspaces of Cd rational over Q and contained

in V.
3: THEOREM ILet V < Cd be a C-vector subspace —— then the Q-vector space

vn 1@ is finite dimensional iff V n ¢ = {0}.



The implication
im (V 0 1Y) < o= vngd= {0},
i.e.,
vnod # {0} => dimy (V 1% =«

is straightforward: Take
q= (g,---r9q) #0
inVnql--thenvael,
(@hreeeiqg)) € V0 1T = aimy (v 1 19 = w.

As for the converse, i.e.,
vn o= {0} = dimg (V 19 < w,
it is not so easy to establish. However there is one situation when matters are
immediate. For suppose that V n Qd = {0} AND in addition that V is rational over

Q0 — then v n 1% = {0} (cf. #1 (i)).

4: N.B. If V is not rational over Q but V n o = {0}, then
Qime (V 19
may very well be positive (but, of course, finite) (cf. #7).

e a C-vector subspace such that V n Qd = {0} —

5: THEOREM Let V < C
then

imy (V 1% < n@),



where

n= dJ'.mC(V).

6: EXAMPLE Take for V a complex line in Cd, hence n = 1. Suppose that
V contains three (Q-linearly independent points of Ld —— then V contains a nonzero

point of Qd.

[In fact, if V n Q% = {0}, then

aimy (V 1Y) < n@Hl) = 10+1) = 2.

But the assumption implies that

aimg (¥ 0 19 > 3,

Therefore V n Qd # {0}.]

It is conjectured that n(ntl) in #5 can be replaced by n(nt+l)/2 but this

remains to be seen.

7: EXAMPIE Fix nonzero Q-linearly independent elements ) of L

KEX 170 Al

and define V by the equations

MZp T oo T A% T 0 2

Then V n Qél = {0} and V N Ld contains the n(nt+l)/2 points

Wij = (wijl""’wijd) € Cd 1<i<j<d),
where
Wijk = >‘j (k=1), Wijk = - >‘i k=173,
and w; ., = 0 otherwise (1L < k < d). And these points are Q-linearly independent,

ijk



hence

dimg (V1 19 > n(@) /2.

8: RAPPEL Let X be a vector space, S < X a nonempty subset — then the

span < S > of S is the intersection of all subspaces containing S or still, the

set of all finite linear combinations of the elements of S.
9: NOTATION Given a C-vector subspace V &« Cd , put

t = dim, <vngds,

the dimension of the C-vector space spanned by V n Qd.

10: N.B. For the record,

0<t<n<d,
it being assumed that V # Cd.

11: THEOREM ILet I/ < Cd be a C-vector subspace such that V N Qd = {0} —

then
Qimg (V 0 1% < am-t)
< d(@-1-t),
where
n = dim (V) .

12: REMARK Sometimes this estimate is better than the one provided by

#5 but it can also be worse.

® Suppose that

n= dimC(V) =d-1, t =n.



Then
d(n-t) = d(d-1-t)
= d(d-1-@d-1)) = 0
=> dim (¥ 0 % =0=>vn &= 10}
in accordance with expectation (V being rational over (_3) . As for #5, it just gives
. d
dJ_mQ(V n L) < (@1)(@4a.

e Suppose that

n = dj.mC(V) =1, t=0.

Then

d(n-t) = d(1-0) =4,

whereas

Il
N

n(n+l)

which is less than d if 4 > 3.

13: EXAMPLIE Iet V © C3 be the hyperplane defined by the equation

/2—zl+e22+z3=0.

Then v2, e, 1 are Q-linearly independent. To check this, consider a rational
dependence relation
q V2 + qye +a; = 0.
Case 1: ql=0=>q2e+q3=0=>q2=orq3=0.

Case 2: ql;é 0=



I.e.: e is algebraic which it isn't Consequently, V n Q3 = {0}. Since here
d=3,n=2, t=1,

it therefore follows from #11 that

aim (v *) <301 = 3.

INote: There are three possibilities for t: 0,L1,2. But
=3
(1, 0, -v2) e VnQ
which implies that £ > 1. And t = 2 is impossible (V is not rational over ﬁ) ’

thus t = 1.]

It has been observed above that #1(i) is a particular instance of #11

(cf. #12 (first @)). To repeat:

14: THEOREM et | < cd be a ¢-vector subspace rational over ’Q with

vn¢® = {0} — then y n 1% = {0}.

15: APPLICATION Here is one version of Gelfond-Schneider: Iet >‘l e L,

Ay € L, let B € @, B ¢ Q, and suppose that Ay = BAy —— then the claim is that

A; = A, = 0. To establish this, work in ¢° and let ¥ < ¢” be the complex line

C(1,8) — then V n Q2 = {0} ((z,2B) = (q;,qy) => z2=q) => @B =g, => B =

qz/q:L if g # 0). Moreover |/ is rational over Q (V being defined by the equation



z, = Bz;). The assumptions of #14 are therefore satisfied, hence U n L2 = {0}

But (A ,A) € VN 1%, thus A, = A, = 0, as contended.

16: APPLICATION Let Bl # 0,...,Bd # 0 be algebraic numbers. Denote by
v e Cd the hyperplane defined by the equation
Blzl + ... ded= 0.

Then V is rational over f} Assume: V n Qd = {0} — then V n Ld = {0} (cf. #14).

Next Bl"”’Bd are Q-linearly independent:

qlBl + eee +qd8d= 0 => (ql,...,qd) eVn Qd= {0}.

To exploit this, take nonzero >‘l € L,...,)\n € L and consider
BiAdp + oot By
which we claim is nonzero. For otherwise,
(O A € v = {0}
l,ooo, d -

Now quote 8§32, #3(ii) to see that this setup implies homogeneous Baker.
[Note: In 8§32, #3(ii), the supposition is that Bl,...,Bd are (-linearly
independent (replace n by d). This implies that  n QO-l = {0}. Proof:
(zl""’zd) = (ql,...,qd) evn Qd
=>

Byzg + oo T BgEg = 0

qul + oeee + qud = 0-]



§39. VECTOR SPACES: "'G

It will be useful to generalize the considerations in §38 as this provides

a convenient forum for certain important applications.

1l: NOTATION Let do >0, dl > 1 be integers and let d = do +dl. Put

G0 =CX ... XC (dO factors)
g = ¢ x +e. x ¢* (4 factors)
and set
G =G, x G.
2: NOTATION
Ly = Qdo ey

[Note: Accordingly an element of LG is a do + dl tuple

(ByseeesrBa v Asecerrs ),
1 do 1 dl

where Bl,...,BdO are algebraic numbers, i.e., are in Q, and Al,...,kdl are

logarithms of algebraic numbers, i.e., are in L.]

: N.B. The choice d, = 0 puts us back into the setting of §38.

0

4: LEMMA LG is a Q-vector subspace of Cd.

5: LEMMA Iet V < Cd be a C—-vector subspace.



d)
e If Vn ({0} x Q™) # {0}, then

dimQ(V n LG) = o,

[Take

q= (0,...,0, ql,...,qdl) #0
dl
inVn ({0} xQ7) — thenVv A €L,
(0,...,0, qll,...,qdlk) evn LG => dj_mQ(V N LG) = o]

-4
e If Vn (Q~ x {0}) # {0}, then

dimQ(V n LG) = oo,

[Take

B=(B),..., dO,O,...,O) # 0
-.do -
in V¥ n (Q° x {0}) —— then vV vy € Q,

»(BlYI"‘IBdOY,O,oo-,O)e VN LG => d_‘|_mQ(V N LG) = o, ]

6: SCHOLIUM If

dJ'_mQ(V n LG) < o,

9 4
vn ({0} x Q) ={0}and V n (Q ~ x {0}) = {0}.

7: DEFINITION The relations

dl d

Un ({0} xQY) ={0rand v n @ ° x {0}) = {0}

are the canonical conditions.




8: THEOREM Let U < Cd be a C-vector subspace for which the canonical

conditions are in force —— then

dim(VﬂLG)<°°

Q

and, in fact,

dimQ(V n LG) < dl(n—t).
[Note: As in 838,

n=dmhw)aﬁw:=¢mC<VnG%J

9: REMARK Taking d, = 0 recovers 38, #ll. As for the proof, it will

0
be omitted since it depends on the so-called M"linear subgroup theorem" which we

shall not stop to formilate.]

10: APPLICATION Homogeneous Baker is the assertion that if A, € L,...,

1

A 3 € L are nonzero and Q-linearly independent, then >‘l’ vee A g are ﬁ—linearly

independent.

[Suppose that >\l’ ceesh 3 are §-linearly dependent, say

lel + eee + Bd—lxd—l = )‘d’

where B B8 are algebraic. It can be assumed in addition that A A

17°°* "7 a-1 17°°°""a-1

are 6—li.nearly independent. Take now for V the hyperplane in Cd defined by the

equation

Mzp F oot Ag1254

Zd.

Explicate the parameters: d,=n=d-1, d

a =l(sod5do+d=n+l=(d—l)

1 1

+1=4d...), t =0. The definitions imply that the canonical conditions are in



force, thus by #8,

d_‘i.mQ(V n LG) < dl(n~t) = 1(3-1-0) =4 - 1.
On the other hand,
vniLg=va @ xD

contains d Q-linearly independent points Lyree-rlgr namely

Ci = (6ill---ldi(d_l)r>\i) (1 < i < d-1)

cd = (Bll---IBd_ll}\d)O]
[Note: Take a point in V n Q~, say (Bl,...,Bd), subject to
MBLF o Aga1fa T Bgr
Argue that necessarily Bd =0 (cf. #14), hence Bl = 0""’Bd—l =0 O‘l""’}‘d—l
are Q—linearly independent), hence V N Qd = {0}, hence t = 0.]
1l: APPLICATION Inhomogeneous Baker is the assertion that if A € L,

-++sAq € L are nonzero and Q-linearly independent, then 1,{,...,\q are Q-linearly

independent.

[Suppose that l'>‘l""’>‘ g are a—linearly dependent, say
By ¥ BpAy oo F Ba1hg1 T Agr
where BO’Bl""’Bd—l are algebraic. It can be assumed in addition that >‘l"”’>‘d

are Q-linearly independent and l'>‘l’ eeer g-1 are f)—linearly independent. Take now



for U the hyperplane in Cd+l defined by the equation

Zg F MZy T oo T A12901 < %y

Explicate the parameters: do =n=4d, dl = 1 (the role of d in the theory is

played in this situation by d + l:d0 + dl d+1, t >1 (since (1,0,...,0,1) € V).

The definitions imply that the canonical conditions are in force, thus by #8

dim, (I N LG) < dl(n—t) l@t) <d-1.

Q
On the other hand,
voLa=van @ x1

contains d Q-linearly independent points Cyr-e-rbgr namely
T3 = (0,8;7,0008; g0y dy) (L sigad)

and
tqg = BprBrreeerBygrrg)-]
[Note:
t2l=>-t<-l=>d-ts<d- L.

Also, on general grounds, BO =0 (cf. #14).]

12: THEOREM Let < (O be a (-vector subspace rational over Q and for

which the canonical conditions are in force —— then U n LG = {0}.
PROCF In #8, take t = n to get

dimQ(V N LG) = {0}.

13: APPLICATION

e® If o is a nonzero algebraic number, then e® is transcendental (cf. §21,

#4) .



B

e e If B is an algebraic number such that e~ is algebraic, then 8 = 0.

Claim: e @ => @ For if e* was not transcendental, then it would be algebraic,
hence that o = 0, contradiction.

To establish e e, taked, =1, d. =1sothat d=1+1=2 and LG=Q><L.

0 1

The complex line V = C(1,1) in C2 is rational over 6 and contains (B8,B) € LG'

Moreover it is clear that the canonical conditions hold. Therefore

Voo LG = {0} (cf. #12) => 8 = 0.

14: APPLICATION Suppose given a relation

Bo + Birp * vee + ByAg = O
where BO,Bl,...,Bd are algebraic and Al € L,...,Ad € L — then 80 = 0.
[Argue by contradiction and assume that BO # 0 with d minimal, thus Bl,. «e/B 3
are Q-linearly independent and >‘l’ ceosA g are (T\)—linearly independent. Let
c pd+l . .
Vec be the hyperplane defined by the equation
Then V is rational over 6 and the canonical conditions are satisfied. But

(l,?\l,...,Ad) eV

-0 x 14 = =
(l,)\l,.ou_’Ad) E LG - Q X L (d - l' d - d)-

Meanwhile
v n LG = {0} (cf£. #12).]



15: SCHOLIUWM Suppose given a relation

ByAp + oee + Bghg =0,

where Bl,...,Bd are algebraic and Al € Lr...,kd € L.

e If (Bl,...,Bd) # (0,...,0), then Al""’xd are Q-linearly dependent.

e If (Al,...,kd) # (0,...,0), then Bl,...,Bd are Q-linearly dependent.

16: N.B. Recall that every nonzero linear combination
Bty o + Byly

is transcendental (cf. §31, #11).

17: LEMMA Suppose that A

l,...,hd are nonzero elements of L and Bl,...,Bd

are nonzero elements of 6. Assume:

Bl}‘l + eee + Bd)‘d = 0.

Then there exist nonzero integers kl""’ka such that

lel + e + kdBd = 0.



§40. VECTOR SPACES: V., V..

1l: CONSTRUCTION Let V < Cd be a C-vector subspace — then V contains a
unique maximal subspace me of the form W0 X Wl' where W0 is a subspace of

d a

C 0 rational over 5 and Wl is a subspace of C 1 rational over Q.

d

2: ILEMMA WO isthesubspaceofcosparmedby

—do
Vn (Q ° x {oh
9
and Wl is the subspace of C spanned by

dq
vn ({o} x Q).
3: RAPPEL (cf. §39, #7) The relations

d; -y
Vn ({0} xQT) =(0}and v n (Q° x {0}) = [0}

are the canonical conditions.

4: N.B. Vmax = {0} iff the canonical conditions are in force.

5: THEOREM ILet V c Cd be a C-vector subspace. Assume: V is rational

over -d —— then
vV n LG = Vmax n LG.
PROOF Trivially,

VmaanchnLG'

This said, if first the canonical conditions hold, then U N LG = 0 (cf. §39, #12).



But also U = {0} (cf. #4), hence Viax " g = 0- Proceeding in general, write

G
Vnax = Wo X Wp»
put
@ @
1 = ] ) = 1 ~
d0 dJ.mC(WO), d]'_ dJ.mC (wl),

and introduce

@
I

Cx... xC (d(') factors)

X

G!=C x ... x C>< (d]'_ factors) .

+ C ~ be a surjective linear map, rational over Q, with kernel WO and let

+~ C © be a surjective linear map, rational over Q, with kernel W;. Denote

by ¢ their product

Then the kernel of ¢ is V___ and cp(LG) = LG. . Moreover the canonical conditions hold

d’ dd

for the subspace V' = o(V) of C Ox¢ l, hence V' n LG' = {0}. Therefore

-1 1 — —
VﬂLGccp v ﬂLG,)—Kercp—me

VﬂLGCVmaXﬂLG.

6: CONSTRUCTION Let V < Cd be a C-vector subspace — then V is contained

in a unique minimal subspace Vmin of the forxm W0 X Wl’ where WO is a subspace

d d
of C 0 rational over Q and Wl is a subspace of C 1 rational over Q.



d

7: LEMMA WO is the intersection of all hyperplanes of C 0 rational
- dy
over (Q which contain the projection of V onto C ~ and Wl is the intersection of
d el

all hyperplanes of C 1 rational over Q which contain the projection of V onto C l.

a d d
8: N.B. Umj_n=c meansthatW0=C 1

APPENDIX

FACT Let V < Cd be a C-vector subspace. Assume: The canonical conditions

are in force -~ then there exists a hyperplane H < Cd containing V and for which

the canonical conditions are also in force.



§41. EXPONENTIALS (6 or 5)

Specialized to the case when m = 2, n = 3, the six exponentials theorem is

the following statement (cf. 8§36, #1):

1l: THEOREM Let {xl,xz} and {yl,yz,y3} be two (-linearly independent sets

of complex numbers —— then at least one of the six numbers

XYy XY, XYz XY XY, Xy,
e 7 e F4 e F e r e 14 e

is transcendental.

1,2,

I

PROCF To arrive at a contradiction, assume that the six numbers xiyj (i

j =1,2,3) all belong to L (the vectors in a linearly independent set are nonzero,

thus x, #0 (1 =1,2), .yj #0 (J =1,2,3), so Xiyj # 0). Work in C2 and take for
V the complex line Cx = C{xl,xz} —— then ' N Q2 = {0}. For suppose that

zZX = (le,zxz) evn Q2 (zeC, z#0).

G |

(a;,a, € O

2%, =9

and the claim is that 4 = 0, g, = 0. Consider the four possibilities.

L ql#orq2#0=>

Il
>
N|H
%

I—F'Qli—"

NJ|
NN



=> dp¥) = Xy = GpX) m qg%, = 0

=>qy =0, q, =0,

{Xl’XZ} being Q-linearly independent.

Il
o

® qufo,q2=0=>zx2=0=>x2

Il
o

oql=0,q2750=>le =>x, = 0.

Therefore these three possibilities are untenable, leaving qy = 0, a, = 0, as

claimed. Next, V N L2 contains the points

yl>_<_l YZ}_S_I Y3§

which are Q-linearly independent. To see this, consider a rational dependence

relation
qul§ + q2y2§ + q3Y3§_< = _Q_r
i.e.,
q¥qYy + dXy¥y + Az¥%y3 = 0
G XYy T Ap¥o¥y * dgXpy3 = 0.
Dividing the first of these relations by X # 0 (or the second of these relations

by X, # 0) gives

qul + q2y2 + q3Y3 =0

q =0,9,=0,q3=0,



{yl,yz,y3} being Q-linearly independent. Therefore

3 < dJ'.mQ(U n 5.

On the other hand (cf. §38, #5),

aim (v 0 1% <11+ 1) =2

Contradiction.
The next result is known as the five exponentials theorem.

THEOREM Let {xl,xz} and {yl,yz} be two Q~linearly independent sets

of complex numbers. Let further y be a nonzero algebraic number — then at least

one of the five numbers

Xy1 ¥, Xy Xy, y%/%,
e , e , e , e , €

is transcendental.

PROCF With §39, #8 in mind, take d. = 1, d

l=2 (=>d = 3) and let V be the

0

hyperplane in C3 defined by the equation

YX(Z1 = %X,Z, +xlz3= 0 (=>n=2).

Note that

"3
(L,0,-vy) e ¥ n Q 14
hence t > 1. If both X, /X, are algebraic, then \(xl/x2 # 0 is algebraic, so

YX,/X
e 12 is transcendental (cf. §39, #13). It can therefore be assumed that either

%) or x, is transcendental, thus V is not rational over 6, thus t #2 => t = 1.

Moving on, since X11%, are Q-linearly independent and y # 0, it follows that the



canonical conditions are in force. Consequently

d_i.mQ(V N LG) < dl(n -t) =22-1) = 2.

On the other hand, V contains the Q-linearly independent points
(L,¥%,/%5,0), (0,277 %5¥7) s (0,2,¥5,%5Y,)

so at least one of these does not belong to
LG=EJ><L2=6XLXL.
E.g.: Suppose that
(0,%777,%,¥7) € Q% L x L.
Then

XYy £ L or XY £ L (or both)

Wil w24l
e transcendental or e transcendental (or both).

3: EXAMPIE Suppose that >‘l e L, >\2 € L. Assume: {)\l,xz} is Q-linearly

independent. ILet we € (w g Q) and let B € Q (B # 0) — then at least one of

the three numbers

W}‘l w)\2 Bw
e ,e T,e

is transcendental.
[In #2, take X =W (Z qy, %, = 1, Yy = )\l,yz = )‘2 — then at least one of

W>‘l w>\2 A A,  BwW
e re ,e,e”, e

is transcendental .or still, at least one of

wxl Wi, Bw
e ,e T,e

is transcendental.]



[Note: Put
— .- e>‘1
~ Oy = e>\2.
Then at least one of
Qps Oos e@W

is transcendental.]

4: EXAMPLE Fix A # 0 in L. Letwe C(w ¢ Q) and let 8 € Q (B # 0) —

then at least one of the three numbers

2
e’ >‘, ew>‘, eBW

is transcendental.

In #2, takexl=w (Z Q). x2=l, yl=w>\, y2=>\—— then at least one of

2
W A, ew>\’ ewA' e>‘, eBw

is transcendental or still, at least one of

2
e >‘, ew>‘, e'Bw

is transcendental.]

A then at least one of

wszw

o , 0, e

[Note: Put o = e

is transcendental.]

1

5: EXAMPLE Iet Ag€ L(Ag#0), A, €L, A €L, BeQ B#O), v =5



Assume: {)\l, )\2} is Q-linearly independent —- then at least one of the two numbers
BloM Bk
e , €
is nonzero.
[In #2, take %, = _)\05 (¢ Q. X, = 1, Y1 = Nqr Y9 = Ay hence at least one of

1
B, MBh M Ay 7 AgB
JoFL oflo s o R BB o

is transcendental or still, at least one of
BANA BALA
e 0 l’ o 02

is transcendental.]

[Note: AOB is not rational (for if it were, then A  would be algebraic

0
whereas it is transcendental).]

6: EXAMPIE Let AorM be nonzero elements of [ and let g € Q (g # 0) —
then at least one of the two numbers
2
B>‘O>‘l (B)\O) }‘1
e , €
is transcendental.
[To illustrate, take g = 1, )‘O = /n(2), >‘l = fn(2) —— then at least one of
m@) . en@)?
2 , 2

is transcendental.]

: REMARK Is it true that

five exponentials => six exponentials?
In the literature, it is asserted that this is the case but no proof has been

offered.



[To see the difficulty, in #2, take y = 1, and consider

XY XY, Xy XY, X/%
e r e ’ e r e 4 e
X¥3 XYV XY; Xy, X/x
e , € , © , e , € .
/’
If e is algebraic, then we are done since one of the exponentials in the
X /X2 xl/x2
first row preceding e or in the second row preceding e must be trans—
X,/X

2

cendental. However, if e is transcendental, then it is conceivable that

the first four exponentials in both rows are algebraic... .]



§42. SHARP SIX EXPONENTTALS THEOREM

This is the following statement.

1l: THEOREM Let {Xl,xz} and {yl,yz,y3} be two (-linearly independent sets

of complex numbers. ILet further Bij (i=1,2, j=1,2,3) be algebraic nmubers.
Assume: The six numbers

X.V.—8; .
o L ij

are algebraic, hence that the >‘ij = xiyj - Bij are in [ — then

xys = 85 (=12, 3=1,2,3).

4

PROOF With 839, #8 in mind, take d, = 2, 4

l=2 (=>d=4) and let V < C

0

be the hyperplane defined by the equation
xz(zl + z3) = xl(z2 + z4) (=>n = 3).

Note that

(1,0,-1,0) € v n O

=t > 2.

(0,_11011) € V N 64

Note in addition that for j =1,2,3,

Byirhyqrhy) €V N L =00 @ x 1%

Since these points are Q-linearly independent (see below), the canonical conditions

are not satisfied (see below). Therefore

va @ x {0} # {0},



say

(21,25,124,2,) €V N (62 x {0})

=>zleﬁ,zzeﬁ&z3=o, z, = 0.

And

x2(zl + 23) - Xl(z2 + 24) =0

x2(zl) - xl(zz) =0

*
= = (z,) = z,.
% 1 2

But néither z) nor z, can be zero (see below), thus

2

2

VA
1 A

NINN

is an algebraic mumber not in ( (see below). Now put y = 2—2 and write

1
or still,

The entity 823. - YBlj is an algebraic number, thus on general grounds (see below)
sz - YBlj =0

which then implies that

13 23 23"



To finish the proof, make the claim that

>‘lj =0
(=12,3).
_ >\2j =0
>\2.
To argue this, assume that >‘lj #0, sO vy = )\—j is transcendental (see below)
13

(recall that vy ¢ Q). Accordingly

ylj=0=>yo—>\2j=0=>>\2j=0.

[Note: Details—
e Consider a dependence relation over Q:
dyny + dyn, + dany = (0,0,0,0)
which, when unraveled, becomes
qp (Byyr Byyr ¥9¥7 = Byyr Xo¥p = By)
F 0y (Byor Bogr X1¥p = Bygr X5V, = Byy)
+ d3(By3r Bygr X1¥3 — Bygr X,¥3 — By3)

= (OIOIOIO)

Pt RPp TI3P3 70
=>
G ¥y~ By TR Y, - Bpp) T ag(ys - Byy)

= QXY F XY, tag¥y; =0



or still, upon dividing by X # 0,
qyyy * Y, T A3y, = 0

=>ql=orq2=orq3=0-

e Suppose that the canonical conditions were satisfied —— then

dij(V n L

IA

dl (n - t)

Il

2(3 - t).

There are two possibilities for t:

t=2=>2(3-2) =2
_ t=3=>2(3-3) =0.

But
d;imQ(VnLG)z3,

AUYAE being three Q-linearly independent points of  n LG.

e The formula

X,(z)) = %(z5) =0

is a Q dependence relation per {Xl’XZ}' Claim: zq #0, Z # 0. E.g.: Suppose

zy = 0, hence xl(zz) =0 = z, = 0 (Xl # 0).

X X2

° 2 is a nonzero algebraic number and — ¢ Q. For if i—z € Q, we could
1

X1

write



and thereby contradict the Q-linear independence of Xy 1%,
e If
BO + B_'L}\l + e + Bd?\d = 0l

where 50’81""’Bd are algebraic and }‘l € L,...,Ad € L, then BO =0 (cf. §39, #14).

e The quotient %of two nonzero elements of [ is either rational or

transcendental.

2: IMPLICATION
sharp six exponentials => six exponentials.

[Take Bij =0, sovi, V], xiyj = 0, which is false (v i, X, #0, V j,yj # 0).

The supposition that the six numbers

eXiyj

are algebraic is therefore contradictory, thus at least one of the

X.V.
e T

is transcendental.]

3: IMPLICATION
sharp six exponentials => five exponentials.

[Explicate the parameters in §41, #2:

XY, XY, XYy XY, ¥E/x,
e , € ;r € r € 1 © .

Put
Y3 = Y/ XZI
let

By = Byp = By = Byp = B3 =0y



and let
B3 = Y-
To incorporate the denial of §41, #2, assume that the six numbers

Ji¥s 7 By

are algebraic. Note that

J¥s T B3 MYzt 0 erl/ )

and
Xy, - B _
e 243 23 _ oY Y-,
Now apply #1:
Xin = Blj (1=12,3j=12,3),
SO

XY = By = 00 XYy = By = 0r X¥y = By =00 %57, = By = 0y
so we have our contradiction. Of course,
X1¥3 = 813 = 0y X¥3 = By3 =¥
but these formulas do not figure in the deduction and are merely part of the
formalism.
[Note: There is a potential gap in the argument, viz. why is Iyl,yz,y3}
a Q-linearly independent set? Thus consider a rational dependence relation
qY; T DY, + dyv/%) = 0.

Multiply through by Xy

q¥¥y T XV, + A3 = 0.



Since
XY - XY -
e 11 €Q, e 1-2 €Q,
it follows that
Al =xyy; € L, AZ = XY, €L

and our relation reads
a3 + qlAl + qzxz = 0.

But {xl,xz} is a Q-linearly independent set, Al €L, AZ € L are nonzero and
Q-linearly independent, hence with

By = agYs By = q By =y,
we have

By * BiAy + ByA, = 0.
Therefore BO =0 (cf. §39, #14)

=>q3=0=>ql=0'q2=0.]



§43. STRONG SIX EXPONENTIALS THEOREM

Denote by L* the Q-vector space spanned by 1 and L in C, thus
* = .
¥ = {8y * By * *0 By

n ZO, (BO' l,---,Bn) eaﬂ-lr ()\lr°~°r>\n) € Ln}-

[Note: L*, like L, is stable under complex conjugation. ]

1l: THEOREM Let {xl,xz} and {yl’YZ'YB} be two f}—linearly independent sets

of complex numbers -— then
%
(X1Y1r ¥1¥5r X\¥ar X¥q0 XV, XY} £ LY,
i.e., 3i€e{1,2}, 33je{1,23}:

XYy £ L*,
XY
hence e © J is transcendental.
This result, due to Damien Roy, is the strong six exponentials theorem
(proof omitted).
[Note: The reason for the appelation "strong" as compared with the six

exponentials theorem per se is that one of the xiyj (1<ig2,1<3j<g3) is

not in L but even more, viz. it is not in L¥*,]

: STRONG CONDITION X Suppose that A

2: 0 € L*/ A € L% X, € L% 2y e LR

Assume: {AO,Al} is Q—lj.nearly independent and {) 1 is Q—linearly independent ——

0rA27A3



then
MA Mg «
Lrvakis wa R
0 0
PROOF In #1, take
A
¥ T X TR YL T Aoy Yo T Ay Y37 Ay
Then
A A A A
172 173 %
{>\-0’>\2,>\3,)\l, T— r )\_} ¢ L .
0 0
But by hypothesis,
*
{AO,XZ,X3,A1} < L¥,
Therefore
>\l>‘2 >\l>\3 *
Crvallr v S
0 0
3: THEOREM The strong condition X implies the strong six exponential
theorem.

PROCF To devise a contradiction, assume that the six products XY l<ic<2,

1 <j < 3) are in L*. Apply strong condition X as follows: Take

X A A Ay =X

0= F¥1r A T RV Ay T X Yo A3 T XY5e

Then {AO,Xl} is Q-linearly independent, as is {>\0,>\2,>\3}. Consequently either

A A A
S2gltor52¢ 1* (or both).
0 0



But
M R0, v € I*
AO XY; 242
e i b L N,
B XO XYy 243
Contradiction.

4: LEMVA Suppose that A ,), € L* (Xz # 0). Assume: {l,Al,l/Az} is
Q-linearly independent —- then
{Alkz, l/Xz} £ L%
PROCF If L/AZ Z L*, then we are done. Otherwise, apply strong condition
X to the family {l/kz,l,Kl,l} and conclude that
{Xlxz,AZ} £ L%,

hence M A, & L*.

5: SCHOLIUM Suppose that A € L*(\ # 0) is transcendental —-- then

02,10} £ L*.

[In #4, take Al = ), A, = A — then the issue is whether {1,)\,1/)\} is

2

Q-linearly independent. So consider a dependence relation

r + sk + t(1/)) =0,

where r,s,t € Q. Multiply up by ) to get

x + s\ + t = 0.

Since )\ is transcendental, it follows that {X,Az,l} is algebraically independent



over (, hence is algebraically independent over Q (cf. 820, #7), hence is

f}—linearly independent, hence r = 0, s = 0, t = 0.]

6: APPLICATION Take A = m/=~L — then A\ € | < [*¥ and

{ =%, YD) £ L%
Therefore
e g L¥*or 1/ ¢ L* (or both)
which implies that either

2
U

e’ 1is transcendental or el/ T

is transcendental (or both).

7: SUBLEMMA Iet X1 1%y1Y7 1Y, be camplex numbers and let y be a nonzero

algebraic number. Suppose that {xl ,x2} is a—linearly independent and {yl,yz,y/xl}
is Q—lj.nearly independent. Assume:

*
YX2/X1 € L*.

Yy r %)Yy X¥ys Koy £ L7
PROCF Apply #1 to

{x),x,} and {y),v5,v/%0 ),

which leads to
() y7r %Y, %) (/%)) y Ro¥pr Xo¥o0 %y (V/%) ).
Of course,
x, (/%)) =y € L*

and by hypothesis,

— *
%, (v/%]) = v2,/%) € L7,



leaving

8: LEMMA Let x]_'XZ'Yl'YZ be camplex mubers and let y be a nonzero
algebraic number. Suppose that {xl,xz} is Q~linearly independent and {yl,yz}
is Q~linearly independent. Assume:
YX,/X) € L¥.
Then
¥yr ¥¥pr X0y, X¥p) £ L
PROOF Assume instead that
)y e X¥or Xp¥pr X¥5) < L
o {xlyl, xzyl} is Q-linearly independent, hence is a—linearly independent
(Gelfond-Schneider) (for x;y; € L, x,y; € 1), hence {x,x,} is Q-linearly independent.
° {xlyl, lez} is Q-linearly independent, hence {1, X1¥q s xlyz} is
Q-linearly independent (inhomogeneous Baker) (for Xy, € L, XY, € L), hence
{v/%4, yl,yz} is Q-linearly independent.

Therefore (cf. #7)
YX,/%) £ L*.

[Note: To check that {v/%],y;,¥,} is Q-linearly independent, write

r(y/x)) + sy, + ty, =0,



where r,s,t € 6 —— then

ry + S%1Yy + txlyz =0

=>ry=0,s=0, t=0.

But y € Q is nonzero, so r = 0.]

9: N.B. The strong six exponentials theorem intervenes in #8 via an

application of #7.

10: RAPPEL let {xl,xz} and {yl,yz} be two Q-linearly sets of complex

numbers. ILet further y be a nonzero algebraic number —— then at least one of

the five numbers

X)¥] XY, XY) XV, ¥X/ %
e ’ e 7 e r € 14 e

is transcendental.
[This is the five exponentials theorem (cf. 8§41, #2) (switch the roles of

Xl and X2) .]

11: IMPLICATION
strong six exponentials => five exponentials.

[The claim is that at least one of the five numbers

XY] RV, XY XY, YEy/E
e ’ e 7 e 4 e 14 e
is transcendental.

e Case 1: vx,/%| & L* — then

YE,/%
e

is transcendental.



® Case 2: YxX,/x € L* — then

{lel’ Xlel XZYlI X2y2} £ L (cf. #8) 7
i.e., 31€{1,2}, 334 € {1,2,3}:

XY Z L,

X.V.
hence e ¥ J is transcendental. ]

12: REMARK Refer to §41, #7. Make the assumption that XZ/Xl € L¥ —
XY
then for some pair (i,3) :Xiyj € L, implying thereby that e J is transcendental,

as desired.

13: RAPPEL Ilet {xl,xz} and {yl,yz,y3} be two Q-linearly independent sets

of complex numbers —— then
(710 20Yor X¥30 X¥7, X975, X951 £ L

[This is the six exponentials theorem. ]

14: CONDITION X Suppose that >\O e L, }‘l €L, >‘2 €L, >\3 € L. Assume:
{AO,Al} is Q-linearly independent and {AO,)\Z,A3} is Q-linearly independent —- then

MAy o Mg
e val e el RS
0 0

[In #2, replace Q by Q and L* by L.]
Imitating the proof that the strong exponentials theorem is equivalent to

strong condition X, it follows that the six exponentials theorem is equivalént to

condition X.



15: IMPLICATION

strong six exponentials => six exponentials.
[Start with the data for condition X — then thanks to homogeneous Baker,

D‘O '>‘l} is Q-linearly independent and D‘O’KZ’)‘B} is Q-linearly independent, the
setup for strong condition X, hence (cf. #2),

MAy o MAg

{5—, 5= 1£L¥
AO A

{T’x_}}él-.]

APPENDIX

It was established in §36 that the six exponentials theorem is equivalent to

the following statement.

SCHOLIUM Consider a nonzero 2 x 3 matrix M with entries in L:

Al M M3

Suppose that its rows are Q-linearly independent and its columns are Q-linearly
independent -- then

rank M = 2.

Analogously, the strong six exponentials theorem is equivalent to the following

statement.



SCHOLIUM Consider a nonzero 2 x 3 matrix M with entries in L*:

M1 Mo M3

AZl >\22 >\23 -

Suppose that its rows are a—linearly independent and its columms are a—linearly
independent —- then

rank M = 2,

N.B. Once again,
strong six exponentials => six exponentials.

{Start with

M= (A.. €EL.

Then the assumption of the Q-linear independence of its rows and columns implies the

é—linear independence of its rows and colums (homogeneous Baker).]

Finally, the sharp six exponentials theorem is equivalent to the following

statement.

SCHOLIUM Consider a nonzero 2 x 3 matrix M with entries in Q + L:

M1 Mo M3

21 22 23 .



10.

Suppose that its rows are ﬁ—linearly independent and its columns are a—linea.rly
independent —- then

rank M = 2.

REMARK Consequently

strong six exponentials => sharp six exponentials.

To help keep it all straight, make a chart of the various implications:

strong 6 exp ———

|
sharp 6 exp

u

> 6 exp +———

Y

5 exp

?



§44, FOUR EXPONENTTALS CONJECTURE (4EC)

This is the following statement.

1: CONJECTURE ILet {xl,xz} and {yl,yz} be two (Q~linearly independent

sets of complex numbers -- then

{lel' Xlel X2er XZYZ} F L

thus at least one of the numbers

is transcendental.
In terms of matrices (see the Appendix to §43):

2: CONJECTURE Consider a 2 x 2 matrix M with entries in [:

M1 Mo

>\21 >\22 .

—_— —

Suppose that its rows are Q-linearly independent and its colums are Q-linearly
independent —— then

rank M = 2.

: EXAMPLE Consider the matrix



Its determinant is 0 and its rank is 1. This is not a contradiction since

T 7r2 # L.

[Note: Still, its rows and colums are (~linearly independent. ]

4: IEMA #1 <=> $2.

=

REMARK The four exponentials conjecture is a long outstanding open

problem in transcendence theory.

lm
e

EXAMPLE (Admit 4EC) Use the notation of 8§36, #6. Introduce as there
E, = {t e R:zt, 3t ¢ N}.

E2 = N.

[Given t € R, t £ Q, take in #1
xl=l _yl=£n(2)

X, = t, y2=£n(3).

Then the four exponentials are

and either
2% or 3% (or both)

is transcendental. Therefore

But



And

I

E2 nQ=E, n (Q u (R-Q)

7: EXAMPLE (Admit 4EC) ILet X € [, A € R — then ep‘| is transcendental.
[ #1, take

»
Il

Then the four exponentials are

RPN IV NN

Here e}‘ € 6 And

2 -
)% = A% => J%\—=3‘>\—-= A

2
1A%/

-

= e = e}‘ Q.

Therefore el>‘I is transcendental.]

[Note: One should check that {xl,xz} and {yl,yz} are Q-linearly independent.
E.g.: Suppose that

py; tav, =0 (p,g € Q)

or still, if A=a + /~I b (b # 0),

p(a+/:Ib)+q/a2+b2=0



p=0=qg a2+b2=0=>q=0.]

8: EXAMPLE (Admit 4EC) In #1, take

x =1 yl=/——l'rr
x2=/2_, y2=/—_11r/2—.

Then the four exponentials are
y=Ir _/=Ir ¥2 _/~In/2 _2/-In
e e ; € , €

r

The first of these is -1, the fourth is +1, leawing

V=-1n/2

e ’

which must therefore be transcendental (a consequence already of Gelfond-Schneider:

o/ IM2Z - 2109 -1 _ ()72

9: EXAMPLE (Admit 4EC) Let XA € L - {0} and let w € C - Q (a complex
irrational number) —— then at least one of the two numbers

e>‘w ’ e)‘/w

is transcendental.

[In #1, take

= 1/w.

NM
]
&
<
N
!



Then the four exponentials are

e)\ c a’ ve, ew}\, e)\ c a.

[Note: There are circumstances when 4EC need not be invoked. E.g.: Consider
the situation when w € E)—Q. In view of §24, #8, one of the numbers w, e>‘, and

ew>‘ is transcendental. But w is algebraic (by hypothesis), e>‘ is algebraic (by

A

definition), thus e ig transcendental. ]

10: EXAMPIE (Admit 4EC). let w € (-Q — then

exp (2m/~1 w) and exp (-2m/~1/w)
are not simultaneously algebraic.

[Modify 49 in the obvious way.]

11: EXAMPLE (Admit 4EC). Iet o be positive algebraic numbers

1792
different from 1 — then m° and fn (o) n(o,) are Q-linearly independent.

[Proceed by contradiction and assume that ’IT2 and !&n(ocl)l’,n(ocz) are Q-linearly
dependent, say for n,m € 7 nonzero,
n(en(e)) (nlay)) = dmr’.
Put
g, = o, B, = expE £n(a,))
1= %qr By = e fnlay)).
Then 61,62 are algebraic, nonzero, and lﬁl[ # 1, [52| # 1. Moreover

£n(81)£n(8,)

= (nfnoy)) Gen(ay))



= = fn (o)) £n ()
~ndn wz = 4'IT2.
mn
Iet now
w = £n(8)/2m/~L,
so
n(8)) = 21/-1 w.
Then
2
(8 = Zn‘th
= —2m/-1/w.
Since

exp (21/-1 w) = By

exp (-21/-1/w) = Bos

it follows that
exp (2m/-1 w) and exp.(-21/-1/w)
are algebraic, which contradicts #10.]

[Note: In the literature, this result is known as Bertrand's conjecture.]

12: EXAMPLE (Admit 4EC) ILet w € C-Q. Assume: |w[2 € Q —— then

exp (2m/~1 w)

is transcendental.



[Assume instead that
exp (2T/~1 w)

is algebraic and writew=x+ /~1y (y # 0).
e 3 m) el (g ny) # (0,0):
exp (2mV-L wn, - 27/~ xfrnz) = 0.

® BmEZ:nlw—n2w=m.

°® (nl - n2)x =nm, (n:L + n2)y =0

(n, +n

1 5) = 0=>2n;x =m=>x € Q.

° [w[2=x2 +y2

=> y2 = |w[2 - %% € Q.

Therefore y is algebraic. But y is not algebraic (for if so, thenw=x + /-1 y
would be algebraic (cf. §21, #3) and exp(27m/-1 w) would be transcendental (apply

Gelfond-Schneider)). Thus we have reached a contradiction.]

[Note: With the overbar standing for complex conjugation,

2m/=1 wn, = 2m/=1 wny = 2my/-1 x?ml = - 21/-1 Wn, .1

13: EXAMPLE (Admit 4EC). Let w € C. Assume: |w| € Q and exp(2n/-1 w)
algebraic —— then w € Q.
[In fact,

wl € Q= |w|® e q,



so if w € C-Q, then
exp (2m/~1 w)

is transcendental (cf. #12).]

14: REMARK (Admit 4EC) The Diaz curve is the set of points

exp(2m/~L w) (|w| = 1),
Ifw=+1, then

exp (2m/~1 w)
is algebraic. Otherwise

exp (21/-1 W)

is transcendental.
Here is one situation where the 4EC can be verified.

15: THEOREM Suppose that x;,x, are elements of R U V=1 R which are

Q-linearly independent and suppose that y is a nonreal complex number with
irrational real part — then at least one of the numbers

X ZBY X XY

e , e e ", e
is transcendental.

[Note: In the notation of #1, Y, = 1, Y, = vl

Proceed in steps.
e The set {1,y,¥} is Q-linearly independent.

[Consider a rational dependence relation

a+by+cy=0.



Then

a+ b+c)Rey=0

b-c)Imy = 0.

Since y is nonreal, Im y = 0, hence
b-c=0=>b=c=>a+2b(Rey)=0=>a=0, b=0.]

e Apply the six exponentials theorem to {xl,xz} and {1,y,v} (cE. §41, #1).

Therefore at least one of the six numbers

X, XY XY X XYy XV
el,el,el,ez,ez,ez
is transcendental.

® By hypothesis,

Xy = 6%, K, = €%, (€,€, € {1, -1},

XY  HX)Y XY Xy
e =e , e =e .

Therefore at least one of the numbers

is transcendental.

Xy Xy
[Note: If e (or e © ) were algebraic, then the same would be true of

el (orez).]



§45. STRONG FOUR EXPONENTTALS CONJECTURE (S4EC)

This is the following statement.,

1: CONJECIURE Let {xy,%,} and {y;,¥,} be two Q~linearly independent

sets of complex numbers —- then

beyyyr %Yy %y¥y0 Xp¥5) 2 L%
In terms of matrices (cf. §44, #2):

2: CONJECTURE Consider a nonzero 2 x 2 matrix M with entries in [*:

M1 M2

a1 A

Suppose that its rows are a—lj_nearly independent and its columns are ﬁ—lmearly

independent -~ then

rank M = 2.
3: IMPLICATION
strong four exponentials => four exponentials.
4: CONDITION PQ Iet Ay Aq,A, € L* ~ {0}. Assume:

Mg £ G and A,/ £ 8

A /A # LF.



5: LEMMA
S4EC <=> PQ.
PROOF
® S4EC => PQ,
[In #1, take
oxp =4 oy =1
,
X5 = Ay Yo = M/

to arrive at

But XO’)‘l’xz e L*¥ - {0}, thus it must be the case that
e DPQ => S4EC.

[Start with {xl,xz} and {yl,yz} a—linearly independent sets of camplex numbers.

Assume that
XY XY XYy
are in [* and then claim that 2, Z L*. Put
Ao = Xp¥pr A = Xq¥yr Ay = XY,
which, by hypothesis, are in [* - {0}. Since
M/ g = Y1/Y5 & Qr Ay/Ag = X5/ Z Qs
it follows that



6: APPLICATION (Admit S4EC) ILet A, A, € L* = Q- then A\, £ [*.

[In #4 above, take )\0 = 1.]

7: N.B. So in particular, if Mrd, €L {0}, then N £ L*, hence

My £ Qand A, £ L.
[Note: Bear in mind that [ n Q= {0}.]

2
8: EXAMPLE (Admit S4EC) e" is transcendental (cf. §43, #6).

[In #7, take

Kl =) ZA= m/~L.

M= -ql g Lt =s P g [*.
, |

Therefore e" is transcendental. ]

9: THEOREM (Admit S4EC) If ) € L is nonzero, then |)\| is transcendental.

PROOF In #7, take Ay = A, A, = A, thus

T 2
MMy = A= [A]C g L%,

thus [A[z is transcendental, thus [X| is transcendental (if |)| were algebraic,

then ]A]Z would be algebraic) .

10: EXAMPLE (Admit S4EC) Take

A= In(2) + /~T 7.
Then X € L and
1/2
A = @n@)? + 19
is transcendental.



11: THEOREM (Admit S4EC) Ietw € C - {0}. Assume: |w| is algebraic —

then €" is transcendental (cf. 5§44, #7).

[In #1, take
- x =1 - yp =1
’ —
x2=eW y2=ew.

Then
xlyl =1, xly2 = ew, x2yl = ew, x2y2 = ewe .
® {Xl,xz}, {yl,yz} are a—linearly independent. ]
[To deal with {Xl,xz} , Suppose that
o+ 8" =0 (a,8€ 0.

Then B =0 => o = 0. Otherwise B# 0

=>eW=—%Ea—{O}

=>w € L => |w| transcendental (cf. #9),
contrary to the assumption that |w| is algebraic. Therefore 8 must be zero, as
must o.]
Consider now the relation

{1, &, &¥, &M} £ L*.

If " was algebraic, then the same would be true of e and eWew, an impossibility.

[Note: One can proceed without S4EC when

wWERUV/~LR (w#0).



For in this situation,

w (w € R)

=
1l
-

=
li
+

V-1 w (w € /=1 R).
Therefore
w € a - {0} => &" transcendental (Hermite-Lindemann (8§21, #4)).]
12: LEMMA (Admit S4EC) Let A € L*. Assume: {),A} is Q-linearly
independent —— then |[X| £ L*.
PROOF We shall utilize condition PQ. To this end, note that {},|A[} is also

ﬁ-linearly independent:

A =ar (@ed = A% =0%2 = A% = o®a? = 1 = o2
Supposing that |A| £ L*, take in #4

A=A A=A, = AL
A /N £ Qand Ay/A) £ Q

*
(Alkz)/ko £ L*,
On the other hand,
_.— *
(lez)/xo =)A€ L%,

Contradiction.
13: ILEMMA (Admit S4EC)

e If A\ € L* - Q, then the quotient 1/} is not in L*.



e If A )\ZEL*—Q, then the product A A, is not in L*.

1’ 172

APPENDIX

Iet A € [ - {0} and let w € C - {0} with |w| € Q. Assume: MV ig algebraic —

then either w € Q or else w)\/X € Q.

[Note: Tacitly S4EC is in force.]



§46. TRANSCENDENTAL EXTENSIONS

1: NOTATION Iet K be a field -- then the field X(X

Ls 1ree> ,Xn) of rational

functions in Xl’ . ,Xn is the quotient field of the polynomial ring K([X,,... ,Xn] ’

hence consists of all quotients

£y s sR)/GEypenn X )

of polynomials in Xl""’Xn with g # 0.

Iet L. be a field, K < L. a subfield.

2: NOTATION Fix a subset S < L.

® The ring K[S] generated by K and S is the intersection of all subrings
of L that contain K and S.

e The field K(S) generated by K and S is the intersection of all subfields
of L that contain K and S.

[Note: If S = {ocl,...,oun} is finite, write
K[S] = K[ocl,...,an]

and

K(S)

K(ocl, v ,O(.n) .]

3: N.B. If S is finite, then the field K(S) is said to be a finitely

generated extension of K.

[Note:
finite extension => finitely generated extension

finitely generated extension #> finite extension.]



4: LEMMA K(S) is the set of all elements of L that can be expressed
as quotients of finite linear combinations with coefficients in K of finite

products of elements of S.

5: TERMINOLOGY Let L be a field, K < L a subfield.

@ A finite subset S = {oal,. .. ,ocn} € L is algebraically dependent over K

if there is a nonzero polynomial P € K[Xl ""’Xn] such that
P(ocl,...,ocn) = 0.

e A finite subset S = {ocl [ees ,ozn} € L is algebraically independent over K

if there is no nonzero polynomial P € K[Xl fone ,Xn] such that

P(Otl,..-,otn) = O-

6: IXAMPLE Take L = K(X,,.. .,Xn) , the field of rational functions in

XireensX - then {X.,... ,Xn} is algebraically independent over K.

r r
[Note: Suppose that Lyre..,r, are positive integers —— then {X l,. .o ,Xnn}

is algebraically independent over K.]

7: EXAMPLE Working still with L = K(Xl,..,,Xn), let A = [aij] be an

n X n matrix with coefficients in K. Put fj = % a; X, - then {f

i fn} is
i J

qreeer

algebraically independent over K iff det A # 0.

8: N.B. Take S = @, the empty set —— then it is deemed to be algebraically

independent over K.

9: LEMMA If 0q,...,0, € L are algebraically independent over K, then




K[ocl, ‘e ,ocn] and K[X.,... ,Xn] are K-isomorphic rings, hence X(a.,... ,ocn)
and K(Xl’ cee ,Xn) are K-isomorphic fields.
[Note: The property is characteristic in that if K(ocl,. .. ,onn) and

K(Xl, eee ,Xn) are K-isomorphic fields, then {o . ,OLn} is algebraically independent

1ree
over K.]
10: REMARK The algebraic independence of Gyre--s0, € L over K is equiv—-

alent to the requirement that for each i, oy is transcendental over K(ocl,. .. ,ozi_l) .

11: DEFINITION A subset S of L is a transcendence basis for I/K if S is

algebraically independent over K and if L is algebraic over K(S).
[Note: A priori, S is infinite, the convention being that S is algebraically

independent over K if every finite subset of S is algebraically independent over K.]

r r
12: EXAMPLE In the setup of #6, {Xll,. .. ,Xnn} is algebraically independent

r r
over K. So, to establish that {Xll,. .. ,an.l} is a transcendence basis for L/K,
T rn
it has to be shown that L is algebraic over K(X ,...,Xn ). But for each i, the
r r

elemnent Xi is a zero of the polynomial T Lo Xil € L[T].

13: N.B. If S = @ is a transcendence basis for L/K, then L/K is algebraic

(and conversely).

14: THEOREM There exists a transcendence basis for I/K.



15: REMARK If Sl c 82 c L, if Sl is algebraically independent over K,
if I/K (SZ) is algebraic, then there exists a transcendence basis X for L/K with

Sl cX cSz.

16: THEOREM If S, <L, S, <L are transcendence bases for L/K, then

1 2

card Sl = card 52‘

17: DEFINITION The transcendence degree

trdeg, (L/K)

is the cardinality of any transcendence basis for L/K.

18: N.B. If

trdeg, (I/K) = 0,

then IL/K is algebraic (and conversely).
19: EXAMPIE Take K= Q, L = C — then

trdeqQ (C/Q) = c.

20: THEOREM Iet k ¢ K < L be fields — then

trdeg) (I/k) = trdegy (L/K) + trdeg, (K/k).

The situation when L is a finitely generated extension of K occupies center

stage.

21: SCHOLIUM Let L = K(cxl goes ,OLn) — then a maximal algebraically



independent subset of the set {ocl,.. . ,ocn} is a transcendence basis for L/K and
trdeg, (L/K) <n

Assuming that S = {0‘1""’03:“}’ it follows that L is a finite extension of

K(al, ces 'O&n) and if this is separable (which is always the case in characteristic

0), then

L= K(o(,l,...,o&n,(%)
for some B in L (primitive element).
[Note: The extension L/K can be broken up into a series of subextensions,

viz. let K, = K(onl,...,oci) (put K0 = K) — then

K=KOCK1CK2C.., cKkK =1L,

where K, ) = K; (0;,).]

22: IFEMMA Iet L be a field, K €< L a subfield. Iet S be a subset of L
with the property that each o € S is algebraic over K - then K(S) is algebraic
over K and

S finite => [K(S):K] finite.

23: EXAMPIE Take K = Q and consider Q(/2,m) —— then it is clear that
{/2} is not algebraically independent, nor is {/Z,n}, which leaves {7}, the claim
being that it is a transcendence basis for Q(/2,m)/Q (per the theory spelled out

in #21). To check this, in #22 take K = Q(w), L = Q(/2,7), S = {/Z,n}.
e /2 is algebraic over Q(rn): Work with X2 -2 e Q(m[X].

e 7 is algebraic over Q(m): Work with X - m € Q(m) [X].



Therefore Q(m) (/2,m) is algebraic over Q(m).
And

trQ Q(/2,m) = 1.

24: REMARK The transcendence degree
trdegQ Q(m,e)

is either 1 or 2 but whether it is 1 or whether it is 2 is unknown since it is

not known if m and e are algebraically independent or not.

25: RATTIONAL RECAPTTULATION ILet M and N be finite subsets of C.

e IfN c Q, then
trcilegQ QM U N) = trdegQ QM) .
Therefore algebraic numbers do not contribute to the transcendence degree.
e IfN <M, then
t:rdegQ QM U N) = trdegQ QM) .
Therefore only distinct numbers can contribute to the transcendence degree.
e If the transcendence degree
deg, QM)

of the field QM) is card M, then M is algebraically indépendent over Q and
conversely.
e If M = {m}, then the transcendence degree
degQ Q (m)
of the field Q(m) is 0 if m is algebraic and 1 if m is transcendental.



e Q... Qs

dEgQ Q(M) = dega a(M)-

26: LEMMA Suppose that QpreesrQ, are algebraically independent over K —-

Py/qy P,/ .
then so are o roeerOh for nonzero rational numbers pl/ql, cen ,pn/qn.

PROCF The transcendence degree of K(ocl,. .. ,OLn) over K is n (cf. #9), whereas

/gy 1/a,
K (ocl reesr0y )
. l/qj q;
is algebraic over K(O(,l, cee ,ocn) since (ocj ) = onj . Therefore the transcendence
degree of
1/ 1/a,
K(al Feoe. ,OLn )
1/q /g,

over K is also n. The numbers {ocl l, RN } are algebraically independent
_ p1/9y P/,
over K, thus the same is true of the numbers {ocl rees O } (cf. #6).
27: LEMMA Suppose that Opreen,0 are algebraically independent over K.
Iet
A[Xl, e ’Xn]

B[X Xn]

l'.-o’

be two nongero polynomials whose quotient is not in K —— then

A(ocl, - ,ocn)

B(ocl,. . .,ocn)

is not in K.



PROOF If the ratio was equal to some a € K, then

A(Otl,...,ot.n) - OLB(OLl,.-o,OLn) = OI

which contradicts the algebraic independence of the aj's.



§47. SCHANUEL'S CONJECTURE (SCHC)

This is the following statement.

1l: CONJECTURE Suppose that Xyre.. X, are O-linearly independent complex

numbers —- then among the 2n numbers

X X
1 n
XpresarXr © Thenpe

at least n are algebraically independent over Q, i.e.,

X X

trdegy Q% © Lo.e®™ >n  (cf. 546, #21).

This conjecture has many consequences, some of which are delineated below.

2: LEMMA The set of n-tuples (xl, .o 'Xn) in C" such that the 2n mumbers

X X
1 n
EyreeesX @ Theel e

are algebraically independent over Q is a G 6—subset of C% and its complement is

a set of Lebesgue measure 0.

3: N.B.-The transcendence degree can be as small as n (cf. #6).

4: THEOREM Take n = 1 and consider x, & (x # 0) —— then at least one
of x, & is transcendental (c£. 831, #5), thus

trdegQ Q(x,e5 > 1,

which is Schanuel in the simplest situation,



X X
5: N.B. Take n = 2 and consider Xy, Xy © l, e 2 then the claim

is that

1 %
trQ Q(xl, X e, e ) > 2

but this has never been verified in general.

[Note: ILet W), W, be two nonzero camplex mumbers —- then SCHC implies that
1 M
trdegQ QG@fﬂz, e ,e”) >1.]

6: THEOREM Suppose that X{reee X, are Q-linearly independent algebraic

b4 X
numbers —— then the transcendental numbers e l,...,e D are algebraically inde-—

pendent over Q (cf. §21, #12), so

X X

trQ QyreeerX s @ l,...,e %) >,

thereby settling Schanuel in the particular case when Xyye-s%, are algebraic.

7: THEOREM (Admit SCHC) Let Al,...,xn be Q-linearly independent elements

A
of L (thus transcendental (cf. §31, #4)) — then e l,...,e>\n are algebraic numbers,

hence

A An

trdegQ Q(All°"lxnl e ,...4€ )

Il

t:rcilegQ Qg ree-rry)

n.

1A

On the other hand, by Schanuel,

Al An
trdegQ Q(xl,...,xn, e ,...,€ ) >2n.



Therefore
tr:clegQ Q(>‘l""’>‘n) = n,

which implies that D‘l""’ )h} is algebraically independent over Q (cf. 8§46, #9).

8: EXAMPLE It is not true in general that

linear independence => algebraic independence.
Thus, e.g., {1,/2,/3,/} is linearly independent over Q but is not algebraically

independent over ( as can be seen by noting that if

P(X) /%y X3,X,) = XXy = Xy,
then

P(l,l/2_,l/3_,1/6) = 0.

9: IMPLICATION
Schanuel => inhomogeneous Baker.

[If )\l elL,... ’)\n € L are Q-linearly independent, then Al,.. ., A are Q-alge-
braically independent (cf. #7) or still, >\l’ . ’>‘n are a—algebraically independent
(cf£. 820, #7), hence l,)\l,...,An are f]—lj.nearly independent. Proof: Given
LACTEREIA N algebraic and

Y+Yl>‘l+"'+Yn>‘n=0’ -
work with

P(Xl,...,Xn) =y + lel + eee + Ynxn.]

10: THEOREM (Admit SCHC) Suppose given elements Al,.. . ’>‘n in L and

elements Oqreee O in Eg Assume: >‘l" .. ,)\n are Q-linearly independent and



Opreess0 are O~linearly independent -— then

Q. O,

trdegQ Q()\l,...,kn, e l,..., em) =m + n,

thus

o
D‘l"“’)‘n’ e l,..., e%}

is algebraically independent over Q (cf. 8§46, #9).

P:R(DF Define Bj:j = l,...’ m -+ nby Bj = >\j for j = l’--oln a.n.d Bj_l_n: OLj

for j=1,...,m. Claim:
8o B

is Q-linearly independent. For suppose that

Ayt 4 n T 0

is a rational dependence relation, hence

DAy Tt T QA F g0yt T 0y = 0.
From the definitions,
cln+10°l toeen qm+noLm

is an algebraic number, i.e., is in Q Accordingly, thanks to inhomogeneous Baker,

q = 0,eee, 9, = 0 and qn_l_locl + eee + qm_l_nocm= 0.

But Opree- G, are Q-linearly independent. Therefore

Ay = Orever Gy = O

hence the claim. Now apply Schanuel: The transcendence degree over () of

Bl Bm-l-n

Q(Bl""’g‘ml-n’ e ,..., € )

is > m + n. To cut this down, note that

B1+1’1 = Oqreeey Bm—l—n = %



are algebraic, as are

So we are left with

Q. ¢

1
u®%qﬂy“”&,e,u”e%2m+n,
which suffices.

11: THEOREM (Admit SCHC) If o # 0,1 is algebraic and if 1, B;,...,8 € Q
are linearly independent over (, then the numbers Log o and
By B

O " yeeesO n (principal powers)

are algebraically independent over (), hence are transcendental (cf. §31, #17).
PROOF To begin with,
By Log oy...,B, LOg o, Log @

are Q~linearly independent, thus the transcendence degree of the field

B B

Q(Bl Log OLI---an Log o, Log o, o l:---,vo" nrO(-)

is > n + 1 (quote Schanuel). But

B = (8] Log o) (Log a)—l, ...

=>
Bl Bn
Q(Bl Log a,...,Bn Iog o, Log o, o ~,e.e,0 ,0)
B B
=Q(Blr---r6nl LOgOL, Oﬂl,---,OL n,O(.)
=>

8l Bn
t:cdegQ Q(Bl,...,Bn, Iog o, O ,e..,0 ,0)



= trdegQ Q@og a,0 l',...,oc

>n+1

B 8

‘r:c'degQ Qog o, o l,,,.,ocn) =n+ 1,

from which the algebraic independence over () of Log o and

B]_ Bn
O e 0 .

12: N.B. In #11, take n = 1 and assume that B ¢ Q — then Log o and

of are algebraically independent over Q.

13: THEOREM (Admit SCHC) If o # 0,1 is algebraic and if B € Q has
degree d > 2, then

Bd—l

trdegQ Q(Iog a, ocB,...,oc ) = d.

PROOF First of all, 1,8,...,65 1 are linearly independent over Q. In fact,
the minimal ‘polynomial of B has degree d > 2, whereas a rational dependence relation

a-1 _

q+ B+ et +qgy 4B 0

leads to a contradiction upon consideration of
P(Xo'Xl""'Xd—l)

d-1
= X0 + qul + + qd—lX .

So, applying #11, the numbers Log 0 and

8 Bd—l

O, eee,0 (principal powers)

are algebraically independent over Q, from which the result.



[Note: It is not necessary to appeal to SCHC when d = 2 or d = 3 as these
special cases have been resolved. For a case in point, take

d=3, a=2, B=21/3.

Then

21/3
n(2), 2 r 2

22/3

are algebraically independent over (Q.]

14: REMARK It can be shown that unconditionally

a-1
trdeg, 0B, 0 ) s '

the symbol on the right standing for the greatest integer less than or equal to
d+l
5 -

15: THEOREM (Admit SCHC) If Xyre-- X are complex numbers linearly
independent over Q and if y is a transcendental number, then

X X Xy XV
trdeg, Qe L...e® e 1 yeere ) >~ L.

PROOF Order the numbers Ryreeer¥y in such a way that a basis for the (-vector

space generated by

{xl, e rXr XqYreee ,xny}
is

{xl,...,xn, xly,...,xmy} (0 <m < n).
Claim:

trdegQ Q(xl,...,xn,y) <m+ 1.



For y is transcendental (by hypothesis), so there is a transcendence basis for

Q(xl, .o ,xn,y)

which is
= ,...,%; .y}
1 x
with
l§11<12<-~ <1, <n.
Then

Rypeoo ,Xn,xily, R, T

lk

are Q-linearly independent, thus

k+n<m+n=k<m=>k+1l<m+1,

which establishes the claim. Next, invoking SCHC,
1—.r<ite<3{Q Q(xl, oo rXy RiYree X Yy

X X X X
1 n 1Y .
e ,...,&e 7, e reess€° ) 2n+m

trdegQ Q(Xll s anIXl YI s IXnYI
X X X,y XV
e l,...,e n’ e 1 reees® n ) >n + m.
Taking into account the claim, it follows that at least n — 1 of the numbers

e, e (i=1,...,n) are algebraically independent.

16: N.B. Specialized to the case n = 2, the upshot is that at least one



of the numbers
xl x2 xly x2y
e ,e ", e , €

is transcendental.

1l7: IMPLICATION

SCHC => 4EC.

18: RAPPEL (4EC) Let {xl ,xz} and {yl,yz} be two Q-linearly independent

sets of complex numbers -—- then
(x1vyr XYy X770 X951 < L,

thus at least one of the numbers

X

)Y XY, Xy XY,

e , € , € , e

is transcendental.

When dealing with 4EC, there is a little trick that can be used to advantage,

viz. let
W) S KjYpe Wy = XYy, 2) T Vy/¥ys 2y = 1.
Then
W21 T X¥pr W25 = XY 0 Wp2p = Xo¥or WoZy = Xo¥y-
So the list
Y1 XYy XYV XY,
e r r e 14 e
becomes the list
W, 2 W. Z W.Z W.Z



10.

i.e., the list

171 1 271 2
e , e, e , e,
i.e., the list
w W W,Z WAZ
e l’ e 2’ e 1 l, e 2 l’
i.e., the list
Wy oW, W (y,/yq) W, (Yo/Yq)
e 7 e 7 e ’ e 14

i.e., the list

Vi Wy WY WY
e ,e“, e ,e”,

where
Y = ¥y/¥q-
In order to utilize #16, it is necessary that y be transcendental.

Case l: y # L* — then y is transcendental (otherwise, vy would be
algebraic, while Q < L¥).

Case 2: y € L* — then #16 need not be applicable but in view of §43, #8,
(X970 X¥yr XY, X951 7 L,
thus at least one of the numbers

Yy XY, XY XY,
e 14 e r e r e

is transcendental.
[Note: In the reference to §43, #8, take v = 1 and replace xz/xl by yz/yl

(as is certainly permissible).]

19: RAPPEL (Admit S4EC) Iet w € C — {0}. Assume: |w| is algebraic ——

then e" is transcendental (cf£. 845, #11).



11.

[Drop S4EC, impose instead SCHC, and bear in mind that the crux is when

wgZR uv/-I R, thus w, w are Q-linearly independent, so
trdegQ Q(w, w, e &M > 2.

If e was algebraic, then e” = " would be too, reducing matters to

trcilegQ Qlw,w) > 2,

which is false since |w| € § => ]w[2 €Q= wre Q.]

20: NOTATION Write

X = (Xl’” - %)
and

p:d X
e =( l,...,e n).

21: N.B. SCHC can thus be abbreviated to

X
trdeg, Q(x/e ) 2 n.

Consider a Q-linear combination
bl T Q¥ T T %y
Let M be a nonzero integer such that qu is an integer for all k =1,...,n and

assume with out loss of generality that

Moy o Moy

are nonnegative and

Mq-t+1'”‘ ,qu



12.

are negative for some 0 < t < n. Let

P(XyreenrXyq)
t Mg n -Mq,
kM K
= - X .
QLE *x ol g *x
Then
X X
P(e l,...,e n+l)
t M x M 1 —x, Mq
=TTeXk k _ ol T exkk
k=1 k=t+1
n
_ eM(quk) ) éM(qlxl -°-+qhgn) e—.M(quk)
k=1 k=t+1
t t n n
=exp( I Mgx) -expM(ZI Mg + I Ma x ))exp(- I Mg, x )
S el Kk I KK eyl KK
t n n
=exp( I Mgx)(l -ep(l Mg, x )exp(- L Mg, x ))
ol KK ol KK T
t n n
=exp( X Mgx)(l-exp(X Mg - 1z M, %))
o1 KK ot KK jlpg KK
t
=exp( I Mgx)(@d-1) = 0.
ol Kk

22: SCHOLIUM The collection

X X X
1 n “n+l
e ,...,20 ,e

is Q-algebraically dependent.



13.

X
. n+1
So adding Xn+l' e to

X X
1 n
Q(Xl,...ﬂxn, e " ,...,e )

does not change the transcendence degree.

23: NOTATION Given camplex numbers ireeer% let

jmchuihdl n’
lindim. x
Q -

denote the linear dimension of the vector space over () spanned by Xppeee s

24: CONJECTURE (SCHC) vV X,

X
t:cdegQ Qx,e) > lind:i.mQ

X.

To say that X is a counterexample to SCHC means that Xpre-,X, are linearly
independent over ( but

e
trdeg, Q(x,e ) < n.

25: ILEMMA If there is a counterexample to SCHC, then there is a dense

subset of ¢ comprised of counterexamples.

PROOF' If X is a counterexample to SCHC, then for any nonzero Qyre-erdy in

Q, AqRqreeer g X is also a counterexample,

26: NOTATION Given x, put

X
§(x) = trdeg, Qx,e) - lindim, x,

the predimension of Xx.




14.

27: REMARK SCHC is thus the claim that Vv x,
§(x) >0,
so a counterexample to Schanuel is an X with
4(x) < 0.

If
dx) < -1,
then for any complex number C,

§(xC) < 8(x) +1<0,

leading therefore to continuum-many counterexamples.

28: ILEMMA VYV n € N, the set X < c? of n-tuples which do not satisfy

Schanuel's condition is first category and of Lebesgue measure 0.



15.

APPENDIX

THEOREM (Admit SCHC) ILet o # 1 be a positive algebraic number and let

B be a positive irrational number. Assume:

Then B is transcendental.
PROOF Suppose to the contrary that g is algebraic, so by Gelfond-Schneider,

OLB is transcendental. Claim: 1, g, aB are Q-linearly independent. For suppose

that
r+sg+ta8=0

is a rational dependence relation:
r+sgeqg tabgq (GEt#0
=t=0=>1r.s=0 (B € p).
Now multiply 1,8,0° by £n(q) # 1, hence

mla), genle), aenla)

are also (-linearly independent, hence by SCHC,

B B ocB
trdegQ Qn(a), Ben(a), a”na), a, o~y o ) > 3,
i.e.,
trdeg, QUen(a), Ben(a), o), &P > 3,
i.e.,
trdeg_ Qen(a), 8ea(e), ofem(a), of) » 3.
But "

trdeg6 Qen(a), sen(w), o), of)
= trdegé QUen(a), OLB) < 2.

Contradiction.



§48. SCHC: NUMERICAL EXAMPLES
Unless stipulated to the contrary, throughout the § SCHC is in force.

1: EXAMPIE The mubers e and e° are algebraically independent over (.

[Takexl=l, x2=e——then
trdegQ Q, e, el, ee) > 2,
i.e., _
trdeg,, Qle, e%) > 2.]
2: EXAMPLE The numbers £n(2) and 2ﬁl () are algebraically independent
over Q.
[Take x, = £n(2), %, = (£a(2))® — then
trdegQ Qn(2), («’Ln(2))2, 2, Zm(z)) > 2,
i.e.,
trdegy QU (2), 212y 5 5
3: EXAMPLE The numbers £n(2) and £n(3) are algebraically independent
over Q.
[Take X, = m(2), %, = fn(3) —-- then
t:rde@rQ Qn(2), m(3), 2, 3) > 2,
l.8.,
trdegQ Qn(2), £n(3)) > 2.]

S

[Note: Recall that Z2(3)

:

is transcendental {(cf. §24, #10), hence irrational.]



4: EXAMPLIE The numbers e and t are algebraically independent over Q.

[Take x

l=l,x2=,/:1'ﬂ— -— then

trdegQ Q(lr 1/'-'T'1Tn ell e/'T'TT = -1) P 2,
i.e.,
trdegQ QG/~L 7, e) > 2.
Therefore e and /~I ¢ are algebraically independent over (. Suppose now that e

and 7 are algebraically dependent over (, so there exists P(X,Y) € QI[X,Y] nonzero

such that P(e,q) = 0. ILet G(X,Y) = P(X, - /I ¥) and H(X,Y) = P(X, - /~L ¥Y) —

then

Gle, /1 ©) =P(e, (- /<I)/~-L ®) = Ple,n) =0
and

H(e, /L m) =Ple, (- /I)/~L m = P(e,m =0 = 0.
Consequently

(G + H) (e, /1 7 = 0.
But G + H is a nonzero polynomial with rational coefficients, thereby contradicting
the algebraic independence over Q of e and v-1 m.]
[Three applications:

® e + 71 is transcendental.

[Suppose e + T = a € Q. Form

P(X,Y) =X+ Y - oq,
an element of Q[X,Y] -— then

e+ -qa=0.

P(e,n)
Contradiction.]

® er is transcendental.



[Suppose emr = o € (_3 Form

P(X,Y)

XY - Oy
an element of Q[X,Y] -- then

P(e,m) emr - o= 0,

Contradiction. ]
® ¢/7 is transcendental (hence m/e is too).
[Suppose e/T = o € §. Form
P(X,Y) = X - oY,

an element of Q[X,Y] —- then

Ple,m) = e —qm=or - ot = 0,

Contradiction.]]

: REMARK It can be shown that unconditionally at least one of the

following statements .is true.

2
e The number e" is transcendental.
e The numbers e and 7 are algebraically independent over (.

2
[Note: It is unknown whether e is even irrational.]

6: EXAMPLE The numbers e, fn(2), and m are algebraically independent over (.

[Take x; = 1, X, = m(2), Xy = /-1 m.to arrive at

trdeg, Q(1, n(2), /I 7, e, 2, -1) > 3.]

Q
[Note: The numbers 1, £n(2), /-L 7 are Q-linearly independent (because £n(2)

is irrational (cf. §10, #5).]



7: LEMMA The eight numbers

1, ATn, 72, e, €2, m@, 23m@), ¢ >me)
are (-linearly independent.
PROCF The numbers /~I 7, e, fn(2) are algebraically independent over Q,
hence are algebraically independent over 5 (cf. §20, #7). Consider now a rational

dependence relation

2

A+B AT 1+ Cr2 +De + Fe + am(2) + 127 3m@) + xa3me) = o.

Define a polynomial P € a[X,Y,Z] by the preseription

P(X,Y,Z) = A + B —c:x2 + DY +FY2
+ GZ + HZl/ 3z + K4l/ 3z.
Then
P(/~I 7, e, in(2)) =A+ B /——1_1T+C112+De+Fe2
+an@) + 52Y3m@2) + kY 3m2) = o.
Therefore

A=B=C=D=F=G=H=K-=0.

8: APPLICATION The eight numbers

2 2 L1/3 ,2/3

e, Tl'reeleere r 2 r 2 ,I,n(2)
are algebraically independent over Q.

[Consider

ll ]/:I Ty TT2/ e, e2, 161'1(2), 21/3211(2)1 41/321'1(2),

2 o2 ,1/3

e
T,e,e,2,2 , 2 .1

e, -1, e



The next objective is #14 infra, the verification of which proceeds in a

series of steps.

: LEMMA Suppose that Xyreeo Xy is an algebraically independent set of

positive real numbers —— then Xyreeer¥, is multiplicatively independent (cf. 8§34,

Appendix) .

10: EXAMPLE The numbers 2, 3, 7, and £n(2) are multiplicatively inde-
pendent:

2PN =1 (ab,c.d € D)

=>a=b=c=d4d=0.
[The numbers m and £n(2) are algebraically independent over ( (cf. #6). This

said, suppose that

2P mend=1  (@b,cdE€ 7)),

take for sake of argument ¢ > 0, d > 0, and introduce the polynomial

p(x,v) = 223%% - 1.
Then
B(m,en(2) = 2P enen? - 1
—>c=0,d=0=2*° _-1=0=>a=0,b=0.]
1l: LEMMA Suppose that XypeeerXy is a multiplicatively independent set
of positive real“numbers —— then the set !,n(xl) pees ,Kn(xn) is Q-linearly inde-
pendent.

12: EXAMPLE The numbers £n(m), £n(2), £n(3), £n(4n(2)) are Q-linearly
independent (cf. #10).



Therefore the numbers

-1 m, n(m), n(2), n(3), (n(2))
are (Q-linearly independent (consider real and imaginary parts).

Now use SCHC to arrive at
trdegQ Q(/~1 m, fn(m), M(2), m(3), Ln(m(2)),

-1, m, 2, 3, n(2)) > 5,
from which the conclusion that
m, {n(m), n(2), n(3), n(n(2))
are algebraically independent over Q.
Next the numbers
1, /~I 7, 4n(m), £n(2), £n(3), n(n(2))

are (Q-linearly independent, thus invoking SCHC once again gives

e, -1, m, 2, 3, £n(2)) 2 6,

e, m, &n(m), n(2), n(3), nn(2))

are algebraically independent over (.

13: LEMMA The seventeen numbers
1, /-1 w, w, &n(r), e, eln(m), mn(m), Ln(2)
mn(2), efn(2), V-1 £n(2), /-1, /=1 £&n(m), £n(3)
Ln(n(2)), Un(3)) €nn(2))), V2 In(2)

are Q-linearly independent (cf. #7).



14: THEOREM (Waldschmidt's menagerie) (Admit SCHC) The seventeen numbers
™, n(m), e, £n(2), £n(3), nWn(2)), ", &

V2

e T T e2/—_l’e/q,ﬂ/:1_ 5

T, m, 2,2,

, (a2,

are algebraically independent over Q.
15: REMARK e is transcendental (unconditionally) (cf. §20, #10) but

it is not even known whether ee, ﬂﬂ, and 1° are irrational, let alone transcendental.
16: MISCELILANEA (Admit SCHC)

2
° /7/2-/— is transcendental.

-1
e /-1 is transcendental.

e /-1° is transcendental.



§49. THE ZERO CONDITION

To begin withs:

1: THE FUNDAMENTAL CONJECTURE (FDC) Let A

l’.-.’x

3 be elements of L

which are linearly independent over Q — then >‘l’ cear A g are algebraically

independent over (, hence are algebraically independent over Q (cf. 520, #7).

[Note: To appreciate how far away this conjecture lies, there is no known
example of a (~linearly independent pair {xl,xz} which is algebraically inde-
pendent over Q.]

2: N.B. Recall that the fundamental conjecture is implied by SCHC (cf.

§47, #7).
3: NOTATION Fix P € QIX;,...,X;], put
d
z2(®) = {x € C:P(x) = 0}.

4: DEFINITION A nonzero polynomial P € Q[Xl,. .o 'Xd] is said to satisfy

the zero condition if

z0) n 19 =y vn LS,

v
where V ranges over the C-vector subspaces of ¢? rational over Q and contained

in Z(P).

5: EXAMPLE Suppose that

) =CiX, + o+ + C

1% X3r

P(Xl(\!-l a“d

X3

where C Cqg € Q— then P satisfies the zero condition.

l'ooo,



6: LEMMA If every nonzero P € Q[Xl,. oo X d] satisfies the zero condition,

then the fundamental conjecture is in force.

PROCF To get a contradiction, assume that >‘l PR )‘d are linearly independent

over Q but not algebraically independent over (, hence there exists a nonzero

polynomial P in QXqreeerXy] such that P(Al,.._.,)\d) = 0, hence there is a C-vector
subspace V of Cd rational over Q and contained in Z(P) with

_ a
_}L"(}\l;-oprkd) EVDL.

Using the rationality of V over Q, write V as the intersection of hyperplanes

defined by linear forms with coefficients in @ (cf. §37, #2). Denoting by
((zreerzg) € CiBpag + oo + Bz =0  (B,...,8;in Q)
a typical such hyperplane, we then have
lel +oeee ¥ BA3 = 0s
thus

By = 0,...,89=0

and so V = {0}. But

d

(A A €V %= 1{0}n 19 = (0,...,0).

Lreeer

7: REMARK Tt is also true that the fundamental conjecture implies that

every nonzero P € Q[X X d] satisfies the zero condition.

1rees

Our objective now will be to establish the four exponentials conjecture

modulo yet another conjecture.



[Note: It was shown already in §47, #17 that
SCHC => 4EC.]
8: CONJECTURE Work in C4 and define P ¢ Q[Xl,Xz,X3,X4] by
P(Xl,Xz,X3,X4) = X]_X4 - X2X3.
Then P satisfies the zero condition.

9: CONJECTURE Consider a 2 x 2 matrix M with entries in L:

M1 M2
M=
A1 Ao L

Suppose that its rows are (-linearly independent and its columns are (Q-linearly

independent -- then
rank M = 2 (cf. 844, #2).

_1_0_:_ N.B. The claim now is that
#8 => #9.

Here is another way to phrase it: If

M1 M2

A1 )

is a 2 x 2 matrix with entries in L and if

rank M = 1,



then either its rows are (Q-linearly dependent or its colums are (-linearly

dependent.

11: N.B. The condition

implies that

det M = X ;A Ay oA

11722 ©~ 12721

0.

Per #8, take for P the polynomial

P(X) Xy Xy/X,) = XX, = XX

Substitute in

X) = My Xy = Agor X5 = Mor X3 = Ayys
thus
PAy1rdy0idayidan) = Aghos = Aohyy
=0
and so

4
gy hygihyg ihyy) € B 0 L2,

But
ze) n 1 =vvn i

v
Choose V: A C-vector subspace of C4 rational over Q and contained in Z(P) with

4



12: IEMMA 3 (a:b) € Pl(Q) such that V is included either in the plane

4

* . . = =

l.<[(zl,zz,z3,z4) €C :az) bzz, az, bz4}

or in the plane

4

* - - = =

2.{(zl,zz,z3,z4) eEC :azg bz3, az, bz4}.

[Note: See the Appendix for the verification.]

13: N.B. (a:b) is the class of (a,b) in the projective line Pl(Q).

Return to
M1 Mo
M =
M ‘o |
® Assume *l in #12 and work with the colums of M:
>\ll >\12
_ >\21 _ ' _ >\22 e
Then
a)\ll = b>\12
B a>\21 = b>\22.
Form now
X11 M2
- a + b
>\21 k22




or still

+ bA - b\, + bA

11 12 12 12

- a)\zl + b - bA,, + bA

22 22 22

0 .

Since (a:b) € Pl(C) , the colums of M are linearly dependent and the four expo-
nentials conjecture is thereby established.

e Assume *_ in #12 and work with the rows of M:

2
1 Apd 0 Ty Aol
This time
ahyy =bhy
@k =Dy
and one can consider
= aldyy Aol +bIAy Aol

It is not necessary to utilize #8 in order to arrive at a restricted but

unconditional result, the idea being to reduce the elements ) in Z(P) n L4 for

which there is a {: A C-vector subspace of C4 rational over Q and contained in

7(®) with A € v n L.



li THEOREM Take a

_ 4
Then either )\ € | for some | per supra or else

1l4: SCHOLIUM The statement of the four exponentials conjecture holds true

for the set of those

A= (hsdordark,) € 2(B) 0 L2
= 1772773774

with the property that

[Note: The point, of course, is that for this set of A, #12 is applicable.]

15: N.B. The }‘i (i=1,2,3,4) are transcendental (if not zero).

APPENDIX

The issue is the validity of #12. Write

*l = Wl (a:b)
- .
5 W2 (a:b)
and note that
Wl(a:b)
< z(®).

W2 (a:b)



Matters are trivial if V is contained in
Wl(O:l) or Wl(l:O) or W2(O:l) or W2 (1:0).

Assume, therefore, that there exists v:(w,x,y,z) € V such that wxyz # 0. Since
wz = xy, we have (x:w) = (z:y) and (y:w) = (z:x), the claim then being that the
supposition

V £ Wl(x:w) and { ¢ W, (y:w)
leads to a contradiction. Choose v' = (w',x',y',z') in ¢ which does not belong to
Wl(O:l) U Wl(l:O) U W2(0:l) U W2(1:0) U Wl(x:w) U W2(y:w).

Accordingly

wix'y'z' # 0.
Moreover

uv + u'vie ¢
for all (u,u') € C2, hence

Plur + u'v') =0

or still,
P((uw,ux,uy,uz) + (u'w',u'x',u'y',u'z')) =0
or still,
| Puw + u'w', wx + u'x', uy + u'y', uz + u'z') =0
or stilil,
(w + u'w') (uz + utz') - (w + u'x") (uy + u'y') =0
or still,

(wz - xy)u2 + W'z - xy' - x'y +wzh)uu' + (w'z' - x'y')u‘2 =0

Wz = Xy, whz' = X%y, wtz + wz' = xy' + x'y,



(u,u') € C2 being arbitrary. Therefore
(yz' - y'z) (xz' - x'z)
=zz'WwW'z - xy' - x'y +wz") = 0.
So at least one of the numbers
yz' -y'z, x2' - x'z
mast vanish.

e yz' —-y'z=20

=5
V_‘7=X=_¥_'_—"_‘7:_ => t :
% - 7 = ey v' € Wl(x-w) I4

a contradiction.
e xz' -x'z=0

=>
w_x_x'"_w __ _, .
TSz ey = v EWZ(y-W),

a contradiction.

Since | is rational over Q (by hypothesis), there is a basis € reeerly
for v (@ < 2) with
e; = (o417 @50 0430 ) €T
If py is included in Wl (a:b) for same (a:b) € Pl (C), then the system of equations
ue;; = u'ei?_, ue; 5 = u'e__i_4 (i=1,...,4)
has a nontrivial solution (u,u') € C2, thus it has a nontrivial solution

(u,u') € Q2. Consequently { is included in Wl(a:b) for some (a:b) € Pl(Q) . The

story for W2 (a:b) is analogous.



§50. PROPERTY (é )

Iet K be a field, k < K a subfield.

l: DEFINITION Two m x n matrices M and N with entries in K are

k—equivalent if there exist nonsingular matrices P and Q with entries in k such

that N = PMQ.
[Note: The dimension of the (Q-subspace of K? generated by the rows of M

(or N) is the same as the dimension of the Q-subspace of K" generated by the

columns of M (or N).]

2: N.B. The rank of M equals the rank of N, this being the largest

integer r for which there exists a nonsingular r x r submatrix of M (or N)

(cf. 835, #8).

3: THEOREM Let E be a k-vector subspace of K which is spanned by a family

(finite or infinite) of elements of K which are algebraically independent over k —

then every matrix M with entries in E is k-equivalent to a matrix of the form

where A is either zero-size or nonsingular.

To orient ourselves, here are two examples of the overall structural setup

(ignoring for the time being the validity of the assumption on E).

: EXAMPLE .Take K= C, k = Q, let Eo be the Q~vector space L of logarithms



of algebraic numbers, and put £ = Q + L.

[Note: The sum is direct. In fact,

Qn L= {0} (cf. §31, #3) =>Qn L= {0}.]

EXAMPLE Take K = C, k = Q, let E, be the Q~vector space of homogeneous

linear combinations of elements of [ with coefficients in Q, and put €= Q + E,
(hence E = [¥).

[Note: The sum Q + E, is direct (cf. §39, $14).]

6: LEMMA Suppose that E is a k-vector subspace of K — then the following

conditions are equivalent.

(1) E is spanned by a family (finite or infinite) of elements of K which
are algebraically independent over k.

(ii) Subsets of E which are linearly independent over k are algebraically
independent over k.

(iii) If E' is a vector subspace of E and x is an element of E which does
not belong to EY, then x is transcendental over k(E'}.

PROCF
(1) => (ii) Per the assumption, fix a basis B for E over k consisting of

elements of K which are algebraically independent over k. Let Xyreee ¥y be a set

of k-linearly independent elements of E and write each X, (1 <i<m) as a linear

1A

combination with coefficients in k of elements yj €B (1 <3j<n), say

n

X = L @,:Va.
i 3=1 i3°3



Since the matrix [aij] has rank m, it follows that there is a subset {zl, - ”zn—m}

of {yl,...,yn} such that
k(yl,...,yn) = k(xl,...,xm, zl""’zn—m)'

And this relation implies that Xppeee X are algebraically independent over k.

(ii) => (iii) Assume instead that x € E, x ¢ E' is algebraic over k(E').

Choose Yyres1¥p in E', linearly independent over k, such that x is algebraic
over k(yl, con ,yn) — then YyreesrY, X are algebraically dependent over k, hence

by (ii), are linearly dependent over k, say

a,¥y + cee + anyn - ax = 0.
But a cannot be zero (since otherwise a = 0 would force Yyre-+/¥, tO be linearly
dependent over k), hence
4 ®n
X=g ¥yt oy €E,

contradicting x ¢ E'.
(iii) = (i): Let B be a basis for E over k. Claim: Any subset

{yl, .o ,yn} c B of k-linearly independent elements of B consists of k-algebraically

independent elements. To establish this, proceed by induction on n.

e n=1: Use (iii) with E' = {0}:
yp #0=>y; £E".
Therefore Y1 is transcendental over k.
e n > 2: Assume the result holds at level n -~ 1 and let Yyreeer¥p be

kwlinearly independent elements of B. Denote by E* the vector subspace of E over



k spanned by Yyreeer¥y g Owing to the induction hypothesis, Yyre--r¥,_q are
algebraically independent over k. But AN E', so by (iii), Yn is transcendental

over the field k(yl, ces ,yn_l) from which Ypree-rY, are algebraically independent
over k.
[Note: There is yet another equivalent condition that can be added to this
list, viz:
(iv) For any nonzero polynomial P € k[X ,... ,Xn] ,
% (P) ﬂEn=LdVﬂEn,

where |/ ranges over the K-vector subspaces of K' rational over k and contained in

Z(P) = {x € K': P(x) = 0}.]

7: NOTATION ILet EO be the k-vector subspace of E spanned by the entries

of M.

The proof of #3 goes via induction in the dimension n of EO.

® n=1: Write M = Nx, where N has entries in kand x € E, x # 0.
ILet r be the rank of N and let P and Q be nonsingular matrices with entries in

k such that



Then

PMQ =

— —_—

so matters are satisfied with the choices
A=Irx,B=O,C=Oo

e n=2: Write

M=Mzx +Mx),

where M. and M2 are matrices with entries in k and where Xy X € E are linearly

1 2
independent over k (hence algebraically independent over k (cf. #6 (ii)). Denote

by ry the rank of Ml' Choose nonsingular matrices Pl and Ql with entries in k

such that
Irl 0
P10y =
_ 0 0 _
Denote by A2' BZ’ Cz, D2 the matrices with entries in k such that
A2 BZ
PyMyQ =
G Dy I~
where A2 is a rl X ry matrix. Then



Choose nonsingular matrices P2 and Q2 with entries in k such that

Ir2 0
PyD,Q, =
0 0 I,
where r, is the rank of Dz. Then
B | 0 B | 0o
] 1
PlMQl
_ 0 Pz._ ~ 0 Qz__
equals
T I x +AX Blx B! -
rl 1 272 272 2 x2
1]
C2x2 Ir2X2 0
Cé'x2 0 0 R

where Bé, Bé', Cé, Cé' have entries in k. Put now

1
Irlxl + A, BXX,
A =
_ C2 % e %2 _

and take for B,C what remains. To check that A is nonsingular, note that the



r, r
determinant of A is a polynomial in %y and X, and the coefficient of xllx22
is 1. Therefore

det A # O.

e n > 2: Fix a nonzero element x € EO. Let El be a subspace of Eo
such that E0=Elekx. WriteM=XN+Ml, whereNhasentriesinkandMlhas
entries in El. Denote by r the rank of N. Choose nonsingular matrices P and Q

with entries in k such that

Ir 0
PNQ =
_ 0 0 _
Then
XIr + Al Bl
PMQ =
Cy Dy ,

where Al,Bl,Cl,Dl have their entries in El. Apply now the induction hypothesis

to Dl:



Here A' is nonsingular with entries in El. Next

Ir 0 XIr + Al Bl Ir 0
. 0 P' ~ Cl Dl__ 0 Q'
equals
- g~
Here
XIr + Al B”
A=
Cll AI

and the entries of B'', C'' are in E To assertain that A is nonsingular, note

1°
that the determinant of A is a polynomial in x with coefficients in k(El) whose
term of highest degree is x* det A'. Since x Z El' it follows from #6 (iii) that

X is transcendental over k(El) and since A' is nonsingular, the bottom line is that

det A # 0.

: DEFINITION Let E be a k—~vector subspace of K —— then by property (é g)

we shall understand the following: Any nonzero matrix M with entries in E is

k-equivalent to a matrix of the form



where A is nonsingular.
[Note: Strictly speaking this is a property of the triple

&,k E)

(A B

but usually one abuses the language and simply says that E has property (c O) .1

pe

9: N.B. The upshot of #3 is that if E is a k~vector subspace of K spanned

A B).

by k-algebraically independent elements, then E satisfies property (C 0

10: LEMMA If EO is a k-vector subspace of K spanned by k-algebraically

independent elements and if Eg Nk = {0}, then E=k + E, satisfies property (é g).
PROOF As a k-vector space, E is isomorphic to the subspace E' = kX + EO
of K(X) and property ('é g) holds for the triple

k,K(X),E").

11: EXAMPIE As in #4, take K= (¢, k = Q, E0= L, and admit FDC (cf. §49,

#1) —— then #6(ii) is in force which implies that #6(i) is in force. Accordingly,

A B).

since E, n k = {0}, it follows that E = k + EO satisfies property (C 0

0
[Note: Of course, EO also satisfies property (é g).]

A B

12: REMARK The satisfaction of property (C 0

) is not automatic.

[To illustrate, choose elements x and u in K such that u, ux, ux2 are



lO.

k-linearly independent (=> x Z k). Denote by E the k-vector space ku + kux + kux2

AB).

(=> dimk(E) = 3) -- then the triple (k,K,E) does not satisfy property (C 0

Thus consider the line ¥ = K(1,x) in K2 (the hyperplane defined by the equation
2, = xz.]:) and note that U n k2 = {0}, Purthermore | n g contains the k-linearly
independent points
(u,ux), (ux,uxz)
implying thereby that dimk(v n 11_2) > 2. On the other hand, taking into account
§51, #3 infra (withd =2, n = 1),
dgim (V0 E) <1 +1)/2 =1,

So, on the basis of this contradiction, the triple (k,K,E) does not satisfy

property (é 3>.1

APPENDIX
Iet K be a field, k < K a subfield.

LEMMA Suppose that E is a k-vector subspace of K containing k —— then the
following conditions are equivalent (cf. #6).

(i) There exists a basis {xi:i € I} for Eover kwith 0 € I, x, = 1, and

0
{Xi:i € I, i # 0} algebraically independent over k.

(ii) If Xyre-., X are elements in E such that 1, K. X, are linearly

independent over k, then Xqyee X, are algebraically independent over k.



11.

(iii) For any tuple (XO’ .o ,xn) consisting of k-linearly independent

elements of E and for any nonzero homogeneous polynomial P € k[XO, .o ’Xn] , the

number P(xo, cen ,xn) is not zero.
(iv) If P k[X,... ,Xn] is a nonzero homogeneous polynomial, then
z(®) n B = yvn i
where | ranges over the K-vector subspaces of Kn+l rational over k and contained in

7(p) = {x € B :p(w) = o).



§51. VECTOR SPACES: L(bis)

1: RAPPEL Iet I < ¢ be a C-vector subspace such that V n Qd = {0} — then

imy (V 1 1Y <nmtl)  (cf. s38, 45),

where

n= dimC(V).

2: N.B. This result is unconditional.

Return now to the setup of §50.

3: THEOREM Let E be a k~vector subspace of K satisfying property (é g) .

Iet V ¢ Kél be a K-vector subspace —- then
dim (v n £ < n@) /2,

where

n=dimK(V).
PROOF When d =1, V= {0} and V N E = {0}. Assume now that 4 > 2 (=>n < d).

® DBy induction on d, if r < d and if W is a K-vector subspace of K® such
that @ n k* = {0}, then the k-vector space W n E" is finite dimensional, in fact
dim,_ (W n E5) < r(xr-1)/2 (see below).

Take now £ elements RyreeesXp in U N £ which are linearly independent over
k, the claim being that

£ < n(ntl) /2.



Denote by M the d x £ matrix whose colums are given by the coordinates of the

X, (i=1,...,2) —— then the entries of M are in E, so M is k-equivalent to a

matrix

-

where A is a nonsingular r x r matrix. In addition
d>n>rank M >r=>r <n<d.

Put t = - r, thus B is a r x t matrix. Iet @ be the K~vector space spanned by

the colums of B in K°. Since | contains { x {O}d—r, we have W n X* = {0}. On
the other hand, the colums of M are k-linearly independent, hence the same is

true of

hence too for B. Therefore

t = dim (@ 0 E)
and by the induction hypothesis,

t g r(r-1)/2

L=t+r=r+t

wm

r + r(r-1)/2

I A

n+ n(m-1)/2

= n(.n+l)/2-.



Finally

2 < (@-1) (d-1+1)/2 = d(d-1)/2

which completes the induction.

4: APPLICATION Take K= C, k = @, and EO = |. Admit FDC (cf. §49, #1) —

then EO is a Q-vector subspace of € satisfying property (Ié g) (cf£. §50, #11), so

for any C-vector subspace V < Cd such that V N Qd = {0} there follows

aim (v 0 9 < n@) /2.
[Note: It is not known if
trQ QL) > 2.

However the mere presence of property (A B

C 0) is not enough to imply that .there

exists two algebraically independent logarithms of algebraic numbers. ]

5: N.B. The estimate

dimQ(V n 1% < n(nt+l) /2

is sharp (cf. §38, #7).

6: IMPLICATION
FDC => 4EC.
PROOF Refer back to the proof of #1 in §41. Follow it line by line, working

with {x } and {yl,yz} (drop the “y3“) — then V = CX contains two Q-linearly

17%

independent points (viz. VX y2§) , hence

2 < dim (v N L3).

Q



On the other hand (cf. #4),

im, (V 1%) <1(+1)/2 = 1.

Contradiction.
[Note: Recall that

SCHC => 4EC  (cf. 8§47, #17)

SCHC => FDC (cf. 847, #7 and 8§49, #1).]

7: REMARK Under SCHC, it can be shown that a finite subset of [* consisting
of El—linearly independent elements along with 1 is ﬁ—algebraically independent.
Agreeing to denote this property by the symbol SFDC, we therefore have the impli-

cation

SCHC => SFDC.
One can then work with the triple (6, C, L*), which thus satisfies property (lé g).
So, for any C-vector subspace V < Cd of dimension n such that V n Qd = {0}, the

- X,
Q-vector subspace V N L d has dimension < n(n+l)/2.

8: N.B.

SCHC => S4EC.



§52. ON THE EQUATION z + &% = 0

This equation has exactly one real root. Can it be expressed in "elementary"

terms?

1l: DEFINITION A subfield F of C is closed under exp and Log if
e zcF=>expz€clF

e z€F - {0} =1ogzEF.

2: NOTATION Write E for the intersection of all subfields of C that are

closed under exp and Log, the elements of E being the elementary numbers.

3: CONSTRUCTION Set E = {0} and for each n > 0, let E be the set of

all camplex numbers obtained by applying a field operation to a pair of elements

of E

-1 OF by applying exp or Log to an element of En-l"

[Note: Division by zero or taking the logarithm of zero are not, of course,
permitted. ]

4: N.B. Therefore

Q < E.

é

E= U E_.
n=0r1

[Note: Consequently E is countable.]

: EXAMPIE

e = exp(exp 0) € E.



7: EXAMPLE
V=1 = exp(Ii‘—gz——(—l)—)G E.
8: EXAMPLE
T = - /=1 Log(-1) € E.
9: EXAMPLE

V2 = exp(ﬁn%)e E.

10: THEOREM (Admit SCHC) The real root o of the equation z +e%=0

is not in E.

This is definitely not obvious and it will first be necessary to step

through some preliminaries.

11: NOTATION Given a finite set

A= {ocl,...,ocn}

of nonzero complex numbers, if A = @ put A0 = Q and if A # g, put
oy a,
I—\i = Q(ocl,e peeesOy e )y G e€{1,...nhH.
12: N.B. Each element of Ai is a rational function (with rational co-

efficients) of the numbers

aq oy
Gps€ Tyaea,05,0 7



13: DEFINITICN A tower is a finite set

A= {ocl,...,ocn}

of nonzero complex numbers with the property that for each i € {1,...,n} there

m, o..1n.
. : i il
exists an integer m, > 0 such that o," €A;_; ore € A;_y (or both).

14: EXAMPIE

——

A= (o ,05,05) = (Un(2), £n(2)/3, (L + e Un(2))/3y,

is a tower.

[One can choose

because

e =2€Aor 0L26Al, e EAz'l

15: DEFINITION A reduced tower is a tower

A= {ocl,...,onn}

such that {oel, «oes0, n} is linearly independent over (.

16: N.B. The tower figuring in #14 is not reduced (in fact oy = 3o, = 0).

2

17: LEMMA Let

A= {ocl,...,onn}
be a tower and suppose that djr.--,9, are nonzero integers. Set

B = {By,---/8}



where
Q.
—_l. 1 =
Bl_ql 61 1,...,n).
Then v i,
Ai CBl

and B is a tower.

PROOF Since

a = Biqi and eui =(e™) 7,

it follows that every element of Ai is a rational function (with rational co-

efficients) of the numbers

B B;
B /@ TreeeiBisC

hence Vv i,

A; < B; (cf. #12).

o.M

m. ,
This said, let 1 € {1,...,n}, thus ail € Ai—l oret e Ai—l (or both) and put

n, =m.d..

i i%i
!
e Suppose that o4 € Al—l —— then
m.
n, ot 4
9
a.m



Therefore B is a tower.

18: REDUCTION PRINCIPLE Given y € E, there is a reduced tower
A= {al""’dn}
such that vy € I\h

PROCF If vy € Q, take for A the empty sequence. If vy g Q, let T(y) be the

set of all towers
A= {ocl,...,ocn}
with the property that vy ¢ An — then T(y)} is not empty and, as will now be shown,

the assumption that every element of T(y) is not reduced is a non sequitur. So
choose a tower

A= {og,ee-0a ) € T(y)

and take n minimal (n > 1). Let i be the smallest integer such that {al,...,ai}
is linearly dependent over Q, hence

i-1 p

s = 1 J

— 0.
1 . .
=1 % J

for certain integers Pyr Qyrecer Por do- Consider the sequence

] %1
A'={—= ..., ==
9 9i-1

r ai+lr---lun}'
Then the claim is that A' € T(y), which contradicts the minimality of n. To
establish this, note that the sequence

% %i-1

{=—,..es

9 9i1

}



is a tower (cf. #17). In addition,
o € Ai—l (by the formula above for O‘i)

and

- /4 o /9.
eul € Ai—l (it is a polynomial in the numbers eOcl l"..,e L]’ P 1).

But

Aiq < Al (cf. #17)

- - ( O‘i) .
=> AT A58 ) S A -

Therefore the tower condition for A' is satisfied at the boundary between :i:i
and 0,4, and

YeA <A =>n" €TV,
as claimed.

19: SUBLEMMA Suppose that

A= {al,oo.’%}
is a tower — then V i,

trdegQ Ai < i.

PROOF Start with the situation when n = 1, say {q,e%}, and for sake of
m . . , <0 m
argument, assume that ¢ € Q — then o is algebraic (consider - o ), hence
trdeg, Qlo,e™) = trdeg, (e

< 1.

Proceed from this point by induction, the underlying hypothesis being that

’c.1:’de<_:yQ Ai—l <i-1.



(x.
Iet r.l stand for oy or e T then

Ol
1
Ai_l(ai,e )

>
I

Aig Fy)

However, on general grounds (cf. §46, #20),

trdegQ Ai_l(ri) = trdegA' X Ai__l(ri) + trdegQ Ai-l’
l—

or still,

tr:degQ Ai_l(ri) <l+i-1=1i,

trdegQ Ai < i.

20: LEMMA (Admit SCHC) Suppose that

A= {all°“lan}

Obs
is a reduced tower —— then not both o, and e * can be algebraic over Al q-

PROOF In the notation of §46, #20,

trdegQ(Ai/Q) = trdegA_ (Ai/Ai_l) + trGEgQ(Ai_l/Q)-
i—

1

ol

To get a contradiction, suppose that both O and e * are algebraic over A'i—l’ thus

(e )
i
Ai_l(ai,e )
is an algebraic extension of Ai—l’ SO Ai is an algebraic extension of Ai——l' hence

trdegAi_l(Ai/Ai_l) =0 (cf. 5§46, #18).



Therefore

Owing now to Schanuel,

\'4
-
L]

trdegQ(Ai/Q) >
On the other hand (cf. #19),

Contradiction.

21l: N.B. v i,

trdegQ Ai =1,

Turning finally to the proof of #10, suppose that p € £ — then in view of

#18, there is a reduced tower

A= {al,...,ocn}
such that p € An. Obviocusly p £ Q and it can be assumed without loss of generality
that p ¢ Ai if i < n.

Put

Then

and



Accordingly A' (which is clearly a tower) cannot be reduced (cf. #20). On the

other hand, A is reduced, thus

for certain integers Py rdyre--rP - Here Py, # 0 since p ¢ Ai for i <n. In
terms of this data

n p. n a:/d: P
o+eP=0=> 3 T, + T et ™M *t=o.

. . 1 .

i=1 =& i=1
Let

B = {al/ql,...,an/qn}.
Then B is a tower (cf. #17) and since A is reduced, the same is true of B. But
P, # 0, hence
o/

n

a,/q, algebraic over B, ; => e algebraic over B

and vice versa. It therefore follows that B cannot be reduced (cf. #20). Con-

sequently the supposition that p € E has led to a contradiction.

22: NOTATION Write E for the smallest algebraically closed subfield of

C that is closed under exp and Log.

23: N.B. Evidently

E ckE.

24: THEOREM (Admit SCHC) Suppose that P(X,Y) € Q[X,Y] is an irreducible

polynomial such that



10.

&
o)
v

> 1 per C[Y] [X]

> 1 per CIX][Y].

[oN
&

vl

\

Assume: For some nonzero o € C,

P(a,e™) = 0.
Then o ¢ E.
[Note: o is necessarily transcendental. For if o was algebraic, then the

relation
P(oc,ea) =0
implies that e” would also be algebraic, which contradicts Hermite-Lindemann
(cf. 8§21, #4).]
25: APPLICATION Take P(X,Y) =X + Y and take o = p —- then
P(p,ep) =p + e’ =0

= p@&E=p¢gE,

thereby recovering #10.



§53. ON THE EQUATION P(z,e%) =0

l: RAPPEL Iet £ be an entire function., Assume: f has no zeros -- then

there is an entire function g such that f = e,
[Note: If f is of finite order, then g is a polynomial (and the order of

f is equal to the degree of g).]

2: RAPPEL Let f be an entire function. Assume: £ has finitely many zeros

24 # 0,000 rZy # 0 (each counted with multiplicity), as well as a zero of order

m > 0 at the origin —- then
n

_ .mg(z) -2,
f(z) =z e kT=_|]—_ Z

where g(z) is entire.
[Note: If f is of finite order, then g is a polynomial (and the order of f is

equal to the degree of qg).]

3: DEFINITION A polyncmial P

m

CI[X,Y] satisfies the standard conditions

if P is irreducible and

deg, P > 1 per C[Y][X]
dng P > 1 per C[X][Y].
Given such a P, let
£(z) = P(z,e%).

Then f(z) has order 1.

: LEMMA £(z) has infinitely many zeros.



PROOF Suppose that f(z) has finitely many zeros —— then there exist complex

constants A,B and a polynomial p(X) € C[X] such that

Az+B
€

f(z) = p(z)

B
eAZe p(z) = eAZq(z) '

where
q(z) = eBP(z) € CIx].

But the relation

P(z,ez) - eAZq(z) =0

is possible only if A € N (expand the data and compare coefficients), hence
P(X,Y) = ¥g(X).

Since P depends on both X and Y, neither YA nor q(X) are equal to 1, thus P(X,Y)
is reducible, which contradicts the fact that P(X,Y) is irreducible.
[Note: To rule.out from first principles the possibility that A = 0, cbserve

that the relation

P(z,e”) = q(z)
would imply that e? is algebraic (cf. §20, #13), whereas e? is transcendental

(c£. 8§20, #15).]

We come now to the main result which is an illustration of the old adage
"assume more, get more", there being, however, a price to pay, viz. the imposition

of SCHC.

5: THEOREM (Admit SCHC) Suppose that P satisfies the standard conditions.



Suppose in addition that P € Q[X,¥] —- then

f(z) = P(z,ez)

has infinitely many Q-algebraically independent zeros,
The proof is lengthy and will be developed in the lines that follow.

6: DEFINITION A zero o # 0 of £(z) is said to be generic if

uﬂquw@%==L

[Note: Therefore the point (q,e%) is a generic point of the curve C < € x C*

given by P(X,Y) = 0.]

: LEMMA Every zero g # 0 of £(z) is generic,

PROOF According to §52, #24, o is necessarily transcendental, hence

trdeg,. Q(a) = 1.

Q
But

P(a,Y) € Qo) [¥],

so % is algebraic over (o), which implies that

trdeg Q(oc,ea) = 1.

Q

8: N.B. Distinct nonzero q,8 with f(a) = 0, £(B) = 0 are not automatically
algebraically independent over (.
[Take

P(X,Y) = 1 + XY + Y°.

Then

P(a,e®) = 0 => P(- q,e %) = 0,]



However:

9: SUBLEMMA (Admit SCHC) Suppose that

f(a) =0 (o # 0)
and o # + B.
0 (B# 0)

£(g)

Then ¢ and g are algebraically independent over Q.
PROCF Bear in mind that o # 0, B # 0 are transcendental and generic (cf. #7).

This said, assume that o and B are algebraically dependent over Q —— then

trdeg, Q(c, 8,e%,ef) = trdegq (e, B) = trdegy Q(e) = 1.

Owing now to Schanuel's conjecture, o and B are linearly dependent over Q: Linear

independence over Q would imply that
a B
trdegQ Q(c,B,e”,e") > 2.
Accordingly choose relatively prime integers m and n such that mo = ng (take n > 0

and suppose momentarily that m > 0). Put vy = %, hence

&% = (eY)n and eB = (eY)m.
For every positive integer j, let
C. cC X CX
J
be the curve given by
p(5X,%7) = 0.
Then
0= f(@) = P(x,e) =Py, )™
0 = £(8) = (8,e") = Py, (€™



Y
(yre) €C nCy

Since Cn and Cm have a nonempty intersection, it follows that they have a common

irreducible component and this means that

P (nX,¥") and P (@mX,¥™)

have a common irreducible factor.

FACT The nth roots of unity operate transitively on the irreducible components

of Cn and the mth roots of unity operate transitively on the irreducible components

of C_.
m

e Factor P(nX,Yn) into relatively prime irreducibles:

k S,
PmX, YY) = T U.(X,¥) I.
=1

Then it can be shown that each Uj (X,Y) is of the form Ul (X,wY) for some nJCh root

of unity w and Sy = -+ =8 call their common value s, hence

kl

degX P = ks degX Ul

n dng P =ks dng Ul.

e Factor P(mX,Ym) into relatively prime irreducibles:

£ t
Pmx,¥") = T vV, (X,¥) ~.

i=1



Then it can be shown that each Vi (X,Y) is of the form Vl (X,Y) for some mth

of unity w and tl = ... = ty_' call their common value t, hence

o'legX P = £t degX Vl

m dng P =tt dng vy
It can be assumed that
Ul(X,Y) = vl(X,Y) ’
the common irreducible factor of P(nX,Y") and P(mX,Y") —— then

ks degX Ul = degX P=ft degX Vl

= Lt <:'iegX U; -

But
deg, P # 0 => ks = £t # 0.
Next
n dng P = ks dng U, = 2t dng Ul

= Lt dng Vl

=Tm c'!ng P.
But

dngP%O=>n=m,

contradicting the assumption that m,n are relatively prime.
[Note: To treat the case when m < 0, consider the polynomial

-m deq,, P
T(X,Y) = Y ¥, Y.

root



Then
degx T = degX P
and
dng T = *m.dng P.
So as above,
mi =nR => -na =nf => -a =R =>0=-H,

whcih is forbidden by hypothesis. ]

10: DEFINITION Under the assumptions of #5, P is said to be primitive

if v n € N, the curve Cn given by

P(nX,¥") = 0
is irreducible.
11: LEMMA (Admit SCHC) Suppose that P is primitive and let Qpreee O

be nonzero zeros of f(z) = P(z,ez) subject to o, # + aj for all i # j — then
Gpre..,0, are algebraically independent over Q.

PROCF Searching for a contradiction, the first step is to tabulate the data.

So assume that over Q there exists an algebraically dependent collection QpreessOy

%1 of n + 1 nonzero zeros of £ such that o, # * aj for all i # j and take n

minimal. In view of #9, two such zeros are algebraically independent over (, hence

n 2 2, and, by the minimality of n, the collection o o is algebraically

A
independent over Q, hence

% %l
trdegQ Q(ul,...,an+l,e reees® ) =n<n+ 1.



Meanwhile, by Schanuel, if OpreeerO s

4] WEre linearly independent over (, then

a o
+1
trdegQ Qlag reeeraqre l,...,e By > no+ 1.

Since this cannot be, it follows that there exist nonzero integers m,...,m m
with no common factor such that

n
k_ElmkoLk=mc>°n+l m > 0).

2|

Putyk= . I_ethCxcxbethecurvedefinedbyP(X,Y)=Oandlet

X

C,ocCxC be the curve defined by P(mX,Y") = 0. Since P is primitive, Cm is

irreducible and since Oy reoe Oy BTE algebraically independent over (, the same

Y

Y
is true of Yyreoer Ve Therefore (Yl,e l) feees (yn,e

N are generic points in Cm'
Moreover

Y Yn

1
trdegQ Q(Ylle r---lane ) =n.

12: CONSTRUCTION Define a map

0:(C x cCH? ¢ x ¢

by the prescription

n n
(X YqreeerX ¥ ) > (2 v T v ).
1'Y1 A S UL

( eYl eYn)
P Yll reese lYnl

= (Z Yy, 7 TTe )
M SN,



1l
™

(g0 )y

a generic point in C, hence ¢ maps (Cm)n to C. So if Zqr--0 12, are zZeros of £,

then the pairs
. A , n
1 m
(Hlem)l seey (Enle )

lie in qm, from which it follows that the sum

m
z %‘Zk
k=1

is a zero of £f. In particular:

is a zero of £ (take Z) =2, =0y and Z, = oy k > 2)).

n > 2: In this situation, the collection Oy 1Ogr e s e s 1Ol is algebraically

dependent over ( and consists of n nonzero zeros of £, contradicting the minimality

of n.

[Note: The condition n > 2 implies that o is nonzero and ¢ # + ay v i.]

n = 2: It is a question of dealing with the collection Oy 10y rOig of

Q-algebraically dependent nonzero zeros of f such that oy # + aj for all i # j

satisfying

myay +mya, = mag,



10.

where, as above,

is a zero of £. The claim then is that such a scenario is impossible. To this
end, it will be shown below that each of the following conditions leads to a

contradiction.
(1) ml+m2=0; (2) ml+m2=m; (3) ml+m2=—m.
Therefore

a#0 (cf. (1)); a# oy (cE. (2)); o # - o (cE. (3)).

Consequently o and o, are algebraically independent over Q (cf. #9). But this is

1

nonsense since o and a, are linearly dependent over Q:

mm

m

l'oc—q'ocl=0(q= € Q).

Ad (1) (ml + m, = 0): To begin with, note that % o and op are nonzero

Q-algebraically dependent zeros of £, hence by #9,

m_lo(' =+OL = m., =
m 1 ~ 71 1

I+
B

To pin things down, takem1=+m——then
Moy T M0y = Mog => Moy~ Mo, = Moy
> o T oy Fog
Now interchange the roles of o and Oy to get

0L2=OL1+OL3



11.

or still,
062=052+0(.3+OL3=>0=2(],3.

Contradiction.

Ad(2) (ml + m, = m): By switching the roles of the variables and multi-

plying by -1 if necessary, it can be assumed that ]ml > |m1|, !m2| and m > O,

m > 0. Construct a sequence {zk} of zeros of £ by the following procedure:

Take z, =g and via recursion, take
"4l T m T m %
Then the fact that
E =] - ﬂ
m m
leads to the relation
m k m X
Since
!
0 < o 1,

m, k

the coefficient (—mi) of o, takes a different value for each k, thus thanks to

1
the Q-algebraic independence of o and Gy the sequence {zk} assumes infinitely

many distinct values. Put

M = maxf o], [oy| )



12.

ny

(=)

nn

mlk

k
|M+|l—-(—)‘M<2M.
m —

|Zqp | <

But this means that the entire function f has infinitely many zeros in the disc

of radius 2M centered at the origin, so f = 0, a contradiction.

m
Ad(3) (m1+mz=—m): Lets=Fl——then

i)

F=—(l+8)

and

= soq - 1+ S)az.
On the other hand,
Soy 1+ s)oc2

is a zero of £. And

2
m

So(,3 - (1 + S)o(,2

s(socl - 1+ S)az) - 1+ s)oc2

2
S

o - s(l + s)oc2 - (1 + s)oc2

2
S

ay - (1 + s) (SOLZ + 0L2)

2 2
sal—(l+s) O -



13.

Now treat Oy @y, Was a collection of Q-algebraically dependent nonzero zeros
of £. Invoking the earlier analysis, we thus have

- (l+s)2=w2s-1=0o0r +1.

e If -2s~-1=1, then
S
m
=>—m=m1

=>ml+m2=ml

=> 1n2 = 0.
So
mag = Moy + myo,
=2 Moy = IMy0y
=> - m 0y = M0y => 0y == 0p.
Contradiction.
¢ If ~-2s5s~-1=-1, then
s=0= m1 = Q.
So

= - mlOL3 - m20c3 = mlocl + m.o

= T W0y =m0, => 03 = - 05

Contradiction.



14.

e If -2s-1=0, then

52 - (l+s)2

il

sz—(l+25+sz)

=-1-2s=0.

1! = u
So matters reduce to ml+m2 o"... .

13: N.B. It won't hurt to repeat: P € Q[X,Y] satisfies the standard
conditions and
£(z) = P(z,e%)

has infinitely many zeros (cf. #4).

PROOF OF #5 In view of #11, it can be assumed that P is not primitive.
Choose, accordingly, an n € N such that Cn is reducible (cf. #10) — then Cn has
an irreducible camponent defined by some polynamial Pn (X,Y) € Q[X,Y] depending
on both X and Y and

0 < degX Pn < degX P.
Noting that degX P > 1, proceed by induction on <fi.egX P, supposing that for all

irreducible polynomials T(X,Y) € Q[X,Y] satisfying the standard conditions such that
degX T < degX P
the entire function
T(z,e”)
has infinitely many Q-algebraically independent zeros -- then by hypothesis, the
entire function

z
fn(z) = Pn(z,e )



15.

has infinitely many Q-algebraically independent zeros, say ZyrZyreen -

Pn(X,Y) is a factor of P(nX,Yn) , hence

n
f(nzk) = P(nzk,e Zk) =0 k=12,...).

Therefore

Nz, NZ ...

is an infinite collection of (ralgebraically independent zeros of f.

14: REMARK The result remains valid if Q is replaced by 6, i.e., granted

SCHC, if P e Q[X,Y] satisfies the standard conditions, then
£(z) = P(z,e%)

has infinitely many Q-algebraically independent zeros.

15: EXAMPLE (Admit SCHC) Consider P(X,Y) = X = Y — then the entire function

f(z) = P(z,ez) =z - e”
has infinitely many Q-algebraically independent zeros, thus the exponential function
e® has infinitely many Q-algebraically independent fixed points (cf. 8§52, #10).

16: THEOREM (Admit SCHC) Suppose that K < ¢ is a finitely generated field —--

then for any P € K[X,Y] satisfying the standard conditions, the equation

P(z,ez) =0

has a solution 0 generic over XK:
trdeg, K(o,e”) = 1.

[This was proved in 2014 by V. Mantova.]



le.

17: APPLICATION (Admit SCHC)

#16 => #14,
[Start with the field K obtained by adjoining the coefficients of P to Q.

Choose an o per supra. ]

Here is a word or two on the proof of #16. The key is to show that P(z,ez)
has only finitely many zeros in IT<, the algebraic closure of K (this forces the
other zeros to be generic over K). The point of departure for this is the following

result.

18: IEMMA (Admit SCHC) There exists a finite dimensional Q-vector space

F <K containing all the zeros of P(z,ez) in K.
[Without loss of generality, add to K the coefficients of P so that P is
defined over K. Recall that for any z = (zl,...,zn) ,

z
trdegQ Q(E,e ) > . lino'limQ z  (cf. §47, #24).

pA Z.

IfnoweachziEEismﬁandP(zi,el) = 0, thenelelz.]



§54. ZILBER FIELDS

These are fields subject to the following conditions.
e (EAC)
e (STD)
e (SCHP)
® (SEACP) < (ERCP)
e (CCP)

The meaning of these abbreviations will be explained below.

1l: DEFINITION An E-field is a field (K, +, -, 0, 1) of characteristic

0 equipped with a surijective homomorphism E from its additive group (K,+) to its
multiplicative group (KX, +), thus
vV X,y € K, E(xty) = E(x): E(y)

and E(0) = 1.

: EXAMPLE To exhibit an E~field, take K = R, take a > 0, and equip it

——

with the exponential function to base a, i.e.,
exp (x) =a" (x €R) (cf. 55, #1).

[Note: Denote this setup by the symbol Rexp vwhen a = e,]

w

DEFINITION An E-field K is an EAC~field if K is algebraically closed.

4: EXAMPIE To exhibit an EA-field, take K = C and equip it with the usual

exponential function z » e”.

[Note: Denote this setup by the symbol Cexp']



5: N.B. If K is an E~field, then Q can be considered as a subfield of K,

since K has characteristic 0.

" 6: DEFINITION Suppose that K is an E-field —- then the kernel of the
exponential map, i.e.,
{x e K:E(x) = 1},
is said to be standard (STD) if it is an infinite cyclic group generated by a
transcendental element ¢, thus
Ker (E) = oZ.
[Note: o is transcendental provided that it is not the root of a nonzero

polynomial with coefficients in the copy of Q in K.]

7: EXAMPLE Take K = ( exp then the kernel of the exponential map is

21 /=L 7, hence is standard (take o = 27 /~1).

8: DEFINITION Suppose that K is an E-field ~- then to say that K has

Schanuel's property (SCHP) means that if Xqy.-.0%, are elements of K which are

linearly independent over Q, then the field

Q(xl, - ,xn,E(xl) reesrB(x))

has transcendence degree > n over (.

[Note: When K = C, SCHP is, of course, conjectural (SCHC).]

9: NOTATION Given an E-field K, transcribe §47, #20 from ¢ to K and given

X, put

6, (x) = trdeg, Q(%,E(x)) - lindim X,

Q Q =

the predimension of x (cf. 847, #26).




Therefore SCHP per K is the claim that v X,

6y ) > 0.

10: NOTATION (Admit SCHP) Given an E-field K and a finite set X < K,

view X as a tuple — then SK(X) > 0 and the dimension of X in X is

dimK 0:9]

inf{csK(Y) X XY g K} (i.e., Y finite).

'11: DEFINITION (Admit SCHP) Let K and L be E~fields — then L is a strong

extension of K if K < I, and
dj_mK(X) = dj.mL(X)
for all X < K, where X is finite.

12: THEOREM (Admit SCHP) Cexp is not a strong extension of R

PROCF Tt will be shown that

dimp (m) # dime (m) .

Owing to Nesterenko (cf. §20, #10): /

e &(m = trdeg, Q(m,e") - lindimQ ()

=2-1=1.

o &o(m,m /Al = trdegy QGr,m/=1L,e",e™ L) - Lindim (/D)

trdegQ Q(r,n/~L,e",~1) - 2

trdegQ Q(m,m/~L,e") - 2

tJ:-degQ Q(m,e") - 2

2-2=0,



m/~1 being algebraic over Q(m). Therefore
dimc(ﬂ) = 0.
If now Cexp was a strong extension of R oxp’ then we'd have
dij(TT) =0,
so there would be a finite subset X < R with m € X such that GR(X) = 0. Explicate:
X = {Tr,xl, . ..,xn}
and suppose that
lindim, X =k + 1.
Write
0= GR(W,Xl,...,xn)

X e
trdegQ Q(ﬂ,xl,...,xn,eﬂle I ...e! - 1indJ'_mQ(1r,xl,...,xn)

X X

T 71
trdegQ Q('rr,xl,...,xn,e € ,ee,€ n)

=k +1
X
trdegQ Q(w,ﬂ/-'-T,xl, - ,xn,eﬂ,em/_r,e l, ces ,exn)

=k + 1.

On the other hand, thanks to Schanuel,

X X
- 1
1:J:c1egQ Q(Tr,ﬂ/-—I,xl,...,xn,eﬂ,em/_l_,e Jeees© n)
> lj_ndij (w,w/:I,xl,...,xn)
=k + 2.

Contradiction.



The next definition, viz. that of strong exponential closure, is on the

technical side.

Let K be an EAC-field. Put G = K x KX — then G is a 7-module:

(+): 2 xG =G

m - (X,y) =@mx,7).

This action can be generalized to matrices with integer coefficients:
(\): M (D xG »>G,

where a matrix M = [mij] sends

(Xlr~'-lxnrylr--~IYh)

mnj
Y5 ).

n n n nllj n
(Z M. Xepeoey, T M X5 [T Y2 "reees
17 ] j=l nj j j=l J j=l

13: NOTATION If V < G°, write M - V for its image and observe that if

V is a subvariety of Gn, then so is M - V.,

14: DEFINITION A subvariety V < G" satisfies the dimension condition if

for all M e M (2),
nxn

dim M - V > rank M.

[Note: In particular, dim V > n.]

15: DEFINITION A subset V of G" is additively free if V is not contained

in a set given by equations of the form



where the mi € 7 are not all zero and a € K.

16: DEFINITION A subset V of G© is multiplicatively free if V is not

contained in a set given by equations of the form

noom
{(EIX) : TT yi = b},
i=1

where the mi € 7 are not all zero and b € Kx.

17: N.B. Call V free if V is both additively and multiplicatively free.

18: DEFINITION A subvariety V < G" is admissible if V is irreducible,

satisfies the dimension condition, and is free.

9: DEFINITION Suppose that K is an EAC-field — then K has the exponential

algebraic closure property (EACP) if for all admissible subvarieties V of G" that

are defined over K and of dimension n, there is an x in K such that (x,E(x)) € V.
[Note: Therefore K is exponentially algebraically closed iff each such

variety V intersects the graph of exponentiation.]

20: REMARK (Admit EACP) It can be shown that there are infinitely many
Q-algebraically independent x such that (x,E(X))€ V.

21: EXAMPLE (Admit SCHC) Take K = C exp " then it is unknown whether
EACP obtains in general but the simplest case, namely when n = 1, can be dealt with.

To see how this goes, recall that a variety V in C2 is the set of common zeros

of a collection of polynomials in C[X,Y] and, in fact, is the zero set of a single



polynomial, i.e., given V, there is a polynomial P(X,Y) € C[X,¥Y] such that

V=2(P) = {(X,¥) € Cx C:P(X,Y) =0}.
And V is irreducible iff this is so of P. Working with V € C x € (being
interested only in solutions to P(z,ez) = (), transfer matters from V to P by

imposing the standard conditions on P (cf. §53, #3) — then V is admissible.

BE.g.: To check freeness, v nonzerom € 7,

V # {(X,Y) €C x C:mX = a}
Vg {(XY) eCx ¥ =b#0}

Proceeding, to produce a point (z,e%) ¢ V, what has been established in §53, #5
serves to settle things if P € Q[X,Y] or if instead P € (Q[X,Y] (cf. §53, #13) and

the general situation can be handled by an appeal to §53, #15.

22: REMARK There is a reinforcement of EACP to SEACP, where the "S" stands
for "strong". This is done by demanding that the outcomes (x,E(x)) € V be generic
in a suitable sense.

[Note: The discussion in #21 is actually strong.]
Agreeing to admit SCHP, recall the notation of #10.

23: NOTATION Let K be an E-field with Schanuel's property. Given a finite

set X ¢ K, put

ecl, (X) = {x € Kidim, (X U {x}) = dim, (X) .

24: N.B. ecCK(X) is called the exponential closure of X.

25: DEFINITION (Admit SCHP) 2An E-field K has the countable closure



property (CCP) if for any finite set X <K, ecZK(X) is countable.

There is another approach to exponential closure which forgoes SCHP and has

the merit that it can be used to establish that Cexp has the CCP.

26: DEFINITION An exponential polynomial is a function of the form

fx) = PX,EX)),

where
P c Kin, ees ,Xn,Yl, e ,Ynl.
27: N.B. Formal differentiation of polynomials can be extended to
. . et x
exponential polynomials in a unique way such that = - -

28: DEFINITION A Khovanskii system of width n consists of exponential

polynomials fl’ ces ’fn with equations

fi(xl,...,xn) =0(1=1,...,n

and the inequation

Bfl Bfl
n
. . (xl,...,xn) # 0,
of of
. n
"éx_l Tt x
n

the differentiation being the formal differentiation of exponential polynomials.

29: LEMMA (Admit SCHP) ILet K be an E-field, X < K a finite subset —



then ec[K (X) consists of those points x € K with the property that there are
n €N, Xpreeer¥, € K, and exponential polynomials fl" ..,fn with coefficients
from Q(X) such that x = X and (xl,.. .,Xn) is a solution to the Khovanskii system

given by the fi‘

Now drop SCHP and for any E-field K take for the definition of ecl’.K (X) the

property figuring in #29, thereby extending the definition of CCP to all E-fields K.

30: THEOREM Cexp has the countable closure property.
PROCF Given a finite subset X c Cexp , there are only countably many Khovanskii

systems with coefficients from Q(X). The inequation in a Khovanskii system amounts

to saying that the Jacobian of the functions fl"' .,fn does not vanish, so by the

implicit function theorem, solutions to a Khovanskii system are isolated, hence
there are but countably many solutions to each system, thus implying that

ecl’.C x)
exp
is countable.

We come now to the fundamental definition: A Zilber field is a field K

subject to the conditions listed at the beginning.

[Note: Denote this setup by the symbol KE.]

31: THEOREM For k uncountable, up to isomorphism there is a unique

Zilber field of size k.

32: CONJECTURE The Zilber field of size continuum is isomorphic to Cexp'



§55. E-RINGS

l: DEFINITION An E-ring is a pair (R,E), where R is a ring (commutative
with 1) and
E: (R,+) -+ (UR,*)
is a map from the additive group of R to the multiplicative group of units of R
such that
vxX,v €E, Ex+vy) = EX) - E(y)
and E(0) = 1.

[Note: Every ring R becomes an E-ring via the stipulation

Ex) =1 (x €R).]

2: EXAMPLE Every E-field is an E—ring (cf. §54, #1).
[Note: By definition, an E-field has characteristic 0, matters being trivial
in positive characteristic. Thus suppose that K is a field of characteristic

p >0 —-— then v x €K,

l1=E0) =Ex+x+ -+ +x)
! !

P

EX) +E® + -+ + E(X)

E(x)p

Ex - P =gxP - 1P

=ExP-1=0= E®x = 1.]



: EXAMPLE Take R = 7 and define E by the prescription

Ex) =1 (x € 7).

Another possibility is the prescription

1l if x is even
Ex) = (x €1).

-1 if x is odd

[Note: These two are the only possibilities.]

4: RAPPEL If G is a multiplicative group (finite or infinite) and R is

a ring (commutative with 1), then the group ring R[G] of G over R is the set of

all finite linear combinations of elements of G with coefficients in R, thus

I rg,
gz 9

where rg = 0 for all but finitely many elements of G and the ring operations are
defined in the cbvious way.
[Note: If 1 is the identity of R and e is the identity of G, then le is the

identity of RI[G].]

Iet X

Lreee ,Xn be distinct indeterminants.

5: DEFINITION The free E-ring, denoted

E
[X I"‘an] r

1

is an E-ring containing Xl’ .o ,Xn as elements and having the property that for

each E-ring R and elements Tireseily € R there is one and only one E-ring morphism



£:[X ,...,Xn] + R

such that

f(Xi) =r, (i=1,...,n).

1

: N.B. The free E-ring on no generators, denoted [,(25]-E ("n=0"), is

admitted. It has the property that for each E-ring R there is an E-morphism

from [#]1F to R.

The existence of

E
[X)reeerX)]
is established via an argument of recursion, itself a special case of the following
considerations. Given an E-ring R, one can form the free E-ring extension of R

on generators Xl’ . ’Xn’ denoted
E
R[Xl, .es ’Xn] ’

its elements being by definition the E-ring of exponential polynomials.

[Note: Take R= 7 (E = 1) to recover

B
U Sh

7: CONSTRUCTION We shall construct three sequences:
L4 (er +, -) k>_lare ri.ngs;

) (Ak, +) k> 0 are abelian groups;

° (E‘k) K> -1 are E-morphisms from Rk to URk+l'



Initial Step: Put R , =R,

1

R0 = R[X ,...,Xn],

and let A be the ideal generated by X.,... X - So, as an additive group,

Ry=R®A, (=R; ®2).

Define the morphism

E.:R. >R

by the composition

= i -
R, =R¥R3RIX,...,X] =R,

Inductive Step: Suppose that k > 0 and Rk—l’ Rk' Ak , And E‘k-—l have been

defined in such a way that

R =Ry @, B 1R ;4 > (R,
Let

£ (B, 4) > €, )

be a formal isomorphism (additive -+ multiplicative). Define

B = Rl -

Therefore Ry is a subring of R and as an additive group
Ret1 = B ® By
. a
where Ay, is the Rk—sul:xmdule of R freely generated by the t~ (a € A, a # 0).

Next extend

Ek: (er"') > URk'I'l’-)



by
B (X) =B () -t (x=y+a withy €ER_;,a €A).
In this way there is assembled a chain of partial E-rings (the domain of
exponentiation of Rk +1 is Rk):
RO c Rl =

Definition:
R[Xl,...,Xn]E= Y R,
k=0

its E-ring morphism being the prescription

E(x) = B @) (x ER).

8: N.B. R, as an additive group is the direct sum

RG)AOGBAlﬂ)"'G)A](_*_l.

[Note: The group ring R is isomorphic to

A @.o.®
R, [t * Ak]

or still, is isomorphic to

[tA1 o G)Ak]

!

or still, is isomorphic to

Pk[tAk] 1




as an additive group is

R®A0®Al®---®Ak$"'

and as a group ring is

A & A @---GBAk@'“

RIK ... /X] ko 1 1.

10: EXPONENTTATIONS

® LetPERk (k > 0) — then P can be written uniquely as

P=Py+P + " +P,

where POEROa.ndPKEA’a (£ >0).

® IetP EAk (k > 1) —— then P can be written uniquely as
N
P = izl riE (ai) '

where a, €A _, - {0} and a; # ay for i # j and ry,...,ry are nonzero elements of
Re-1

[Note: The isomorphism t:Ak > tAk is the restriction of the exponential map
E to Ak:

E@®) = tAk.]

11: EXAMPLE Take n = 2 and work with

B8}

E E . E
[Xl’Xz] [X,Y1™ = ZIX,Y]".
Then (k = 2)

P(X,¥)= - 3X%( - X5Y7



+ (2XY + 5Y2)E(— 7X3 + 11 X5Y4)

+ (6 - 2XY°)E((5X + 2X'Y2)E(5X — 10Y2))

is an element of R2 (per 7):

P=P0+P1+P2.

12: EXAMPLE Consider the free E-ring [jJ]E on no generators -— then the

E

elements of [@#] are "exponential constants", e.g., in suggestive notation,

2 -3
ee+3_l_4_5e3+e .

13: ILEMMA Given an E-ring T and elements tl’ ..o/t €T, every E-ring
morphism ¢:R - T has a unique extension to an E-ring morphism
E

<I>:R[Xl,...,Xn] -+ T

such that

<I>(Xi) = ti i=1,...,n).
[Use the corresponding property of
R[Xl,...,Xn] =R

and extend stepwise to each Rk k > 0).]

Suppose that (R,E) is an E-ring. Given a set I # @, let RI be the set of
functions I + R — the R! is an E-ring: Let £ € RI and define Ef by the rule

(Bf) (1) = E(£(1)),

i.e., operations are pointwise.



n
Take I = R* and consider RR , the functions from R' to R. Define the

n
coordinate functions XyreeerXy € RR by

xi(rl,...,rn) =T, (i=1,...,n).

e

In #13, take T=R . EnbedRinRRnbyassigningtoeachrERtheconstant

function Cr (Cr (rl,. - ,rn) = r) —- then the assignment

is an E-ring morphism, hence C admits a unique extension to an E-ring morphism

n
E R
R[Xl,...,Xn] + R

that sends each Xi to Xss the canonical arrow, call it T.

14: NOTATION Write

in place of

its elements being by definition the E-ring of exponential polynomial functions.

15: LEMMA If (R,E) is an E-ring and if R is an integral domain of

characteristic 0, then R[X.,... ,Xn]E is an integral domain (and its units are of

the form uE(P), where u is a unit of R and P € R[X ,...,Xn]E).



[Without going into detail, let us recall only that if R is an integral domain
of characteristic 0 and G is a multiplicative group, then the group ring R[G] is

an integral domain of characteristic 0 iff G is torsion free.]

16: N.B. By induction on k > 0, assume that R is an integral domain of

characteristic 0 — then Ak is torsion free. Therefore t — is torsion free, which
implies that

Rev1 = R [tAk]

is an integral domain of characteristic 0.

In general, the canonical arrow

E

E
I':R[X ,...,Xn] > R[Xl,...,Xn]

may have a nontrivial kernel.

17: EXAMPLE Consider a ring R equipped with the trivial exponentiation,
i.e., E(x) =1 for all x € R — then E(Xl) - 1 is in the kernel of T.
[In fact,

PE(X) - 1) = IE(X) - TL

E(I'Xl) - Cl

E(xl) -C

1°
And

E(Xl) (rll---rrn) = E(xl (rlr---rrn))

E(rl)

=1 = Cl(rl,...,rn)



10.

E(xl) = Cl.

Therefore

reEx) -1

I
&
=
0

18: THEOREM Suppose that (R,E) is an E-ring and R is an integral domain

of characteristic 0. Make the following assumptions.
® There are derivations dl youe 'dn of R[xl Peoe ,xn]E which are trivial on
R and satisfy the condition cili (xj) = dij (1 <i,j £n).

® There is a nonzero element r € R such that
di(E(f)) = rdi(f)E(f)

for all £ in R[xl,...,xn]E (i=1,...,n.

Then I' is one—to-one.

Specialize now the theory outlined above and take R = C, shifting matters to
CIXy - X 1P (B = exp),

which, as will be recalled, is a group ring (cf. #9). Moreover, since C is an

integral domain of characteristic 0, it follows from #15 that
CIX ,...,xn]eXp

is an integral domain.

[Note: While C [Xl’ .ee ,Xn] is noetherian, this is definitely not the case of

CIXy . ,,xn]eXP.]



11.

19: THEOREM The canonical arrow
I‘:C[X]_,...,Xn]exlo -+ C[x

is one-to-one.
[Apply #18 (take d.,... ,dn as the partial derivatives 3/9x,,...,9/ axn and

choose r = 1).]

N
o
.

NOTATION Put

|

EXP(C") = TC[Xj,...,X 15"

21: IEMMA (cf. #10) Each function £ in EXP(Cn) can be written as a finite

sum
f= };Pi . exp(gi),
i
where
n
P, € ClX),...,X ] and g; € EXP(C").
22: EXAMPIE Take n = 1 and let X =X - then the function z + &7 belongs

to EXP(C).

[For

XEAO=>EXEA1.

And IX = x, where x:C + C is the function z + z (i.e., x(z) = z), hence

[EX = exp [X = exp Xx,
the function C + C that sends z to exp x(z) = exp z.

3: EXAMPLE The function

(21,2,) > 212, - exp(exp(zy + z,))

belongs to EXP(CZ) .



§56. SCHANUEL => SHAPIRO

1: DEFINITION Working over C, an exponential polynomial is an entire

function £ of the form

z Z

H H
el+...+)\1en’

f(z) = )\l

where A ,...,An and MyreeesH, are complex numbers.

Under addition and multiplication, the set of all such functions form a
commatative ring £ with 1.

[Note: The units are the elements of the form et o #0).]

2: REMARK This is the simplest situation since one could, e.g., allow

)\l,...,kn to be complex polynomials.

3: SHAPIRO'S CONJECTURE If f,g are two exponential polynomials with
infinitely many zeros in common, then there exists an exponential polynomial h
such that h is a common divisor of f£,g in the ring £ and h has infinitely many

zeros in C.

As will be seen below, the proof of Shapiro's conjecture breaks up into two
cases (terminology per infra).
Case 1: Either £ or g is simple.

Case 2: Both f and g are irreducible.

4: N.B. It turns out that the proof of Case 1 does not require Schanuel

eldae
— ——

but the proof of Case 2 does require Schanuel, hence the rubric

Schanuel => Shapiro.



To prepare for the case distinction, we shall need some definitions and

a few classical facts.

5: DEFINITION Let

ulz A

£(z) = A\ e +---+>\newl

1
be an exponential polynomial -- then its support, denoted spt(f), is the vector

space over ( generated by Hpreserbh -

6: DEFINITION An exponential polynomial £ is said to be simple if

dimy spt(f) = 1.

é

|

is simple.

8: DEFINITION An exponential polynomial f is said to be irreducible if

it is not a unit and has no divisors in the ring E other than associates.
Here is Ritt's factorization theorem.

9: THEOREM Every exponential polynomial £ can be written uniquely up
to order and multiplication by a unit as a product in E of the form

Sy +es S, Ip «o. Iy

where all the S:.| are simple with

spt(Sj) N Spt(Sj |.) = {0}



for 7 # j' and all the Ik are irreducible.

Suppose that f,g are two exponential polynomials with infinitely many zeros

in comeon and neither one is simple. Write per Ritt:

f= Sl SC Il .o Id
g'=T:L .o 'I‘u Jl ce JV.

Then a common zero of f£,g must be a zero of a factor of each function, thus two
factors E,;; of f,g respectively have infinitely many zeros in common, thus if
£ ,g} have a common divisor h in E with infinitely many zeros, then h is the common
divisor of f,g postulated in Shapiro's conjecture.

Matters have accordingly been reduced to Case 1 and Case 2 formulated at the

beginning.

APPENDIX
Iet R be a cammutative ring with 1.

DEFINITION 1 Iet x,vy € R — then y divides X (or y is a divisor of x) and
x is divisible by y (or x is a multiple of y) if there exists z € R such that x = yz.
[Note: The only elements of R which are divisors of 1 are the units of R,

i.e., the elements of UR.]

DEFINITION 2 If x,y € R and if x = yu, where u € UR, then X and y are
said to be associates.

[Note: Therefore y divides x. But also y = xu—l, thus x divides y.]



DEFINITION 3 The associates of an element x € R are the improper divisors

of x.
[Note: A unit u € UR divides every element x of R: x = u(u_lx) . Still,

the convention is not to include UR in the set of divisors of x.]

DEFINITION 4 An element X € R is irreducible if it is not a unit and its

only divisors are associates, i.e., are improper.

DEFINITION 5 Irreducible elements x,y € R are distinct if they are not

unit multiples of one another.

ILEMMA Distinct irreducibles x,y € R do not have a common divisor.

PROOF Suppose that a is a common divisor:

X = au
(u,v € UR).

Then

-1
a=yv =>X=yv 1,

i.e., x is a unit multiple of y. Contradiction.



§57. SHAPIRO'S CONJECTURE: CASE 1

Recall the setup: £,g are two exponential polynomials with infinitely many

zeros in common and either f or g is simple (cf. #3).

: THEOREM (Skolem-Mahler-Iech) Iet £ € E and let A © Z be the set of

integers on which f vanishes —— then A is the finite union of arithmetic pro-
gressions, i.e., sets of the form {m + kd:k € 7} for some m,d € Z. Moreover,
if A is infinite, then at least one of these arithmetic progressions has a nonzero

difference d.

This is a wellknown result on the distribution of zeros of exponential poly-

nomials and will be taken without proof.

: IEMMA Let £ € E. Suppose that £(k) = 0 V k € Z — then sin(nz) divides

f in the ring E.

PROOF Iet

U, z Uz
_ 1 n
f(z) —Ale +-.-+>\ne '

with A ,...,An # 0. It can be assumed that f is not identically zero and that

1

U.z
n 2 2 (since )\16 . 0 only if )‘l = 0). Proceed by induction on the length n of f.

f(z) = )xle >
with >‘l'>‘2 # 0. Put z =0 to get

U2 UsZ
+ A =0=>f(,z)=>\l(el —e ).



Put z = 1 to get

=>u2=ul+2k1T/—T (3k ezZ- {0}

Wz
=> f(z) = \e (-

2kmv~1 z
1 e

).

Without loss of generality, take k > 0 (otherwise switch the roles of =] and uz) .

Next
/-1 =z - V-1 z
. e - e
sin Z =
2/~1
=>
- 2/~1 em/__l Z sin(mz) =1 - &2l 2
=>
1+ eZm/I z . e41T1/-_-T Z iy e2(k—l)mf-T 2y (= 2T eTr/—T Zein (n12)
-+ 2W-lz A1z 0 2(k-1)m/-1 Zy (1 - o2™-1 zy
—11e2Wlz ALz, 2kl 2
_e2W Lz _ A lz o 2L/l z | 2kn/-l z
Z 1 - oL z
=>
Uy 2 -
£(z) = Ape Ya - o2km/~1 zy

Uy Z -
e YF(z) (= 27T ™1 2 gin(nz))

A



if

eZ(k—l)ﬂVCi'z.

2m/-1 2 e4Tn/:Tz b

F(z) =1+e +

Therefore sin(mz) divides f(z).
e n > 2: Suppose now that for all exponential oolynomials h(z) of length
< n - 1 which vanish at the integers, sin(wz) divides h(z). Setting z =1,2,...,n

in £(z) leads to the relations

3! N8
>\e1+---+>\en=0
1 n
M, 2 U 2
1 n, _
Al(e ) o+ +>\n(e ) =0
U, n U n
1 n,o _
}\l(e ) 4 ee- + An(e ) = 0.

Let 8, = e J (3 =1,...,n), hence in matrix notation

8 6, =r & Ay 0

2 2 2 _

67 65 - 82 A, = 0

n n

81 ag cee 60 oy 0 )

Since Areseedy # 0, they constitute a nontrivial solution of the corresponding

system of linear equations, thus the determinant of the matrix vanishes:




or still,

éidz 6n

n-1.n-1
Gl CS2 ) n

This is a Vandermonde determinant, so we are led to

S, e+ 8 T (8, = 6.) = 0.
1 n 1<i<i<n i j

Since all the 6i are nonzero, it must be the case that (Si = Gj for same i < j.

3! u
Without loss of generality, assume that 61=62, i.e., el=e2. Put
UlZ n H.Z
h(z) = (A, + A)e ™ + T A.e J.
1l 2 i ]
j=3
Then
U, 2z Ha2Z
h(z)—Az(el e ?)
U,z Wz U,z U, Z n .z
=>\el +>\el —Ael +)\e2 + I A.ed
1 2 2 2 z
j=3
U, Z U.Z n Uiz
=>\lel +>\2e2 + I he
=3 7
= f(z).
And Vk € Z,
Uk u kK
h(k)=f(k)+)\2(e - e )

=O,



Consequently h(z) vanishes at the integers. But its length is < n, hence by the

induction hypothesis, sin(mz) divides h(z). On the other hand, arguing as in the

U,z z
case n = 2, sin(nz) divides ) (e 1°_ "2 ). So finally sin(mz) divides £(z).

[Note:

wz_ oo (=)

e o
=0 *

is, in general, not the same as
H -
@? = & Iog e" _ ez(u + ZTrf_l_m).
But they are the same if z = k € Z:

(eﬁ)k _ ek)(u + 2m/~L m) _ eku _ euk.]

3: THEOREM If f,g are two exponential polynomials with infinitely many
zeros in common such that at least one of f£,g is simple, then there exists an
exponential polynamial h such that h is a common divisor of f,g in the ring E and
h has infinitely many zeros in C.

PROCF Take f simple and write

L
£(z) =ul@ ] @ - oe™,
£=1
where Cy e -» 0 P are NONZEro complex numbers and u(z) € E is a unit (the simplicity
of £ implies that there is a nonzero « € C and Syre-esS, € Z such that W =

Sy Krese ) = SnK) . Since this is a finite product, g must have infinitely many

zeros in common with one of the factors, say 1 - a e”?. so suppose that

1

- Pz _
1 ocle 0.



Oz—Iog-o:LL—=2k1T/—_l' (3Ik €2
1

1
Log(=—) + 2kmv-1
l

Therefore the exponential polynomial
Log () + 2zm/ L
ul

G(z) = g( )
P

vanishes at infinitely many integers. Now apply #1 — then for some mo,do €7z

(d0 # 0), G vanishes on {mO + kdO:k € 7}, thus G(m0 + zdo) is an exponential poly-
nomial which vanishes at all the integers, so sin(mz) divides G(mo + zdo) (cf. #2).
Moving on, any integer is a zero of the exponential polynomial

Tog(L) + 2zm/~T
%

F(z) = £¢( ).
P

Therefore F(m0 -+ zdo) is an exponential polynomial which vanishes at all the

integers, so sin(nz) divides F(m0 + de) (cf. #2). To conclude, consider



oz = Log(ZH)
1

h(z) = sin(z- ( = -m)).
0 2mv=1

To analyze G (ditto for F), start from
G(mo + zdo) = sm(ﬂz)GO(z) .

Then
pz - Tog(GH)
1 1

G(m, + =— ( -m)d))
0 do omT 00

oz - Iog(a11—)

-

Il

G, + -m.)
0 2my/—1 0

1
pz - Iog(ai-)
G( )
2m/—1 o7 - I_og(o%)
1
Log (=) + 2( ) /=T
%y 2m/=T

g( )
o

1 1
Iog(&z) + oz - IOg(q)

gl )
0

g(z)

0z - Log(%)

= sin(=— ( -m)) G

(c-°)
d0 2m/—L

0

Al

h(z) GO (e=°).



§58. SHAPIRO'S CONJECTURE: CASE 2

In this situation, both f,g are irreducible. If f = gu for some unit u € E,
(technically, f,g are associates), then g can serve as the "h" in 8§56, #3. On
the other hand, if f,g are distinct irreducibles (meaning that they are not unit
multiples of one another), then they cannot have a common divisor (see the Lemma

in the Appendix to §56). Matters thus reduce to the following statement.

1l: THEOREM (Admit SCHC). Let f,g be distinct irreducible exponential

polynomials in £ — then f£,g have at most a finite number of zeros in common.

The proof is difficult and lengthy, thus an outline of the argument will

have to do.

2: REMARK Let f,g be exponential polynomials and assume that f is
irreducible. Suppose further that f,g have infinitely many zeros in common —-
then f divides g in the ring E (i.e., g/f is entire).

[Note: This assertion is equivalent to #1.]

Proceeding to #1, assume that f,g are distinct irreducibles with infinitely
many zeros in common, the objective being to show that this forces a contradiction
(namely that g divides f).

[ Note: If g divides £, then g must be an associate of £, say £ = gu (u € UE),
thereby forcing £ to be a unit multiple of g, contradicting the supposition of

"distinct". ]

3: NOTATION Let S be the infinite set of nonzero common zeros of f,g.



4: MATN LEMMA (Admit SCHC) There exists an infinite subset S' of S

such that the Gvector space spanned by S' is finite dimensional.

Without changing the notation, assume henceforth that S spans a finite
dimensional vector space over (.
Write
U, 2 nz
et 4+ .ee t \e 1

f(z) = )\l

and let T be the divisible hull of the multiplicative group generated by

TS
{eJ :1 <j<n, s €8},

that is, V vy € T' and any nonzero integer £, 3 ¢ € T such that ?;’e=yand1"is

the smallest such group containing

U.s
{ej:lgjgn,ses}.

Since span, S is finite dimensional, T has finite rank.

Q
5: DEFINITION A solution Oy reen Oy of the linear equation

ax) + e + =N = 1

over C is nondegenerate if for every proper nonempty subset J of {1,...,N},

Y oa.o., 0.
j67 J3 7

6: THEOREM (Evertse—Schlickewei-Schmidt) ILet N be a positive integer

and let A be a subgroup of (CX)N of finite rank r — then any linear equation

alxl+...+ax =1



over C with By renerBy # 0 has at most

N
exp (60 (x + 1))
many nondegenerate solutions in A.
[Note: Only the fact that there exists a finite upper bound on the number

of nondegenerate solutions in A will actually be used.]

7: DISCUSSION let q = fin - d_'l.rnQ S and fix a Q-basis {sl,...,sq} of

spanQ S. ILet s € S — then there exist cl,...,cq € Q such that

g u,C.s. d H.C.S.
111+“.+>\ —l—]—enll
n

i=1l i=1

q U,C.S. g u.c.s,
(TT et ™t .., TTe Yy er
i=1l i=1

is a solution of the equation

>‘le + eee + Anxn= 0.

Put

q uncisi~l
Aj=(—xni=ﬂ;e ) X Qs<jsn-D).

Then

q M,c.s. g u_ .C.S.
17i71 . n-1"i"1i
e +oeee + >‘n—l T e

i= i=1

A.'



9 pc.s. =1 9 py,c.S.
=(-x 1T n'ii, )\l—l-Telll
i= i=1
) d pe.s. -1 d u ,c.s.
~17i75
+eeet (=2 JTe®™hH A TTe®
] n-l e
oSy 9 11545
A, L€ A 1T
1 i=1 + n-1 i=1
= cee F
-\ -\
n 9 U.C; 85 n q W.C; 85
1T e 1T e
i=1 i=
94 u,C.s, 9 u_ qC.s
17171 n-1"1i"1i
M et IT
- _ i= i=1
9 HpCiS4
Ay TT e
i=1
d M,C3S4
A, _—]:]—e
= 1= _l
q p.C.S.
)Ln —I—[—enll
i=1
=>
94 yyc.s. d yp__.C.s
( -H—elll, e, -[—l—enlll)
i=1 i=

is a solution of the equation

A + ees + 2!

[} =
171 n-1 Yp-1 = L

all golutidns.of which lie in some group Tor @ subgroup of T of finite rank. Now



apply #6 to conclude that there are only finitely many nondegenerate solutions of

My + 000 + N 1

1 n-1 In-1 =

8: LEMMA Let o,B €S (o # B). Suppose that

a= (al,...,an)

is the solution of

}\lxl + oeee o+ >\an =0
corresponding to a and
b = (bl, cee ,bn)
is the solution of
Alxl T Anxn =0

corresponding to 8. Then

PROCF If a =D, then for j = 1,...,n,

g9 .S, . d .S, .
IR SRR I

i=1 i=1

iff
g .S. _—— .
BTy
i=1

iff
d =

uj iﬁi Si(cé._,i - cll,i) € 2nvy-1 Z.



So, forany j=1,...,n,

d
_2mAL
L %% T TRy
where Nj €: 7. Therefore
Zj/—TN =27h/—TN _ . =21T/:1—N
My 1 11.‘2 2 Y n
=>
M
1
Uy = =— N
2 Nl 2
U
1
Uy = =N
3 Nl 3
U
_
Lln = ]._\TINI‘I‘

H

Now put y = N—l —— then £(z) is a polynomial in el?
1

, iL.e., £ is simple, a contra-
diction since f is not simple.

With this preparation, we are ready to tackle the proof of #1 (as reformu-
lated at the beginning: £,g are distinct irreducibles with infinitely many zeros
in common). It will be shown by induction on the length n of £ that g divides f.

Since f,g are distinct irreducibles, this is a contradiction.



or still,

z (=1 ) 2
f(z)=>\1eul 1+ xllxzeuzul ).

Then g(z) has infinitely many zeros in common with
(b= z
)

@+ ){lkze

and as in 857 there is an exponential polynomial of the form sin(T(z)) dividing

both £(z) and g(z). Since g is irreducible, this implies that g divides f.

Proof:
T f = sin(T)u
(u,v € Up)
_ g =sin(T)v
=>
gv ! = sin(m)
=>
f = gv_lu.

Induction Hypothesis: Assume that for every exponential polynomial h # g

and of length < n, if h and g have infinitely many zeros in common, then g divides h.

n > 2: ILet as above

! eeoe ! =
MYpF o A Yy =L
be the linear equation associated with
K Uz

f(z) = Kle 4+ ees + Ane .



Then 1“0 contains just a finite number of nondegenerate solutions of this equation

(cf. #7). Consider the equation

>\1X1 + oo + }‘nxn = 0.

Then each s € S gives rise to a solution and since S is infinite, it follows from

#8 that this equation has infinitely many distinct solutions

w, = (w(s),..., w(s)) erl,

S
where

44 C W CiS;

(S) TTel R w(s) _]Te .
i=l i=1
Each W, can be turned into a solution of
Myp v oon v A ¥y =1

by simply removing its last camponent. Bottom line: There are an infinity of
distinct solutions to

}\l

lyl+-o-+)\'ly_ =1,

1
any such being determined by an s € S. Moreover all but finitely many are
degenerate (cf. #6) and for a degenerate Wy there exists a proper nonempty

Jg © {1,...,n} such that

In fact, if



then
9 pe.s. -1 9 .c:.s
Z(‘Knﬂ_ nll) )\—H—ejll=o
s[=Y i= Ji=1
S
=>
q UiCsS
oA JTedtt=0
jer, 7 i=
=>
(s)
z AW _
jG'TS J3] = 0.

Owing now to the Box Principle (cf. §7, #15), we can find a proper nonempty subset
T = {jl,...,jt} <{1,...,n}

such that for infinitely many s € S,

r 'S =o.
jer JJ
Therefore the equation
AL X, + .. 4+ ). x. =0
J1 11 Je Jg

has infinitely many solutions corresponding to common zeros of £,g.

9: LEMMA g divides f.

PROCF Put

T T

J1 It
f (z) = ). e + s + AL e .
T Iy Je

Then g has infinitely many zeros in common with fT which are also zeros of £, thus

also zeros of f - fT. Both f,II and f - fT are elements of E of length strictly less



10.

than n (the length of f). Thanks to §56, #9, g has infinitely many zeros in
common with either an irreducible or a simple factor of fIII in E, call this
factor hT If hT is simple, then we are in Case 1 and g,hT must have a common
divisor. Since g is irreducible, it then divides h; (g = au, hj = ab, g’u'_:L = a,
hT = gu_]'b) . If hT is irreducible, then it is either a unit multiple of g, in
which case g divides hT ;, Or g and hT are distinct irreducibles, in which case

g divides hT (induction hypothesis). So, in all cases g divides h‘I" thus it

also divides fT. Analogously, g divides f - fT. Therefore g divides £.

10: N.B. #9 is the sought for contradiction.



§59. DIFFERENTIAL ALGEBRA

Let K/k be fields of characteristic 0, where k is algebraically closed in K.

1l: DEFINITION Suppose that V is a K-vector space —— then a linear map

d:K » V is a k-derivation if Vv x,y €K,

d(zy) = xd(y) + yd(x)

and if v a €k,

d(a) 0.

[Note: In particular, d(1) = 1.]

2: RAPPEL There is a K-vector space QK /x and a k—derivation dK /k:K - QK /x

with the property that for any K-vector space V and any k-derivation d:K + V

there is a unique K-linear map E:QK/k +V such that d = £ o dI(/k:

K/ T

|

< 3 QK/k

3: SCHOLIUM Associated with every k~derivation d:K -+ K there is a unique

derivation D:QK/k - QK/k such that Vv Xq,% € K,

2
D () dg 1 (%)) = Alx) ) 7 Gy) + Xy 1 (A(x,)) -

4: SUBLEMMA Suppose given a k—derivation d:K + V —— then for y € K,



zZ €K,
(z)
D(dy e () - éK/]; -0
if
aty) =42,

PROCF The IHS equals

d(z)

1
dK/k(d(Y)) - EdK/k(d(z)) + 2 dK/k(z)

or still,

d(z) 1 d(z)

G5 - g S @) ¥ S g (2)

_ sz/k(d(z)) - (d(Z))dK/k(Z)

2
z

1 d(z)
- Z d](/k(d(Z)) + ;2—— dK/k(Z)

5: SUBLEMMA Suppose given a k—derivation d:K - V —— then for y € K,

D(dy s (¥)) = 0
if d(y) = 1.

PROCE The LHS equals

D (14 (7))
AWy, () + 1 5 [@())

=O+dK/k (1) = 0,



6: NOTATION Giveny, €K, z; eX’ (1=1,...,n), put

%)
i

w =g lyy) - —3 % /1

7: LEMMA Suppose that d:K +V is a k—derivation. Assume that d(yl) =1
and that Yi € K, z; € K are connected by the relation

d(zi)

d(yi) = (i=1,...,n.

i

Then for £ fn' g €K,

D( f fiwi + gdK,] (yl))

l,‘-o;

I @E)uy + £00) +dl@)dg, (7)) + 90 (37)

i (d(£;)w, + £,0) + d(g)dK/k(yl) + g0

E a(f)w; + d(g)dK/k(yl) .

In what follows, d:K =+ K is a derivation such that

Ker d = k(>0Q).

8: CRITERION Iet K35 F> k, where F is a field and

't-_'::‘de<_:jk F < oo,

Denote by E the K-vector subspace of QK/k generated by d‘K/kF - then

dj.mKE = trdegk F.



9: EXAMPLE Take F = K —— then
dj.mK %{ = t:|:'degk K.
[ e If XyreeerX, € K are algebraically dependent over k, then dK/k(Xl) sevey
d‘K/k (xn) € QK/]( are linearly dependent over K.
e If XpreeerX, € K are algebraically independent over k, then dK Ik (xl) yeeey
d‘K/k(xn) € QK/k are linearly independent over K.]

[Note: Therefore d‘K/k(X) = 0 iff x is algebraic over Kk.]

Reep to the setup of #7 and in #8, let
F = k(yl, cee ¥ Zysees ,zn)
and suppose that trcilegk F <n + 1 — then there are elements fl,...,fn, g ek
not all zero such that
i fiwi + gdK/k(yl) = 0.
It can be assumed that fl,...,fn, g € K have been chosen so that a minimal number
of them are nonzero and at least one of them is 1.
Write

0 =D0

1

D A(£;)0; + d(g)dy  (v))
1

to conclude by minimality that

d(fl) = 01---rd(fn) = 0, d(g) =0,



thus

£ €k,...,f €k, g€k,

1

the field of constants of d being k (by hypothesis). Bearing in mind that
§ fiwg +9dpn () =0,
= g, hence

iz ;W *+ cpdy 4 (vg) = 0.

let c; = fi, cO

10: NOTATION Put

C= c0 + C1Yy + cee + Ch¥ne

_ dK/k(zi)
dK/k(c) B i ] z; :
PROOF In fact,

Z it + Sk =0

or still,

% /x

(Zl)
i Ci(dK/k(yi) - ———EET——Q + Sy /k(yl) =0

i S i (¥5) *+ Codg e vy) = L ¢y —F——

Z.
1 bR



T 74!
i z;

o /k(yl) + f c; /k(yi) = f c

Suppose that Cpree-sCp, is a Q-basis for Cpre=1Cps hence

L
c.= ¥ g

i=1,...,n).
i ;4

2,i%2

Here, at least a priori, the g, . € Q but there is no loss of generality in taking
£,1

dp.q €L
Accordingly
n (z.)
dK/k(C) = T c. h{__l_
=1 * %
_ n L dK/k(Zl)
= X L q i >
i=1 £=1 4 i
~ ]; n A i (23)
B cﬂ( z 9p,i z )
=1 i=1l ! i
L w,)
_ CKdK/k Q-
=1 W
where
o
q .
wo = | 2%t
R

12: IFMMA Iet Byreeesdp € k be linearly independent over Q, let

ul,...,uL € Kx, let v € K, and assune that



13:

Then

14:

L dg /i (ap)
v) =  a, —4—— .
C."K/kv =1 L up

dK/k(ul) = 0,...,d.K/k(uL) = 0.

APPLICATION Take A1 = Cprecerdy = Cpy take v = C, and take

Up = Wypeee = W.

dK/k(wl) = 0,...,d.K/k(wL) = 0.

N.B. Since the standing assumption is that k is algebraically closed

in K, each Wp €k (ct. #9).

15:

Finally

APPLICATION For £ =1,...,L,

0=—7—= 2 £ j oz
L j=1 - j
L
= X . A(y.
521 qﬂ,:] (YJ)
L
=d(Z qp . vyi)



L
y. €k.
o1 30

16: SCHOLIUM There exist integers My seee,m not all zero such that

n
_Z m.y; € k.
i=1

Recall:

® v, €K, ziEKX, and

d(z.)
1=1,...,m).

dly;) = —
L

e F =k(yl,...,yn, zl,...,zn) and
trdeng<n+l.

Then under these assumptions:

(1) There are Mg rees M € 7 not all zero such that

o m,
T z.7 € k.

i=1 *t
(2) There are Mypees M € Z not all zero such that
n
T my. € k.
i=1 Y
17: STATEMENT Maintain the supposition that
d(zi)

Z.,
1

i=1,...,n




but assume that the y; are Q-linearly independent modulo k, i.e.,
n

I qy. €k=>q., =0 (i=1,...,n).
jm1 i i

trdeng2n+l.



§60. FORMAL SCHANUEL

This is a version of Schanuel that can be established rigorously. However,
before proceeding to the particulars, let us review the situation.
As is usually formulated, Schanuel's conjecture is the following statement

(cf. 8§47, #1).

1l: CONJECTURE Suppose that x.,... /X, are G-linearly independent complex

1re
numbers --— then among the 2n numbers

xl Xn
XyreeerXyr € Tyeees

at least n are algebraically independent over Q, i.e.,
Xy X

trdegQ Q(xl,...,xn, € ..., n) > n.

There are other equivalent formulations. E.g.: V X,

§(x) >0 (cf. 547, 424 and $27).

Here are two more.

2: CONJECIURE Suppose that Xpre.- %, are complex numbers such that

X X

1
trdegQ Q(xl,...,xn, e ,...,e !

is < n —— then there are integers Wy peee My not all zero such that

n

% mixi = 0.
i=1

: CONJECTURE Suppose that x

3% 1reeer%, are complex numbers such that



X X
1 n
(Xl""’xn’ e ,...,e)

lie in an algebraic subvariety V of C2n defined over () and of dimension strictly

less than n —- then there are integers My yees My not all zero such that

n
‘Z mixi =0
l=
[The assumption that
Xl Xn
(xl,...,xn, e ,...,€7) EV (dim V < n)

forces

xl *n
trdegQ Q(xl,...,xn, e ..., ) < n.]

We shall turn now to a setting in which an analog of Schanuel‘’s conjecture
is true.

4: NOTATION Let R be a commitative ring with 1 —-- then

R[[X]]
is the ring of formal power series over R, a typical element of which is denoted by

£F(X) = % aan (¥n, a_ €R.
n=0

5: N.B. If R is an E-ring, then R[[X]] is also an E-ring.

[Given f € R[[X]], write

f = 2, +g (gx) = I anxn)
n=1

and put

exp(f) = E(ao)exp(g),



where E(ao) is that derived from R and

explg) = 2 D

6: CONSTRUCTION Let

£(X)

Zaxn=aX+aX2+---
o 1 2
n=1

. o _ 2
g(X) nEO ann—b0+le+b2X Foees

Then their composite g © £ is the formal power series

[oe] [oe]

gf(X) = I bn(f(X))n= T chn.
n=0 n=0

7: REMARK The foregoing operation is valid only when f£(X) has no constant

term (for then each <, depends on but a finite number of coefficients of £(X) and
gx)).
[To illustrate, let

X2 3 4
exp (X) =l+X+§-|-+

Then it makes sense to form

exp(exp(X) - 1) =l+X+X2+%X3+gX4+...

but

exp(exp(X)) ... ?]

[Note: If £(X) has no constant term, then E(a,) = E(0) = 1 and one can form

0
exp ° £,

which agrees with #5.]



8: LEMMA If R is an integral domain, then so is R[[X]].

9: DEFINITION A formal Laurent series over R is a series of the form

£(X) = = aan,
n&z

where a = 0 for all but finitely many negative indices n.

10: N.B. The formal Iaurent series form a ring, denoted by R((X)).

11: IEMMA If R =K is a field, then K((X)) is a field.

[Note: K((X)) can be identified with the field of fractions of the integral

domain K[[X]].]

12: DEFINITION Take R = K of characteristic 0 —- then the formal deriva-

tive of the formal Laurent series

£(X) = I anxn
nez

is

13: N.B.
3:K((X)) » K((X))

is a K—derivation (Ker 3 = K).

Having dispensed with the formalities, specialize and take per §59,
K=C0(X)), k=C, d=3%.
let

y; € XCLIX]1,...,y, € XC[IX]]



be (Q-linearly independent and put

2, = ep(y),..., 2, = exply)).

trdegc C(yl, oo rYpr Zyre-. ,zn) >n + 1.
[Quote 8§59, #17 (obviously, if the y; are Q-linearly independent, then they

are (-linearly independent modulo ().]
This result can be rephrased.

15: RAPPEL (cf. §46, #20) Given fields k <X c L,

trdeg, (I/k) = trdeg, (I/K) + trdeg, (K/k).

Abpreviate
(yll cee lynl er e Izn)
to

(Y,2).
Take in #15
k=C, K=CX), L =C(X) (y,z).
Then

trdeg, C(X) (y,2) = trdege y C(X) (y,2) + trdeg, C(X).

From #14
t.rdegC CX) (y,z) > trdegC C(y,z) 2n + 1.
And

trdeg. C(X) = 1.



Therefore

n+ 1 g trdeg, C(X) (y,2)

= trdege iy CX) (y,2) +1

n < trdeg. (X) CX) (y,2).

1l6: SUMMARY The fact that

trdegC(X) C(X) (Yll'°"ynl er---rzn) z2n

is formal Schanuel, a result due to J. Ax. It is the power series analog of #1

(which remains conjectural).

17: N.B.

C cCIX] < CI[X1]-
n n

CX) = C(X).



§6l. AN ARITHMETIC CRITERION

Recall:

SCHANUEL'S CONJECTURE Suppose that x,,... /X, are Q-linearly independent

complex numbers —— then

X X

trdegQ Q(xl,...,xn, e l,...,e n) > n.
2: NOTATION The symbol D stands for the derivation
) 3
D=+ X
D 1y

in the ring C[XO,Xl] .

3: DEFINITION The height H(P) of a polynomial P € C[XO,Xl] is the max-

imum of the absolute values of its coefficients.

4: DATA Let n be a positive integer, let Xyreser¥ be Q-linearly inde-

pendent complex numbers, and let o € Cx,...,ocn € Cx.

5: PARAMETERS Let SgrS

1't0’tl’u be positive real numbers subject to

max{l,t 2tl} < m:.n{sO,ZSl}

0 r
and

1
ma.x{so,sl + tl} <u < > 1+ tg + tl).

6: ROY'S CONJECTURE In the presence of #4 and #5, assume that for any

sufficiently large positive integer N, there exists a nonzero polyncmial



t t
PN € Z[Xo,Xl] with partial degree < N 0 in Xy with partial degree < N 1 in X

and with height < e which satisfies
n n m,
l(ﬂkP)(Zm.x., TTOLJ)IS exp(—Nu)
NTo 33 4

for all nonnegative integers k,ml, SRR where

S S

0 1

k <N ~ and max{ml,...,mn} <N .
Then

t:rdegQ Q(xl,...,xn, al,...,ocn) > n.

7: THEOREM Roy's conjecture is equivalent to Schanuel's conjecture.

This result is due to Damien Roy. While we shall omit the proof, some hints

will be given below.
[Note: Spelled ocut: If Roy's conjecture is true for some n and some choice

of SO’Sl’tO’tl’u (per #5), then Schanuel's conjecture is true for this value of n.

Conversely, if Schanuel's conjecture is true for some n, then Roy's conjecture is

true for the same value of n and any choice of so,sl,to,tl,u (per #5).]

In one direction, assume that the conditions in Roy's conjecture are in force —

then it can be shown that there exists an integer K > 1 with the property that

oh=e I (F=1,...,m).

Since Xpr---,X, are Q-linearly independent, the same is true of Kx,,.. .,K}%, hence



by Schanuel
KXl KXn

trdegQ Q(le,...,Kxn, e ,...;,e )} zn
or still,

trdegQ Q(le,...,Kxn, a?,...,ogé) >n
or still,

trdegQ Q(xl,...,xn, Ocl,...,ocn) > n.
Therefore

SCHANUEL => ROY.
X,
In the other direction, take the data as in #4 and put OLj =e G=1,...,n).
Take the parameters so,sl,to,tl,u as in #5 and impose the inequalities to be

found there.

8: NOTATION Given R > 0, let

B(O,R) = {(z;,2,) € CZ:]le <R, [z2| < R}
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and for any continuous function F:B(0,R) -~ C, put

[FlR = sup{lF(zl,zz) [:lzl[ = R, lzzl = R}.

[Note: By the maximum modulus principle, when F is holomorphic in the interior

of B(0,R), |F|, is the supremm of |F| on B(O,R).]

R

EXAMPLE Iet L be a positive integer, let rO,r,R be positive real

numbers with r > r,, R > 2r — then

0’



j+k 1
Flp < 2 J—.lk’r 33 - (0,0
k>0 257 1 3z0 w
or still,
J+k J+k
r r
Fl. < I (=) IFl. + I & |F|
T T sk To To  juoL R R
or still,
I+l r L D
Fl, < (,) & [Fl, +@+a@ [Flg
0 0
where
o 2FIR oo 4 g,
J+k>L

[Note: The conditions on F are, of course, the obvious ones... .]

10: LEMMA For any sufficiently large positive integer N, there exists
t

a nonzero polynomial Py € z[XO,Xl] with partial degree < N 0

in XO' with partial

t
degree < N L in X and with height < &N such that the function

£,(2) = PN(z,eZ)

satisfies

A0}
ller .<. eXp('_ 2N )-

[Note: Here
S
r =1+ AN l,

where

A= ]xll +oeee + ]xnl.]



The claim now is that
ROY => SCHANUEL.

To verify that this is so, let k_r‘,ml, LN be nonnegative integers, where

S0 51
k <N ° and max{my, ... m } <N ™.
Then
A m.
(DkP)(Zm 1] a.d)]
=1 ] J =1 J
d
= ]fN (2 m.x.)
dz j=1 3
<kl |f ] < exp(~N)
-— * Nir -
if N is sufficiently large. Consequently
Xl Xn
trdegQ Q(Xl’”"xn’ e ,...,e ) >n,
thus
ROY => SCHANUEL
as claimed.

1l: N.B. Consider the situation when n = 1 -— then

| (0B (e, o™ |

k
d fN
T (mmz)

1A
?T.
T



Next

°1
mx| +1 < |x[N " +1=r

l (DKPN) (mxz, o) | <kt Iler'

Since s. < u, it can be assumed that

0
S S
N Yy <%,
from which
u S0 SO
exp(N") > exp(N ~ £n(N 7))
S
s 0
= exp(tn (W HN )
S
s 0
N
=>
S
s 0
ki <k < @OV < expa®

| %) e, | s e £,

< exp(Mexp(- 28 = exp(- NY).
12: REMARK When n = 1, Schanuel is an acquired fact: If x € CX, then at
least one of the two numbers x,eX is transcendental (Hermite-Lindemann), hence

trdegy Q(x,e") 2 1,

so Roy is automatic in this case.



APPENDIX

PRETHEOREM let (x,a) € C x ¢* and let so,sl,to,tl,u be positive real

numbers satisfying the inequalities of #5 -— then the following conditions are
equivalent:

(i) There exists an integer K > 1 such that of = &%,

(ii) For any sufficiently large positive integer N, there exists a non-

t
zero polynomial Py € Z[XO,Xl] with partial degree < N 0 in Xy with partial degree

t
< N T in X, and with height < & which satisfies

| (0% (mx,d™ | < exp(- N
for all nonnegative integers k,m with
s s

ngoande_Nl.

In what follows, we shall sketch the proof that
(ii) = (i) or — (1) => — (ii).
. K Kx X . .
Now —¢ (i) means that VK € N, o # e, hence de © is not a root of unity:

we ¥ = (F=1) = oFK = K= K

OBJECTIVE Let (x,a) € C x € and let s,s; ,t,t; ,u be positive real

numbers such that

r_nax{l,tO,Ztl} < m:.n{so,Zsl_} < u,

Suppose that ae  is not a root of unity — then condition (ii) does not hold



for the pair (x,0)}.

[Note: The stated assumption on the parameters so,sl,to,tl,u is weaker

than that of #5. Observe too that there is no restriction from above on u.]

NOTATION Given Y.€ C - Q and a positive integer N, put

e = min{fm + ny|:m,;n € Z, 0 <max{|m|, |n|} <N .

LFEMMA For infinitely many N,

1
FY(N) > 5N 7
i.e., for infinitely many N,
1
|m + ny| > N

for any pair (m,n) € 7% with
0 < max{|m|, |n]}< N.

PROOF Assume to the contrary that for any integer N larger than some NO'

there are integers m(N) and n(N) such that

0 <max{m@) |, nm) |} <N
and

[m@) + n@)y]| < % .

Then n(N) # 0 and

|mM)n(N + 1) - m(N + L)n(N) |

< m@) +nM)y] - [n@ + 1)

+ N +1) +no®+ 1y] - |n@] <1,



m(N)n(N + 1) - m(N + 1)n(N) = 0.
Therefore the ratio

m(N)
n{N)

is a constant q € Q. But
g+ v] = |m@) +n@)y|/|n@ |

< X

2N

for any N > N., hence vy = —q, a contradiction.

0’

One can thus attach to each vy € C -~ Q an infinite subset SY of N, where the

elements of SY are the N figuring in the definition of 1"Y (N) .

N.B. Choose A such that e>‘ = o - then the ratio
y=2=X% cc-q.
2m/-L
[ Suppose instead that
A
=g (e Q,
2m/-1

sayq=IHn(n>0),so

A - x =qg@Ei/SL) = IH“ (2m/~T)



10.

e X = exp(% 2/ L)

(e % = expm2m/FD) = 1.1

NOTATION Let

u= (0, 2m~1), v = (x,0, w= (1,1).
[Note:
v -y= (x,A) - v(0, 2m/~I)

x,)) - 22X (0, 2m/2T)
2my/~1

(Xl>\) - (>\ - X) (Oll)

1l

(x,2) + (0, x -2

x, A +x-X = (x,%)

XwW, ]

FACT There exists a constant C >1 {with u,v € B(0,C)) such that for any

NESYa.nd for any pair of real numbers r,R with R > 2r and r > CN and for any

continuous function F:B(0,R) + C which is holomorphic in the interior of B(0,R),

the estimate

xnvax{% lDV]\{,F(mE"'n‘_’)INk’O 5k<N2, 0 <m,n < N}

N2

+ @ IFlg

obtains.



11.

[ Note: Here

To establish our objective, proceed in steps.

Step 1l: Take

y=2ZXec-q.

2my~1

Then SY is an infinite subset of N, a generic element N ESY being allowed to

"float".
Step 2: Put
s = min{so/z,sl}
and let M denote the smallest positive integer such that N < M° (tacitly, N € SY) .
Note that M dpends on N (but M need not belong to SY) and we shall actually work
with M rather than N in the statement of the objective.

Step 3: Choose a nonzero polynocmial Q € Z[XO,X]_] with partial degree

t t
<M ° in X, with partial degree <M © in X;, and with height < .

Step 4: ILet

o
IA
-
IA
=

o
1A
=
1A
2

and put

A = max [(DkQM) @x, o) |,

k,m



12.

the claim being that if N is sufficiently large, then

A>exp(—Mu)(ﬂu>>0),

hence for some k, for some m,
I(DkQM) (mx,d") | > exp(- M),

thereby completing the proof.

Step 5: Define an entire function GM: CZ +C by the prescription

GM(z,W) = QM(z,ew) .

9 = 3/9z + 3/ w.
Then

ez = (0% (z,e")

for any integer k > 0 and any (z,w) € C2.
Step 6: For any (n,m) € 22,

(8G,) (u +my) = (00, (mx, ™).

2

max (- | (3°G,) tm + ) [N:0 < k < N%, 0 <mn < W)

5

)%
Z

Ioe



13.

Step 8: Introduce the constant C > 1 as above and specialize r,R by

taking r = CN and R = eCR -- then in review

X max{% l(akF) (mu + nv) ]Nk:O <k < NZ, 0 < mn < N}

2
N
Cr
+ (5 IFlg
and in the situation at hand (F = GM)
B 2 2
N 2 N 2
& =c-of = =&
2
Cr N’ _ e N -N%
(f) - (gc—f) = 1
SO
o2 2
Gl s c™ 2l + ™ gl

Step 9: Since max{l, t

or St tl} < 2s, the definitions imply that

%o il
lGylg s M7 + DM~ + 1)

t
X exp(M + M O tn(r) + RMtl)
2
< eN /2

provided N is sufficiently large.



14.

Step 10: QM is a nonzero polynomial with integral coefficients, hence

1 <HQ) < 19yl < Iggl; 2 oyl

Step 1l: Explicate the relation

2 2
2N° N, -N
6yl sC7 B +e |Gy g

to arrive at

2 2 2
1< g lg s al+e™ (@ /2
for N large enough.
I.e.:
2
1< C2N eNA + % .
I.e.:
2
L C2N eNA.
2 -—
T.e.:
2
a2z N,

Step 12: Apart from the restriction that

min{so,ZSl} <u,

the parameter u > > 0 is at our disposal and can be chosen as large as we please.
Bearing in mind that 2s is < u, or now, as will be notationally convenient, 2s is
< v, write

2 2 v

N<M =>N <M° <M



15.

N2 AV4
=> e <expM').

Consequently for some u > v > > 0,

2
A Z%C'ZN e s exp(- M%)
[To see this, ignore the %‘-and for simplicity take C = e — then
N2 & MV => 2N2 < ZMV
<2'm = Y
=M.
Here
_ ., £n(2M)
YV T 7Y
In fact, @)Y =M = m(Y) = o)
=> vin(2M) = win).
Therefore
2N2 N W A2
e e < expM)expM’)

exp (MW + Mv)

A

exp (ZMW)

exp (ZWMW)

A

exp ((24)")

exp (M)



16.

if

u=w£—%n%—;—>w(>v).

Accordingly

e—ZN2 e N, exp (— MY .1



§62. REAL NUMBERS (bis)

"Few mathematical structures have undergone as many revisions or have been
presented in as many guises as the real numbers. Every generation re-examines
the reals in the light of its ... mathematical objectives."

[F. Faltin et al., Advances in Mathematics 16 (1975), p. 278.]

* k kK k k% %k * % % %

"How do we get future generations to take the validity of real numbers for
granted? We indoctrinate them early in their careers when they are eager but
impressionable undergraduates. Here's how we do it. First we soften them up with
a "Constructing the Real Numbers” blurb in their first calculus course. Needless
to say we don't really construct real numbers as they are by definition uncon-
structible. But the phrase sticks in their minds long after the details are
forgotten."

[N. J. Wildberger, The Mathematical Intelligencer 21 (1999), pp. 4-7.]

* % % % % % % % % %

"How real are real numbers? ... The frightening features are the unsolvability
of the halting problem (Turing, 1936), the fact that most reals are uncomputable,
and last but not least, the halting probability §i, which is irreducibly complex
(algorithmically random), maximally unknowable, and dramatically illustrates the

limits of reason."

[Gregory Chaitin, arXiv:math/0411418 v 3 [math. HO] 29 Nov 2004.

* % % % % * % % % %



APPENDIX

In algorithmic information theory, a halting probability (or Chaitin

constant) is a real number 2 which represents the probability that a randomly
constructed program will halt.

To be precise, let PF be the domain of a prefix-free universal computable
function F —— then the halting probability QE‘ of Pn is by definition
Q_E‘ = 3 2" Ip l ,
PePL
where |p| denotes the length of a binary string p. The sum defining 0 is infinite

and converges to a real number lying between 0 and 1.

FACT QE‘ is transcendental.

There is a probabilistic interpretation of OF' from which the terminology.

Thus let (X,u) be the Cantor space and suppose that F is a prefix-free universal

computable function —— then the domain Pa of F consists of an infinite set of

binary strings:
P = {pl,pz, R
Each of these strings p; determines a subset Si of Cantor space (viz. all sequences

in Cantor space that begin with pi) . Moreover the Si are pairwise disjoint and

=u( U 8.).
r ien t

REMARK QF is not camputable, i.e., there is no algorithm which, given



n, returns the first n digits of S'LF

For more information on this material, consult George Barmpalias (arXiv:1707.

08109 v 3 [math. 10]).



SUPPLEMERT

TRANSCENDENCE OF SERIES

The overall theme is to discuss the transcendence of numbers of the form

(o]

A(n) A(n)

Y = (or T =7=%)
n=1 B0 n=o B0
or
A(n) _ 4. A(n)
X - =z lim )
n=-—w B(n) N + o |n|<N B(n)

The literature on this subject is extensive and no attempt will be made at
a systematic exposition. Foregoing this, we shall first examine a number of
instructive special cases and then take a look at the general picture.

[Note: Omitted details are to be regarded as exercises ad libitum.]

§1. CANONICAL ILLUSTRATIONS
§2. THE ROLE OF THE COTANGENT
§3. APPLICATION OF NESTERENKO
§4. INTRODUCTION OF SCHC

§5. INTRODUCTION OF SCHC (bis)
§6. CONSOLIDATION

A

§7. CONSIDERATION OF-E

§8. AN ALGEBRAIC SERIES



§1. CANONICAL TLLUSTRATIONS

1l: EXAMPLE
O | 11
I —/—— v = L (=-==) =1.
=1 hint+l) =1 1 ntl
2: EXAMPLE
o o n-1
5 L -oeana 3 D =1
_n Nl ~. 2n-1 4
n=0 n=1

both of which are transcendental.

3: EXAMPLE
co n-1
n=1

a transcendental number (cf. §21, #9).

4: EXAMPLE

8

| ™

1
— = ;(3)
1n3 '

i

an irrational number, the transcendence of which has yet to be shown.

5: EXAMPIE

- | 1, _

pX (H'Zn(lJ’H)) =Yy

n=1

Y being Euler's constant, which is not known to be irrational, let alone trans-

cendental.



é

o n
T (_ l) —_

2 G,
n=0 (@n + 1)

G being Catalan's constant, whose irrationality status is unknown.

[Note: By comparison,

O L
2 337 ¢
=0 (2n + 1)
1 IH/MAThezerosofthepolynondalxz‘x“lare‘b:l;/5— (the
goldenratio)andtp=l;/g (=l—¢=“%-

[Note: ¢ and Y are quadratic irrationals (cf. §8, #4).]

8: EXAMPLE
n=—en -n-1 n=

1,1,

n-3 n"IP':O'

9: DEFINITION The integers 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

144, ... are the Fibonacci numbers:
Fo=0,F =1, F =F _, +F . (n22).
10: IFMMA
n n n n
p oo U ¢ -y
n - V3

11: N.B. ¢ and y are both solutions to the equations

X0 = L 2



hence

12 EXAMPLE
o F o
r —2-L L yn. Ly
n=l n2® /5 p=1 D 2 29

M+ ) - @ - ¢,
V5 V5

a transcendental number (cf. §31, #11).

13: EXAMPLE
oy 1
b} =1,
n=1 E}J%1+2
14: EXAMPLE
=" _1-45
ZFF - 2 (=v.
n=1 "nntl

15: IEMMA If Qyre

--s0 are positive algebraic numbers and if 60,81,...,Bn
are algebraic numbers with BO # 0, then
n
B+ X B.n(a.)
0 j=1 3 ]
is a transcendental number.

PROOF Replace - # by /-1 Log(~l) and quote §31, #11.



[The underlying supposition is that
n

BOTT+ _Z

B.4n (o)
3 J J

1
is nonzero. To see this, let {!,n(ocj) 1J € S} be a maximal Q-linearly independent
subset of

m(al)pv--,m(%)ﬁ

hence
n

for algebraic numbers Cj . The claim now is that

Log(-1), Zn(ocj) (J € 8)

are linearly independent over Q, thus are linearly independent over ( (homogeneous

Baker), thereby implying that

- /< Bp Log(-1) + = C.in(os)
€S J ]

is nonzero. So consider a rational dependence relation

g, Log(-1) + I n(a.) = 0.
0 jes A

The sun over j € S is a real number, while ILog(-1l) is pure imaginary, which forces

qg = 0. Butthenqj=0vjes.]

1

~ % 6n + j

n=0 j=1

= I35 (192 £n(2) = 8L n(3) + 7 /3 (=),

a transcendental number.



§2. THE ROLE OF THE COTANGENT

1: RAPPEL V z € C - Z,

meoot{mz) = ¥ —.

THEOREM Let C € Q — Z — then the series

-
-

[0}

1
L n+C

n=-—0
is transcendental if C 72 %—mod Z.

PROCF Write

ew/:fc+e—1r/—_lc
T /=1 C -T /=1 C
e - e

T cot(mMC) = T V=1

21 y=1 C
=1 /<L +175O.
21 /=1 C
e -1
et Cc=£:
d
o 27 /-1 C _ (e2’fT 1/——l/q)pE %
Therefore
T o1
L me

=—0

is transcendental (being 7™ times a nonzero algebraic number) .

[Note: If C = %’-mod Z, then the series vanishes. In fact, vm € Z,

21 /I(%+m) T /=T
e = e = -].



One can also argue directly without an appeal to the formula: Vm € Z,

n=n++m n=en-1l-2m+xz+m
2 2
2 1 2 1
—nE—mn—L—m—nz——w—n—l'-—m
~ 2 2
=—- 3 i .1
== n + 5+ m
3: IBMAVYk>2, Vz€ECIZ
k-1 oo o
T (r =@ ey L.
dz n=-c n=- (n+z)
Therefore
; 1 B (—l)k_l(’lT cot(ﬂz))(k_l)
- - 1
e (mt2) X K- D7
4: IEMA Yk >2,Vz€EC-IZ
dk--l
——— (T cot(mnz))
k-1
dz
= @ /DF %%,1 + oeee + Pk ),
2m /-1 z 2m /-1 z k
e - 1 (e -1

where Ai,je Z and Ak,l # 0, Ak,k # 0.



PROCF Write
eZTr -1z + 1
T cot(nz) = 7 /-1
21 /-1 z
e -1
21 V=1 2
=ﬂ/_—]_-e -1+ 1+1
2r V-1 z
e -1
2T /=1 z
=7 /L & -1, 2 )
2T V-1 z 2T /-1 2z
e -1 e 1
2
=1 /-1 (1 + ).
21 /=1 z
e -1

Differentiating this gives the result for k = 2. Proceeding by induction, assume

matters have been established at level £ - 1, hence

By g qgreeeiBpg pg €17
£-2
da d
'dz('.—z_—z (m cot(mnz))
dz
A A
= r /D1 2 £-1,1 P 2 00 2 )
Z 2m /-1 z 2m V-1 z £-1
e -1 (e -~ 1)
or still,
L e2‘IT /_T z e21T /;T 2z
Y - eee = - )
(2n /=1)* (- 14 l)AZ—l,K—l )

A
1,1 27 /-1 z 2

( 21 V-1 2 4

- 1) te - 1)



or still,
21 /=1 z 2m /=1 z
or DY - - e -1+1 -8, | , e -1+
(eZTT -1z _ 1)2 z(,eZTr V-1 z _ l)['
which equals (27 /—-—l')l)‘ times
B B
21/ lz g (e21r/—_l_z_l)2
— e = -1 Bp1,4-1 _ (K_l)Aﬂ—l,E—l
(e21T /-1 z _ l)Z—l (eZTr V-1 2z _ l)ﬂ
thereby leading to the result at level £.
[Note: To see the pattern, take £ = 3 and put w = e27T lz_ 1 — then
2
N B e Y W I
w 2 2 3
N i W
B Bty 2By,
= + + .1
W 2 3
" N
Therefore
% k-1
X 1 = (-1) (2m /—T)k
n=—w (n+z) (k-1)!
. kil U 5 - .
2r Lz _ g ceZTT/-_lz_l)k
5: NOTATION Put
k=1 ) :
St 2r /-1 z 21 /-1 z k
e -1 (e -1)



Therefore

[0}

5 1

n=-«x (n+z) k

= 'lT]:{ Ak(z) .

6: N.B. vCeQ-1Z, Ak(C) is an algebraic number.

7: THEOREM V k > 2, VC € Q - Z, the series

[oe]

1
z T
n=— (n+C)
is either transcendental or zero.
8: REMARK It can happen that

dk—«l .
——m ('IT COt(TI’Z)) (k > 2)
dz z=C

= 0.
To see this, take k odd and cbserve that Vvm € Z,

[e.0] [>e]

5 1 . 1
== 0 + %+_m)k == (- n - %— m)k
= - 1¥ s 1 i
n==e n + %+ m)k

[Note: The series does not vanish if k is even and in that case we have

transcendence. ]



§3. APPLICATION OF NESTERENKO

1l: CRITERION For any positive integer D, m and e” D

are algebraically
independent over Q (cf. §20, #10) (proof omitted).

m

[Note: In particular, 7 and e are algebraically independent over Q.]

are

2: N.B. If r and s are nonzero rational numbers, then ‘lTr and (e1T ’/D_)S

algebraically independent over Q (cf. 8§46, #26).
3: THEOREM Iet C € Q - {0} — then the series

is transcendental.

PROCF Take C > 0 and let

f(x) = g—e_ 2nClx|
Then, using Poisson summation,
y f(tt) = g %(n)e2TT = tn.
Now put £t = 0 to get
[o0] (o]
g_ . 211Cln| = ¥ 1
or still,
; 1 T (eZTrC + l)
2 C ‘27C ’



a transcendental number (cf. infra).

[Note: Iet
C='g‘ (p,g € N)
and write
2C=2_p_=4_p E—@.
da q d
If
2nC
+ 2 )
g(ezm i)—ocEQ—mO},
e —
then
g (e2"'Tc + 1) - oc(eZTrC - 1) = 0.

Define a polynomial P € Q[X,Y] by the prescription
_X
P(X,Y) = ol (Y +1) -a(y - 1).
Then
P‘(ﬂ,ews/q) = 0.

nvD/q

But m and e are algebraically independent over Q (cf. #2), hence are alge-

braically independent over -Q' (cf. 820, #7).]

4: N.B. For any positive real number C (not necessarily rational),

S S Sl ¥

n=—oon2+C2 C e2’lTC_l
A
- C mC -nC’ *



5: RAPPEL

z

z -
cosh z _e +e
sinh z P -z

e” —-e

coth z =

6: N.B. So, for any positive real number C (not necessarily rational),

[os)

1

> —
n=- n2 + C2

coth(nC) .

Q3

[There is another approach to this result using complex variables. Thus let

£(z) =-—21—2 © > 0).

z  +C
Then f(z) has simple poles at z = + C /~1.

® The residue of

T cot(mz)
22 + C2
at z = C /-1 is
Lim (z - C /T) — 1 cot(nz)
2> CA (z - C /) (z + C /-T)
_ meot(nC /1) _ _ %coth(wc).
2C /-1
® - The residue -of
m cot{nz)
22 + C2
at z = - C /-1 is
- T
ol coth(nC) .
Since the sum of the residues is
—T coth(mC),

C



it follows that

1 _ .
z -y = = (sum of residues)
=—on + C
= I coth (mC) .1
G .
[Note: The formalism here is that
xn f(n) = - S,

n=-—co

where S is the sum of the residues of m cot(nz) f£(z) at the poles of f(z).]

7: LEMMA For any positive real number C (not necessarily rational),

1 ™ 1
Y —s———n = =coth(nmC) - —5 .
n=1 n2 + C2 2C 2C2
PROCF Write
_]_ o0
z —2—-]-——+—£2-+ % z—li‘:%coth('ﬂ'(:).
=-w n- + C n=l n~ + C
8: EXAMPLE Take C = 1 —- then
oo T -
P = p S
n=0n + 1 e ~e
By comparison,
e 1 3
z ==,
=0 n® -1 °
[Note: For the record,
O | Tr2
X 5= % -]
n=1 n



9: REMARK It is also possible to sum the series

1"
T 5

n=0n" + 1

the result being

10: THEOREM Let C € Q4 — then the series

oo}

5 1l

n=-c n2 + C

is transcendental.

PROCF Write
ozo 1 =l(e2ﬂ/é+l)
- =
=—x n~ + C /EeZTl'/C_l
and let
_P . ~_ B2 _ /&g
c=E2 eN ==& = =
q(Prq ) => A (q) g
=>21T1/—6=Tr/21—7‘/§§
=1Tv4pq
g
Now apply #2.

11: EXAMPLE Take C = 3 — then

OZO 1l _ e2ﬂ/§+
n=0n®+3 2.3 o2m V3 _

[
o+

1



12: THEOREM Let C € Q - {0} —— then for every positive integer k, the
series

1

n=-—co (n2 + C2)k

is transcendental.

PROCF Write

1 _ 1

2 2.k
™ +CH" oy T oXe - AT ok

and decompose the term on the right into partial fractions:

k Ous B. -
D I+ F—— (05,85 € Q).
=l w4+ ol @m- ATol

Proceed... .

13: EXAMPLE Take C = 1 —— then

S 1 _neler it T 1
n=0 (n2+l)2 SPCUEE (eZTr_l)Z 2
[Consider
Xy+1l,%x Y 1
R&W =351+ 7T _ 2732
(Y - 1)
and write
e2ﬂ=eﬂ’/4- (so D = 4).]

1l4: THEOREM et C € Q>O ~— then for every positive integer k, the series

s 1
n=—w (n2 + C)k

is transcendental.



§4. INTRODUCTION OF SCHC

1l: THEOREM ILet C € Q - Z —— then the series

is transcendental.
PROOF Since

I ———== I ——a——=s=- I =,
n=—co n3 -l n=—oco (—n)3 oS N C3
it can be assumed that C is positive. This said, write

n3+C3= (n+C)(n+Cp)(n+Cp2),

where
p= (-1 - /~1 /3)/2

is a primitive cube root of unity. Decampose T into partial fractions:

n3+C3
1 1 o 1 +02 1
2 2 2 27
3CCn+C 3C"n+Cp 3CT n+Cp
Then
> 1
z
n=—oon3+C3
equals
- 2
T /=L ezn‘/:rc+l+pe2ﬂ/:ICQ+l+ 2e27r/:.pr + 1
2 5 .
3C 2m /=L e _ g o2m VL Co _ 4 o2m /L Co™ -1

Here we have used the formula for the cotangent in terms of exponentials (see §2,



#2) (proof thereof). Expand the data to arrive at a fraction
2T V=1 % ,
where A equals

e—zn/-_lc+e2n/—_1c n/:Icenc/§+e—n/—Tce—wc/§)

( ) + ple

2. Y=L C -1mC /3 -1 /=1 C _1C V3
o (e e + e e

+ )

(
and B equals

2
o2 (27 /L C _yy 2™ 7-L Co 1) (27 /-1 Cp

3 1) (

™ V3)C _ JC /3

-1).

Owing now to §3, #2, m and (e are algebraically independent over

Q, hence the numerator is either transcendental or zero. If the numerator is

mC /3 -1C /3

zero, then the algebraic coefficients of e and e must both be zero,

which implies that

pew/:IC+p2e~n/—TC=o

52T FLC, o IC_ .

The first equation implies that

_1
C=%*+K (3 K, €1)
and the second equation implies that

__l
C = —6—+K2 (3Kzez)

1 1 1_ .
e =gt =>5K -k,

a contradiction. Therefore the series is transcendental.



2: REMARK At least one of

is transcendental.

3: THEOREM ILet C € §Q - Z — then for every positive integer k, the series

N S
o (0 + CH¥
is transcendental or zero (transcendental if k is even).

[Start by decomposing

1

m+0X @+ oF @+ 20f

into partial fractions.])

4: CRITERTON (Admit SCHC) If O rees, 0 BYE algebraic numbers such that
V-1, 0y s---,0, are linearly independent over Q, then
TTO(:L TTOLn

M, " ,e..,8

are algebraically independent over Q.

5: N.B. Take n =1, oy = 1 — then the conclusion is that m and e" are

algebraically independent over Q (cf. §3, #l) (no need for SCHC in this situation).

6: EXAMPLE (Admit SCHC) Take n = 2, ocl=%/§, a2=/:l_3,7c_l,where

CeqQ-27,C#D° (DEQ.



Then

eW%E, ew/:l_%

ur;
are algebraically independent over (.
[To check that /-1, oy o, Are linearly independent over (), consider a rational

dependence relation

r/:I-+So(,l+t0L2

cr T+ g+t T E=o0.
Then s = 0, leaving
r ST+t /T =0

or still,

= c= (-5
7: THEOREM (Admit SCHC) Suppose that C € Q — Z is not a cube in Q ——

then the series

[oe]

n=~co n- + C
is transcendental.
PROOF The verification is an elaboration of that used in #1 (which considers

the situation when "C" is a cube). S0, to begin with, recast matters into the form



—_

3
s < ¥ i TS

+ 0
39621 equ%— 1 eZW‘/"—l%p—

2
eZTT/:l— %Q 1
21T 7o - 1

+02

1

This done, combine terms in the sum to form a fraction and, using #6, check that

its numerator is not zero.



§5. INTRODUCTION OF SCHC (bis)

1: EXAMPLE

© 1 L]
L 47 27 +
n=0n + 4 e - e + 1

=T 1
8 8 °

[To ascertain that the right hand side is transcendental, suppose that

e4Tr -1 p
T =0 € Q - {0}.
e4ﬂ - e2Tr + 1

Then

4

(e - 1) - oc(e4"T - e2

™y 1) = 0.

Define a polynomial P € a[X,Y] by the prescription

PX,Y) = X(¥* - 1) - a@®* -Y> +1) = 0.

Then

2m

P(w,eﬂ) = Tr(e41T -1) - oc(e41T -e"" +1) =0,

which contradicts the fact that 7 and e are algebraically independent over 6.]

2: IEMMA (Admit SCHC)

o7 V2 m /-1 /2

’ e

are algebraically independent over Q.

PROOF In §4, #4, take n = 2, ocl=/2_, a2=/——1/§.

3: THEOREM (Admit SCHC) Let C € Q - {0} —- then the series

is transcendental.



PROCE Write
1 1
nt+ct ot - ot
where
£ =" V4 C 5o+ /T /.
Then
® 1
T
n=-w n4 + C4

equals

g 2" /-1 EC 1) €2™C - 1) - /T(2™C 4 1) (27 /-1 EC _ 1

33

287C ~ VCI'(eZN V-1 EC _ l)(eZHEC -1

Note that

o2T V-1 £C _ o7 V=1 C V2 e-TrC//Z_
and use the fact that

TV2 T /-1 /2
e , e

14

are algebraically independent over Q (cf. #2).



8§6. CONSOLTIDATION

Our objective here is to analyze the series

(o]

D
14
= b + c®
where p=lorpisaprime >2and C € Q - Z.
e p=1:
> 1
E n+c¢C
n=-co

is transcendental or zero (cf. §2, #2).

® p=2:

is transcendental (cf. §3, #3).

® p=3:

is transcendental (cf. §4, #1).

l: THEOREM (Admit SCHC) Let p be a prime > 5 and let C € Q — Z — then

the series
® 1
Z -
n=—w np + Cp
is transcendental or zero.
PROCF Iet
C = o2 /=L/p



be a primitive pth‘root of unity «— then
2
1, Cpeeeyls

are linearly independent over Q, thus

/T, /T gyeee, /<L &2

are also linearly independent over Q. Therefore

S R e
e e

m, recey

are algebraically independent over § (cf. §4, #4). Write

P+rP=m+0) ... m+ Pl
to arrive at
- - p-1
e2ﬂ /-1 C 41 e2ﬂ /=1 Cr +1
n/——l(ao toeee ta g T ),
Q2 vLC P am AT

where the oy € 6. Using the fact that
-1 2
e T A R
the sum inside the parenthesis can be reduced to a rational function in algebraically

independent terms which can be transcendental, zero, or algebraic nonzero but the

m out in front rules out the last possibility.



§7. CONSIDERATION OF%

Iet A(X), B(X) be elements of Q[X] with
deg A < deg B.
Assume:

B(X) = (X + O{,l)rnl cen (X + O(k)rnkl

where Oyees,0p are algebraic, nonintegral, and such that
1, o ,...,ak

are linearly independent over Q.

1l: THEOREM (Admit SCHC) The series

[vo}

z

N=--c0

A(n)
B(n)

is transcendental or zero.
2: RAPPEL (cf. 82, #3) vj >2, vzeC - 1Z,

® 1 - (—l)j_l(ﬂ coE(ﬂz))(j_l)
= (n + z)7 (3 - DL

3: N.B. When j =1,

1 _
E_w arz " cot(nz) .
Using partial fractions, write
k M
?g(n)___ R R— .

CO R R R S o)



Then
m,
. %: I (I I cy — 9
nmco = i=l 3=l I (@ +a,)?
1
k M °° 1
= I X C.,. L :
k W (-1)371(7 oot ('noci))(j_l)
= ¥ L C.. :
im1 §e1 13 (Jg-D!
k ™ :
i=1 =1 *J
where

j—1
_c. . D)
iy T %3 G-Dr

FACT For any integer m > 1,

d,m
(d_z cot z
is a polynomial in cot z.
[The formula is
d.m
(d_t) cot 2z

equals

m
2 /D™ (ot z - /1) = £ S@m,2) (¥-1 cot z - 1)!'.
g=1 2%

Here the S(m,£) € Z are the Stirling subset numbers (a.k.a. the Stirling numbers

of the second kind).]



[Note: vk >2,vzeC(C-Z

o k k
. 1 = (2r AT

n=—w (0 +2)° (k-1! =1

(£ - 1)!s(k, L)
(e—ZTr /L z _ l)/@

(cE. 82, #3).]

l.b
.0

RAPPEL

e27T1/-Tz+l

e21r,/:l_z_l

cot(nz) = /~T

(S5

APPLICATION

(cot (na;)) O
27 /L oy

is an algebraic linear combination of rational functions evaluated at e

The assumption on the oy is that
lr OCll"'IOCk
are linearly independent over Q or still, that
/;Tl )/:IOLlI"'H/":I-Obk
are linearly independent over Q or still, that
/I, 2¢:I'al,..., 2/-T O
are linearly independent over Q. Therefore

211' /;TOL]_ 21T /:I-Ock
e ’ e

Ty

LIS

are algebraically independent over Q (cf. 84, #4).

To finish the proof, rearrange the sum so.as to form a polynomial in m,



the coefficients of a given power of 7 being a rational expression in
e21T ot OLl,...,, e2Tr - Ock.
Complete the argument by citing algebraic independence over ( (which eliminates
the algebraic nonzero possibility).
There is one set of circumstances under which the series

<

5 A(n)

B(n)

n=—c
is transcendental (thereby ruling out the zero contingency).

Assume: The roots of B(X) are simple, hence

m o= l,.._.,mk = 1.
To proceed, write
k
An) _
I g - " E G cotlnay)
nN=roo i=1l
or still,
21 /=1 a.
o k R
+
2 %%%= T/l 3 oC S =,
n=—co i=1 21 /=1 oy
e -1

the claim being that the expression on the right is nonzero, thus that the series

is transcendental.

Rewrite the expression as



k 21 V-1 a., 21 /-1 o
m /7L I C.(e Y+ IT (e a_).
k 21 V-1 a. =1 T a#i
T (e t-1)
i=1

Matters then reduce to showing that the polynomial
k

g CEX, +1) T x, -1)
i=1 *+ % a#i a

is not identically zero. Suppose it were identically zero. Given i, take
Xi=0, Xj=—l (j#l),Xa=2 (a # 1)

to see that C; = 0. But i is arbitrary, so C; =0V i, contradicting the tacit

assumption that A # 0.



§8. AN ALGEBRAIC SERIES

Instead of looking for a transcendental series, this time we shall exhibit

an algebraic series.

1: THEOREM Suppose that P(X) € Q[X] and z € Q (0 < |z| < 1) — then

the series

5 z'P(n)

n=0
is algebraic.
PROCF First of all, the manipulations infra are justified by the absolute

convergence of our series, so if

ko5
P(X) = ¢ a.X,
. i
1=0
then
* k ® ni
ZznP(n)=Za.Zzn.
n=0 i=0 n=0
Write
5 i
X = pX S(llj) (X)r
3=0 )

where (X)0 =1 and for j > 1,

(X)j=X(X—-l) eee X =3 +1).

Inserting this data leads to

k i © n
r a, & S i,3) = (@ jz
i=0 3=0 n=0



or

or

or

or

or

or

or

still,
k i o
£ a, I S(i,j) Z nn-1) --- (n-3j+ 1)z
' 1 .
1=0 J=0 n=0
still,
k i % N
L a; I S5(,3) I nn-1) :- -3+ 1Dz
i=0 * §=0 n=1
still, '
k i w
I a I 8,3 I n@-1 - -3+ Dz
i=0 T 3=0 n=j-1
still,
k i %
Y a, L S(A,j) T nta-1) -+ (n-7+ L)
. 1 . .
i=0 3=0 n=j
still,
k i . o N
I oa, L S(,9)z7 I (m+1l) --- 0+ 9z
. 1 .
i=0 * §=0 n=0
still,
k i L .
I a, I s(i, i)z (2 @
i=0 =0 1-2
still,
k .
5 4. 3% S(l,j)j.zj

i=0 *4=0 (1 - 2)

algebraic number.



81.
§2.
83.
§4.
85.
86.
87.
§8.

SUPPLEMENT

ZETA FUNCTION VALUES
BERNOULLI NUMBERS
z(2n)
z(2)
z(2) (bis)
z(2n) (bis)
z(3)
CONJUGATE BERNOULLI NUMBERS

z(2n + 1)



§1. BERNOULLI WUMBERS

Define the Bernoulli polynamials Bn(x) (n=0,1,2,...) via the generating
function
xt o n
_‘%e = L Bn(x) rf;_' ‘
e ~1 =0 :
[Note:
- . _ 1 _ w2 _ 1
Bo(x)—l, Bl(x)—x -j,BZ(X)—X x+€.]
There are two sign conventions at play here.
(+) Define the Bernoulli numbers B: n=20,1,2,...) by taking x = 1,
hence the generating function
tet °Z° + £
£ - Bynr -
e -1 n=0 -
+ + 1 _+_1
[Note. BO = l, Bl = 'z', B2 = -6— .]
(-) Define the Bernoulli numbers Br_1 n=20,1,2,...) by taking x = 0,

hence the generating function

l: REMARK A Bernoulli number is real and rational.



%

+ _ o
Bn—(l) B,-

: LEMMA If n is an odd integer > 3, then

: N.B. In formulas involving even index Bernoulli numbers, it is per-

missible to drop the * and simply use the symbol Bn'

® n 221‘1 2n

("'l) W’an X (0 < IXl < 1T).

7: LEMA Vn >1,

min! -

_ n-1
fg)- B, (x)B (x)dx = (-1) m +n)! “mn

8: LEMA Vn > 1,

2B ()= 6.

APPENDIX

IEMMA (MULTIPLICATION FORMULA)

m-1
__n-l k
Bn(_mx) = m n Bn(x +ﬁ)'

k=0



APPLICATION Take x = 0, m = 2 — then

0 l, _ .1-2n
B2n(§) + B2n(§Q =2
i.e.,
1 1-2n
B2n(§9 =2 Bon = Bop
1-2n
= (2 - l)an.

LEMMA (ADDITION FORMULA)

n

B (xty) = £ (O )y
n =0 k Bk

B, (0),

-k



§2. z(2n)

= D7 " 5ot Bog

or still,

2n—-1
n-1 2 2n
1" " omT Bon”

z(2n)

2: APPLICATION ¢(2n) is transcendental.

[Recall that m is transcendental, hence ﬁzn is transcendental.]

The stated formula for £(2n) can be proved in mnay different ways.

follows is one of them.

3: NOTATION Given an £ € Ll[O,l], put

Fk) = fé Fae IR 5 ke,

A: PIANCHEREL Given an £ € L2[0,1],

g Pa= T 2w |2

[Note: Recall that

210,11 < .'[0,17.]

5: LEMMA Take £(x) = Bn(x) — then

What



gn(k) = - __n!___
@m/ L k)®
if k # 0 while §n(0) = 0.

PROOF The second point is covered by §l1, #6. As for the first point, take

n > 1 and write

~ -27v-1 kx
Bn(k) = flo Bn(x)e

1
B, (k)

Il
|
3
I

0

_ 1 1,1
= _+_2_)

(2
2m/=1 k

_._l—o (k # 0)

2m/=1 k

S
2m/-1 k



n >1: To begin with

1
1 Bn(x)e"zﬂ/:]?kx
2m/~1 k 0
==L _®@ -B(0)
o/l k D n
And
B (1) - B (0) =B -B_
n n T "n
= (-7 Br“1 - B (cf. §1, #2)
— — — n -
=B_ ((-1) 1).
But
" neven, 22=> (-'=1=B (-1 -1) =0
nodd, >3=>B_ =0 (cf. §1, #3) => B_ (-LH)™ - 1) = o.
Therefore
B, (1) - B (0) =0,
leaving
1 fg % B (x)e 2™l KX g
om/=1 k n

. d .
Using §1, #8, replace = Bn (x) by n Bn—l (x) to arrive at

B, (k) = ——— fcl) B 1 e 2L kx g
2m/-1 k
__.n 3

om/~IT k



so, inductively,

A

n .n—-l

gn(k) n-—2(
2m/~1 k  2m/~L k

k)

1l

=n(n—l).

L2 n
2/ T k)T B0

nl (- 1
T ¥t 2n/ Tk

n!

m/ T K

Hence the lemma.

To prove the theorem, take f = Bn (n > 1) in Plancherel:

e e Pax = [B 0|2

- 00

Here

1 2
[y 1B, () [Tax

1
fo Bn(x)Bn(x)dx

n-1 (n!)2 -

(-1) 2n)! “2n

(cE. 81, #7)

2
= (-1 % B, (of. 51, #4).
On the other hand,

2

A 2
by B_ (k) = 3 - e
1B, 09 2m/=1 x)©




5.

2 @n?
23—l
k=1 (21k)“"

@)’ 2 1

) N
k2r1

=2 2n
(2m) k=1

2
=2 _m)™ z(2n).

(2ﬂ)2n
Now cancel the (n!)2 to get
2n
c(am) = ("t LD _p
2(2n)!
6: SCHOLIUM

QL (2),2(4),2(6),...,]1 = QIT2].



§3. z(2)

In 82, #1, take n = 1 to get

2

C»(z) = —6'— .

Of course there are a "million" proofs of this result but for motivational pur—

poses we shall single out one of these.

1: NOTATION The symbol

1 1
fO fo f (x,y)dxdy

stands for a double integral over the unit square [0,1] * [0,1], possibly improper.

2: SUBLEMMA

3 2 1
T =1 ——.

n=0 (2n+1)°

PROCF

1l
™

£(2)

|
+

Z =1 (2n)°

n=0 (2n+l)

o« o

n=0 (2n+1) 2 n=1n

|
™
NI"'

o

s+ 7 L)
n=0 (2n+l)

S

[ee]

3 _ 1
L@ = L —r—.

n=0 (2n+1)?2



3: LEMVMA
1 _ e 2n
%%l—zzMY*%fé I L)y
= 3 ___1_7
n=0 (2n+1)
_ 3
—ZC(Z) .

[Note: The singularity at the corner (x,y) = (1,1) can be safely ignored... .]
Define a bijective map from
112 = {(u,v):zu>0,v>0,u+v <%}

to 10,1[ % ]0,1[ by the prescription

sin u  sin v,

(@,v) (cos v ' cos u’
with Jacobian
. . 2
cos u/cos v sin u sin v/cos”v
o(x,y) _
3 (u,v)
. . 2
sin u sin v/cos™u cos v/cos u
. 2 . 2
—1-_Snusinv _ l_xzyz.

2 2
cos™u cos’v

[Note: The details are in the Appendix to this §.]

Therefore

1.1 1
0f0 2 2

St =S
1x"y

dxdy

2
T

= Area(l'[z) = 3



Tr2
£(2) = .
4: LEMVA
1.1 1
z(2) = fof 0 Txy dxdy.
PROCF The RIS equals
J lf Loy xnyndxdy
0" 0 _°~
n=0
or still,
z l._n 2 n
() xdx) - (J) vy dy)
- 0 0
n=0
or still,
o ol | % i | T
I o L
0 n+ 0 n+l 0
or still,
5 1

s=t iz= £(2).
=0 (n+l) n=1n

To establish the connection between #3 and #4, write

ofé

|
-
o+
-,



1 .1 1 1
° fo fo (m+ m)dxdy

11 1
=2 /L
0707 22

dxdy.

fll

0 70 Ty &Y

1 1 1 1 1 .1 1
R i S N R R L S S
270 Xy 070 272

dxzdy

2z(2) = %—;(2) + 2 fé fé __lETE
1=y

dxdy

lfl 1
0°0 22
1-x"y

£(2) = [

AN

dxdy.

APPENDIX

NOTATTON

3

_ n, .
Hn = {(ul,uz,...,uh) € R s, > 0, uy +u < (1 <i<n)l.

itl 2
[Note: In what follows the indices i of the n coordinates of a point in R"
are to be regarded as integers modulo n, thus

sin u.

i .
X = ——— (1 € Nmod n).]
i coswu,



to get an arrow Hn > R,

LEMMA 1 The arrow T’h +> R® is one-to-one and its range is the open unit
cube (10,1D)".

IEMMA 2 The Jacobian

8(xl,.. . ,xn)

B(ul,...,un)

equals
2
1=+ (xl...xn) '

the sign - or + according to whether n is even or odd.

The volume of Hn is

S 1du,.. ‘dun

Hn 1
or still,
Lok L dx. ...dx
0 07 % m..x92 1 n
SR CIRTRE
or still,
Aot (™ kx0T ax L ax .
0 0 k=0 1 n 1 n

[Note: When n is even, the integrand in the second integral is singular at

<Xl"'"’Xn) = (1,...,1)



but the change of variable remains valid since the integrand is elsewhere positive.]

Take now n > 2 — then in view of absolute convergence, the third integral
equals
D™ T sy e )P axgax
k=0
But
1 2k
S5 e I3 e ) @ ax
1 2% 2k
= (g ES dx)) s U7 %25 dx)
=L
(2k+1) "
Therefore the volume of ﬁn is
oo nk
(-1)
z o
k=0 (2k+1)

a rational multiple of .

N.B. When n = 1, Hn reduces to the line segment 0 < u, < /4 and the

1

bottom line is the wellknown formula

the value of
g 2 ax.
1+x¢
REMARK Take n even —— then
iR

k=0 (2xk+1)"



§4. ¢ (2) (bis)

2
Since z(2) = lT6—- , it follows that z(2) is transcendental, hence irrational.

But let's ignore this, the objective being to prove from first principles that
£(2) is irrational, the point being that the methods utilized can be extended in

the next § to establish that z(3) is irrational.

1: NOTATION Let drl be the least cammon multiple of 1,2,...,n and set

ifn > > 0.
PROOF

4 = T pln@/imE)]

psn

T o (n) /4n (p)

p<n

IN

T n= nﬂ(n),

pn
m(n) the prime counting function. Owing now to the prime number theorem,

Lim m(n)fnn) _
n —» o n

1,

so if A > 1, then

n>>0=>ﬂ—(r—1)—£&<A



or still,

n>>0= n1n)lnnh) < nA

= " (n) < (eA)n _ Kn’

A .
where K=¢e > e, i.e.,

n>>0=>dn=nﬂ(n) <Kn.

3: N.B. In particular,
n>>0==d4d < 3n.
n
4: NOTATION Let
n
p_(x) =L anh.
* ax
Then
n k n, ntk, k
P = I (-DF OO,
k=0

a polynomial of degree n with integral coefficients.

5: SUBLEMMA For i < n - 1,

di n n
— @ (1=x)7)(0) =0
dx

i
4 @ aoMw =o.
dx

6: LEMMA Suppose that f£(x) is sufficiently differentiable

—— then



1 a
/‘é P_(x) £ (x)dx ’ = ) I

PROOF Write

n
g R @i = g - 6P fax

0 n! B8
= L d;: =" (10™ £(x) z
-5 dii a0 & feax
= -k dz_l 10" S £ ax.

Proceed from here by iteration.

7: INTEGRAL FORMULAS

® ILet r be a nonnegative integer —— then

1 1xy |
S S dxdy = I
070 Ixy n=1 (n+-r)2
So
P N
r=0=> fO fO T=y dxdy = 7 (2) (cf.
rr
—w Al lxy
r>0=> fO fO = dxdy

11
=@ - St
12 92

§3, #4).



® Let r,s be nonnegative integers with r > s — then

r s
11 gy _1 .1 .1 .. 1
Jo 1o 1-xy d'Xdy_r---s Gatse? -

8: APPLICATION

1 1 xryr a
fo fo l—Xdedy:C(z)—d_Z
r
and
r s
1 1 X _ b
fofo md}{dy_?’
r

where a,b are integers.
Therefore:

: LEMMA If P(x), Q(y) are polynomials of degree n with integer coefficients,

then

1 1Px)Qy) _ Az (2)+B
Jo Jo oy Qxdy = '
0 1-xy dfl

where A,B are integers.

10: NOTATION Put

P (x) (1-y)"
In = fo fo _l—xy dxdy.
Take Q(y) = (1-y)" to get
Anz_:(2)+Br1
I, = 2
n

where An'Bn are integers depending on n.



_ X (l—x) y (l—y)
[Inl = ]% /l 0 xy)n+l dxdy.

PROOF Taking into account #6,

n| 0 n!

I n n n
_ ] A" 4 (1-y)
= | AEL = (Jp T2 ay)ax '

n n n n
_ S (1-x)" 1 & (1)
= | g 2 o & B Hayyax l

n
= fl X (l"‘X) fl nly (l"Y)
0 n! (1- )n+l

n nn n
— X (I-x)y (1-y)
= fl f% (l-—xy)n+l dxdy.

dy)dx ‘

12: N.B. In is nonzero (the integrand is positive for all x,y € 10,1[).

The function

fey) = EEO o cx <1, 05y <)

vanishes on the boundary of [0,1] x [0,1] and, although not defined at (1,1),

it does however tend to 0 as x,y 1 1.

13: LEMMA The maximum of f(x,y) in 0 <x <1, 0 <y <1 is

(/f—l)s

PROOF Consider the relations

2 £a,y) =0

e flx,y) =0,

"ay



i.e.,
2 2
l-2x+yx =0,1-2y +xy =0.
Then
-1 — -
X X X
> x> -2 +1=0,
the roots of which are
1 S sox=‘/§_l
! 2 ! 2 *
Analogously
_ /5 -1
y = 2 .

Therefore f(x,y) achieves its maximum at

the value being

14: APPLICATION
N R | 1
Tl = T o £&Y) p5 axdy

/5—1)5n Al 1

s 0 o Ty &
= B re) (of. 53, 4.

|
|




and
5 _ 1 __.n,/5-15n
(.635) ~E——>9( 5 )
=0 - B 5
20" = N0 m .

16: THEOREM z(2) is irrational.

PROOF Suppose instead that z(2) was rational, say £(2) = % (a,b €N).

An;(Z) + B
In = (cE. #10)
d
n
a.
) An(E) + Bn
d2
n
=>
a 2
|2 @ +B | <da [I]

=> (n > > 0)

A @ +B | <97 [T| (cf. #3)
< B L)
=> (n > > 0)
|aa+Bb| s 9n(’/§2'l) My
~ b2 + 0

Write



But In is nonzero (cf. #12), hence
0 < [Ana+Bnb| ~0 (n-> ),

a contradiction (a sequence of positive integers cannot tend to 0).



§5. z(2n) (bis)

1: RAPPEL
2 2 1
™ cot(mx) = 1 + 2% b -
k=1 x“-k
2: RAPPEL
2
o 24
mooot(mx) =1+ I (-1 B N

n=1

3: N.B. These expansions are valid for |x| sufficiently small.

Given k, expand
2X2
x2«k2
in powers of x:
2X2 _ o x2 n
7 3-"2 L (5.
X =k n=1 k
Therefore the coefficient of x2n is
O |
-2 I =
n=1 k2n
And then
o) 5 2 oo o X2 n
L Fm=-2 I I (&)
k=1l x-k k=1 n=1 k

co o) 2n
= =2 z Z }—{-2——
n=1 k=1 k"



[ee] co

20T (3 ™

=l k=l k22

[oe]

=2 ¥ znx>,

n=1

i.e., -2r(2n) is the coefficient of x2n. But the coefficient of x2n is also

2%

-1 2n 2n

(2n)! -

Consequently
2n-1
— (_qyh-1 2 2n

as predicted by the considerations of #2.



86. z(3)

l: THEOREM (3) is irrational.

The proof is similar to that for z(2) (cf. §4, #16), albeit technically more

In outline form, here is how it goes.

complicated.
Step 1:
e ILet r be a nonnegative integer — then
1 1fn(xy) rr T 1
- 15/ l_XY X'y dxdy = 2(23) - I ) €20(3) + = Z.
X k=1 k &
In particular:
_ 1 In(xy) -
o fo T @y = 28
® Iet r,s be nonnegative integers with r > s — then
A Ay rs 1 1 1 1
=Sy Jog T Xy dxdy = — ( e+ 5) €5 L
00 Il-xy r-s (s+l)2 r2 df-
Step 2:
P (X)P_(y)
-_ A Ad1°n n
I = fo fo Txy In (xy) dxdy
_ AnC(3)+Bn
- T a7
d3
n
where A ,B € Z.
n'n
Step 3:
_Inxy) 1 1
Ty - Yo Tz




Step 4:

jl Pl (x) P (y)

Tl = 195 7o o Tz S|

n n P _(y)
X (1-x) a n
I‘% n! 3 Ulo % 1-(1-xy)z dydz)dx |

n nnn
_ : S . § 1-x) Yy Z ,
= l_/‘lp(y)(j‘l/'l X { dxdz)dy| .
0 'n 0°0 (l—(l—xy)z)m'l

Step 5: Let D = {(u,v,w):u,v,w € ]0,1[} -—— then the map
(u,v,w) > (x,y,2)

defined by x = u, y = v and
2 = _]'_L_
1-(1—uv)w
from D to D is one-to-one and onto. In addition,

o(x,v,2) - - uv
o(u,v,w) (1- (1-uv)w) 2

Step 6: The function

u(l=u)v(1l-v)w(l-w)
1-(1—av)w

isboundedabovebyil—ijntheregionD.

Step 7: In I " make a change of variable and use the relations

o B (1-w)"™

z n
(1-(1~uv)w)




ntl _ o o 1-w n+l
(uv)n+l
(1- (1—uv)w) L
to get
PRI i i e T R
n 0°0°0 n+l -
(1- (l—av)w)
Step 8: Therefore
1,n .1 .1 1 1
0 < L] £ GP™ Jy Jo o T=(imamyw SQudvaw
1.,n 1 .1 In (uv)
(57 fo fo - T—av dUdV
_ 1l.,n
= 2(77—) z(3).
Step 9:
A z(3)+B_|
0< |1 |=—"——75"
n d
n
1.n
< Z(W) z(3).

Step 10: To derive a contradiction, suppose that £ (3) is rational, say

t(3) =2 (a,b € N) — then

0<|a,@ +B| <2697 1



l.,n .3
0 < lAna + Bnbl < 2bG=)" A

< zb(%)n (2.8)3  (cf. 54, #2 (take K = 2.8))
(2 8)3 o n
= 2028 ¢ 0n0.9) 2 0 (> ).

27

2: N.B. The irrationality of z(3) is thereby established but the issue

of its transcendence remains open.

3: REMARK It was shown by T. Rivoal that the Q-vector space generated by

L, z(3), z(5), t(7),...
is infinite dimensional, hence there exist infinitely many n such that Z(2nt+l)
is irrational (but it is unknown whether Z(5) is irrational).

[Note: For an account, consult S. Fischler (arXiv:math.0303066).]

In the book "Zeta and g-Zeta Functions and Associated Series and Integrals"
by H.M. Srivastava and Junesang Choi, the reader will find a large collection of

formulas for z(2n+l).



§7. CONJUGATE BERNOULLT NUMBERS

1l: DEFINITION If f is a l-periodic function, then its periodic Hilbert

transform H[f] is given by

HIEL ) = BV /115, £ (e-y)cot(my)dy.

2: CONSTRUCTION Start with the Bernoulli polynomial B, (x) and put

Bn %) = Bn (x~[x]) r

a so-called Bernoulli function. It is l-periodic and

B_(x) 2m/=T kx
n = Z ..e___—. ,
n! €7 (/T P
k#J

a formula which holds for all real x if n > 2 and for all x ¢ Z if n = 1.

3: DEFINITION The conjugate Bernoulli functions én (x) are defined for

x € [0,1[ (x# 0 if n = 1) by the restriction of H[Bn] to [0,1[.

4: EXAMPIE For 0 < x < 1,

B, (x) = - %Zn(z sin(m)) .
5: EXAMPLE
~ 1 1
Bontl ) = HIBy ] &
_ 1/2 1



1/2 1
=2 117, By & - icot(m)ay.

[Note: By definition

1 B 1 1
But
—5<Yy<Fz=>5>-y>-3
B 1_1
=3 72232°Y2373
= 1> 12'-— y >0
Y —
=> [7 yl = 0.]
6: N.B.
B (x) = - 2(i) p SROr/2) o4 ign =1y,
k=1 (27k)
7 IEMMA v n € N,
~ _ n+l =
Bn(l—x) = (-1) Bn(X) 0D<x< 1.
PROOF From #6,
ﬁn(l—x) - - 2m) sm(an(i—x)-»mr/Z)
k=1 (27k)
Write

sin 21k (1=x)-nn/2)
= gin (2nk-21kx-nm/2 + nn/2-nn/2)

= sin((-27kx+nn/2) + (2nk-nm))



sin (-2Tkx+n 17/2) cos (2 1k-nT)

+ sin (27k-nm)cos (-21kx+nm/2)

- sin (27kx-n7/2) cos (-nT)

+ sin (—nTm)cos (-2Tkx+nT/2)

sin (2mkx-nT/2) (-1)cos (nm)

+ (0)cos (—21kx4nT/2)

sin (2mkx-n1/2) (~1) (-1)"

-1)™7 sin (@nke-nm/2)

matters then being manifest.

8: APPLICATION Take x = % — then

~

2ntl 5 1 ~ 1

1 _ _
Bz = (-1) Bon(3) = = By ()
=>
-~ l _
BZn(f) = 0.

9: DEFINITION The conjugate Bernoulli numbers ﬁn are defined by

Bn = Bn(O) n>1).

10: RAPPEL Vn > 1,

® k+1
z D)

= @0 A -2,
k=1 (27Kk)

11; LEMA vn > 1,



PROCF From #6,

But

Therefore

However

Therefore

sin (Tk-nT/2)

B
n

Nl
!

-2@mNsin®h ¥

I

-~ 20l y sin(mk-n1/2)
k=1 (27k) ™

sin (k) cos (nTTr) - sin (%T—r)cos (mk)
- sin (1—122) cos (1k)
- sin(J) (-1

sin (31 (1),

S (-1) k-+l

2

=1° k=1 (2mk)™

- 2nsin@H ™ @ - 27N o)

(2

=B (0)

1-n

-1)2(n!)sin (anl) ) z().

nmn

o Sin(— 2)

-2Mn!) I a
k=1 (27k)

nm ® 1
5) L

2(n!)sin( a
k=1 (271k)

2(n!)sin (%) emn ™ ().



12: DEFINITION Given x € R, put

Qx) = PV __{52 exycot(ﬂy)dy,

the omega function.

13: N.B. Therefore the omega function is the periodic Hilbert transform
at 0 of the l-periodic function f defined by periodic extension of f(y) = e
11
(v € [- 5 5 s

v 2 (0-v)x

) -1/2

cot (ym)dy

Hie " 71 (0).

14: LEMMA There is an expansion

2

Q) = I =2xI,

j=0 J°

. 1/2 .
Q. = D}J{Q(x) =0 = PV f_{/z yj cot (my)dy.

] 0

The omega function figures in the generating function for the En (%) .

15: THEOREM For |x| < 2m,

Xex/ 2

ex—l

0t = 1 5. x
o <2 E

PROOF Ignoring the minus sign, on the IHS, it is a question of the Cauchy



product of two infinite series:

oo k oo {a{
1 k
(X ) (X x),
, X2 & o K
a generic term being
k k-j xj
so k- @ G % I
or still,
k k
(I ) B @ 5

j=0

Owing to the addition formula (see the Appendix to §1),

o

B (5 -y) = %])% @ ().

On the other hand,

- 1/2 3
Qj = PV f—l/2 y-cot (Ty)dy.

aAnd ©,. = 0. So in the sum
k
k 1
z (j) Bk—j(f)g

3=0

only the odd j contribute. This said, consider

k .
-1/2 jio (j) Bk—j (5) y-cot(my)dy

PV [/
or still,

k
- fiﬁz ji ) By —) -1y cot(my)ay.



Assume that j is odd, say j = 2+l — then

] 20+1 + 2
()3 = (H = ()22
2.0+
= Dl = Y.
The data thus reduces to
- BV fll/2 Bk(2 y)cot (my)dy
-y
= - B
from which the result.
16: THEOREM
[o0]
Q(27x) =% ™ ™) 1 (¥ zk S -
k=1 x4k
[Tt can be shown that
N f% 2™V gin (21ky) dy
k=1
2 ® k
=% @™-1) T (-1) ——ZLZ—
k=1 x +k
or still,
™ (-2mx) = = ( ) T 1F 2k2
k=1 X +K
or still,

lam) = = ("™ 1 (D Ko
k=1 X +K

17: REMARK By way of comparison, recall that



88. z(2n + 1)

The fornmula for g(2n) in terms of Bernoulli numbers (cf. §2, #1) admits an

analog for 7(2n+l) in terms of conjugate Bernoulli numbers.

l: THEOREM

B
r(2n+l) = (-1)P 222+l __2n+l

Cn+l) !
PROCF
Step 1: x| <1
=>
© © k o 2n
k -
: (DfLoe s Bt G
k=1 X +k k=1 n=0
o k o 2n % k
= 3 (‘i) E DY@+ 1 %
=] n=1 k=T
[e0] [e0] k
= I (1 (D2 D7
n=0 k=1 k
Step 2: Write (cf. §7, #15)
~ 1
® Bkcio k e™
k=0 : e” -1
~TX
e e
= - 21X Q(2mx)
eZTTX_l X
- -2 L 2 (2mx)
= X o = mX



= 2MX — Q(2mx)
e Tp{"-e
_ ™
= 2X e Q(2mx)
e h =
® k
=2z (D (cf. §7, $26)
k=1 X +k
[e0] oo k
=2¢ I (T (-1) 2n+l) (-1)" 22,
n=0 k=l K
Accordingly
L1
1 2 B kK k
—2;{ z %1 (27T)
k=0 &
=1 (z (DL @t
n=0 k=1 k

So, comparing coefficients,

B, () =0 (cf. 57, 48),
and
]§2n+l (%) 2n_2n+l n ® k 1
—_— 2T = (-1) r (-1) .
(2n+1) ! k=1 k2n+l
Step 3: First (cf. §7, #10)
:DE i = 2721y 7 (2n+1) .
k=1 Kk
Therefore

n 2n 2n-+1 2n+l( 7
Cn+l) T

z(2n+l) = —21_ (-1)
27y



But (cf §7, #11)

2n

~ l _ —_ ~
Bone1 @) = 2 7 -10By s
thus
-2n ..~
(2 -1)B
-1 _4yD .2n_2n+l 2n+l
z(2n+l) = 2—2n—]_ (-1)" 2w ooyl
n .2n 2n+l é2n+l
= (1) 27w o) T !
the statement of #l.
Question: 1Is
z (2n+l)

2n+l
T

rational or irrational? Ans: Nobody knows. Of course, part of the problem is

the structure of B which appears to be complicated. E.g.:

2n+l
B = b -2 17y cotmiay
= (272-1)B,.
2: THEOREM
r(n+l) = (1) %;% I§ By 1 (y) cot(my)dy.

PROOF In fact

(cf. 87, #9)

B2n+l B2n+l (0)

B 1
= - DV fo 32n+l(y) cot (my)dy



1
==y By ¥) cot(my)dy

after replacing y by -y and taking into account the l-periodicity.

[Note: The PV is not necessary since

lim x cot x = 1.]
x-=+0

3: REMARK In a similar vein,

ntl 2212 4

z(2n) = (-1) =T o 1§2n(y) cot (1y)dy.
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