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ABSTRACl' 

In this book there will be found an introduction to transcendental number 

theory, starting at the beginning and ending at the frontiers. The eill>hasis is 

on the conceptual aspects of the subject, thus the effective theory has been 

rrore or less completely ignored, as has been the theory of E-functions and 

G-functions. Still, a fair anount of ground is covered and while I take certain 

results without proof, this is done primarily so as not to get bogged down in 

technicalities, othenvise the exposition is detailed and little is left to the 

reader. 
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1. 

§0. THE CANONICAL ESTIMATE 

THEOREM Given a positive constant C, 

PROOF Write 

1
. (fl 
lin -, = o. n. n + oo 

n -n c n! = n e l"Il Y. (Stirling's for.mula) • n 

~ ~ Y < e (=> /2 > _.!._ > 1) • n- e-y -e 12 n 

Choose n > > O:eC < n -- then 

0 < (fl = (fl 
n! n -n rn n e n yn 

(eC)n 1 = 
nn rn Y n 

n 12 1 ::;, (eC) -n e rn 

(n -+ oo) • 
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§1. ORVEREV SETS 

Let X be a rone.mpty set. 

1: DEFINITION An order on X is a relation < with tl"E following proper-

ti.es. 

• Tricmtomy Given x,y EX, then one and only one of the statements 

x < y, x = y, y < x 

is true. 

• Transitivity Given x,y,z EX, if x < y and y < z, then x < z. 

2: N.B. 

• y > x means x < y. 

• x ~ y means x < y or x = y. 

3: DEFINITION An ordered set is a pair (X,<), where X is a nonempty set 

equipped with an order <. 

4: EXAMPLE Take X = Q -- then X is an ordered set i£ p < q is def :ined to 

mean that q - p is positive. 

Let X be an ordered set, S c X a nonempty subset. 

5: NOTATION 

U(S) = {x E X:v s E s, s ~ x}. 

6: DEFINITION S is bounded above if U (S) f fO, an elerrent of U (S) being 

called an upper bou:rrl of S. 
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7: N. B. The ternlS 11bounded below" and "lower bound" are to be assigned 

the obvious interpretations, wh:rre nt:M 

L(S) ={ x E X:V s ES, x .s:: s}. 

let X be an ordered set, s c X a nonempty subset such that U(S) 'I fiJ. 

8: DEFINITION An element x E U{S) is a least upper bound of S if 

y < x => y ¢ U (S) • 

9: LEMMA Least upper bounds are unique (if they exist at all) and one 

writes 

x = lub s or x =sup S ("supremum"). 

{Note: The definition of "greatest lower bound" is analogous, such an ele:nent 

being denoted by 

x = glb S or x = inf S ("infinrum") • ] 

10: EXAMPLE Take X = Q and let S = { 1 :n E N} - then sup s = 1 is in s n 

but inf S = 0 is not in S. 

Let X be an ordered set. 

11: DEFINITION X has the least upper bound property if each nonempty 

subset S c X which is bounded above has a least upper bound. 

12: EXAMPLE Take X = N -- then x has the least upper bound property. 

13: EXAMPLE Take X = Q -- then X does not have the least upper bound 

property. 
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[Assign to each rational p > 0 the rational 

and note that 

Introduce 

Then 

Therefore 

But 

2 - p - 2 - 2p + 2 
q-p- p+2- p+2 

2 2 - 2(p2 - 2) q - - ----'=---...,.-

(p + 2) 2 

A= {p E Q:p > 0 & p2 < 2} 

B = {p E Q: p > 0 & p2 > 2}. 

p E A => p < q & q E A 

p E B => q < p & q E B. 

A has no largest element 

B has no smallest element. 

U(A) = B 

L(B) = A. 

So A does not have a least upper bound and B does not have a greatest lower bound.] 

I.et X be an ordered set. 

14 : LEMMA Suppose that X has the least upper bour:d property. I.et S c X 
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be nonempty and bounded below -. then 

sup L (S) = inf S. 

PRCOF By hyp:>thesis, L(S) ":f ~ and 

s E S => s E U.(L(S)) => U(L(S)) ~ ~. 

Therefore sup L(S) exists, call it A.. Given s E S, tl:ere are three possibilities: 

s < A., s = A., A < s. 

However s < A. is untenable since it :implies that 

s ~ U(L(S)) => s ~ S. 

Accordingly 

s ES=> A.~ s =>A. E L(S). 

If now A. < A.', then A.' ~ L(S) (for otherwise A.' E L(S) => A.' ::; A. by the very 

definition of A. ••• ), thus A.= inf s. 

15: DEFINITION An ordered field is an ordered set X which is also a 

field subject to the following conditions. 

e If y < z, then V x, x + y < x + z. 

e If x > 0 & y > 0, then xy > 0. 

16: EXAMPLE Take X = Q -- then X is an ordered field. 
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§2. REAL NUMBERS 

The following result is the central theorem of existence. 

1: THEOREM: There exists an ordered field R with the least upper bound 

property which contams Q as an ordered subfield. 

[Note: Here there is an abuse of the language in thatr "Q" is not necessarily 

the rationals but rather an i::orrorphic replica thereof.] 

2: DEFINITION The elements of R are called real numbers. 

3: N.B. Sup:pJse that R1 and R2 are two realizat:ions of R -- then there 

exists a unique order preserving field i::orrorphii:m ¢: R1 + R2 such tlat ¢CQ1 ) = Q2 • 

4: REMARK There are three standard re:ilizations of R. 

• The set of inf initr.e decimal expansions. 

• The set of equivalence classes of Cauchy sequences of rational numbers. 

• The set of Dedekind cuts. 

[Note: The fact that these :rrodels are actually ordered fields with the least 

upper bound property is not obvious, the actual verification involving a fair 

a:rrount of tedious detail. ] 

5: REMARK If S is a nonempty subset of R which is bounded below, th=n S 

has a greatest lower bound (cf. §1, #14). 

[In fact, 

glb s = - lub - s. ] 

6: LEMMA Let S be a nonempty subset of R which is bounded above -- th=n 
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for each s > O, there is an element s E S such that s > sup S - s. 

PROJF If the assertion were fals=, then for some s > O and all s E S, 

sup S - E ~ S. 

Accordingly, by definition of supremurn, 

sup s - s > sup s, 
so s ::; 0, a contradiction. 

7: LEMMA Let S be a rnnempty subset of R which is bounded above. Supp.JS: 

that µ is an upper bound for S with the property that for each s > O, th=re exists 

an element s E S such that µ - s < s -- then µ = sup S. 

PROJF If instead µ t- sup s, then µ > sup S, hence µ - sup S > O, thus for 

some s E S, 

µ - (µ - sup S) = sup S < s, 

a contradiction. 

8: ARCHIMEDEAN PROPERI'Y For every p.Jsitive real x and for every real y, 

there exists a natural number n such that nx > y. 

PROJF SUppos= to the contrary that there exist real numbers x > 0 and y 

such that nx ~ y for every natural number n. Let S = {nx:n E N} -- then s is 

bounded above (by y) , hence has a supranum µ, say. Because µ - x < µ (x is 

p.Jsitive), there must be a natural number n with the property that nx > µ - x 

(cf. #6), so (n + l)x > µ. But (n + l)x belongs to S, thus the inequality 

(n + 1) x > µ contradicts the assmnpt.ion that µ is, :in particular, an upper bound 

for S. 

9: COROLIARY For every real number x., there exists a natural number n 

such that n > x. 
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10: COROLLARY For every real number x, there exists an integer m such 

that x > m. 

[ChJose a natural number n such that n > - x (cf. #9) -- then x > - n, ro 

we can take m = - n.] 

11: COROLLARY Fbr every :i;:ositive real number x, there exists a natural 

number n such that x > 1 . n 

12: EXAMPIB Let S = {n~l:n E N} -- th:m 1 E U(S) and we claim that 

1 = sup S. Thus let µ = sup S and sup:i;:ose to tha contrary that µ < 1. Using 

#11, choose a natural number n > 1 such that 1 < 1 - µ, hence n 

1 n-1 µ <1--=--n n ' 

which implies that µ is less than an element of S. 

13: LEMMA For every real number x, there exists an integer m such that 

x - 1 ::; m < x. 

PROJF CMing to #9 and #10, there exist .integers a and b such that a < x < b. 

Let m be the largest integer in the finite collection a, a + 1, .•. , b such that 

m < x -- then m + 1 2:. x, hence m 2:. x - 1. 

14: DEFINITION A nonempty subset S of R is said to be dense .in R if it 

has the following property: Between any ~ distinct real numbers there is an 

element of s. 

15: THEOREM Q is dense in R. 
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PROOF Fix x,y E R:x < y -- then y ~ x > 0, ro tl:ere exists a natural number 

n such that y - x > .!. (cf. #11), i.e., such that x < y - !.. On the other hand, n n 

there exists an integer m with the property that 

l'Ence 

ny ~ 1 ~ m < ny (cf. #13), 

1 m Y --<-<y n ""n 

from which 

1 m x < y - - ~ - < y. n n 

16: SClIOLIUM If x and y are real numbers with x < y, tl:en there exists 

an infinite set of rationals q such that x < q < y. 

'!he Archime:iean Property is essentially "additive" in character; here is its 

"multiplicative" analog. 

17: LEMMA If x > l and y are real mnnbers, then there exists a natural 

n number n such that x > y. 

PROOF Proceeding by contradiction, suppose that there exist real numbers 

x > 1 and y such that xn ~ y for every natural m:u:nber n. Let S = {xn :n E N} 

then S is bounded above (by y) , hence has a supremum µ, say. Because x > 1, µ is 

n less than µx, hence µ/x < µ, so there must. exist an n E N such that µ/x < x . 

n+l d n+l 8 ha: ·.~..::i a· · But then µ < x an , as x E , we :ve arri.:vtU. at a contra ict10n. 

18: EXAMJ;'LE I.et x > 0 and 0 < r < 1 be real numbers; let 
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n 
S = {x(l - r_) • n E N}. 

1 - r · 

Then, in view of the relation 

x(l - rn) _ x 
l-r--1-r 

n .xr x 
1 - r < 1 - r (n E N) ' 

it is clear that 1 x is an upper oound for s and we cla.lln that - r 

x 
1 - r = sups. 

'lb prove this, it suffices to show that if e: is any real number such that 

0 < e: < 1 : r , then e: ¢ U(S) (cf. §1, #8). So fix such an e: -- then there 

exists a natural number n such that 

_!_ > x (cf. #17) (O < r < 1=>!>1), n x - e: (1 - r) r r 

thus 

rn < x - e:(l - r) = 1 _ e:(l - r) 
x x 

or still, 

numbers. 

n 
e: < x(l - r) => e: ¢ U(S). 

1 - r 

19: DEFINITION A real number x is irrational if it is not rational. 

20: Nar.ATION P is the subset of R wmse elements are the irrational 

21: N.B. Therefore R = P u Q, where P n Q = ~-

22: LEMMA Irrational numbers exist. 
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[In fact, R is not countable, hence P is neither finite nor countable (Q 

being countable) , hence P ':f fJ. ] 

23: THEOREM P is dense in R. 

PRCOF Fix a :i;::ositive irrational p and fix x,y E R;x < y:. Using #15, choose 

a nonzero rational q such that 

Then 

and pq E P. 

24: N.B. 

x y -<q<-. p p 

x < pq < y 

For the record, if p E P, tren - p E P and! E P. p 

if q E Q (q ':f 0) , then 

p + q, p - q, pq, ~ 

are irrational. 

In addition, 

25: DEFINITION An element x E R is algebraic or transcendental according 

to wrether it is or is not a root of a nonzero :i;::olynanial in Z [X]. 

26: EXAMPLE If ~ (b ':f 0) is rational, then 5- is algebraic. 

[Consider the :i;::ol ynomial bX - a. ] 

27: EXN!IPIB Let r,s E Q, r > 0 -- then r 8 is algebraic. 

[Write s = m (m,n E .z, n > O) and consider the :i;::olynomial '2f- - rm.] 
n 
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1 

[Note: Take r = 2, s = ~' hence n = 2 and 22 = /2 is algebraic (but 

irrational (cf. §6, #2)).] 

28: N.B. It will be shown m due course that e and TI are transcendental. 

However the status of e +rr, e - TI, err, ee, and TITI is unknown. 

[Note: e1T is transcendental but whether this is true of 1Te remams an open 

question.] 

29: EXAMPLE Is e + 1T irrational? Is err irratfunal? Answer: Nobody knCMs. 

But at least one of them must be irrational. 'lb see this, consider the p:::>lynomial 

~ - (e + rr)X + eTI. 

Its zeros are e and TI. So i£ both e + 1T and err were rational, then e and 1T vvould 

be algebraic which they are not. 

-
30: NOTATION Q is the subset of R whose elements are the algebraic 

numbers and T is the subset of R whose elements are the transcendental numbers. 

31: N.B. Q is a subset of Q and T is a subset of P. 

-32: LEMMA The cardinality of Q is aleph-0. 

33: N.B. Consequently, on purely abstract grounds, transcendental numbers 

exist. Historically, the first explicit transcendental was constructed by 

Liouville, viz. 

00 

L: 10-n! (cf. §15, #9). 
n=l 
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-34: LEMMA Q is the algebraic closure of Q in R and 

-[Q:Q] = aleph-0. 

-
Being a field, Q is closed under addition and multiplication. 

35: LEMMA If x f. 0 is algebraic and y is transcendental, then x + y 

and xy are transcendental. 

36: EXAMPLE ./I e and /2 + TI are transcendental. 

37: LEMMA If x E R is transcendental, then S'.) is x 2 • 

[If x2 were algebraic, then there would be a relation of the fonn 

or still, 
Ox3-f 

2 4 a 0 + Ox + a2x ~4x + 

implying thereby that x is algebraic.] 

38: EXAMPLE Not both eTI and 'IT can be algebraic. e 

[In fact, 

(err) ('IT) = ~.] e 

39: N.B. T is not closed under addition and multiplication. 

40: CRITERION let x and y be real numbers. Supp'.Jse that x $ y + E: for 

every E: > O -- then x $ y. 
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1 PRCX>F Assume that x > y and put t: = 2 (x - y) -- then s > 0. However 

1 l Y + s = 2 (x + y) < 2 (x + x) = x, 

contrary to the sup:E,X)sition that y + s ~ x for every s > 0. 



1. 

§3. SUPREMA 

We shall record here some technicalities that will be of use in the s:quel. 

1: IEMMA Let S be a nonempty subset of R, Ta nonempty subret of S. 

Supp::>se that S is bounded above -- then T is alro bounded above and sup T s sup S. 

[This is obvious from th: definitions.] 

2: LEMMA Let S and T be ~ nonenpty s.ilisets of R, each being bounded 

above. SupJ:X>se further that given any s E S there is a t E T such that s ::;, t 

and that given any t E T there is a s E S such that t ::;, s -- then sup S = sup T. 

PiroF It suffices to rule out the other tossibilities: 

sup S < sup T 

sup T < sup S. 

If the first of these were true, then SJ.p S ~ U(T), so there exists a t E T such 

that sup S < t s sup T. But, by hYJ:X>thesis, there is a s E S such that t S s, 

hence rup S < s, a contradiction. The second of these can be eliminated in the 

same way. 

3: NO'JATION' Given nonempty subsets S, T of R, put 

s + T = {s + t:s E S, t E T}. 

4: LEMMA Let S and T be nonempty subsets of R, each being bounded above --

then S + T is rounded above and 

sup(S + T) = sup S + sup T. 

PROOF Let r E S + T - then there exist s E S, t E T SJ.ch that r = s + t 

and so r s sup S + sup T. Since r is an arbitrary element of S + T, it follbws 
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that sup S + sup T is an upper bound for S + T, hence sup(S + T) exists and in 

fact 

sup{S + T) $. rup s + sup T. 

'Ib reverse this, we shall employ §2, #40 and prove tbat 

rup s + sup T ~ sup (S + T) + E 

for every E > O. Thus fix e:: > 0 and chJose s E s, t E T such that 

E E s > sup s - 2 , t > sup T - 2 (cf. §2, #6). 

Then 

s + t > sup S + sup T - E 

or still, 

sups+ supT < s+t+ E 

;. sup(S + T) + E. 

5: NOI'ATION Given nonempty rubsets S, T of R, put 

S · T = {st: s E S, t E T}. 

6: LEMMA Let S and T be nonempty subsets of R>O' each being bounded 

above -- then S • T is bounded above and 

sup(S · T) = (sup S)· (rup T). 

PROOF Note first that 

sup s > 0 and sup T > 0. 

This said, let r E S . T -- then there exist s E S, t E T such that r = st and 

so r ~ (sup S) • (sup T) • Since r is an arbitrary element of S • T, it follows 

that {sup S)·(sup T) is an upper bound for S · T, hence sup(S • T) exists and 

in fact 

sup(S • T) $. (sup S)·(sup T). 
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TO reverse this, we shall employ §2, #4 0 .and prove that 

(sup S} ·(sup T} ~ sup(S·T} + t: 

for every t: > 0. Thus fix E: > 0 and choose s E S, t E T such that 

s > sup 8 - -su_p_s~! ..... - -su-p · T ' t > sup T - sup S ! aip T 

Then 

E: E: 
sup s - s < aip S + sup T ' sup T - t < sup S + sup T ' 

from which 

and 

Therefore 

i.e. I 

£·sup T 
t(sup S - s} ~ sup S + supT 

£·SUPS 
sup 8 (sup T ·- t) < sup S + sup T • 

(sup S}·(sup T) - st 

= sup S(sup T - t) + t(sup S - s) 

< E>SUp S + E:•SUp T 
sup S + aip T sup s + sup T 

= £, 

(sup S) • (sup 'I) ~ st + e: 

~ sup(S·T) + e:. 

(cf. §2, #6}. 

7: REMARK The assertion of #6 may be false if we drop the assumption 
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that S and T are nonempty subs=ts of R>O" 

[Take, e.g., S = - N, T = - N -- then ooth S and T are rounded above but 

S·T is not.] 
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§4. EXPONENTS ANV ROOTS 

Iet a > 0 and x be real numbers -- then the primary objective of the present 

§ is to ass:ign a meaning to the symbol ax. 

n If a is any real number and if n is a natural number, then the pJWer a 

is defined inductively by the rule 

l n+l n a = a, a = a ·a. 

When a 'f 0, we define a 0 as l; VJe do not define o0. When a 'f 0, we define a ... n 

as _!_. we do not define 0-n. n' a 

1: m..vs OF EXPCN.ENTS FOR INTEGRAL PCMERS Iet a and b be nonzero real 

numbers; let m and n be integers. 

(6) (i) If n > 0 and a,b > O, then a < b if and only if an < bn. 

(6) (ii) If n < 0 and a,b > 0, then a < b if and only if an > bn. 

(7) (i) If a > 1, then m < n if and only if am < an. 

(7) (ii) If 0 < a < 1, then m < n if and only if am > an. 

In order to define the symbol ar for rational r, it is first necessary to 

establish the existence and uniqueness of "nth roots". 

2. 'IHEOREM For every real a > 0 and every natural number n, there is one 

n and only one real x > 0 such that x = a. 
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Uniqueness is :irrmediate. For supp:>se that x1 > 0, x2 > 0 are such that 

x~ = a, x~ = a -- then these conditions impl¥ tra.t x1 = x2 (cf. #1, 6 (i)). 

Turning to existence, let S be the set of all positive real numbers s such 

n that s < a. 

3: LEMMA S is nonempty and is bounded above. 

PRCDF 'lb see that S is none:npty, observe tha.t 1 : a 1 ies between 0 and 1, 

hence 

n 
a < a < a => a E s. 

(l + a)n - 1 + a 1 + a 

In addition, 1 + a E U (S) • Indeed, if tffire exists s E S such that s > 1 + a (> 1) , 

then sn > s > 1 + a > a, a contradiction. 

n I.et µ = sup S -- then we claim that µ = a. 'lb establish this, it suffices 

to eliminate the other possibilities: 

n µ < a: Since 

n µ < a 

n a - µ 
n n (1 + µ) - µ 

is a positive real number, one can clnose a real number v lying between 0 and 1 

and such that 

n a - µ v < (e.g. quote §2, #15). 
(l + µ)n _ µn 
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Then 

n n n = µ + \) [ (1 + :µ) - µ ] 

n n < µ + (a - µ ) = a. 

Tnerefore µ + v E S, which contradicts the fact that µ is an upper bound for S. 

n µ > a: Choose a real number v lying between 0 and 1 with the following 

properties: 

n µ - a v < µ and v < __ _,__n ___ n·. 
(1 + µ) - µ 

Then for s > µ - v, we have 

n n n = µ - vl(l + µ) - µ I 

n n 
? µ - (µ - a) = a. 
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Therefore µ - v is an upper bound for S, which contradicts tre fact that µ is 

tre supremmn for s. 
Consequently 

n 
µ = a, 

as cla.lrned. 

Let a > O be a :r;:ositive real number -- tren for each natural number n, the 

preceding theorem guarantees tre existen::::e and uniqueness of a real x > 0 such that 

xn = a. V\e write Ta for this x and call Ta the nth root of a. 

[Note: If n = 1, write a for Ta ; if n = 2, write /a for ~.] 

4: EXAMPLE Ii exists. 

Supp::>se 'JiJrM tlE.t a < 0 is a negative real number -- then for each odd natural 

number n, %" is taken to be the unique real x < 0 such that - x = ~-a (e.g. 

T-s = - 2). since n is odd, 

thereby justifying the definition. 

[Note: We do not define 1)a wh:m a < 0 and n is an even natural number.] 

5: N.B. Set To= 0 for all n E N. 

Let a > 0 be a p::>sitive real number. 

the representation of r in lowest terms. 

6: DEFINITION 

Given a rational number r, let !!!. be n 
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1 
the mth i;:ower of the nth root of a (if m = 1, then an =l'.l. ra). 

[Note: Regardless of the sign of m, it is clear that ar > O.] 

7: LAWS OF EXPONENTS FOR RATICNAL PCWERS Let a an:1 b be i;:ositive real 

numbers; let r and s be rational numbers. 
r r s r+s r s rs (1) a ·a = a ; (2) (a ) = a ; (3) a r-s -=a s a 

(6) (i) If r > 0, then a < b if and only if ar < br. 

(6) (ii) If r < O, then a < b if and only if ar > br. 

(7) (i) If a > 1, then r < s if and only if ar < as. 

(7) (ii) If 0 < a < 1, then r < s if and only if ar > as. 

8: REMARK If p is a natural number, then 

Therefore in the definition of the symbol ar, it is not necessary to require 

that r be reduced to lowest terms s:>, for example, 

1 n,....., n a = a = (v'a) 

9: LEMMA Let a > O, a =!- 1 -- then 

ar - 1 as - 1 
---<---r s 

for all r,s E Q - {O} with r < s. 

(n E N). 
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PR(X)F Let us admit for the noment that the lama is true wren, in addition, 

r and s are nonzero integers with r < s. Proceedmg to the general case, there 

is no loss of generality in supposing trat r = p/n, s = g/n, where n E N, p arrl 

q E z - {O}, and p < q. It is then a question of provmg that 

(ap/n .... l)n --'-----=-- < p 
(ag/n - l)n 

q 

or, equivalently, sin::::e n > O, that 

ap/n - 1 
p 

ag/n - 1 
<----q 

Put b = ~ -- then, since we are grantmg temporarily tre truth of the lemma in 

the integral case, it follows that 

bq - 1 
<---q 

as desired. Turning now to the case when r and s are nonzero mtegers with r < s, 

it is enough to consider just three possibilities, namely (i) 0 < r < r + 1 = s; 

(ii) r < r + 1 = s < O; (iii) - 1 = r < s = 1. Tm first of these is the assertion 

that 

ar - 1 ar+l - 1 
r < r + 1 

or still, up::m multiplymg lx>th sides of the inequality by r(r + 1), that 

or still, that 
r r a - 1 < ra (a - 1) , 

or still, uµ:m division by a - 1 i 9, that 
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ar-l + ar-2 + •·• +a+ 1 < rar if a> 1 

r-1 r-2 r a +a + ···+a+ 1 > ra if 0 <a< 1. 

But these inequalities do in fact obtain (apply #1, 7 (i) and 7 (ii)). The i:econd 

case, r < r + 1 = s < 0, can be reduced to the first by considering - s, -r, and 

-1 a Finally, if r = -1 and s = 1, then the inequality to be established can be 

written 1 - a-l < a - 1 and this is certainly true for a > O, a -:/ 1. 

Fix a real number a > 1. Given a rational number x, let 

S = {ar:r E Q and r < x}. 

10: SUBLEMMA S is mnempty and has an upper round M, s:J.y, tlus S has 

a supremum. 

11: LEMMA sup S = ax. 

PROOF Since ax E U(S), it suffices to srow that for each E > 0, there is a 

rational number r < x such that ax - ar < E (cf. §2, #7). With:>ut yet ccm:nitting 

ourselves, it can be asslmled from the beginning that 0 < x - r < 1, h=nce 

from which 

ax-r - 1 
----<a-l<a+l x-r (cf. #9), 

x r x-r 1 
a - a = ar [a x-~ ] (x - r) 

< M(a + 1) (x - r) , 

so if r < x is crosan .in such a way that 
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0 1 . f_ E: 1} < x - r < 2 mm 11 (a + l) , , 

x r then a - a < E. 

Fix a real number a > 1. Given a real number x, let 

S = {ar :r E Q and r < x}. 

12: SUBLEMMA s is nonempty and rounded above. 

[It is clear tra.t s is nonempty (cf. §2, #10) . On the otrer hand, if n is 

any natural number > x (cf. §2, #9), then 

r < x => r < n ~> a:r <an (cf. #7, 7(i)) 

=>an E U(S) => U(S) 'f ,0.] 

13: DEFINITICN' x a = sup s. 
[Note: If a = 1, we define ax as 1. If 0 < a < 1, then l/a > 1 and we defjne 

ax as 1/ (l/a)x. In all cases: ax > 0.] 

14: N.B. Matters are consistent wlen restricted to rational x (cf. #ll). 

15: LAWS OF EXPONENTS FOR REAL PCWERS I.et a and b be p)Sitive real 

numbers; let x and y be real numbers. 

x 
(1) ax·ay = ax+y; (2) (ax)y = axy; (3) a y = ax-y; 

a 
x x x.x ax a (4) (ab) = a .b ; (5) (b) = x; 

b 

(6) (i) If x > O, then a< b if and only if ax < bx. 

(6) (ii) If x < O, then a < b if and only if ax >bx. 
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(7) (i) If a > 1, then x < y if and only if ax < aY. 

(7) (ii) If 0 < a < 1, then x < y if and only if ax > aY. 

The proof of this result is spelled out in the lines below. 

[Note: We shall omit consideration of trivial, special cases (e.g. lx·ly = 
lx+y etc.] 

LAW 1: 

Case 1: a > 1. Let 

S = {as:s E Q and s < x} 

T = {at:t E Q and t < y} 

u U = {a :u E Q and u < x + y}, 

x y x+y thus a = sup S, a = sup T, a = sup U. In addition, 

= sup(S·T) (Cf• §3, #6) I 

and 
s t S·T = {a •a :s, t E Q and s < x, t < y} 

s+t = {a : s, t E Q and s < x, t < y}. 

So, to prove that ax·aY = ax+y, it will be enough to prove that sup(S·T) = sup U 

and for this purr:ose, we shall employ §3, #2. Since S·T is a SJbset of U, it 

neerl only be sh:>wn. that given any element au(u E Q and u < x + y) in U, there 

exist rational numbers s, t with s < x, t < y and such that u < s + t (for then 

u s+t a < a E S·T). Notmg that 

u - }C + y u - y + x 2 < y, 2 < x, 
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choose rational numbers s and t such that 

Then 
_u-y+x+u-x+y u - 2 2 < s + t. 

case 2: O < a < 1: We have 

1 

1 =------
(1/a)x· (l/a}Y 

= __ l__ = ax+y. 
(l/a}x+y 

(cf. §2, #15). 

A slinple but lin:i;:ortant consequence of I.AW 1 is the fact that 

Proof: 

1JWl 2: 

ax = __..!__ (a > O, x E R) • -x a 

0 x-x x -x x 1 1 = a = a = a ·a => a = -- . -x a 

case 1: y E Z. Sup:p:>se first that y E N am argue by induction. The 

assertion is trivial if y = 1. Assraning that the assertion is true for y = n, 

we have 

(by definition} 

(by irrluction hy:i;:othesis} 

x(n+l} =a (by IAW 1). 
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It therefore follows that {ax)y = axy for arbitrary a > 0, x real, and ya positive 

.integer. The asrertion is trivial if y = O and the reader can supply too details 

if y is a negative integer. 

case 2: y E Q· Let~ be the representation of y in lowest tenns. By n 

case 1, {ax) m = axm. Therefore 

m 1 
{ax)n = { {ax)m)n 

m 1 x- ~n = {a n )n 

{by case 1) 

care 3: a > 1, x > O, y arbitrary. Let 

x s S = {{a ) : s E Q and s < y} 

t T = {a :t E Q and t < xy}, 

thus {ax)y = sup S, axy = sup T, the claim being that sup s = sup T. 'lb this 

end, we shall utilize §3, #2. In view of Case 2, 

XS 
S = {a : s E Q and s < y}. 

Given axs E S, choose a rational number t such that xs < t < xy -- then axs < at 

and at E T. On the other hand, given at E T, choose a rational number s such that 

t t XS XS - < s < y -- then a < a and a E S. x 
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Case 4: 0 < a < 1, x > O, y arbitrary. Using IAW 4 below (whore proof 

does not depend on I.AW 2), write 

Care 5: 0 < a, x < 0, y arbitrary. If x < 0, then - x > 0, hence 

IAW 3: One need only observe that 

= ax-y • ay (by I.AW 1) , 

i.e., 

x a x-y -=a . 
aY 

IAW 4: 

Care 1: a > 1, b > 1. I.et 

S = {as:s E Q and s < x} 

T = {bt:t E Q and t < x} 

U = {(ab)u:u E Q and u < x}, 

thus ax = sup S, bx = sup T, (ab)x = sup u. Meanwhile, 

a~x = (sup S) • (SJ.p T) 

= sup(S·T) (cf. §3, #6). 
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So, to prove that (ab}x = a~x, it will be enough to prove that sup(S·T} = sup U 

and for this purr:ose, we shall enploy §3, #2. Since U is a subset of S·T, it 

suffices to go th= other way. But a generic element of S · T is of the form a~ t, 

where s, t E Q and s < x, t < x. And, assum:ing that s :s t, we have 

Case 2: 0 < a < 1, O < b < 1. Smee O < ab < 1, from the def .initions, 

(ab}x = 1 
(l/ab)x 

Since l/a > 1, l/b > 1, it follows from th= dis:ussion in Case 1 that 

Therefore 

1 =------
(1/a}x· (l/b}x 

Case 3: 0 < a < 1, b > 1. In this situation l/a > 1. SupfOse first 

that 1 < l/a ~ b -- then ab ,?: 1, ro 

hence 

The other possibility is that 1 < b < l/a. Smee :in this situation both l/ab and 

b are greater than 1, we have 



(ab)x = 1 = 
(l/ab)x 

14. 

Case 4: a > 1, O < b < 1. This is the same as Case 3 with the roles of 

a and b interchanged.. 

A simple but :imi:x:>rtant consequence of IAW 4, used. already in Case 4 of IAW 2 

alx>ve, is the fact that 

(!_) x = _!_ (a > 0, x E R) • a x a 

Proof: 

I.AW 5: Write 

ax lx Xlx Xl ax 
{-) = (a • -) = a (-) = a - = -
b b b bx bx 

IAW 6: We shall consider (i), leaving (ii) for the reader, arrl of the b-.D parts 

to (i) , only the assertion 0 < a < b => ax < bx will be dealt with explicitly. 

Cla:im: x If c > 1, x > D, then c > 1. Granting the cla:im for the rroment, note 

now that 

(by IAW 5) 

x x => a < b • 

Coing back to the claim, fix a rational number r such that 0 < r < x -- then it 

· 11 be h tha 1 r S · 1 2 2 r 2r i't wi enoug to prove t < c . mce < => r < r => c < c , 
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follows that 

r-r 2r-r r l=c <c =c. 

LAW 7: We shall consider (i) , leaving (ii) for the reader, and of the tw::> parts 

to (i) , only the assertion x < y => ax < aY will be dealt with explicitly. Ch:Jose 

s E Q:x < s < y -- then 

Q d S =>ar< s x s r E an r < x => r < a => a < a • 

s t t y x y Choose t E Q:s < t < y -- then a < a and a 5. a , hence a < a . 

16 : LEMMA I.et a > 0, a 'f. 1 -- then 

ax - 1 Y 1 ---< a -x y 

for all x,y E R - {O} with x < y (cf. #9). 
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§5. expa ANV loga 

Let a 'f 1 be a i;o sitive real number. 

1: DEFINITION The exi;onent.ial function to base a is the function exp a 
with domain R defined by the rule 

exp (x) a 
x =a (x E R). 

2: LEMMA expa:R-+ R>O is injective (cf. §4, #15, 7(i) and 7(ii)). 

3: LEM\1A expa :R -+ R>O is surjective. 

This is not quite .lmnediate and requires SJme prep:rration. 

4: SUBLEMMA Let n > 1 be a natural number and let a -:/- 1 be a i;ositive 

real number -- then 

i.e.' 

l/n n(a - 1) < a - 1. 

PRCX:>F In §4, #9, take x = ~' y = 1 -- then x < y and 

al/n - 1 a - 1 
< 1 ' 

n(al/n - 1) < a - 1. 

'lb discuss #3, distinguish b\o cases: a > 1 or a < 1. We shall 'M:>rk through 

the first of tres=, leav:ing the s=cond to the reader. 
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5: SUBJ.EMMA If t > 1 and 

then al/n < t. 

PR(X)F In fact, 

=> 

a - 1 
n > t - l' 

a - 1 > n(al/n - 1) > ~ = i (al/n - 1) 

al/n - 1 
1 > t - 1 

l/n l/n => t - 1 > a - 1 => t > a . 

Fix y > 0 -- then the cla:im is that there is a real x such that ax = y 

(x then being" necessarily unique). So let 

w S = {w:a < y} 

and J;ljt x = sup s. 

• ax < y is untenable. 

[In #5, take t = ..x_ > 1 to get x a 

for n > > 0, thus 

l/n y a <-x a 

x+l 
n a < Y 

for n > > O. But then, for any such n, 

1 x+-ES n 
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1 which leads to the contradiction x .::::. x + n • ] 

• ax > y is untenable. 

ax 
[In #5, take t = - > 1 to get y 

for n > > O, thus 

l/n ax a <-y 

1 x--n y <a 

for n > > O. 1 Owing to §2, #6, for each n > > 0, there exists wn E S:w > x - -, n n 

hence 
w n y >a 

1 x--n >a 

> y, 

(cf. §4, #15, 7 (i)) 

a contradiction.] 
x Therefore a = y, as contended. 

6: 

7: 

SQIOLIUM exp : R :-r R O is bijective. a > 

REMARK There is another way to establish the rurjectivity of exp a 

if one is willing to introduce ro.me nachinery, the p::>int being that the range of 

expa is an open subgroup of R>O" One may then quote the following generality: A 

locally compact top::>logical group is connected if and only if it has no proper 

open subgroups. 

Since 
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is bijective, it admits an inverse 

8: NarATION Put 

-1 log =exp • a a 

9: DEFINITION The logarithm function to a base a is the func;:m.ion loga 

defined by the rule 

10: LEMMA. Let u and v be p::>sitive real numbers -- then 

log (uv) = log (u) + log (v) a a a 

u log (-) = log (u) - log (v) . av a a 

11: LEMMA. Let y be a p::>sitive real number, r a real number -- then 

r loga(y) = rloga(y). 

. x PROOF Write y = a , thus 

=> 

12: N.B. Special cases: 

rx =a 
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13: LEMMA Let a -:/- 1, b -:/- 1 be p:::>sitive real numbers -- then 

pRCX)F Put 

so that 

hence 

a= bi= (ax)y = axy (cf. §4, #15, (2)) 

from which xy = 1. 

14: DEFINITION The carmon logarithn is log10• 

15: EXAMPLE log10 2 is irratmnal. 

[Supp:::>se that 

a 
loglO 2 = b I 

where a and b are p:::>sitive integers -- then 

a 
2 = lOb => 2b = lOa = 2a5a. 

But ~ is not divisible by 5.] 

[Note: It turns out that log10 2 is transcendental, a p:::>int that will be 

dealt with later on.] 

There are irrational numbers a., B ruch that a. 13 is rational. 

16: EXAMPLE Take a. = /[Q (cf. §7, #6) , B = 2 log 10 2 -- then 



And 

Put 

[Note: 

[:t:bte: 

6. 

1 
( YlO) 2log10 2 = (102) 2 loglO 2 

E(x) 

APPENVIX 

CJ() k 
= E ~ 

k=O k! 

E(l) :: e.] 

(x E R). 

E(x)E(-x) = E(x - x) = E(O) = l.] 

'lake x1 = 1, ••• , xn = 1 to get 

n E(n) = e . 
m If now r = - (m,n E N), then n 

SUrmary: 

(E(r})n = E(nr} = E(m) =em 
m 
n r => E(r) = e = e • 

E(-r) = - 1- = ..!._ = e-r 
E(r) er · 

E(x) x = e (x E Q). 
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But nCM for any real x, 

x e == sup S, 

where 

r S == {e :r E Q and r < x} (cf. §4, #13). 

THEOREM V x E R, 

REMARK It can be shown that 

1 n e == sup{(l + n) :n E N}, 

a fact which is scmet.llnes use1 as the definition of e. 
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§6. IRRATIONALITY OF 12 

Recall that P is the SJbset of R whose elements are irrational and, on 

abstract grourrls, is uncountable, in particular, irrational numbers exist. Still, 

the problem of deciding wheth=r a ~i£i.c real number is irrational or not is 

generally difficult. 

1: RAPPEL ./I exists (cf. §4, #4). 

2: THEOREM ./I is irrational. 

Trere are many proofs of this rerult. In what follows we shall give a 

representative s:unpling. 

First Proof: Supi;ose trat /2 is rational, say /2 = x , where x and y y 
2 2 2 are i;ositive inte:Jers and gcd(x,y) = 1 -- then x2 = 2 or still, x = 2y , thus 

y 

2tx2 and x 2 is even. But then x Im.1st be even (othei:wise, x odd forces x2 odd), 

so x = 2n for some positive integer n. And: 

x2 = Zy2 => (2n) 2 = 2y2 

2 2 2 => 2n = y => 2ly => 2IY· 

Therefore gcd(x,y) -:/ 1, a contradiction. 

Second Proof: SuPfOse trat /2 is rational, say /2 = x , where x and y y 
2 

are i;ositive .integers and y is the snallest s.ich -- then x 2 = 2 or still, x2 = 2y2. 
y 
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Next 

y 2 < 2y2 = x2 = (2y)y < (2y) (2y) 

2 2 2 => y < x < (2y) 

=> y < x < 2y (cf. §4, #1, 6(i)). 

Put u = x - y, a p:>sitive integer: 

y + u = x < 2y = y + y => u < y. 

Put v = 2y - x, a positive integer: 

=> 

v2 - 2u2 = (2y - x) 2 - 2(x - y) 2 

2 2 2 2 = 4y - 4yx + x - 2 (x - 2xy + y ) 

2 2 2 2 = 4y + x - 2x - 2y 

= (-1) (O) = 0. 

2 2 v2 
v = 2u => - = 2 2 u 

2 1/2 
=> {~) = 21/2 = /2 

u2 

v2 (1/2) 
=> 2 (1/ 2) = /2 (cf. §4, #7, 2) 

u 

=> v = 12. u 
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But now we have reache:l. a contradiction: u is less than y wrereas y was the 

snallest r:ositive inte:rer with the property tra.t ~ = v2 for s:JIUe r:ositive mteger x. y 

Third Proof: Supp:>se that v2 is rational, say v2" = ~, where x and y are 

p:>sitive inte:rers. Write 

thus 

But 

In addition 

=> 

1 /2+1=---
12- 1 

x + l = l =-y~-
Y x_l x-y 

y 

12=~= y 
y x-y 1 = _2=y_-_x_ 

x-y 

l < /2 < 2 => 1 < x < 2 ;::> y < x < 2y y 

x1 = 2y - x > 0 x1 E N 
=> => 

2y < 2x = x + x => 2y - x < x => x1 < x. 

Procee:l.ing, there exist p:>sitive inte:rers x 2 and y2 such that 

with x 2 < x1 < x. And s:> on, ad infinitum. The supp:>sition that 12" is irrational 
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therefore leads to an infinite des:::errling ~rain of natural numbers, an im:i;:ossibility. 

Fourth Proof: Supp:>se that 11" is rat:ional, 53.Y v2 = ~' wrere x and y 

are p::>sitive integers. Define sequences 

of natural numbers recursively by 

Put 

Then 

a1 = 1, a 2 = 2, a = 2a 1 + a 2 (n > 2) n n- n-

b1 =1, b2 = 3, bn = 2bn-l + bn_2 (n > 2). 

p (t) = a 2 t 2 - b2 
n n n 

2 2 p (/2) = 2a - b n n n 

(n ?::. 1) • 

is an integer arrl jpn (./2) I = 1 (details below). On the other hand, 

=> 

= I (a ~ - b ) (a ~ + b ) I ny n ny n 

ax+by 
= ja x - b y I ( n 2 n ) n n y 
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Smee the sequence {ax+ by} is strictly increasing, from s:Jme :i;:oint on n n 

I.e.: 

y2 <ax +by. n n 

n > > 0 => la x - b y I < 1. n n 

But there are m integers between O and 1. 

[Inductively we cla:im that 

These identities are certainly true when n = 1 (take a 0 = O, b 0 = 1). AsSlIIl.e 

therefore that they mld at level n > 1 -- then at level n + 1: 

= 4(2a2 - b 2) + 4(2a 1a - b 1b) + (2a2 - b 2 ) n n n- n n- n n-1 n-1 

= 4(-l)n+l + 4(-l)n + (-l)n 

And, analogously, 

Finally 

p (12) = 2a2 _ b2 = (-l)n+l n n n 

=> IP < 12> I = i. J n 

Fifth Proof: Let S be the set of :i;:ositive int9:3"ers n with the property 
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that n./2 is a i;:ositive integer. If /2 were rat:ional, then S v.Duld be nonempty, 

hence v.Duld have a s:nallest elenent, call it k. Now, fran the definitions, 

k E S => (/2 - l)k E N. 

But 

(( /2 - 1) k) /2 = 2k - k/2 

= (2 - /2)k 

isa :i;:ositive integer, s:::> (/2- l)kE S. Ibwever 

(12. - l)k < (2 - l)k = k, 

which contradicts th= ass.:nnption that k is the srallest element of s. 
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§7. IRRATIONALITY: THEORY ANV EXAMPLES 

For use below: 

1: RAPPEL Let a,b,c be mtegers Slch that a,b have no pr.lme factors 

in cormon and a lbnc (n E N) -- then a le. 

The following reSll t is the ro-calle:i 11rationa.l roots test". 

2: THEOREM Let 

f (X) = a + a X + a _x2 + • • • + a "1f1 0 1 z- n 

be a :i::olyn::>mial with mtegral coefficients. Supi;ose that it ms a ratmnal root 

P:p,q E Zani gcd(p,q) = 1 -- then pla0 and qla . q n 

PROOF Take X = £ to get q 

s:::>, after nru.l tiplying through by qn, 

That q Ian can be establishe::l aralogously. 

n +ap) n 

(cf. #1). 

3: N.B. Wn.en. spe::ialize::l to the case wh=re a = 1, the conclusion is - -- n 
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From the above, the only }X>ssible rational roots of this }X>lynJmial are intBJers 

which divide 1, i.e., ± 1. Arrl /2 + /3 ~ ± 1, thus /2 + /3 is not arrong the 

p::> ssible roots of 

x4 - lox2 + 1, 

thus is irrational.] 

6: EXAMPLE Let a and n be }X>Sitive intBJerS -- then ~ is either 

irrational or a IX> sit. ive intBJet:". And if ~ is a IX> sit ive intBJer, then a is the 

th f . . . n }X>Wer o a }X>S1t1ve intBJet:" • 

. .n n n [Consider- the p::>lyn:::mial x - a, h:n::::e ( Va) - a = a - a = 0. There are 

now ~ p::>ssibilities, viz. either ~ is irrational or else Ta is rational in which 

case Ta = k is a }X>Sitive intBJer (and a = kn) • ] 

7: REMARK Consequently, i£ a is a p::>sitive intBJer such tra.t va is not 

a p::>Sitive intBJet'." I then Iii is irrational (Cf o #4) o 

[Here is arother proof. Assume instead tra.t Iii is rational, say Iii= ~ I 

wrere x and y are }X>sitive inte:;ers and y is the s:nallest such: 

ylii = x => (ylii) Iii= xiii=> ya = xiii. 

Choose n E N:n < Iii < n + 1 -- then 

ra = x = x ( ra - n) 
y y(lii - n) 

= xra - xn = ya - xn 
ylii - yn x - yn 
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The numerator and deromira.tor of the fraction 

ya - xn 
x - yn 

are integers trat, in fact, are FOSitive: 

ya - xn = xva - xn = x ( $ - n) > 0 

x - yn = y$ - yn = y ( ra - n) > o. 

And 

x - yn = y ( ra - n) < y 

which contradicts the clnice of y.] 

8: THEOREM Supp:::>se that a1 , a 2 , ... , an are fQSitive integers. Asanne: 

is rational -- then /cil, va;-, ... , ~ are rational. 

9: APPLICATION If for S)Ille k (1 :s_ k :s_ n), fcik" is irrational, then 

va;:-+ra;-+···+~ 

is irrational. 

10: EXAMPLE ./I + /3 is irrational (cf. #5) • 

11: EXAMPLE /2 + /3" + /5 is irrational. 

Passin:J to the proof of #8, it will be enough to slow trat iai" is rational. 

For this purfOse, introduce 

F (X;a1 ) = II (X - ;a;:- ± va; ± • • • ± 
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where the product ranges over all combinations of plus and minus signs, thus 

Next multiply out the expressjon defining F (X;a1 ) -- then ~appears to ooth 

even and odd :i;:owers but hl2, ... , ~ appear only to even p::iwers. Assa:nble the 

even p:::>wererl tenns in ~' call the reailt G (X;a1), and as::anble the odd p:JWererl 

terms in ~, call the result - hi1 H (X;a1) -- then 

and G(X;a1), H (X;a1) are p:::>lynomials with integral coefficients. 

E.g.: When n = 2, 

F(X) = (X - ~ + ra;-> (X - ~ - ra;-> 

2 2 = (X - ~) - <ra;-> 

= (X2 + ( ~) 2 - ( ra;-> 2) - v'al" (2X) • 

:Now evaluate the data at X = 2:: 

=> 

provi.derl H (l:;a1 ) f 0. 'lb check that this is so, write 

F(l:;a1) - F(l:;-a1) 



=> 

But 

is never zero. 

6. 

1 = -- II (L: + v'aJ:" ± ra;- ± • • • ± 
2ra;::-

ia) n 

1 =--== II(2v'aJ:" + (ra;- ± ;a;> + • • · + (~ ± ~) 
2v'a1 

v'al + L: 
a.ES 

J. 

12: THEOREM Given x E R, toore are .infinitely many coprime s::>lutions 

p,q (q > O) to 

Ix - El < !_ • q - q 

One can say more if x is irrational. 
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13: 'lliEOREM Given x E P, there are .lnf initely many coprirne s:::>lut.ions 

p,q (q > O) to 

Ix - PI < J:_ • q - 2 q 

[N:>te: This est:inate can be sh:rrpen.erl to 

Ix - Ej < 1 
q - /5 q2 

1 but - cannot be replacerl by a ffila.l.ler real number unless s:::>m.e restrict.ion is 
15 

placed on x. 'lb ree this, take 

x·= 15 - 1 
2 

Pn 
Then it can be slnwn that there is a coprime reg.ience - (<In > 0) with the 

% 
property that i£ O < C < J:_ , then 

15 
pn C Ix - -I > - \f n > > 0.] 
% ~ 

14: NOTA.TION For any real number r, write 

{r} = r - [r], 

the fractional p:lrt of r. 

[N:>te: 0 ~ [);} < 1.] 

15: BOX PRINCIPLE If n + 1 objects are placed in n l::oxes, then s:::me l::ox 

contains at least 2 objects. 

16: CONSTRUCTION Let n > 1 be a i;ositive integer and divide the interval 
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[O,l] into n s..lbintervals [l, j + 11 (j = 0,1, ..• ,n - 1). Asruming that x is n n 

irrational, the n + 1 numbers O, {x}, ... , {nx} are distinct els:nents of [O,l], 

hence by the Box Principle at least 2 of than must be in one of the Slbintervals 

ci, j + 11 (j = 0,1, ... ,n - 1). Arrange matters in such a way that {jlx} and n n 

{j 2x} (j 2 > j 1 ) are contained in one subinterval of width !· Set 

Then 

=> 

=> 

1 <-n 

lqx - Pl 1 < -n 

Ix - Pl q 
1 1 < - < - • nq q2 

1 <-n 

(q < n). 

Existence per #13 is thereby established. 'lb conclude, it ms to be ruled. 

out that there is just a finite number of coprlrn.e solutions to 

say 

Ix - Pl q 
1 

~2' q 

I • • • I 
qk 
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Since x is irrational, there exists a p:>sitive integer m > 1 ruch that 

p. 1 \x - -2 \ ~ - ( i = 1, 2, ••• , k) • 
qi m 

In #16, replace n by m2 and ~ by ~' thus 

On the other hurl, 

But 

which .implies that 

Contradiction. 

Ix - ~ I < ~ < 
1
2 • 

mo b 

~ < 1 (b ~ 1) I 

m~ m 

(3 i) 

17: THEOREM Given x = 5- E Q (a,b E Z, b > O, gcd(a,b) = 1), for any 

copr.ime p:i.ir (p,q) (q > 0) with 

there follows 



PROOF 

=> 

10. 

a p - f. - => aq - bp f. 0 b q 

=> laq - bp 1 ?. 1 

= laq - bpi 
lbql 

= laq - bpi 
bq 

1 
> b-. - q 

18: CRITERION Let x E R· AsSJJ:D.e: Ther::-e edsts a coprirn.e sequence 

Pn 
pn'% (~ > 0) s.ich trat xi- ~ for all n and ~x - pn .>r- 0 as n -+ oo -- then x 

is irrational. 

a [Supp:>se instead trat x is rational, say x = b (b > 0, gcd(a,b) = 1), thus 

=> 
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But this is a contradict:ion since '1nx - pn + 0 by hYfOthesis. 

19: CRITERION Let x E R· F :ix p:> sitive constants C and cS. Asrume: There 

are infinitely many copr:ime s::>lut:ions p,g (g > 0) to 

Then x is irrational. 

Ix - EI < . l~o · q g 

[The contrap:>sitive is the assertion that for a rational x there are but 

finitely many copr.fute p,q (q > O) satisfying the stated inequality. Take x as 

a b per #17, hence 

=> 

l~o > Ix - ~I 
q 

> l:_ 
- bq 

c I· l/o 6 > b => (Cb) > q. 
g 

Accordingly, there are but finitely many p:>ssibilities for q. The same is true 

of p. 'lb see this, f :ix p arrl g Slbj ect to 

and consider fract:ions of the fonn 

c 
< l+o q 

p+r (r E Z)., 
q 



where 

Then 

=> 

< 2C 
l+8 q 

12. 

la_ p+-r I <-c 
b q l+& • 

q 

2C lrl < 0 S 2C. 
q 

OUr contention is therefore mani£est.] 

20: APPLICATION Let x E R. AsSlme: Th:re is a o > 0 and a sequence 

(% > O) 'f x of rational numbers such tra.t 

Then x is irrat:ional. 

APPENVIX 

IRRATIONALITY CRITERIA Iet x be a real number -- then the following 

conditions are equivalent. 

(i) x is irrational. 

(ii} V s > 0 1 3 p E Q such that q 
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0 < Ix -~I < ~ • 

(iii) V real number Q > 1, :i an integer q in the range 1 S q < Q and a 

rational integer p such that 

0 < Ix - pl < J:... q qQ • 

(iv) :i infinitely many E E Q such that q 

Ix - pl < 1 • 
q rs q2 
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§8. IRRATIONALITY OF e 

Recall that e can be def med as 

n 1 
sup{ l: -k, :n E N} 

k=O • 

or, equivalently, as 

1 n sup{ (1 + -) :n E N}. n 

1: N.B. 

n 1 n+l 1 1 1 1 
l: - < l: and (1 + -) n < (1 + ) n+ 

k=O kl k=O k! n n + 1 • 

2: SUBLEMMA Let 0 < r < 1 -- then 

00 

l: rn = 1 
1 - r n=O 

00 

l: rn = r 
n=l 1 - r . 

3: THEOREM e is irrat.ional. 

x PRCx::>F Supp::>se that e is rat.ional, S3.Y e = -, where ~ and y are p::>sitive y 

integers arrl gcd (x, y) = 1. Since 2 < e < 3, y is > 1. Write 

Then 

1 
e = (1 + l! + 

x y!e = y! y 

+ _!_) + ... 
y! 



Here 

= (y - l)!x 

= (y! + y! + 
l! 

2. 

+ y!,) + R. y. 

R- I ( 1 1 ) - y. (y + l)! + (y + 2)! + .•• 

is a pJSitive futeger. Contmufug 1 

Yr ( i + i + > (y + l)! (y + 2)! ••. 

l 1 
= y + 1 + (y + 1) (y + 2) 

< 1 + 1 . + 
y + 1 (y + I)2 

00 

= L: l 
n=l (y + l)n 

1 
=y+l 

1 
1 - y + 1 

1 = - < 1. y 

+ .•. 

But this :implies that R is less than 1, a contradiction. 

[Note: The precedmg is actually an mstance of §7' #18. Thus take ~ = n!' 

n 1 
p = a L: - -- then 
n -n k=O k! 

. n 1 
a .e - p . = a (e - L: -, ) 

"'l.1. n n k=O k. 

00 
1 = n! ( L: -, ) 

k:=n+l- _.k. 
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= 1 + 1 
n + 1 (n + 1) (n + 2) 

1 < - (cf. su:r;:n::-a) n 

+ 0 (n -+ oo) • ] 

The fore:ioing argument can be extende:i to establish the irrationality of e2• 

Thus start as before by assuming that e2 = ~ , where x and y are p:::>sitive y 
mtegers and gcd(x,y) = 1 (y > 1)' heoce 

=> 

x ye= -e 

00 1 00 

y(Z: F)=x(Z: 
k=O • k=O 

(-1) k __!_) 
k! 

=> (V n E N} 

n 1 1 
y ( z: -k, + z: k.1_) 

k=O • k>n . 

n 
( '<;' ( 1) k 1 '<;' (-1) k kl!) = x '-' - k! + '-' 
k=O k>n 

1 k 1 :: y(A + Z: -k1 ) + x (B + Z: (-1) k!). 
n k>n • n k>n 

N:>w multiply roth sides of the last relation by n! to get 

1 k 1 y(C +n! Z: k!) =x(D +n! Z: (-1) k!), 
n k>n n k>n 

C = n'A n • n 

D = n!B n n 
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bei.n:r integers. MJving on, 

or still, 

Therefore 

1 1 
yen + Y (n + 1 + (n + 1) (n + 2) + • • ·) 

= xD + x(-l)n+l( 1 
n n + 1 

yC - xD n n 

1 
(n · + ](} (n + 2) + • • ·) 

= x(-l)n+l ( 1 _ 1 + ···) 
n + 1 (n + 1) (n + 2) 

1 1 
- Y (n + 1 + (n + 1) (n + 2) + • • ·) • 

1 1 
~ x In + 1 - (n + 1) (n + 2) + • • • I 

1 1 
+Yin+ 1 + (n + 1) (n + 2) + ···I 

1 1 
S. x (n + 1 + (n + 1) (n + 2) + • • ·) 

1 1 
+ y(n + 1 + (n + 1) (n + 2) + ···) 

1 1 <x-+y-n n 

Finally, for all n > > 0, 

x+y<l. 
n 
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I.e.: For an infinite set of n, 

\yen - xDn I = 0' 

or still, for an infinite set of n, 

ye - xD n - n' 

an :im:i;:ossibility. 

4: DEFINITION An irrational number r is a quadratic irrational if there 

exist integers A, B, C not all zero such that 

2 Ar + Br + C = O. 

[Note: A quadratic irrational is necessarily algebraic.] 

5: EXAMPIB /2 is a quadratic irrational. 

6: THEOREM e is mt a quadratic irrational. 

The proof is detailed in the lines below. 

'lb arrive at a contradiction, rup:i;:ose that there are integers A, B, C not all 

zero such that 

2 Ae +Be+ C = 0. 

7: N.B. If A= O, matters are clear. If A -:j. O and if B = 0, matters are 

clear. If A -:j. 0 and if B -:/- 0 and i£ C = 0, matters are clear. One can accordingly 

assume from the beginning trat A ~ 0, B -:/- 0, C ~ 0. MJreover, we shall work 

instead with the equation 

c Ae + B + - = 0. e 
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8: SUBLEMMA Given n E N, there is an integer I such that n 

where O < a < 1. n 

PRCXJF Write 

00 
n! • L: - = 

k=n+l k! 

> 

n!e = I + 1 
n n +a ' n 

n I oo I 
n.'e = L: -n. + L: n. 

k=O k! k=n+ 1 k! • 

n! + n! + . .. (n + 1) ! (n + 2) ! 

n! 1 = (n + 1) ! n + 1 . 

00 

L: n! = 1 + 1 • k=n+ 
1 

k! n + 1 ~(-n_+_l~)-(,....n_+_2,....) + • • • 

< 1 + 1 + 
n + 1 (n + l)2 

1 
n 

Therefore 

00 

1 " n! < .!_ 
n + 1 < t... k! n 

k=n+l 

from which 
00 

L: n! = 1 (O < a < 1). 
k=ntl k! n + an n 

'lb conclude, it rana.ins only to set 

1 = n 
Il I " n. 
L... -k, • 

k=O • 
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9: SUBLEMMA Given n E N, there is an integer J such that n 

where O < S < 1. n 

Then 

PRCX)F Write 

• 

Put 

00 

L: 
k=n+l 

n! = 
e 

n 
L: 

k=O 

00 

(-l)k n! = L: (-l)l + (n + 1) n! 
k! l=O (l + (n + l))! 

00 

= (--l)n + 1 L: 
l=o 

(-1/ n! 
(l + (n + l))! -

N 
S = L: (-l)l n! 
N l=O (l + (n + l))! • 

In particular (N = 1) : 

1 
n+l 

1 < s < 1 
(n + 1) (n + 2) n + 1 

1 1 
• n + 1 (n + 1) (n + 2) 

1 1 1 = n + 1 (l - n + 2) = n + 2 

1 1 
(n + 1) (n + 2) + (n + 1) (n + 2) (n + 3) • 
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and 

1 1 1 
n + 1 (n + 1) (n + 2) + (n + 1) (n + 2) (n + 3) 

1 (1- 1 + 1 = (n + 2) (n + 3) ) n + 1 n + 2 

1 (1 + 1 (-l+n~3)) = n+l n + 2 

1 1 C n - 3 + 1)) = (l + n + 2 n+l n + 3 

1 1 - n - 2 = (l + n + 2 <n+3)) n + 1 

1 1 < 1 = n + 1 (l - n + 3) n + 1 

Therefore 

1 s 1 => s = 1 (0 B 1) n + 2 < < n + 1 n + 1 + l3 < n < • 
n 

And then 

oo n+l 
2: (-l) k nk·.', = (-l)n + i 8 = ___;_(-_l..;,...) __ 

n+l+S. k=n+l n 

'lb oonclude, let 

Surmiary: 

n 
J = 2: (-l)k nk·.: • 
n k=O 

1 n!e - I = 0 (-) n n 

n! 1 - - J = 0 (-) e n n • 
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Return 'f't:JW to tre equation 

and con sider 

Ae+B+g_=O e 

A(n!e - I ) + C(n! - J ) 
n e n 

= n ! (Ae + B + g_) - (AI + Bn ! + CJ ) e n n 

= - (AI + Bn! + CJ ) n n 

= - K - n· 

Then K is an integer. But n 

Therefore 

10: SUBLEMMA 

[Use the relations 

1 K = 0(-). n n 

K = 0 (n > > O) . n 

In+l = 1 + (n + l)In 

J = (-l)n+l + (n + l)J .] n+l n 

Since A-:/- O, the relat:ion figurmg ill #10 is irnr:ossilile for n > > 0. And 

this contradiction closes out the proof of #6. 
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11: SCHOLIUM 1, e, e 2 are linearly indep::mdent over Q. 

APPENVIX 

EXAMPLE 1 Supi:ose tbat r is a nonzero rational -- then the number 

is irrational. 

00 rk 1 2 1 3 
L: k(k - 1)/2 = 1 + r + 2 r + 8 r + 

k=O 2 

EXAMPLE 2 Supi;:ose tbat r is a nonzero rational subject to 0 < Ir I < 1 --

then the number 

is irrational. 

00 

L: 
k=O 

2k 2 4 8 
r =r+r +r +r +··· 

EXAMPLE 3 Supp::>se tbat M is an mteger ~ 2 -- then the number 

00 

~ __!__ 
k=l rl-2 

is irrational. 
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§9. IRRATIONALITY OF ea/b 

Let a/b be a nonzero rational number. 

1: THEOREM ea/b is irrational. 

[Note: Special cases, namely e and e2 are irrational, as has been sh.cMn 

in §8.] 

2: LEMMA If er is irrational for all integers r ~ 1, then ea/b is 

irrational for all nonzero rationals a/b. 

P:OCOF Take a E N and supp::>se that ea/b is rat:ional, say ea/b = q E Q -- then 

a a/b b b e = (e ) = q E Q. 

~brking tCMcrrd a contradict:ion, assume that for rorne r E N, er is rational 

and choose a p::>sitive integer m with tre property that mer E N. 

The data in place, we shall oow introduce tre machinery that will be utilized 

to arrive at our objective. 

3: NO'm'I'ION Given n E N, let 

2n 
= TI (X - j)' 

j=n+l 

an element of Z[X]. 

4: RAPPEL 

00 k 
ex= ~ x [_, '-T • 

k=O K: 
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Put 

- d 0 - :x:dx • 

5: SUBLEMMA 

6: LEMMA 

= Pn(x) + Rn(x), 

"Where 

and 
00 k 

R (x) = L: T (k) x 
n k=n+l n k! 

00 k 00 k 
= L: T (k) x (k - n - 1) ! 

k! = L: x 
k=2n+l n (k - 2n - k) ! k! . 

k=2n+l 

7: N.B. 

~(x) E Z[x] 

Accordingly, at an r E N, 

~(r) E Z 
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8: REMAINDER ESTIMATE 

n! 
IRn (x) I ~ (2n + 1) ! 

~ lxlk 
k=2n+l (k - 2n - 1) ! 

= n! Ix 12n + 1 e Ix 1. 
(2n + l)! 

Retw:ning to tre situation above, we cla:im that for sufficiently large n, 

0 < rnR (r) < 1. n 

'lb see this, consider 

Then 

,2n+l I 2 n.r r n. n( r) 
(2n + l)! e = (2n + l)! r re · 

2 2 n! 2n n! ._r r 
(2n + 1) ! r = n! · n··+ 1 • -n-+~2 • ! • 

2 r 2 r 2 r 

2 r 
n+n 

1 

1 
2n + 1 

=-~ n + 1 n + 2 n+n 2n + 1 · 

Cl:nose n > > 0: 

thus 

2 r 
n + 1 < l, 

n! r2n < 1 
(2n + 1) ! 2n + 1 ' 

fran which the cla:hn is .llrmediate. 

On the other hand, 
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E Z. 
But there are no integers between 0 and 1. 

9: REMARK It will be shJwn in due course that if x f. 0 is algebraic, 

then ex is irrational, so, e.g. , e v2 is irrational. 

APPENVIX 

0 ~ k ::; n: Here 

(-l}n (2n - k} ! n! = n! k! (n - k}! 

(-l}n (2n - k} ! 1 = (n - k}! k! 

and t:te claim is that 

T (k} = (-l}n (2n - k}! 
n (n - k}! • 

[ • k = 0: 

2n 
T (0) n = 1T 

j=n+l 
(O - j) 

= - (n + 1) ( - (n + 2)) • • • ( - (2n} } 

= (-l}n (n + 1) (n + 2) · · • (2n) 

= (-l)n 2n; . n. 



• k = 1: 

• k = n: 

T (1) n 

T (n) n 

5 • 

2n 
= TI (1 - j) 

j=n+l 

= (1 - (n + 1) ) (1 - (n + 2) ) • • • (1 - (2n) ) 

= (-n).(- n - 1) ... (- (2n - 1)) 

= (-l)n (n) (n + 1) ... (2n - 1) 

= (-l)n (2n - 1) ! 
(n - 1) ! 

2n 
= TT (n - j) 

j=n+l 

= (n - (n + 1) ) (n - (n + 2) ) • • • (n - (2n) ) 

= (-1) (-2) • • • (-n) 

n = (-1) n! 

= (-l)n (2n - n) ! ] 
(n - n) ! · 

2n + 1 s k < 00 : In this situat:iDn, tre cla:im is that 

(k - n - 1) ! 
Tn(k) = (k - 2n - l)! • 



[ • k = 2n + 1: 

T (2n + 1) n 

• k = 2n + 2: 

T (2n + 2) n 

6. 

2n 
= TI (2n + 1 - j) 

j=n+l 

= (2n + 1 - (n + 1)) (2n + 1 - (n + 2)) (2n + 1 - 2n) 

= (n) (n - 1) • • • (1) 

= n! 

= (2n + 1 - n - 1) ! 
(2n + 1 - 2n - l)! • 

2n 
= TT (2n + 2 - j) 

j=n+l 

= (2n + 2 - (n + 1)) (2n + 2 - (n + 2))··· (2n + 2 - 2n) 

= (n + 1) (n) • • • (2) 

= (n + l)! 

(2n + 2 - n - l)! = ~-------.;.-
(2n + 2 - 2n - l)! 

'lb prove the re:naind.er estimate, one has to shJw that 

(k - n - l)! < n! 
kl - (2n + 1) ! (k .2: 2n + l) · 

Let k = 2n + r (r = 1, 2, ••• ) and take r > 1 -- then 



cancelling the 
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(k - n - l)! = (2n + r - n - l)! 
k! (2n + r)! 

= (n + r - l)! 
(2n + r)! 

= -:-=-----=-:-:-~(_n_+--::-:-r_-_l..,..:;)=-!-~ 
(2n + 1) ! (2n + 2) ••• (2n + r) • 

1 
(2n + 1) ! ' 

there rema.ins tl:E cla:im tl:at 

(n + r - 1) ! 
(2n + 2) ." •• (2n + r) :'.S n! • 

Write 

(n + r - 1) ! 

= 1 . 2 (n - 1) (n + 1 - 1) (n + 2 - 1) • • • (n + r - 1) 

= (n - 1) ! (n + 1 - 1) (n + 2 - 1) • • • (n + r - 1) • 

caitcelli!B the (n - 1) ! , matters thus ra:luce to 

(n + 1 - 1) (n + 2 - 1) (n + r - 1) 
(2n + 2) • • • (2n + r) :S n 

or still, 

(n + 2 - 1) 
(2n + 2) 

(n + r - 1) 
) ~ 1, (2n + r 

which is obvious. 
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§10. IR.RATIONALITY OF ea/b (bis) 

There is another way to prove that ea/b is irrational (a/b a nonzero rational 

number). Thus, procee:iing as in §9, s.ipp:>se that for SJ.me r E N, er is rational, 

r u 
53.Y e = - (u,v E Z, v > 0). v 

Let 

Then 

n n 
f (x) _ x (1 - x) 

- n! 

O < x < 1 => O < f (x) 1 < - • n! 

1: LEMMA 

f(j) (0) E Z (j = 1,2, ••• ) • 

2: N.B. 

f (j) (1) E z (j = 1, 2 I ••• ) • 

[This is because 

f(l - x) = f(x).] 

Given n E N, pJ.t 

F(x) = r 2n f(x) - r2n-l f' (x) + r 2n-2 £ 11 (x) - ··· - rf(2n-l) (x) + £(2n) (x), 

and note that 

F(O), F(l) E Z. 

Obviously 

! (e~(x)) = erx(rF(x) + F 1 (x)) = r2n+l erxf (x) 
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=> 

vr2n+l ~ erxf (x)dx = r(erx_p(x) I ~ 
r = v (e F (1) ) - vF ( 0) 

= uF(l) - vF(O), 

an integer. On the otter hand, 

2n+l r 
< vr e 

n! 

r = vre 
2 n 

(r ) < 1 
n! 

for n > > 0 (cf. §0) , giving a contradict.ion. 

This is a good place to :insert an application. 

3: DEFINITION The natural logarithn is log . e 

4 : NO'm.TION Write fu in place of log • e 

5: 'IlIEOREM. If q 'f 1 is rational and p:>sitive, then ln(q) is irrational. 

P:OOOF Supp:>se that ln(q) is rational -- then efu(q) is IT-rational. Me:mwhile 

6: SCHOLIUM If x 'f 1 is a p:> sit ive rrel number and if ln (x) is rational, 

then x is irrational. 
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APPENV1X 

Let a t- 1, b t- l be :i;ositive real numbers -- then 

EXAMPLE 

log (b) 
log (b)bl (a) = bl (a a ) a 

= bl (b), 

- bl(b) 
log a (b) - lri (a) • 

fu(9) fu(32) fu(3) 
log3 9 = ll'l(3) = ll'l(3) = 2 ll'l(3) = 2. 
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§11. IRRATIONALITY OF TI 

There are mmy ways to introduce the number TI. 

1: DEFINITION Grometrically, TI is the length of a 92micircle of radius 

one, i.e., analytically, 

TI=; dx 
-1 J -2 -x 

2: THEOREM Consider the complex e}q:onential function 

exp:C + C. 

Then 7T is the unig.ie µ:>sitive real number with the p::-operty that 

3: 

Ker (exp) = 2TI ;.::f Z. 

7T 
THEOREM TI is the unique r:ositive re:i.l number ruch tra.t cos 2 = 0 

TI and cos x 'f 0 for 0 ~ x < 2 . 

4: 'IHEOREM TI is irrational. 

We shall give four proofs of this res..llt. 

First P:roof: Supµ:>se that TI = ~' where a and b are :i;:ositive integers. 

Introduce 
n n 

f (x) _ x (a - bx) 
n! 

and 

F(x} =f(x) -f(2)(x) +f(4)(x) - ··· + (-l)nf(2n)(x), 
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n E N to be detennine:l rromentarily. Note that f(j) (0) E z (j = 1,2, ••• ) , hence 

f(j) ('TT) E Z (j = 1,2, ••• ) (sin:::e f(x) = f~ - x) = f('TT- x)). Next 

! (F' (x) sin x - F (x) cos x) 

= F' ' (x) sin x + F (x) sin x 

= f (x) sin x (since F (x) + F' ' (x) = f (x) ) • 

Therefore 

f ~ f (x) sin x dx = (F' (x) sin x - F (x) cos x I~ 

=F('TT) +F(O). 

But F ('TT) + F (0) is an integer. On the other hand, 

nn 
0 < f (x) sin x < ~ (O < x < 'TT) n! ' 

nn 
'TT TI a ! 0 f (x) sin x dx < TI-.-, n. 

is p:::>sitive an:l tends to zero as n + co (cf. §0). 

Secorrl Prcof: This pr:-oof is a slightly rrore complicate:l variant of the 

pr:-ece:ling proof an:1 has the merit that it establishes the stronger restl.t that 

2 . . . nal TI is irratm • 2 a Procee:ling to the details, SUPfO~ that TI = b , where a and. b 

are :i;::ositive integers but this t.:ime introduce 

n n 
f (x) = x (1 - x) , 

n! 

a :i;::olynomial encountered earlier (cf. §10) • Put 
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F (x) = bn {in f (x) - TI2n-2 f (2) (x) + TI2n-4 f (4) (x) - • • • + (-1) n f (2n) (x) } 

and note that 

F ( 0) , F (1) E Z. 

M:>reover 

! {F' (x) sin ( 11X) - TIF (x) cos ( 11X) } 

= (F (2) (x) + TI~ (x)) sin (11X) 

n 2n+2 . = b TI f (x) sm (TIX) 

Therefore 

Tran fQ f (x) sin ( 'TTX) dx 

= (F' (x) :in (TIX) - F (x) cos ('TTX) I ~ 

= F (1) + F (0) , 

an integer. On the other hand, 

n n 1 . Tia o < Tia ! 0 f (x) sm ('TTX)dx < -, < 1 n. 

if n > > O, from which the urua.l contradiction. 

Third Proof: Let 

1 2n TIX In= !_1 (1 - x) cos(2 )dx (n = 0,1,2, ... ). 

Tnen for -1 < x < 1, 
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=> 0 < I < 2. n 

In addition, there is a recurrence relation, viz. 

2 'IT - I = 2n(2n - l)I - 4n(n-l)I (n > 2) 4 n n-1 n-2 - ' 

as can be seen by integration by µrrts (twice). Using this, it follows via 

induction that 

(.!1:.2) 2n+l I = n!P , 
n n 

2 
where P n is a :i;:olynomial in ~ with integral coefficients of degree [~] : 

('IT} 2nt31 2 n+l 

= (11)~2n+3 (2) 2 {2 (n + 1) (2n + l)I - 4 (n + l)n I 1 } 2 ~ n n-

= (TI
2

) 2ntl {2(n + 1) (2n + l)I - 4(n + l)n I 1 } n n-

'IT2 
= 2(n + 1) (2n + l)n!Pn - 4(n + l)n(4 ) (n - l)! Pn-l' 

the degree bei.n:J that of the sa:::orrl tenn, i.e. , 

2 'IT a SUpp::>se nCM that T = b' where a and b are p::>sitive integers -- then 
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=> 

(a) 2n+l I2 = (n!) 2 (P ) 2 
b n n 

=> 

But Pn is a :i;:olymrnial in~ with inte:Jral roeff iciE!lts of de:Jree j ~ j, hence 

the d~ee of (P n) 2 is 2 j ~ ! < 2n + 1, hence b 2n+ 1 (P n) 2 is an inte:Jer. 'lb get 

the rontradiction, s.lluply note that 

a2n+l 2 (a2)n 
0 < 2 I < 4a + 0 (n + co) (cf. §0) • 

(n!) n n! 

Fourth Proof: The machinery enploye:l in §9 can alro be use:l to establish 

that rr is irrational. So assume on::e again that rr = 5-1 where a and b are :i;:ositive 

inte:Jers, am let z 0 = rrb r-I = a r-I -- then 

"" rrb r-r "" Rn(z 0) = °n(a v-.L)e - Pn(a v-1) (cf. §9, #6) 

= Q (a H) (e 7TN) b - P (a H) n n 

b = °n (a J-T) (-1) - P n (a A) , 

an elenent of Z[r-I]. Replac:ing x by z 0 in §9, #8 (a fonnal maneuver), it follows 

that 
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Next 

~(x) = ~(x)Rn+l (x) - °n+l (x)Rn(x) 

x = ~(x) (Qni-l (x)e - Pn+l (x)) 

Therefore f};. (z 0) 'I 0. Meanwhile 
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§12. IRRATIONALITY OF cos(x) 

Let x be a nonzero rational number. 

1: THEOREM cos(x) is irrational. 

2: APPLICATION 'IT is irrat :ional. 

[Supp::>se that TI is rational -- then cos(TI) is irrational. But cos(TI) = -1. ..• ] 

3 : LEMMA Let g (X) E Z [X] arrl pit 

f {X) = ~ g (X) (n E N) • 

Th:m V j E N, 

f (j) (0) E Z, 

and m add it :ion, 

(n + 1) I f(j) (o> 

except perhaps for j = n (f (n) (O) = g (0)). 

Let a,b E N (gcd (a,b) = 1) arrl let p > a be an odd pr.line. 

Put 

f (X) 
xP-1 

= (p - l)! g(X), 

where 

Then #3 is applicable (take n = p - 1), hence V j E N, 

f (j) (0) E Z, 
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and in addition, 

P if Cj) co) 
ex:cept perhaps for j = p - 1. 

FACT 

=> 

p ,{' f (p-l) (O). 

4: 1J!MMA Given a real :rnrnber r, rupp:::>se that <f> (X) E Z [ (r - X) 2] , i.e. , 

2n 2n-2 ¢(X) = a 2n(r - X) + a 2n_2 (r - X) 

Then for any p:>sitive odd integer k, f (k) (r) = O. 

'lb enrure too applicability of #4, take r = S and mte that 

(r - X) 2Pcr2 - (r - X) 2)p-l b3p-l 
f(X) = (p _ l)! 

2 E Z [ (r - X) ] • 

Turnin:; oow to the proof of #1, it. suffices to establish that cos(x) (x > 0) 

is i.rratiora.l. This e.id, asSJme that x= ~' wl'Ere a,b E N (gcd (a,b) = 1). 

Vibrkin:J with f (X) per supra (p > a an odd pr:ime), introduce 

F (X) = f (X) - f (2) (X) + f C4) (X) - • • • - f (4P-2) (X) • 
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'Ihen 

F(2) (X) + F(X) = f (X). 

IDreover 

! (F\ (X) sin (X) - F (X) cos(X)) 

= F (2) (X) sin (X) + F (X) sin (X) 

= f (X) sin (X) 

=> 

~ f (X) sin (X) ax = F \ (x) sin (x) ... F (x) cos (x) + F ( O) • 

From here, the proce::lure is to :i.nvest:igate the three tenns on the right 

and see row the rupp::>sit:ion that cos(x) is rat:ional lra.ds to a contrad:iction. 

(2J" +l), • f (x) = 0 => F' (x) = O. 

e f (j) (0) E Z => F(O) E z. 

• Plf~) (0) (j ~ p ... 1). 

• p tf f (p-1) ( 0) • 

e F(O) =q (g:Xl.(p,q) =l). 

So far then 

~ f (X) sin(X)dX = - F(x)cos(x) + q. 

Observe next that f (X) can be visve::l as a function of the variable y = x - X: 

f(X) = h(Y) 

= y2P(x2 - Y2)p-l b3p-l 

(p - 1) ! 
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= yP-1ypf-l(x2 - Y2)p-l b3p-l 
(p - l)! 

= yP-l (Yptl(x2 _ Y2}p-l)b3p-l. 
(p - l)! 

FACT V j E N, 

f(j)(x) =h(j)(O). 

In view of #3, the h (j} ( 0) are divis.lble by p with the rossfule eKception 

of h(p-l) (O}. But here 

h(p-1) (0) = (Yp+-l(x2 - Y2)p-l) I b3p-l 
y = 0 

= o. 
Therefore 

F(x} =mp 

for s:me m E Z. 

Assume henceforth tha.t 

_c oos(x) - d (c,d E Z, d > 0). 

Then 

~ f (X) sin (X)dX = - mp(~} + q 

or still, 

d~ f (X) sin (X) ax = - mp:: + dq. 

Ibwever for 0 < X < x, 

x2Pcx2)P-1 3p-l 
0 < f(X} < (p _ l)! b 
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x 4P-2 3p-l 
= (p - l)! b 

=> 

Id ~ f (X) sin(X)dX I 

where 

S.ince 

it follows that 

= d I~ f (X) sin(X)dX I 

~ d~ !f(X) I lsin(X) lax 

= a~ f (X) I sin (x) lax 

~ d~ f (X)dX 

4p-2 3 1 
<dx x bp-

(p - 1) ! 

K Kp-l 
1 2 = -,------,,...,......,-

( p - 1) ! ' 

3 2 4 3 K1 = dx b and K2 = x b • 

Kp-1 
2 

lim (p _ l) ! = 0 (cf. §O) , 
p + ()() 

l.lln d~ f (X) sin (X) dX = 0. 
p + ()() 
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'lb arrive at a contradict.IDn, clrose p > > 0: 

- mp:: + dq E Z - {O} 

while s.imultaneousl y 

jd~ f(X)sin(X)dXj < 1. 

5: APPLICATION The values of the trigo:rometric functions are irrational 

at any mnzero rational value of tre argument. 

[E.g.: If sin(x) E Q for SJ.me O 'I- x E Q, then 

cos(2x) = 1 - 2sin2 (x} E Q 

. . . . ] 

6: N.B. The squares of these numbers are irrat.IDnal. 

[E.g.: 
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§13. IRRATIONALITY OF cosh(x). 

Let x be a nonzero rational rrurnber. 

1: THEOREM co sh (x) is irrational. 

The proof is s:imilar to that in the trigon:metric case. Thus, as ttere, 

a assume that x = b' 'Where a,b E N (gcd(a,b) = 1) and define f (X) as before. But 

this t:ime let 

F (X) = f (X) + f 2 (X) + f 4 (X) + • • • + f (4P-2) (X) • 

Then 

F(X) - F(2) (X) = f (X). 

M:>reover 

! (F (X) co sh (X) - F' (X) sinh (X) ) 

= F(X)sinh(X) - F<2> (X)sinh(X) 

= f (X) sinh (X) 

=> 

~ f (X) sinh (X)dX = F (x) cosh (x) - F' (x) sinh(x) - F (0) • 

Note that for 0 < X < x, 

f (X) > 0 and s.inh (X) > O, 

thus the integral on the left band side is :i;:ositive, a p:>int that serves to 

simplify matters. 

Proceeding, 

F' (x) = O, F(x) E Z, and F(O) E Z. 
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Assume henceforth that 

c cosh(x) = d (c,d E Z, d > O). 

Then 

~ f (X)sinh(X)dX = F(x) ~ - F(O) 

or still, 

d~ f(X)sinh(X)dX = cF(X) - dF(O). 

'Ihe RHS is an integer while the UIS admits the est.irnate 

0 < df~ f (X)sinh(X)dX 

4p-2t>3p-l < dxx ____ _ 
(p - 1) ! 

ex -x - e 
2 

(x4b3)p-l 
• (p - 1) ! 

which is < 1 if p > > 0 (for this, p could ha.ve been any p::>:sitive integer). 

Contradict.ion. 

2: APPLICATION The values of the hyperlx:>lic functions are irrational 

at any nonzero rational value of the argunent. 

[Use the identities 

cosh(2X) = 1 + 2sinh2 (X) 

_ 1 + tanh2 (X) 
- 1 - tanh2 (X) • ] 
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§14. ALGEBRAIC ANV TRANSCENVENTAL NUMBERS 

1: DEFINITION A oomplex number x; is mid to be an algebraic number j£ 

it is the zero of a nonzero pJlymmial P (X) m Z[XJ • 

2: EXAMPLE H is algebraic (consider p (X) = x2 + 1). 

complex 
3: N.B. If x is algebraic, then SJ is its conjugate x and its abs:Jlute 

/\. 
value lxl. 

4: N.B. If x =a + H b (a,b E R), then x is algebraic j£f roth a am 

b are algebraic. 

-
5: NOTATION Q is the algebraic clos.rre of Q in C. 

6: LEMMA Q is a countable subfield of C. 

7: LEMMA SupfOse that x is an algebraic number - then there is a unig.J.e 

nonzero pJlymmial f E Z [X] ruch trat f (x) = 0, f is irre:lucilile m Q [X], the x x x 

leading coefficient of f is p:>sitive, and the coefficients of f have greatest x x 

cormon diviror 1. 

with 

[Note: Spelle:l out, 

8: 

(a > 0) n 

DEFINITION The pJlynornial f is calle:l the min.llnal r:olynomial of x. x 
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Its degree is the degree d (x) of x, hence 

d (x) == [ Q (x) : QJ • 

[N:>te: 'Ihe set of real algebraic numbers of fixed degree n (~ 2) is den~ 

in R.J 

then 

Q: 

[Note: 

10: 

DEFINITION The zeros of f are called the conjugates of x. x 

They too are, of course, algebraic,] 

a EXAMPLE Take x rational, say x == b (a,b E z, b > O, gcd (a,b) == 1) --

f (X) == bX - a. x 

11: DEFINITION An algebraic number x is said to be an algebraic inte:rer 

if its min.imal i:olymmial fx ms leading coeff iciai.t l. 

12: EXAMPLE /5 is an algebraic inte:rer (consider x2 - 5) but 15/2 is not 
an algebraic integer (consider 4x2 - 5) • 

13: EXAMPLE The integ-ers Z ;a;r:e algebraic inte:rers and if x is a rational 

number which is alro an algebraic inte:rer then x E z. 
[N:>te: Accordingly, a rational number which is not an integer is mt an 

algebraic inte:jer.] 

a ring. 

14: LEMMA Under the usial o:i;erations, the set of algebraic integers fonns 

15: LEMMA If x is an algebraic number, then ax is an algebraic inte:rer. n 
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PROOF In fact, 

=> 

n n-1 a x + a 1x + • • · + a1x + a 0 = O n n-

=> 

n n-1 l(a x) +a 1 (a x) + n n- n 
n-2 n-1 + a a1 (a x) + a a 0 = 0. n n n 

Given an algebraic number x E Q, let D be the set of :integers n E Z ruch x 

that nx is an algebraic mte:;rer -- then D is a nonzero ideal of Z. x 

16: N.B. That D is mnzero is implied by #15. -- x 

17: DEFINITION A :i;ositive el.anent of D is calle:J. a dernminator of x. x 

18: DEFINITION The p:>sitive generator d of D is calle:J. the x x 
denominator of x. 

19: N.B. The a of #15 nee:1n 1 t bed (consider 4X2 + 2X + 1). n x 

· 20: DEFINITIOJ.\f A canplex number x is said to be a transcendental rrurnber 

if it is not an algebraic number. 

Therefore th= set of trans:::endental numbers is the carnplanent of the fiel.d 

Q in the field C. 
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21: N. B. In general, the s.:im or product of two transcendental numbers 

is not transcendental. However the s.:im of a transcendental number arrl an algebraic 

number is a transcendental number and the product of a transcendental number and 

a nonzero algebraic number is again a transcendental number. 

22: EXAMPLE e is transcendental (cf. §17, #1) and 'IT is transcendental 

(cf. §19, #1) but it is unknown whether e + rr and e'!T is transcendental (cf. §2, 

#29). 

APPENVIX 

Given an algebraic number x t- O, let x1 = x, x2 , ••• ,xn (n = d(x)) be tm 

conjugates of x (cf. #9) and put 

tiE house of x. 

H(x) = max 
l_:::j_:::n 

Ix. I, 
J 

LEMMA I.et T E D (T > 0) -- then x 

1 !xi ~ill n-1 . . , (x) 
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§15. L10UVILLE THEORY 

l; RAPPEL (cf. §7, #17) Given x = ~ E Q (a,b E Z, b > O, gcd(a,b) = 1, 

for any copr.ime i:air (p, q) (q > 0) with 

there follows 

I a p \ 1 
1
--- >-b q -bq" 

2: THEOREM If x is real an:i algebraic of de:rree d(x) = n (cf. §14, #8), 

then there is a constant C = C(x) > O such that for any copr:ime P3jr (p,q) (q > 0), 

Ix-~!>~. q 

PRCXJF The case d (x) = 1 is #1 above (choose C = C (x) < ~) , ro take d (x) > 2 

and recall that 

f (X) = a + a X + • • • + a ;/1 x O 1 n 

is the min:inE.1 p::>lynomial of x. Let M be the max.imum value of If' (X) I on x 

[x - 1, x + l] , let {y1 , ... , ym} (m ~ n) be the dist.lnct zeros of fx which are 

different from x, and then choose C: 

'lb arrive at a contradiction, supi;:ose trat for S'.Jme copr.ime pair (p,q) (q > 0) 

ix_P,<~ I q ...:.· n q 
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or still, 

< c < min {l, Ix - y 1 I , ... , Ix - Ym I } · 
Of course, 

x be~ irrational. Arrl 

I x - ~ I = I ~ - x I < 1 => x - 1 < ~ < x + 1. 

In addition 

0 < I x - ~ I < Ix - Y1 1, •.• ' Ix - Ym I 

=> ~ f:. yk (k = 1, •.• ,m) 

<Ming to the mean value theorem, there is an x 0 between ~ and x such that 

If (x) - f (P) I = Ix - P I If' (xo) 1, x x q q x 

i.e.' 

If (E) I = Ix - El 1£' (x ) I 
Xq' q X 0 

=> 
1£ cP> I Ix - El = x q 

q 1£~(xo> I 

1£x <~> I 
>-~-

M 
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But 
n . 

o < If c P> I = I t: a . c P> J I 
x q j=O J q 

Since the numerator of this fract:ion is a p:>sitive integer, it. follows that 

thus 

Finally 

Ix - PI ::: q 
If cE~ I xq 

M 

>~ - n Mq 

n . . 
I l: a.plqn-J I ~ 1, 
j=O J 

1 
~n· 

q 

> -c > I Pl x--n - q q 

from which 1 < 1, contradict:ion. 

3: REMARK The preced.ing proof goes through if f (X) E Z [X] has degree 

n > 1 and x is an irrational root of f (X} . 

4: DEFINITION A rffil number x is a Liouville number i£ for every p::> sitive 

integer k there exist p,q E z (q > 1, gcd (p,q) = 1) s.ich that 

o < Ix .... P I<{. 
q q 
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5: NOI'ATION L is the s.ibset of R wlose ele:nents are tl:E L.iouville 

numbers . 

.§..:._ LEMVIA Every L.:iouville number is irrational. 

PRO'.JF SUp:fOse instood. tha.t x = 5 (a,b E Z, b > 0, gcd(a,b} = 1). Let k be 

a :fOSit ive integer: k-1 a p 2 > b and take p,q:b /: q -- then 

= jaq - bpj 
bq 

1 >--bq 

> __ 1 __ 
k-1 q q 

(q 2:. 2) 

So x is mt a L.iouville number. 

Therefore 

L c P. 

7: THEOREM Every L:iouville number is trans::::endental. 

PRO'.JF Ass.:n:ne that x is an algebraic irrat.ional number with d (x} = n, hence 

per #2, for any copr.:ime p:1.ir (p,q} (q > 0), 
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Choose a :i;:ositive integer r:2r 2: ~and then, using the definition of Liouville 

number, chaos: p,q: 

But 

=> 

o < Ix - PI q 
1 <--n+r q 

_l_ <-1- < ~ 
n+r - r n - n q 2 q q 

(k :: n + r). 

On the other hand, 

Contradiction. 

Therefore 

c 
~­n q 

(cf. #2). 

8: REMARK Not every transcen:iental number is a Liouville number, e.g. , 

e and 'IT are trans::::endental but n:::>t in l. 

9: EXAMPLE I.et a be a p:>sitive integer 2:. 2. Put 

Then x is a Liouville number. 

00 1 
x = l: --.-.- . 

j=l aJ· 

[Define a sequence of rat:ionals ~ (k = 1,2, •.. ) by the pres:::ription 
qk 



Then 

But 

So, V k E N, 

6. 

Ix - Pk I = ~ -1:y . 
~ j=k+l aJ· 

00 00 
1 1 L: ~< L: -.-

j=k+l aJ· j=(k+l)! aJ 

00 
1 L: • 

= 

= 

j=O aJ 

1 a 
(k+l)! • a-1 a 

a 
• a-1 

Therefore x is in L (cf. #4) .] 

10: N.B. The precedin:J dis:::ussion can be generalized. Thus fix an inteJer 
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n ~ 2 and a sequence of integers mj E {0,1,2, ... ,n-1} (j = 1,2, .•. ) such that 

m. f 0 for infinitely rrany j. Put 
J 

oo m. 
x= l: -2.--

j=l nJ· 

Then x is a Liouville number. 

Then 

pk 
[Define a requence of rationals - (k = 1, 2, ... ) by the prescription 

qk 

oo m. 
= E i.. 

j=k+l nJ· 

But as above 

oo m. oo 

l: -2.- ~ l: 
j=k+l nJ · j=k+l 

n - 1 
J! n 

< 

= 

= 

= 

< 

00 

L: 
j=(k+l)! 

n - 1 
n (k+l)! 

n - 1 
n (k+l)! 

n 
n (k+l) ! 

k! n 

n (k+l)! 

00 
1 l: -.-

j=O nJ 

n 
n-1 
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= nk!-(k+l)! 

So, V k E N, 

Therefore x is in L (cf. #4).] 

ll: EXAMPLE Put 

Then x is a Liouville number. 

In #10, it is traditional to take n = 10, h=nce m. E {0,1,2, ••• ,9} 
J 

(j=l,2, ••• ). 

12: LEMMA. Put 

oo • I oo , 
x = 4 m. lo-J·, y = L n. 10-J!. 

j=l J j=l J 

Assum=: m. :f n. for s:m:e j and let k be the least index j such tha.t m. :f n. --
J J J J 

then x 'I y. 

PROOF 

Ix - YI= 
00 I (mk - ~)10-k! + L 

j=k+l 
(m. - n.)10 

J J 
-j ! I 
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00 -kl 
2: I ~ - ~ 110 • - I L 

j=k+l 

00 

I I -kl 
~ ~ - ~ 10 . - L: 

j=k+l 

00 -kl 
~ 10 • - L: (8)10-j! 

j=k+l 

00 

-j ! l (m. - n.)10 
J J 

Im. - n. !10-j ! 
J J 

> 10-k! - L: (8)10-j 
j=(k+l)! 

= 10-k! - (80/9)10-(k+l) ! 

> o. 

13: SCHOLIUM Tte set of Liouville numbers is uncountable. 

[Tte Llouville numbers of the fonn 

oo • I 
L: m. lo-J· 

j=l J 

constitute an uncountable set (use a Cantor diagonalization argument) • ] 

14: THEOREM Suppose that f (X) E Z [X] has degree ?: l and let x E L --

then f (x) E L· 

'lb begin with: 

15: L'EM'.-1A If the degree of f (X) E R[X] is ?: 1 and if a E R, then ttere 

is a p:>lynomial g (X) E R [X] such that 

PROOF Write 

f(X) - f(a) = (X - a)g{X). 

f (X) 
r . 

= L: c.xJ. 
j=O J 



Then for j ~ 1, 

Therefore 

10. 

f (X) - f (a) 

r . r . 
= c + L: c.xJ - c - L: c.aJ 

0 j=l J 0 j=l J 

r . . 
= L: C. (XJ - aJ) 

j=l J 

r 
= L: C. (X - a) g . (X) 

j=l J J 

r 
= ex - a) r c . g . {X) 

j=l J J 

:= (X - a)g(X). 

'lb set up the particulars for #14, note first that {X:X ':f x & f{X) = f(x)} 

is a finite set (the degree of f (X) being by assmnption ~ 1) • Fix a > 0 subject to 

o < o < min {IX - x I :X ':f x & f (X) = f (x)} 

and put 

M =max{ lg(X) I: IX - xi ~. <S}. 
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Bearing in mind the definition figuring in #4, let k be a :i;x:>sitive integer and 

choose a natural number m > kr (r the degree of f) such that 

1 < o'P ana M2kr < -JU. 
Next, detennine p,q E Z (q > 1, gcd(p,q) = 1): 

Step 1: 

=> 

Step 2: 

=> 

I (E)I < M < -p-kr < m-kr. g q - - q 

Step 3: 

o < I f (x) - f ( P> I = I x - P 11 g < P> I q q q 

Step 4: Write 

f (X) 

1 m-kr < -q 
qm 

r . 
= ~ c.xJ (C. E Z). 

j=O J J 



'Ihen 

12. 

r . . J r-J r = ( l: C.p q )/q 
j=O J 

c 
r q 

where C E Z. 

Step 5: 

o < I f ex) - f cP> I q 

'lb fulfill the requirements of #4, it remains only to take 

"q" = qr. 

16: APPLICATION If a ':f 0, b l. 0 are integers and if x E L, then 

a+ bx E L. 

[Consider 

f (X) = a + bX. ] 

n 17: APPLICATION If x E L, then V n E N, x E L. 

[Consider 

f (X) = r.] 
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18: LEMMA If x is a Liouville number and if r E Q is nonzero, then 

rx E L. 

PRCOF Write r = 5- (a,b E Z, b > 0) • Given a natural number k, c]:rx)se a 

natural number m > k: 

I I k-1 ...m-k a b < L • 

Next, per the definition of L (cf. #4), there exist p,q E Z (q > 1, gcd{p,q) = 1): 

Therefore 

0 < Ix-pl <l:_ q m· q 

0 < I rx - ap I bq 

<M 
bcJ.m 

m-k 1 < _q_. 
- bk-1 bcJ.m 

1 = 
(bq) k • 

[Note: The assertion may be false if r is merely algebraic. For example, 

consider 
00 

13/2 ~ ~ .] 
j=l loJ· 
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19: APPLICATION Every interval ] a,b [ (a < b) contains a Liouville number. 

[Take a p:>sitive Liouville number x arrl consider 

a b ] x , x [. 

Fix a nonzero rational number r: 

a b - < r < - (cf. §2, #15). x x 

Then 

a < rx < b.] 

20: SCHOLIUM Lis a dense subset of R (cf. §2, #14). 

21: 'IHEOREM Let f (X) E Q [X] be nonconstant and sup:pJse that x E L --

then f (x) E L. 

PRl'.X>F Ch:Jo se n E N: 

(nf) (X) E Z [X] • 

Then 

(nf) (x) E L (cf. #14) => ~ (nf) (x) E L (cf. #18), 

i.e. , f (x) E L. 

[In particular, the sum of a rational number ~ and a Liouville number x is 

again a Liouville number: 

a 1 
b + x = b (a + bx) • ] 

22: THEOREM The set of Liouville numbers in [O,l] is a set of measure O. 

PROOF Fix e: > 0. Let k be a :pJSitive int~ such that 

00 

4 l: l ""K=r q=2 q 
< e:. 
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That such a choice is :i;:ossible can be seen by noting tra.t 

00 
1 1 1 4 L: k-1 = 4 ( k-1 + k-1 + ... ) 

q=2 q 2 3 

1 1 1 = 4 • k-3 <2 + 2 + ..• ) • 
2 2 3 

This said, let x be a Liouville number in [O,l] and per #4, write 

or still, 

Put 

< _!__ 
k q 

p 1 p 1 ---<x<-+-. q k q k q q 

] p 1 P+_l_ 
Ip/q = q - k ' q k [' 

q q 

an open interval of length 

p 1 p 1 2 -+---+-=-q k q k k" q q q 

1 1 Since x E [0,1] arrl k S 2, it follows that 
q 

1 3 
- 2' 2 [, 

i.e. I 

1 p 3 q 3q - 2 < q < 2 => - 2 < p < 2 . 

Therefore the total number of I .1 is S 2q. p,q 



16. 

Put 

I (q) = pf q Ip/q' 

a set of measure 

2 2 < L: --;:-=- L: 1 
- K k p/q q q p/q 

2 
~ K. 2q 

q 

Th= set of Liouville numbers in [O,l] is contained in 

a set of measure 

frc:.m which the assertion. 

()() 

U I (q) , 
q>l 

1 
L: k-1 < E., 

q=2 q 

23: APPLICATIOO There are transcendental numbers that are not Liouville 

numbers. 

[I.et S be the set of algebraic numbers in (0, l] and let T be the set of trans-

cerrlental numbers in [O,l] -- then 

(0,1] = S U T, S n T = ~-

Since S is conntable, it is of measure 0, hence T is of measure 1.] 

[Note:· Al.rrost all transcendental numbers in [O,l] are non~L.iouville.] 
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W::>rking within R, it follows that L is a set of measure O. 

24: NOI'ATION Given k E N, put 

Uk= U U ] p ~ _!_ p + _!_ [ -{ p} 
q k ' q k q 

q~2 PEZ q q 

or still, 

U = U U {x E R:O < Ix - ~ I < 1
k}. 

k q~2 pEZ q 

25: LEMMA Uk is an open dense s.ibset of R. 

[Each ~ E Q belongs to the closure of Uk.] 

26: LEMMA 

00 

27: RAPPEL A G0-subset of a top:ilogical s.i;ace x is the colllltable inter-

section of open dense s.ibsets of X. 

Tlerefore L is a G0-subset of R. 

28: RAPPEL If X is a canplete metric s.i;ace and if {G } is a sequence n 
of open dense s.ibsets of X. then 

00 

is not empty and, in fact, is dense in x. 

Therefore L is a dense Slbset of R (cf. #20) • 
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29: RAPPEL If x is a canplete metric space with:mt irolated p:>mts and 

if S is a G 
0 
-subset of X"' then S is uncountable. 

Therefore L is an uncountable subset of R (cf. #13). 

30: THEOREM Every real number x is the sum of two Liouville numbers: 

x =a+ S (cx,SE L). 

31: THEOREM Every nonzero real number x is the product of two Liouville 

numbers: 

x = o:S ( o:, S E L) • 

It will be enough to sketch the proof of #30. 

Step 1: Put 

oo - • I 
0: = 4 10 J. 

j=l 

Then 

O = o: + (-1)~, 1 =a+ (1 + (-l)o:). 

Recalling #21, th:se representations take care of the cases when x = O, x = 1. 

But then matters follow if x is any rational. 

Step 2:. Take x irrational and with::>ut loss of generality, supp:>se further 

that 0 < x < 1 - th:n x admits a dyadic expansion: 

Define 

o:. = 
J 

00 • 

x = 4 m.2-J (mJ. E {O,l}). 
j=l J 

m. if j is odd 
J 

O if j is even 
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and put 6. = m. - a. . Introduce 
J J J 

00 00 

a = L: a.2-j and 6 = L: 6 .2-j. 
j=l J j=l J 

Then 

x = a+ 6. 

Step 3: Assume that the series defining a is infinite -- then in this 

case, a is a Liouville number. 

[For k 2: 1, 

(2k} ! - 1 . 
O < a - L: a.2-J 

j = 1 J 

= L: 
j2: (2k} ! 

a. 2-j < 21 -(2k+l}!. 
J 

f . f . 1 ~ (k 1 2 } b i...~ • • De ine a sequence o rationa s - = , , . . • ;y tu:: prescription 
qk 

(2k} ! - 1 
L: aJ.2-j, qk = 2(2k}! - 1 

j = 1 

Then ~ and qk are integers, qk > 1, and 

Therefore a is a Liouville number.] 

[Note: Tacitly 

21-(2k+l}! < 2k-k(2k}!. 
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In fact, 

1 - (2k + l)! + k(2k) ! 

= 1 - (2k)! (2k + 1) + k(2k)! 

= 1 - (k + k) (2k)! - (2k)! + k(2k)! 

= 1 -k(2k)! - k(2k)! - (2k)! + k(2k)! 

=d-k(2k) ! - (2k) ! < k.] 

Step 4: Assume that the series defining B is infinite -- then in this 

case, B is a Liouville number. 

Step 5: So if the series defining a and the series defining f3 are infinite, 

VJe are done. 

Step 6: If the series defining a is finite, then a is rational. If the 

series defining f3 is infinite, then f3 is a Liouville number, thus x = a + f3 is a 

Liouville number, thence ~ is a Liouville number and 

Step 7: Reverse the roles of a and S in the previous step. 

Step 8: The case when ooth defining series are finite cannot occur (for 

then a and B are rational, oontradicting the assumption that x = a + B is irrational) . 

32: THEOREM: If x is a Liouville number, then for any algebraic number 

a > 0 (a 'I 1), th= pc:Mer ax is transcendental. 
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It is a question of showing that cl of a' for every algebraic a' > 0, i.e., 

that fu (ax) of fu (a') , i.e. , that xfu (a) of fu (a') , or still, that 

If 

!xfu(a) - fu(a') I > O. 

fu(a I) 
fu(a) 

were rational and i£ 

lxfu(a) -fu(a')I = O, 

then it ~uld follow that 

_ fu(a') 
x - fu(a) ' 

which is imf()ssilile (x, being Liouville, is transcen::lental (cf. #7)) • So asSt:1I1e 

that 

ln(a') 
fu(a) 

is irrational and write 

lxfuCa) - fu(a') I 

= lxinCa) - E.enca) + !?.en(a) - fu(a 1
) I q q 

= l<x-p)ln(a) +Qn(a) -fu(a')I q q 

=I E.enca) - fu(a') - - (x - P)fu(a.) I q q 

~ l~Ca) - fu(a.') l - I - (x - ~)fu(a.) I 

= l E.en Cal - fu Ca' ) I - l (x - p) fu (a) l q q 
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= l!?.enCa) - ln(a') I - Ix - Pl iln(a) I q q 

> I !?.en(a) - ln(a') I - lln<~) I 
q q 

ipfn(a) - qin(a') I _ linCa) I = k 
q q 

= !clp£n(a) - qln(a') I - lln(a) I) q k-1 q 

thereby reducing matters to the positivity of 

In any event, 

lptn(a) - qln(a') I - lln(a) I k-1 q 

lpin(a) - qln(a') I 
is positive since otherwise 

p _ ln(a') 
q - fu(a) 

contradicting the supposition that 

is irrational. 

33: LEMMA 

ln(a') 
ln(a) 

iptn(a) - qln(a') I~ 

where c > 0 depends only on hi(a) and ln(a ~) • 

1 

max{ IPI ,q} c ' 
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[This estimate will be established later on (cf. §32 , #4 ) . ] 

Assume that x E [O,l]' Choo~ k > > 0: 

and take IP I f 0, hence 

I .en 'a> I 1 . { 2 c 1 J 
k-1-c < 2 mm (3) ' 2 ' 

q 

- i < p < 3i (cf. #22) 

=> 0 < jpj < 3q => l > ~ 2 1PT 3q . 

There are now tw::> µ:issibilities: 

jpfn(a) - gtn(a') I > 

1 
c q 

• W'.:>rk with l:_ -- then the iss.ie is the µ:> sitivity of c q 

or still, the µ:isitivity of 

1 jln(a) I 
c k-1 q q 

1 _ lln(a) I > 1 _ !_ • !_
2 

= 
4
3 > O. 

k-1-c 2 q 

• \ilbrk with - 1 - -~ then the isrue is the :r,:ositivitv of jpjc ~ 

!bl ta> I 
k'""l q 
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or still, the :i;:ositivity of 

C32q} c - lrn(a) I 
k-1 q 

= (~)c ~ - !lnCa) 1 
3 c k-1 q q 

or still, the :i;:ositivity of 

33: REMARK Take a as al:::xJve and assume tl:at x is fO sitive -- then 

fu(xa) and xrn(a) 

are transcen:lental. 
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§16. THE MAHLER CLASSIFICATION 

What follows is a proofless sumuary of the relevant facts. 

l: DEFINITION Let P (X) E C [X] , say 

Then the height of PX, den:)te:i H (P) , is 

+ a "Lf. n 

2: NO'm.TION Given a rrel number x, w (x) (n E N) is the ruprarrum of the - n 
real numbers w such that 

0 < jP(x) J ~ H(P)-w 

has infinitely :rrany rolutions P (X) E Z [X] of degree at no st n. 

3: LEMMA For any nonzero rational number 5 , 

w (x) = n 

4: LEMMA For any i;ositive integer n, 

O < w (x) < oo. - n -

5: N.B. Th= sequence {wn (x)} is increasing: w1 (x) ~ w2 < ••• and wn (x) ~ n. 
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6: MAIN PROBLEM SupfOse that {w } is an increasillg sequen::e of real n 

numbers with w ~ n V n E N. Ibes there exist a real number x such that for all n, n 

w (x) = w ? n n· 

7: NOI'ATION Put 

w(x) = lim s.ip wn (x) 
n n + oo 

Therefore 

0 :S, w(x) < oo • ..,. 

[:Note: Real numbers with 0 < w(x) < 1 do IDt exist.] 

8: DEFINITION A real number x is an 

• A-number i£ w (x) = 0; 

• s-nurnber if 0 < w(x) < 00 ; 

• T-nurnber i£ w(x) = 00 & V n ?: 1, wn {x) < 00 ; 

• U-nurnber i£ w(x) = 00 & V n > > 1, w {x) = oo. n 

'Write A, S, T, U for the corresp:)!rlin:J sets (termed. Mahler classes) -- then 

R = A U S U T U U, 

a disjoint union. 

[Note: The transcementals T decom:r:ose as 

S U T U U.] 
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9: 'IHEOREM The A-numbers are exactly the real algebraic rrurnber s. 

10: THEOREM The Mahler classes s, T, U are not anpty. 

11: REMARK A(= Q) is a set of meas.rre 0 (being countable). It can be 

sh::>wn that T and U are als:> sets of meas.rre O, hence alrrost all real numbers are 

S-nurnbers. 

12: EXAMPLE Supp::>se that a is a nonzero algebraic number -- then ea is 

an S-nurnber, thus in particular, e is an S-number. 

13: EXAMPLE For any :p::>sitive mteger d, 

00 

L: 2-(d+l)j 
j=l 

is an S-number. 

14: EXAMPLE 'IT is not a U-nurnber, ro, being trans::endental, is either an 

S-nurnber or a T-nurnber but m one kmws which one. 

15: N.B. Exhiliiting explicit T-numbers is complicated business. 

16: DEFINITION A U-nurnber x is a U -number if n is the ffia.llest p::>sitive n 

integer such tra.t w (x) = oo. n 

Write Un for the set of s.ich. 

17: THEOREM Fa.ch U is nonempty and n 

a disjoint union. 

00 

u = u u n' n=l 



18: EXAMPLE V n E N, 

is a U -number-. n 

4. 

00 

nv312 · L: 10-j 1 
j=l 

19: EXAMPLE Let m. E {2,4} (j = 1,2, ••• ) • Put 
J 

00 

x= 
•I 

(3 + L: m. 10-J")/4. 
j=l J 

Then for all n :::_ 1, the p:>sitive real nth root of x is a U -number. n 

20: SCHOLIUM V n ~ 1, U is uncountable. n 

21: N.B. u1 = L. 

22: DEFINITION Two real numbers x and y are algebraically deperuient 

if there is a :oonzero p:>lynom:ial P(X,Y) E Z[X,Y] such that P(x,y) = 0 (cf. §20, #1). 

[Note: The denial is algebraically irrlependent. ] 

23: THEOREM Algebraically dei;:endent real numbers belong to the same 

Mahler class. 

24 : EXAMPLE If x is a U-number- and y is not a U-number, then x and y are 
oo • I 

algebraically in::lependent. So, e.g., L: lo-J· and rr are algebraically in:lependent. 
j=l 

[Note: x + y is transcendental: Given 

n . 
L: a. (x + y) J = 0, 

j=O J 



consider 

P(X,Y) 

5. 

n . 
= L: a.(X+Y)J.] 

j=O J 

25: REMARK In general, if x a:rrl y are transcendental numbers, then at 

least one of x + y a:rrl xy must be trans::errlental (cf. §2, #29). 

['lb see this, consider the polynomial 

x2 - (x + y) X + xy. 

Its zeros are x and y. So if both x + y and ~ were algebraic, th:m x and y 

w::mld be algebraic which they are rot.] 

26: EXAMPLE It can be shown that the numbers 1T and e1T axe algebraically 

independent but it is not known whether e 1T is or is rot a U-number (recall that 

1T is not a u-number (cf. #14})_. 
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§17. TRANSCENVENCE OF e 

We have seen tl':at e is irrational (cf. §8, #3) but nore is true. 

1: THEORErvl e is transcendental. 

2 S O·T TT1M N 1 2 n l' 1 . pend : CH u...u.u.1:.1. V n E , , e, e , .•. , e are mear y irrle ent over Q 

(cf. §8, #11). 

3: LEMMA Given f E R[X] of de:Jree M, 

where 

M 
F (x) = L: f (l) (x) • 

.t =O 

PRX>F Inte:Jrate by p:irts to get 

,.x -t -x ,.x -t Jo f(t)e dt = f(O) - f(x)e +Jo f' (t)e dt. 

Then mterate this. 

[Note: If f has :integer coefficiaits, tren the same is true of F.] 

Consider now a relation of the form 

where a 0 > 0, am 'I O (ak E Z) -- th=n from #3, 

k k k -t F(O)e - F(k) = e J0 f(t)e dt (k = O,l, •.• ,m), 

so 
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m k m m k .k -t 
F (0) I ake - I aJ! (k) = l: ake 10 f (t) e dt 

k.=O k;=O k=O 

or still, 

m m k .k. -t 
- l: akF (k) = l: ~e 10 f (t) e dt, 

k=O k=O 

i.e. I 

The pJlynanial f is at our diSfOsal am too trick is to ch:x:>se it appropriately 

in order to reach a contrad.ict:ion. One cl:oice is to :put 

and let 

_n-1 n n g (X) = x (X - 1) • • • (X - m) 

g(X) 
f(X) = (n _ l)! , 

n E N to be detennined in due course. 

FACI'S 

[Write 

deg f = (m + 1) n - 1 = M 

f(l) (0) = 0 (OS l Sn - 2), 

nlf(l) (0) (V l "In - 1). 

f (X) = --,.-..:g'-'-(x--=>,...,..-,-- = 
(n - 1) ! 

xi-1 
(n - 1) ! 
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= 1 (b ~-1 + blr + ••• + bTnnX(mt-1) n-1) 
(n - 1) ! Cf'" iuJ.L 

1 =----(n - l)! 

Then 

l < n - 1 = > f (l) (O) = O. 

And 

l > n - 1 => f (l) ( O) = cl - l! ~(n--~l~)-! 

=> f(l} (0) = n.1 cl z 
-t.. (n - 1) ! E • 

Therefore 

l ~ n => n If (l) (O} 

but 

(n-1) l = n - 1 => f ( 0) =c n-1 

Consequently 

M 
F ( O} = L: f (l} ( O) 

l=O 

M = L: f (l) (0) 
l=n-1 

= f (n-1) (O) + f(n) (O) + ••• + f( (mtl)n-1) (O) 
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= (-l)rnn(m!)n + nC, 

Can int.e;er. 

'Ihe next step is to get a handle on the F (k) (1 ::: k ~ m) • 'lb this em, let 

g {X) = g(X) 
k (X - k)n 

m 
:::: z11-l n (X - l)m, 

l=l 

* 
a i::olyn:>mial with integral coefficients. Using now the fonnula for di£ferent:iatin:J 

' 
a product, 

g (j) (X) 

Due to the presence of the factor X - k, it follows that 

g (j) (k) = 0 (j < n) • 

On the other hand, if j ?: n, then 

g (j) (k) = (j)n' gk(j-n) (k). n . 

So, for all j , g (j) (k) is an inte;er div isfule by n! , say 

g (j) (k) = n! n. (k) . 
J 

And then 

M 
F (k) = L: f (l) (k) 

l=O 

M = L: f (l) (k) 
l=n 

= ~ g (l) (k) 
o (n ..,. 1) ! -c..=n 
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M n!n.e_(k) 
= 0_L. (n - 1) ! 
~ 

Take n > > 0 (n pr.llne) : 

hence 

And this .llnpl ies that 

'lb recapitulate: 

n > ao and gcd (n,m!) = 1, 

(cf. §7, #1). 

m 
- a 0F (0) - L. akF (k) 

k=l 

m 
= - acf (O) - L. ak(nnk) 

k=l 

m 
= - a 0F ( 0) - n ( L. aknk) 

k=l 

t- o. 

m 
- a 0F(O) - r. akF(k) 

k=l 

is a nonzero integer, thus 

Return now to 

m 
l: akF (k) I > 1. 

k=O 



6. 

an entity that deperrls on n am. which can be made arbitrarily s:na.11 (lead.lng 

thereby to the rought for contradiction). 

'lb see this, note that 

so 

where 

But 

M If (x) I :: (n _ l) ! ( 0 < x < m) (M = (m + 1) n - 1) , 

m k .k -t I I ~e J0 f(t)e dtJ 
k=O 

< 

< 

< 

m 
M L: I akl ~o ek-tdt 

(n - 1) ! k=O 

(m + l)n m 
(n - l)! 

{m + l)n m 
(n - l)! 

m k 
L: I~ I (e - 1) 

k=O 

(m + l)n m 
< 7n - 1) ! em L: I~ I 

k=O 

cfl- m m 
= (n - 1) ! e L: I ak I ' 

k=O 

C =mm+ 1. 

r!1 cf' - 1 
'(n - 1) ! = C • (n - 1) ! 

+ 0 (n + oo) (cf. §0) • 
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Here is an application of #1. 

4: SQiOLIUM Let g be a n.onzero rational number -- then e g is tran-

sc:endental (cf. §9, #1). 

[Take q > 0 and s.ipp::>EE that eg is algebraic. Write q = ~ (a,b > O) --

a 
then (eb)b = ea is algebraic, which :implies that e is algebraic (cf. §2, #37), 

a contradiction.] 

APPENV1X 

Consider the transc:endence status of the three examples figurinj in the 

Appendix to §8. 

• Is the number 
00 k 
?:. r 

k=O 2k(k - 1)/2 

transcendental? Ans: Unkn:>wn. 

• Is tre number 

transc:endental? Ans: Yes. 

• Is the number 

transc:endental? Ans: Yes. 

00 2k 
4 · r 

k=O 

00 

4 ___!__ 
k=l rvf-2 
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§18. SYMMETRIC ALGEBRA 

l.:: RAPPEL Let A be a oo.rrmutative rmg with unit -- then a polynomial 

is syrrmetric if for any permutation a of {l, ••• ,n}, 

2: DEFINITIQ.~ Too elementary symmetric p::>lyncmials 5i, s2 , ••• , sn in n 

variables x1 ,x2 , ••• ,xn appe:ir as coefficients m the rronic p::>lynomial of degree 

n and roots x1 ,x2 , ••• ,xn: . 

Expl ica te::l: 

s..=x +x +···+x 
J. 1 2 n 

3: THEOREM: Every syrrmetric p::>lynamial can be written as a p::>lymmial 

in tre elanentary symnetric p::>lyromials: If P E A[x1 , ••• ,~] is symnetric, then 

there exists a p::>l yrnmial F E A [ 5:J.., ••• , sn] ruch that 
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E.g.: 

4: LEMMA Let a be an algebraic number, let d = deg a ( = d (a) ) , let 

a.1 , ••• ,ad (a= a.1) be the zeros of fa (cf. §14, #7), and let 

Assume: As a r:olynom:ial in a.1 , ••• ,ad with coefficients in Q[X], Fis symmetric --

then 

PRCOF Write 

from which 

F = F(X) E Q[X]. 

= a (z - a ) (z - a ) · · · (z - a ) d 1 2 d 

= ad(zd - (a +a + ·•• +a )zd-l 1 2 d 

+ ••. + 

ad-1 s =a +a +···+a=---1 1 2 d ad 
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:i.rnplyin:J thereby that the elementary syrrmetric :i;olynomials ID. tre a1 ,a.2 , •.• ,a.d 

are rational numbers. Turning row to F, being a sym:netric :i;olynom:ial in 

a.1 ,a.2 , .•. '°'d' it can be written as a :i;olyn:miial ID. the elementary sym:netric 

:i;olynomials sl's2, •.• ,sd with coefficients ID. Q[X]. But 5i,s2, ••. ,sd E Q, hence 

F = F(X) E Q[X]. 

5: N.B. Sup:i;ose that a is an algebraic integer and let 

Assume: As a :i;ol ynoroial ID. a1, ••• , a. d with coeff icimts in Z [X] , F is symnetr ic --

then 

F = F(X) E Z[X]. 
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§19. TRANSCENVENCE OF TI 

Here is the objective: 

1: THEOREM TI is transcendental. 

SUprose that TI is algebraic ~ then a = TIM is algebraic. Agreeing to use 

the notation of §18, #4, in view of the relation e 'ITH + 1 = O, it follows that 

Cl. Cl. Cl. 
(1+e 1) (1 + e 2) ··· ( 1 + e d) = 0 

or still, upon expanding the product, 

1 
I: 

E: =O 1 

1 
l: 

E: =O 2 

1 
I: 

E: =O d 

2: EXAMPLE Take E:l = 1, E2 = · · · = E:d = 0 -- then 

Take E:l = E:2 = ··· = E:d = 0 -- then 

Denoting the e.xix>nents by sk' rewrite matters in the fonn 

2d-l s 
1 + I: e k = O, 

k=l 

where tlrings rave been arranged ro that the :ocmzero sk are placed first: 

s1 f O, s2 f 0, ... , Sr f o, o, ... ,o. 
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Put 
d A= 1 + (2 - 1) - r. 

Then A > 1 and 

Br + e = 0. 

3: LEMMA The nonzero numbers Bl' .•• 1 Br are the· set of roots of a poly-

:ocmial cp(X) E Z[X] of degree r (hence are algebraic). 

PROOF I.et 

1 
l/J(X) = TT 

e: =O 1 

1 
TI 

e: =O 2 

Vieved as a polynomial in a1 1~i···10'.d with coefficients in Q[X] 1 it is syrrmetric. 

Therefore l/J (X) is in Q [X] (cf. § 18 1 #4) • On the other hand 1 the roots of l/J (X) 

are the !\, (1 s k s r) and 0 with rrru.ltiplicity A(r + A = r + 2d - r = 2d 1 the 

d~ee of l/J(X)) 1 thus the roots of the p::>lynanial 

are B11 ••• 1 Br· Denoting by m the least a:mron denaninator of the coefficients of 

this polynanial 1 take 

E Z[X] (Cr> 01 c0 =f. 0). 
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4: RAPPEL Given f E R[X]of degree M, 

x ,.x -t x e ; 0 f(t)e dt = F(O)e - F(x) (cf. §17, #3). 

[Note: CarlpleK x are admitted in which care the integral ~ is calculated 

along the 1 ine segment joining 0 aiid x. ] 

Feed into this relation x = sl, ... ' x = Br to get: 

But 
s 

+ er= 0. 

Therefore 

r r ~Sk -t 
- AF(O) - 4 F(Sk) = 4 e f o f (t)e dt. 

k=l k=l 

Just as in the proof of the transcendence of e, the m:x:lus operandi at this 

juncture is to ch:Jose f judiciously s:> as to bri.n:J about a contradict.ion. To 

this end, let 

f (X) = 1 (Cr)nr-1 :i1"-l(~(X))n 
(n - l)! 

or still, 

= 1 (Cr)n'(r+l)-1 :i1-l(X - Sl)n· .. (X - Sr)n, 
(n - 1) ! 
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n E N a "large" natural number to be held in abeyance for the :rco.ment. 

FACI'S 

Consequently 

C an integer. 

deg f = n (r + 1) - 1 = M, 

f(l) (0) = O (O ~ l ~ n - 2), 

f (n-1) (0) = (c )nr-1~ 
r O' 

nlf(l)(O) (Vl":/n-1). 

M 
F(O) = r f (l) (0) 

~=O 

M 
= L: f (l) (0) 

l=n-1 

= f(n-1) (O) + f(n) (O) + •.• + f(n(r+l)-1) (O) 

M:::>ving on, fran the definitions, 

And i3k is a root of f (X) of multiplicity n, thus 

f(l) (Sk) = 0 (0 S l S n-1, 1 ~ k ~ r), 

leaving 
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5: LEMMA If p (X) E Z[X] , then V l E N, all the coefficients of the £.th 

derivative p (£.) (X) are divisible by £.!. 

PROOF Since differentiation is a linear operation, it suffices to creek this 

on the powers~' restricting ourselves to when l:': 1.. ::: k, in which case tre £.th 

d . . f k . 1 erivative o X is equa to 

£.! (~) 0-.e. 
and the binomial coefficient <? is a rositive integer. 

It therefore follows that for l ~ n, the coefficients of f (£.) (X) are integers 

divisible by n(C )nr-l. 
r 

[In detail, the PJlynomial 

(cf. #3) 

and its £.th derivative l::as all coefficients divisible by £.!, ro for l ~ n, its 

£.th derivative has all coefficients divisible by n! (£.! = n! (n + 1) ••• £.) . If 

l;::: n and if generically, n!W (WE Z) is a coefficient of 

then 

1 (C )nr_,ln!W = n(C )nr-1w 
(n - l)! r r 

is a coefficient of f(.f.) (X).] 

6: LEMMA Let P (X1 , .•. ,X ) be a polynanial with integer coefficients of 
~ r 

degree s ~ t symmetric in the xk -- then 

c~ <Sl' ••. , Sr> 
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is an integer. 

PR(X)F The algebraic numbers C B1 , .•• ,c B are tre roots of the m:mic fOly-r r r 
:oomial 

_..r _..r-1 _..r-2 ......r-1 =x +c x +cc x +···+c c r-1 r r-2 r O' 

thus the elementary syrrmetric fOlynanials per C B1 , ••• ,C B are integers, since r r r 

......r-1 
Cr CO 

' 
0 0 0

' Sr = l 

If p(Xi_, ••• ,Xr) is a harogeneous syrrmetric FOlynanial of degree s .:St with inte:rer 

coefficients, then 

s C P(B1 , ••• ,f3) = p(C f31 , ••• ,C f3 ). r r r r r 

But tre right hand side can be written as a polyncmial with integer coefficients 

in the elementary symnetric polyrnnials per c s1 , ••. ,C S , hence r r r 

is an inte:rer, hence a fortiori 

is an integer. 'lb treat the general case, s:imply separate the polyn:mial P into 

a sun of hcm:Jgeneous polynanials p. 

Fix l:n ~ l ,:S M and pass to 

r 
I: f {l) ( B } 

k=l k 
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or still, in suggestive notation: 

7; N.B. The degree of f(n) is 

M - n = (n (r + 1) - 1) - n = nr - 1, 

so the degree of f (..e.) (n < l < M) is < nr - 1. - - ... 

Applying #6 to 

legal since the sum is syrrmetr ic in the $k' we conclude that 

Nl an integer. 

'Iheref ore 

r 
L: F(f3ic) 

k=l 
= 

= 

r 
l: 

k=l 

M 
I: 

l=n 

M 
f(l) CB ) L: 

l=n k 

r 
L: f (l) (Sic) 

k=l 

N:>w assanble what has been established thus far: 

r 
AF(O) + L: F(~) 

k=l 
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= A( (Cr)nr-l ~ + nC) + nB 

Choore n > > 0 (n prime) : 

Then 

is an integer not divisible by n, hence in particular is nonzero, hence 

r 
I AF(O) + L: F(~) I :::. 1. 

k=l 

It remains to estimate 

Suppose that 

and put 

Then 

r sk 1\. -t 
L: e ! 0 f(t)e dt. 

k=l 

max 1£ (z) I 
lzi~R 

l~I 5 R (k = l, ... ,r) 



n-1 
R 

< (n - l)! 

< (n - 1) ! · 

Consequently, for all n per supra 

ii1-¥ < - (n - 1) ! 

Rn-1ef1 
< (n - 1) ! 

< 
Rn-l'J!1 

- (n - 1) ! 

9. 

r B CB -t) 
l: I 1 0 k I e k I dt I 

k=l 

r 13 
eR l: IJ0kdtl 

k=l 

eR(rR) 

R (Rl')n - R (RI')n-1 
= re (n - 1) !- re (RI') (n - 1) ! 

which leads to a contradiction in the urual way (cf. §0). 

, 
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§20. ALGEBRAIC (IN)VEPENVENCE 

l: TERMINOI.DGY I.et L be a field, K c L a subfield. 

• A finite SJbset S = {°:L, ••• , ah} c L is algebraically dependent over K 

if there is a nonzero J?Oly:oomial P E K[X1 , ••• ,Xn] s.ich tbat 

p (°:LI • • • I ah) = 0 • 

• A finite subset S = {°1_, ••• , an} c L is algebraically independent over K 

if there is no nonzero ]?Olynomial P E K[Xi, ... ,Xn] such that 

PC°J.1···1an) = 0. 

2: N.B. Take S = {a}, a one elanent set -- then by definition, a is 

algebraic over K i£ S is algebraically dependent over K and a is trans::en:lental 

over K if S is algebraically independent over K, i.e. , a E S is algebraic or . 

transcendental over K according to whether it is or is not a root of a pJlynanial. 

in K[X] (cf. §2, #25). 

3: LEMMA SupJ?Ose that S is algebraically independent over K -- th=n the 

elerents of s are transcendental over K. 

The setup for us is when 

L = C and K = Q, 

:in which case one can w:::>rk either with :i;::olynamials P in Q lXi, •.• ,Xn] or in 

Z[x1 , ••• ,~]. 

[Note: Here, of course, "algebraic" means algebraic over Q and "transcendental" 

means trans::endental over Q and to say that the canplex numbers x1 , ... ,~ are 
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algebraically deperrlent or algebraically independent means that the set 

{x1 , ••• ,~} is algebraically dependent over Q or algebraically independent over 

Q.] 

2 4: REMARK A complex number x is transcendental iff the numbers 1, x, x ' .•. 

are linearly independent over Q. And, :in general, the canplex numbers x1 , ... ,xn 

are algebraically independent over Q iff the J?CMerS 

k n x n 

are linearly :independent over Q· 

5: LEMMA Suppose that S c C is algebraically independent over Q -- tren 

the elements of S are transcendental over Q (cf. #3) • 

[Note: If any of the elenents in s are algebraic over Q, then s is algebraically 

dependent over Q. ] 

6: ~ It can happen that all the elements of s are transcendental 

over Q, yet S is not algebraically independent over Q. 
[The real numbers /TI and 27T + 1 are transcendental but {!IT, 27T + 1} is not 

algebraically independent over Q. Thus consider 

P(X,Y) = 2y(- - Y + 1. 

'lhen 

p ( ;rr , 27T + 1) = 0. ] 

7: LEMMA If {x1 , .•• ,xn} is algebraically independent over q, then 

{x1 , .•. ,xn} is algebraically :independent over Q' and for any nonconstant polyna:nial 
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-
P E Q [X1 , ••• ,Xn], the number 

is transcendental. 

Then 

8: EXAMPLE The numbers ev2, e 3v2 are algebraically dependent. 

[Consider 

3¥2 3¥2 = e - e = O.] 

9 i EXAMPLE Let a and b be relatively prime natural numbers ,2: l -- thm 

the Liouville numbers (cf. §15, #9) 

00 00 

1 1 x = l: --.--.- and y = l: --.-. 
j=l aJ· j=l bJ. 

are algebraically independent over Q. 

10: EXAMPLE Nesterenko proved. in 1996 that too numbers n, en are 

algebraically indepe:rrlmt over Q. 

11: REMARK The question of whether too numbers e,n are algebraically 

dependent over Q or algebraically indep;mdent over Q is open. 

Instead of numbers, one must alro deal with functions. 

12: DEFIN.I.TION A function f (z) of a complex variable z is algebraic 



4. 

if there is a nonzero p::>lynanial P E C[X,Y] such that v z, 

P(z,f(z}} = O. 

13: THEOREM An entire function is algebraic iff it is a polynanial. 

14 : DEF.INITION An a:itire function which is not algebraic is said to be 

transcendental. 

15: EXAMPLE z e , cos z, sin z are transcendental, as is the function 

16: DEFINITION A collection of entire functions f 1 , .•. , fn is said to be 

algebraically dependent over C if there is a nonzero p::>lynomial P E C[x1 , .•• ,Xn] 

such that P (f1 , .•. , fn} is the zero function. 

17: DEFINITION A collection of entire functions f 1 , ... , fn is said to be 

algebraically independent over C if for any nonzero polynanial PE C[x1 , .•• ,Xn], 

the function P(f1 , •.• ,fn} is not the zero function. 

18 :· EXAMPLE Let I ( z} = z be the .identity function -- then an entire 

function f is algebraic (transcendental} iff I and f are algebraically dependent 

(irrlependent} over C. 

19: EXAMPLE sin z and cos z are algebraically dependent over C. 

[Consider 

P(X,Y} = x2 + y2 - 1. 
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Then 

P(sin z, cos z) = (sin z) 2 + (cos z) 2 - 1 = 1 - 1 = O.] 

2 0: EXAMPLE Take 

Then the functions f 1, f 2 are algebraically dependent over C. 

Then 

[Consider 

1 -z z e2 ) 3z 3z + 3z 3z P(e , = e - e e - e 

= o.] 

21: EXAMPLE Take 

Then the functions f 1 , f 2 are algebraically independent over C (cf. #26 infra). 

[Fix a nonzero P E C [x1 ,x2J and choose z 0 such that the polynomial 

z r-r zo 
P (e , e ) in z is not identically zero. Use the periodicity of ez to infer 

r-r z 
that if P (ez, er-r z) is :identically zero, then the p:>lynomial P (x, e O) 

in x has infinitely many zeros, namely v k E Z, 

z 0 + 27Tr-r k r-I z 0 P(e , e ) 

zo I-I zo = P(e , e ) = O.] 
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22: EXAMPLE The functions 1, z, z2 , ... , zn are linearly independent 

2 z z over C and the functions z, e , e ' ... ' 
n 

ez are algebraically independent over C. · 

23: LEMMA Let Al, •.• , \i be distinct complex numbers -- then the entire 

functions 
. JnZ 

I • • • I e 

are linearly independent over C (z) • 

PIWF Tre case n = 1 is trivial. Proceed fran here by induction, assuming 

that the statanent is true at level n - 1 (n > 1) and consider the dependence 

relation 

where F1 , ... ,Fn are oonzero elanents of C(z), the objective being to derive a 

contradiction from this. Divide by F : n 

or still, 

or still, 

or still, 

Fl AlZ 
- e + •.. 
F n 

F A z _ Al z 
+_E_en =Ge + ••• F 1 n 

=O 

CA.1 - \i>z + 1 eoz 
G1e + · • · = 0 

CJ z 
+ 1 en = 0, 
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where 

tbw differentiate: 

thereby leading to a dependence relation at level n - 1 with distinct exponents 

crl, ... ,crn-1' so 

But each of these coefficients is nonzero, lence the ptrrp:)rted dependence relation 

+ ... 

has led to a contradiction. 

A. z 
+Fen =O n 

24: APPLICATION let A.1 , ••. , "-n be distinct complex numbers -- then the 

entire function 

is not identically zero if the ci are not all zero. 

25: LEMMA let A.1 , .•. ,A. be distinct complex numbers which are linearly 
~- n 

independent over Q -- then the entire functions 

are algebraically indeperrlent over C. 

PRCX>F let 
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be a nonzero i;:olynomial -- then the claim is that 

A.1z A z 
f(z) = P(e , ... ,en) 

is not identically zero. 'lb this end, write 

k:J_ kn 
L: a. X • • ·X , (k_ k ) Kl, .•. ,k 1 n 

-~, ••• , n n 

where the ak:i_, ... , kn E C and not all of than are zero, thus 

But, due to our assmnption on A.1 , ... , A.n, the complex numbers 

are distinct: 

kA. +···+kA. =lA. +···+lA. 11 nn 11 nn 

=> 

(k - l )A. + ••• + (k - l )A. = O 1 1 1 n n n 

=> 

'lb conclude that f (z) is not identically zero, it ranains only to quote #24. 

26: EXAMPLE Take A.1 =1, A.2 = S ~ Q -- then ez, eBz are algebraically 

mdependent over C (take S =A to recover #21). 
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§21. THE LINVEMANN-WEIERSTRASS THEOREM 

This is the follCMing statement. 

1: 
ao 

THEOREM I.et a0,a1 , ... ,at be distinct algebraic numbers -- then e , 

al at 
e , •.. ,e are linearly indep;m.dent over Q, i.e., if b0 ,b1 , ••• ,bt are algebraic 

numbers not all zero, then 

[Note: 

is a transcendental number. For suppose it was algebraic, say 

Then 

Tnere are nCM tv.o p:>ssibilities: 

the obvious contradiction. 

• :i i:a. = 0, say i = O, hence 
1 

where O , a1 , ..• , at are distin:::t, a contradict fun once again. ] 
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2: N.B. We are working here in tffi ca:nplex domain, hence r-r is algebraic 

(consider i2- + 1 = O) and Q, canputed in C, is a field. 

3: LEMMA Supp::>se that a and b are real -- then a + A b is algebraic 

iff a and b are algebraic (cf. §14, #4). 

PROJF If a and b are algebraic, then the ca:nbination a + Ab is algebraic 

(Q being a field). Cbnversely, if a + r-I b is algebraic, then p(a + Ab) = 0, 

where p{X) is a polynanial with rational coefficients, thus ala:> p(a - r-r b) = O. 

Therefore 

-(a + H b) + (a - r-I b) = 2a E Q 

(a + A b) - (a - A b) = 2 A b E Q 

i.e., a and b are algebraic.] 

1 
2 (2a) = a E Q 

r-1 (2 H b) = b E Q, 2 

Before tackling the proof of the theorem, we srall consider SJme applications 

and examples. 

4: LEM1A If a is a nonzero algebraic number, than ea is transcendental 

(Hennite-Lirrlanann). 

[A nontrivial relation of the fonn 

is impossible, or, alternatively, consider tre fo:anula 

which, if ea were algebraic, would be .impossible.] 
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[Note: Consequently, if a is a nonzero complex number, then at least one 

of the numbers a or ea is transcendental. ] 

In :particular: e is transcendental (cf. §17, #1). And if a,b EN, then ea 'f b. 

5: EXAMPLE e v2 is transcendental. 

6: EXAMPLE 7T is transcendental (cf. §19, #1). 

[For if 1T were algebraic, then TIH vx:>uld be algebraic, h=nce e1TM w::>uld 

TIM be transcendental (cf. #4), contrary to the fact that 1 + e = O.] 

7: EXAMPIE Let a be a real nonzero algebraic number -- then cos (a) is 

transcendental (cf. §12, #1). 

[SuppJse instead that cos (a) = B was algebraic. Write 

e ar-T + e "'lCLH ar-r -ar-r 
cos(a) = = e + _e __ 

21=r 2r-r 2;.:r 

or still, 

a contradiction (cf. #1) ( r-Ia and - Ffa are obviously distinct) . ] 

[Note: Consider the unique real fixed µ:>int of the cosine R:mction, thus 

oos(x) = x = O. 739085 ••• -- then x is transcendental. For s.ipµ:>se that x is 

algebraic -- then cos (x) v,ould be transcendental. But cos (x) = x.] 

The story for s:in (a) is analogous, as are the stories for 

I
- cosh(a) 

sinh(a). 



4. 

8: EXAMPLE Let a be a real nonzero algebraic number -- then tan (a) is 

transcendental. 

[Assuming the opin site, write 

al-=l -ar-1 e - e tan (a) = ------- - S 

=> 

(1 - SR) e ar-1 - (1 + SA) e -al-1 = 0 

and note that 1 - sl-1 and 1 -f.-(:31-1 cannot sllnultaneously be zero.] 

9: EXAMPLE Let a 'f 1 be a i;ositive algebraic number -- then fu(a) is 

trans::endental. 

[If fu(a) were algebraic, then efu(a.) ~uld be tran~ental (cf. #4). 

fu(a) Bute =a .•.• ] 

10: I»1MA Let a be a nonreal algebraic number -- then 

are transcendental. 

PROOF Write a = a + r-I b (b 'f O) --. then a and b are algebraic (cf. #3) • 

M:>reaver, by definit.IDn, 

and the clam is that 

a a+r-Ib a r-, e = e = e (cos b + v-1 sin b) 

a . b e Sill 
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are transcendental. 'lb deal with the first of these, proceed by contradict.ion 

and asS\.lrre that ea cos b = 13 is algebraic, thus 13 ':f 0 (the zeros of the eosine 

are trans:;endental) • Next 

a+Rb a-Rb e +e 

a Rb -?lb = e (e + e ) 

= ea(cos b + A s:in b + ros(-b) + A s:in(-b)) 

a = 2e cos b = 213, 

0 a+Ab a-?lb 213e - e - e = O. 

ONing to #1, the algebraic numbers O, a + Ab, a - Ab are rot distinct, 

hence b ~= O • On the other hand, a is rot real, ro b ':f 0. 

11: N.B. If in #10, a was real, then matters are covered by #4. 

12: THEOREM Sup}?:)se that 131 , •.• , i3r are nonzero algebraic numbers which 

131 13r are linearly :independent over Q -- then the trans:;endental numbers e , .•. ,e 

are algebraically .independent over Q. 

PRCOF Asrume instead that for SJme nonzero :i;:olyromial 

say 

we have 
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f\ Br 
P(e , ••• ,e ) = O 

or still, 

+kB r r _ 0 - , 

where the a~, ••. ,kr E Q and mt all of tl:en are zero. 'lb ~ttle the issue and 

arrive at a contradiction, it suffices to check that the ex1xments 

are distinct (since then one can quote #1) • So rupp:>se that 

with 

k_s_+···+kB =lB +···+lB 
--i~l r r 1 1 r r' 

thus 

a oontrivial dependence relation over Q. 

13: EXAMPLE The transcendental numbers e, e12 are algebraically independent 

over Q. 

[For it is clear that tffi algebraic numbers 1, /2 are linearly in:iependent 

over Q.] 

14: THEOREM Supp::>se that s1 , .•• , Sr are nonzero algebraic numbers for 

Bl Br 
which the transcendental numbers e , .•. ,e are algebraically indeIJEmdent over 

Q - then B1 , ... ,Br are linearly independent over Q. 
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PRCOF Consider a nontrivial dependence relation over Q: 

Clear the denominators and take tre ~ .integral -- then not all of them are zero 

and 

Define 

by the pres::ript:ion 

Then 

+ b B r r 

b 
X r - 1. 
r 

+ b 13 
r r - 1 = 1 - 1 = O. 

131 13r But e , ..• ,e are algebraically independent over Q. Th=refore 

a contradiction. 

15: srnOLIUM Nonzero algebraic nmnbers 131 , ••. , Br are linearly :indepement 

B B 
over Q iff the transcendental nmnbers e 1 , •.• ,e r are algebraically independent 

over Q. 

16: LEMMA Let a be an algebraic number wmre real and fuiaginary parts 

are ooth nonzero -- then the trans:::endental numbers Re(ea), Im(ea) are 

algebraically independent over Q (cf. #10). 
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We need a prel mdnary. 

17: SliBLEMMA I.et x and y be nonzero real numbers -- then x and y are 

algebraically dependent over Q iff x + ;=r y and x - ;=r y are algebraically 

de:p=ndent over Q. 

PRCDF 'lb deal with one direct.ion, asSJme that there exists a n:mzero p::>ly-

mmial 

ruch that 

I.et 

Then 

Introduce 

Thus 

P(X,Y) = ~ amnxnt1 E Q[X,Y] 
m,n 

P (x,y) = 0. 

ci + a x= 2 

=> 

ci=x-r-ly a - a y---- 2/:1 • 

1 m+n n - m - n L: a (-) (- /:i) (a + a) (a - a) = O. rnn 2 m,n 

Q(X,Y) = L: a (l)m+n (- /:1) n xnt1 
rnn 2 m,n 

- l: c!)m+n (vCi) n xnt'1. Q(X,Y) = a rnn 2 m,n 

Q,Q E C[X,Y] 
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but 

00 E QIX,Y]. 
Put nCM 

P+(X,Y} = Q(X + Y,X - Y}Q(X + Y,X - Y}. 

Then 

Q(a + a,a - a> = 0, 

so 
+ -P (a,a} = O, 

thereby establishing trat a and a are algebraically deperrlent over Q. 

Passing to the proof of #16, write a= a + r-r b (Uus a-:/- O, b -:/- O are 

algebraic (cf. #3}} -- then ea cos b and ea sin b are algebraically deperrlent 

over Q iff 

· a a - a a ea = e cos b + r-r e s:in b and ea = e cos b - r-T e sin b 

are algebraically d~~ent over Q (cf. #17}; · i.e., iff a and ~ are l:inearly 

dependent over Q (cf. #15}, i.e., iff a = O or b = O, which cannot be. 

We shall conclude this § with an indication of the steps leading up to a 

proof of #1. So let as there b0,b1 , .•• ,bt be algebraic numbers not all zero but 

with 

Step 1: By disca.rd:ing tei:ms wh:>se coefficiaits are zero and rearrang~ 

the notation, it can be assumed that no coefficient is zero arrl 
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Consider the Taylor series expansion 

atz 00 u n n + bte = l: -, z • 
n=O n. 

Step 2: V n = 0,1, ••• , 

u = n 

t n l: b.a .. 
. 1 11 1= 

Define a1 , ••. , at by writing 

(X - a }···(X - a} = xt - a xt-l - ••• - at. 1 t . 1 

Step 3: v n = 0,1, .•• , 

t+n t+n-1 + a. = a1a. 
1 1 

Step 4: V n = 0,1, •.• , 

Step 5: It suffices to treat the care in which the u E Q (n = 0,1, ••. } n 
and the a. E Q (i = l, ••• ,t}. 

1 

[Consider the product 
a (a1} z 

1T (a(b1)e + · · • + 
CJ· 

where 
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This expression is still O (one of its factors is zero) and u:i;on expmd.ing ms 

the f onn 
a!z 

L: b!e 1 • 
• 1. 

1 

Since the sets {b'.}, {a!} are Galois stable, tl"E numbers u' and a! are rational.] 
i 1 n 1 

Step 6: U:i;on cle:tr.ing denanmators i£ necessary, it can be ass..nned that 

u0, .•. ,ut-l E Z, thus using Step 4 recursively, v n ~ O, 

where d is a carm:m denan.inator of the ai (i = 1, ..• ,t). 

[So, if d = 1, then the un are .integers.] 

Step 7: Put 

Thm there exists a fOSitive constant C SJ.ch that v n ~ O, 

lun I 5 CA.n (use Step 2) . 

Recall oow that the assumption is that 

hehce 

Given k E N, put 

00 ~ 
L:. -= o. 

n=O n! 

k u n vk = k! ~ (v - u ) 
i.... i1i"" o= o· n=O • 



Step 8-: V k;A < k + 1, 

k ... u 
lvk I = k! I E 4 I 

0 n. n= 

= k! 

~ k! 

00 u 
I L _E. 
n=k+l n! 

00 

E 
n=k+l 

lunl 
n! 

oo An 
~ Ck! l: I 

n=k+l n. 

12. 

~ Ak+l Ak+2 
= Ck! ( (k + 1) ! + (k + 2) ! + . . . ) 

Ak+l Ak+2 
= c ( k + 1 + (k + 1) (k + 2) + ••• ) 

Ak+l Ak+2 
~ c ( k + 1 + (k + 1)2 + ••• ) 

2 
= CA.k ( A + A + • • • ) 

k + 1 (k + 1) 2 

= CA.k 
A 

( k + 1 ) 
A 

1 - k.+ J.. 

Step 9: V k:2A < k + 1, 

0 < k + 1 - 2A 

(cf. §8, #2) 
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=> 

k + 1 < 2 (k + 1) - 2A 

=> 

1 < 2 
k+l-A k+l" 

'lb recapitulate: v k: 2A < k + 1, 

Ak+l 
< 2C k + 1 • 

[Note: If d = 1, then the vk E Z (cf. Step 6) and if in addition, A= 1, 
00 

then V k > > O, vk = O (thus L: vkxk is a p:>lynomial) and we v;ould have a contra-
k=O 

diction but, of course, in general d > l. an:l A > 1.] 

Step 10: Define vk (n) by the stip.llation 

00 00 
k tn k E v (n)x- = (1 - a X - ·•• - a~) E vkx-. 

k=O k 1 k=O 

Then V n ?: 0, 

Step 11: Let 

Then V k 2: nt, 



M:>reover 

and 

So, if 

14. 

jvk (n) I < (2C)A1Y1. 

Step 12: If k .2: nt and if vk (n) 'f: O, then 

k 
n! ~ jd vk(n) I 

= (2C) (dA)k.fi. 

n! > (2C) (dA)Jy'l 

and if k ::::. nt, then vk(n) = 0. 

Step 13: · Cmo::e n 0 s:> large that V n .2: n 0, 

n! > (2C) (dA) lOnt.yi. 

Step 14: 

In particular: 
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Step 15: 

thus 

Recall row the defmit.ion of vk (n), viz. 

00 

L: v (n)~ = (1 - a X -
k=O k 1 

Take n = n 0 -- then in view of Step 16, 

Therefore 

i.e., 

is a rational function. 

00 

~ vk(n0)~ E Q[X]. 
k=O 

~ vk~ E Q(X), 
k=O 

'lb finish this sketch, let 

Then from the definitions 

00 

v(X) = l: vk"Lf. 
k=O 



=> 

On the other hand, 

Accordingly, if 

16. 

vk vk - 1 ~ 
k! - (k - 1) ! - k! 

00 

= L: u x:11 
n=O n 

00 

= L: 
n=O 

t 
( L: b. a1:) x:11 

. 1 l l i= 

t 00 

= L: b. ( L: a~) 
i=l 1 n=O 1 

t b. 
= L: l • . 1 1 - a.x 

i= l 

= v(X) - x ! (Xv(X)) 

(cf. Step 2) 

2 d = (1 - X)v(X) - x dX v(X). 

- 2 d L = - X .dX + (1 - X), 

then v(X) satisfies the differential equation 

t b. 
lv(X) = L: 1 

• 
i=l 1 - aix 
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And v(X} is a rational function, thus the order of tre mnzero p:>les of Lv(X} 

is at least 2. But the p:>les of the rational function 

t b. 
L: l 

. 1 1 - a.x 
i= l 

1 are at the - and are s.llnple. Contradiction. a. 
l 
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§22. EXCEPTIONAL SETS 

Is it true that "in general" a trans:!endental function takes trans:!endental 

values at algebraic fO mts? 

1: DEFINITION The except.i0nal set Ef of an entire function f is the set 

of algebraic numbers a. ruch that f (a.) is algebraic: 

Ef = {a. E Q:f (a.) E Q}. 

2: EXAMPLE Take f (z) = e2 
-- then Ef = {O} (cf. §21, #4). 

3: DEFINITION A s.:ibset s of Q is exceptional if there exists a trans-

cendental function f such tl:E.t Ef = S. 

4: EXAMPLE An ar:Oitrary finite subset 

is exceptional. 

[Consider 

f (z) 
(z-a. ) · · · (z-a. ) 1 n = e 

If a. E Q and if a. '/- a. i ( i = 1, ... , n) , then 

-
(a. - a.l) ••• (a. - a.n) E Q 

is nonzero, hence f(a.) is transcendental (cf. §21, #4) .] 
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5: EXAMPLE Take 

[First, f{O) = 1 + e is rot algebraic {since e is transcendental) {cf. §17, #1). 

SuPfOse therefore that a is a nonzero algebraic number. In §21, #1, take 

thus 

is transcen:lental. ] 

-
6: THEOREM Given any subset S c Q, there exists a transcen:lental function 

f such that Ef = s. 

7: N.B. It was proved in 1895 by Stackel trat there exists a trans-

cendental function f such that Ef = Q. 

8: DEFINITICN The exceptional set Ef {mu).) with rrnlltiplicities of an 

-
entire function f is the subset of Q x Z>O consisting of those points (a,n) such 

that f {n) {a) E Q. 

[Note: Here f (n) is the nth derivative of f. ] 

-
9: THEOREM Given any subset S c Q x Z~O, there exists a trans:::endental 

function f ruch that Ef {nro.l) = S. 
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§23. COMPLEX LOGARITHMS ANV COMPLEX POWERS 

1: DEFINITION Given a oornplex number z =j. O, a logarithm of z is a 

w complex number w such tl:a.t e = z, denoted log z. 

[Note: log O is left undefined (there is no mmplex number w such that ew = O}.] 

Therefore 

log z = bl( jz I> + ;.:r arg z, 

where bl( jz I> is the natural logarith:n of jz I (cf. §10, #3 & #4) and arg z is 

given all admissible values. Since the latter differ by :multiples of 27T, it 

follows that the various detenninations of log z differ by multiples of 27T ;.:r. 

2: DEFINITION The principal detenn.ination of the logarithn mrresponds 

to the ch::>ice 

- 7T < Arg Z < TI, 

- TI < Im(log z} ~ 1T 

and one signifies this by writing Log z, tin.ls Log I R>O = ,en. 

3: EXAMPLE 

I.DJ<- 3 r-n = .en<3> - 7T F 
4: N. B. The restriction of the exi;:x::>nential function to the h:>rizontal 

strip S mnsisting of all complex numbers x + r-r y (- 1T < y < 7T} has an inverse: 

expjs maps S bijectively to Cx = C - {O} and the inverse of this restriction is 
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x I.Dg: C + S, hence 

[Note: lDg is discont:inuous at each negative real number but is continuous 

1 x. everywhere e se on .C .- ] 

5: REMARK It is always true that 

but the relation 

can fail. E.g.: 

while 

I.Dg((-1) r-I) = I.Dg(- r-n 

= .en 1- r-r1 - TIF 
= .en (1) - TIF 

TIM = - -2-

I.Dg(-1) + I.Dg(;=I) 

= (bl(l) + n;=I) + (bl(l) +n~r=i) 
2 

_ 3nM t _ n
2
r-r . ] 

- 2 
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6: LEMMA 

IDg z == if ~ c larg z I i( 1T) , 

the integral being taken along the line segment [l,z]. 

7: LEMMA 

Iog z == L: 
n==l 

(-l)n-1 n 
(z - 1) n ( jz - l [ < 1) • 

00 

8: DEFINITION I.et D be an open s.llnpl y connected region in the oomplex 

plane that cbes mt contain 0 -- then a branch of log z is a continuous function 

L with domain D such that L(z) is a logarithm of z for each z in D: 

eL(z) == z. 

9: EXAMPLE Take D == C - R<O -- then the restriction of IDg to D is a 

branch of log z. 

10: CONSTRUCI'ION A branch of log z with danain D can be obtained by first 

fixing a }?Jint a in D, then choosing a logarithm b of a, and then defining L by 

the pre~iption 

L (z) == b + fz dw . 
a w 

Here the integration is along any path in D that connects a and z. 

11: LEMMA L(z} is mlorrorphic in D, its derivative being 1 .• z 

[Note: Different choices of b will in general lead to different functions.] 

12: RAPPEL If a is a nonzero algebraic mnnber, th=n ea is transcendental 

(cf. §21, #4) (Hennite-Lindemann). 
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13: EXAMPLE (cf. §21, #9) !Et a be a nonzero algebraic number -- then 

lDg a is transcendental. 

['rhe point is that eIDg a = a. 

!Et a be a ca:nplex number with a ':I 0, ':I e. 

14: DEFINITION 'rhe principal power of a is the holarorphic function 

Z Z T,..,,.,. a 
z+a=e~. 

15: DEFINITION 'rhe kth associate of az (k E Z) is the holonorphic function 

z(IDg a+ 2kTI;=I) z+e 

16: N.B. 'rhe reason for excluding e is that we want ez to remain single 

valued and to mean the p:>wer series 

17: EXAMPLE 

and its kth asoociate is 

co n z L: -, • 
n=O n. 

z (log l + 2kTIA) 2kTIA z e = e . 

18: EXAMPLE Take a = r-r and take z = - 2A -- then with this data, 

- 2A - 2A IDg(A) A =e 
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- 2r-rcr-r ~> 
= e 2 

. ;-;- - 2 ;.:::r Therefore the associates of v...J. are too 

'Ihen 

- 2 Acr-I; + 2k'rrr-l) 1T(4k+l) 
e = e (k E Z). 

19: EXAMPLE I.et n be a i;:ositive integer an:i write 

I I A e a= a e (-TI< 8 ~TI). 

1 - Log a :a n 
l 

a = e 

1 (f.n (I a I) +/:I 8) n =e 

1 1 --Ae 
= lain en 

1 
'Iherefore the asrociates of an are the 

And there are only n different values for 
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The laws of exp:ments i:pelled out in §4 over R do not hold with:mt qual-

ificat.ion over C. 

b c be • In general, (a ) has rrore values than a . 

be b+c • In general, a a has rrore values than a • 
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§24. THE GELFONV-SCHNEIVER THEOREM 

This is the following statement. 

1: THEOREM If a -:/- O, 1 is algebraic and if B ¢ Q is algebraic, tren a8 

is transcendental. 

[Note: Here a 8 is the principal :i;:ower (cf. §23, #14): 

Nevertheless it can be slnwn that tre Gelfond-Schneider theorem goes through 

if the principal i:ower a 8 is replaced by any of its ass::>ciates (cf. §31, #16) .] 

Spe::ial cases: 

2: EXAMPLE 2./2 is transcendental. 

3: EXAMPLE ff is transcendaital. 

~: EXAMPLE 
___J::;-

1-1 · ~ is trans::::endental. 

5: EXAMPLE e TI is transcendental. 

[Starting frc:m the fact that 

and using the principal determination of the logarithn: 

IDg A= ln (I Al) + r-1 Arg r-1 

= ln (1) + r-r TI 2 

= r-r ~ 2 
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=> 

1T = - 2 ;.::r I.og ;.::r 
=> 

err= e-2Ff I.og ;.:r = r-12H (cf. §23, #18) 

and the entity on the right is transcendental.] 

z z z I.og 2 z .en (2) 6: EXAMPLE Take f (z) = 2 , thus 2 = e = e • 

If a = 2 in Gelfond-Schneider and if z ¢ Q is algebraic, then 22 is transcendental. 

On the other hand, the 2l/n (n E N) are algebraic, as are the (2l/n)m (m E Z). 

Therefore th: exceptional set Ef of f is equal to q. 

[Note: f' (z) = 2z fu(2), so 

since .e.n (2) is transcendental (cf. §21, #9) . ] 

7: EXAMPLE Take f (z) = e1TM z -- then 

e1TM z = (-1) z, 

principal fOWer. In fact, 

1TM z = e . 

1Tr-I z So, if a = -1 in Gelforrl-Schneider and if z ~ Q is algebraic, then e is 
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transcendental. As for what happens if z E Q, write 

1T/:f z ,, . e = cos(1Tz) + v-1 slll(1TZ) 

and quote the wellknawn fact that the trigonometric functions ros and sin are 

algebraic numbers at arguments that are rational multiples of 1T. Therefore the 

exceptional set Ef of f is equal to Q. 

8: THEOREM Given nonzero complex numbers a arrl b with a f; Q, then at 

least one of a, eb, eab is transcendental. 

9: N.B. #8 <=> #1. 

['lb see that #8 => #1, take a = $, b = Log a -- then at least one of the 

following numbers is transcendental: $, elDg a = a, or eSLog a = a 13• But the 

first two of these are algebraic, hence a 13 must be transcendental. That #1 => #8 

is analogous. ] 

10: EXAMPLE JJet. ~, fl be algebraic numbers not equal to 0 or 1. Suppose that 

Then 

is transcendental. 

[In #8, take 

Log s. 
Log a 

a = Log 6. and b = Log a. 
Log a 
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Then at least one of the followin:J numbers is trans::endental: 

I.og Blog 
Iog B e IDg a = a e IDg a log a , , 

Cl. 
= elog B = f3. l 

[Note: If IDg a and IDg B are linearly independent over Q, th=n 

IDg B 
log a ~ Q, 

as can be seen by putting 

and considering the deperrlence relation 

Cbnsequentl y 

y log a - log (3. = O. 

rog B 
log a 

is trans::endental, tlus for any nonzero algebraic numbers µ and v, 

µ IDg Cl.+ \) I.og (3. ~ 0, 

i.e. , I.og a and IDg S. are linearly independent over Q.] 

11: EXAMPLE I.et r be a positive rational number. Write (see trn Apperrlix 

to §10) 

_ fu(rJ 
loglO(r) - fu(lO) . 

Therefore, if log10 (r) is not rational, then by the above it must be trans::endental 

(cf. §5, #15). 
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Question: For what pairs CB,t) (B E Q, B '=I 0) and t E Rx) is etB algebraic? 

-
12: EXAMPLE Take S E Q n R ( B ':f O) and 

t = ln(2) . B • 

Then 

13: EXAMPLE Take B E Q n r-I R ( B ':f 0) and 

yCI TI 
t=~~ B 

Then 

14: THEOREM I.et B E Q' (B '=I 0) and t E Rx. Assume: B ~ R u /:I R --

then e tB is trans::endental. 

PRX>F Put a= etB -- then the canplex conjugate & of a is etS =a.BIB_ The 

algebraic number SIB is not real (for I SIB I = 1 but BIB '=I ± 1), ffince is not 

rational. In #8, take 

a = Bl B, b = tB, 

leading thereby to 
-tB to -BIB, e = a, e µ = a. 

Since SIB is algebraic, either a or a must be transcendental. But a is trans-

cendental iff a is tran s::endental. 

It renains to give a proof of Gelfond-Schneider, a taS< that requires SJ.me 

prel.iminaries. 
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§25. INTERPOLATION VETERMINANTS 

1. NOI'A.TION Given w E C, R E R>O' let 

[Note: 'Write 

ifw=O.] 

D(R,w) = {z E Ci iz - wl < R} 

D(R,w = {z E C: iz - wl ~ R}. 

D(R) 

D(R) 

2: NOI'ATION Iet rf IR stand for tre maximum value of If (z) I wl:En lz I = R. 

3: RAPPEL If f (z) is a function mlonorphic in D (R) and cnntinuous in 

D(R), then 

for every z E D(R). 

4: LEMMA Iet T be a mnnegative integer, let r and R be fOSitive real 

numbers subject to 0 < r :::_ R, and let F(z) be a function of one complex variable 

mlonorphic in D(R) and cnntinuous in D(R). Assume: F has a zero of multiplicity 

at least T at O -- then 

PROJF Put 

-T G(z) = z F(z). 
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Then 

or still, 

or still, 

~ THEOREM Let r and R be p:>sitive real numbers subject to 0 < r : R, 

let f 1 (z), .•• ,fL (z) be functions of one complex variable which are rnlonorphic in 

D(R) and continuous in D(R), and let s1 , ... ,i';;L belong to the dis:: lz I :5. r. Put 

& = det 

'Ihen 

L IAI :S. (R) -L(L-1)/2 L! TI If. I . 
r j=l J R 

PRCX>F Let F (z) be the detenninant of the L x L matrix 

(f.(r;;~z)) 1 .. r<=>F(l)=&). 
J J_ :5_J,1$_.u 

Since the i';;i S3.tisfy I r;;il s_ r, the functions fj (r;;iz) are holorrorphic in D(R/r) 

and continuous in D(R/r). And since the detenninant is a SlI1l of products of the 
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f. U;;. z)... the detenninant F (z) itself is mlorrorphic in D (R/r) and continuous in J l 

i5 (R/r) . The cla:im then is that F (z) vanishes at 0 with multiplicity at least 

L (L - 1) /2. 'lb see this, put 

K = L(L - 1)/2 

and consider the exr:ansion 

K-l . k k K 
f. (i:;;.z) = E a. (J)i:;;.z + z g .. (z), 

J l k=O K l lJ 

where a. (j) E C and g .. (z) is holorrorphic in D(R/r) and continuous in D(R/r). 
K lJ 

Since the detenninant is linear in its colurrm.s, one can view F (z) as zK t:imes a 

function holonorphic in D (R/r) plus tenns involving the factor 

... 

i.e.' 

where n1 ,n2 , ..• ,nL E z~0 arrl nj E {O,l, ... ,K-1}. The detenninant vanishes i£ 

blD of the nj are ident .ical, ro the nonzero tenns satisfy 

n + n + ·•· + n.. > 0 + 1 + ·•· + (L - 1) L(L - l) l 2 L~ = 2 
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Take now in #4 

T == L(L ..-. 1)/2 

and replace r by 1 and R by· R/r, hence 

I~ I == IF (1) I 

< IFI <- (R)'"'.' L(kl)/2 IFI . 
- 1 - r R/r 

It remains to bound IF lwr· Fran its very definition, the detenninant of a 

L x L matrix is the s.mi of L! products, where each product consists of L entries 

such that for each row and column only one entry is a part of a product. Since 

lz I = R/r => I r;iz I 5. R., for each .column index j, 

Therefore 

L 

!FIR/r 5. L! j~ !fj IR· 

So finally 

6: REMARK The derivatives of F(z) can be calculated via an application 

of the product rule, viz: 

c!>~(z) 

k! 



5. 

The foregoing can be generalized by incorp:Jrating de:tivatives. 

7: THEOREM Let r and R be :r;ositive real numbers subject to 0 < r 5, R, 

let cr1 , ... ,crL be nonnegative integers, let £1 , ... ,fL be entire functions, and let 

r;1 , ... ,r;L belong to th= dis:: lzl ~ r. Put 

Then 

d 0 i A= det{(-d) f.(l;.)) 1 ~ . 1. < L" 
Z J 1 - JI ~- -

R -L(L-1)/2 + cr1 + 
llll < {-) r 

+ crL L 
L! TI 

j=l 

APPENDIX 

max 
1 < i < L 

Sup:r;ose that 1 ::; j ::; pk ( E N) , 1 ~ k ~ l, 1 ~ i :s n -- then 

their ccmron value being 

(i - l)! i-j if i ~ j 
(1-j)!wk 

0 if i < j. 
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§26. ZERO ESTIMATES 

1: LEMMA let P1 , ..• ,Pn be nonzero :i;olynamials in R[X] of degrees --

d1 , ... ,dn and let w1 , ..• ,wn be distinct real numbers -- then 

has at rrost 

n w.x 
F (x) = L: P . (x) e J 

j=l J 

···+d +n-1 n 

real zeros counting :multiplicities. 

'Ib begin with: 

2: SUBLEMMA If a contmuously differentiable function F of a real variable 

x has at least N real zeros countmg :multiplicities (N a positive integer) , tren 

its derivative F' has at least N ...,. 1 real zeros counting :multiplicities. 

PROOF Let x1 , ••• ,xk (k ~ 1) be distinct real zeros of F arranged in increasing 

order: x1 < • • • < xk with n1 the multiplicity of xl' ••. , 11<, the multiplicity of 

~and n1 + • • • + ~ ~ N -- then xi is a zero of F' of :multiplicity ~ ni - 1 

(1 _:: i ~ k). O.Vin:J to Iblle' s theorem, F' has at least one zero in the open interval 

]xi,xi+l [ (1 ~ i ~ k), ro all told, F' has at least 

(n1 - 1) + • · • + (~ - 1) + (k .- 1) 

> N - k + (k - 1) = N - 1 

real zeros counting multiplicities. 

-w x 
Passing to the proof of #1, upon multiplying through by e n , it can be 
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assurn.erl that w = 0 and w. -:f. 0 for j = 1, ... ,n-..1. Put n J 

D = d1 + · • · + dn + n 

and procee::l fran here by :induction on D, matters being clear if D = 1 (sin::e 

n = 1 and d1 = O} ro :in this case tl:Ere are at :rrost D .,. 1 = O real zeros. Suppose 

now that the lEmUa holds if k = 2, ••. ,D...,. 1 and consider the situation at level 

k = D. Take the first derivative of F (x} ; 

Then 

n-1 
F' (x} = L: 

j=l 

d w. P . (x} + dx P . (x} 
J J J 

is a polynJmial of degree d. whereas dxd P (x) is a polynanial of degree d. - 1. J n n 

It therefore follows from the induction hY£X>tresis that F' (x) has at rrost 

d1 +···+d 1 +d -l+n-1 n- n 

=d +···+d +n-2 1 n 

real zeros count:ing multiplicities. let N be a positive integer such that F has 

at least N real zeros COllllting multiplicities, hence by #2, 

N-l5d1 + ·•· +'\i+n-2 

=)> 

N ~ a1 + · · · dn + n - 1. 

3: REMARK let d1 , .•• ,'\i be nonnegative integers arrl let w1 , •.• ,wn be 

distinct real numbers. Fix distinct real numbers x1 , ••. ,~, wh=re 

N = d1 + · · • + dn + n - 1. 
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Then there are polyncrnials Pl' .•. ,l?n in R[X] of degrees d1 , ••• ,<\i such that th= 

functien 

F(x) 
n w.x 

;::::; l: P. (x) e J 
j=l J 

has a simple zero at each :pJint x1 , ... ,~ and no otler zeros. 

[Note: Tllis can be generalized by dropping the requiranent that the x1 , ... , ~ 

be distinct and incor:pJrating multiplicities.] 

4: .N.B. Tffi upper bound in #1 is thus the best i;ossible. 

Tlere is als:::> an est.llnate in tre ca:nplex danain. 

5: LEMMA Iet P1 , ••• ,Pn be nonzero i;olynan.ials in C[X] of degrees d1 , ••• ,dn 

and let wi, ... ,wn be distinct ccmplex numbers. Put 

Tren the number of zeros counting multiplicities of 

n w.z 
F(z)= l: P.(z)eJ 

j=l J 

in the dis:: lz I < R is at IOC>st 

3(d1 + •·· + dn + n - 1) + 4Rn. 

6: NO'm.TION If f (z) is a function holarorphic in D(R,w) and contirmous 

in i5 (R,w) , put 

M(R,w,f) = ~ [f (z) I· 
ZED(R,w) 



4. 

[Note: Write 

M(R,f) 

if w= O.] 

7: NarATION If f (z) is a function mlarorphic m D(R,w) and continuous 

in 5 (R, w) , denote by 

N(r,w,f) 

the number of zeros counting :multiplicities of f (z) in D(R,w). 

[Note: Write 

N (R,f) 

if w= Q.] 

8: RAPPEL (Jensen) Let R > 0, s > 1 -- then 

!sR N(r,w,f) dr = J.:.. !2rr bl( If Cw+ sRe;=r e, l)de - bl( If (w) I>. 
O r 2rr 0 

9: SUBLEMMA. Let R,s,t E R 0, s >" 1, ar:rl let f F o be mlon:orphic in - > 

D((st + s + t)R) and continuous in D((st + s + t)R) -- then 

N(R,f) _< bl~s) bl(M( (st + s + t)R,f)) M(tR,f) • 

PRCX>F ChJore w E D(tR): If (w) I = M(tR,f) (cf. §25, #3) -- then lwl = tR. So 

z E D(R) 

=> I z - w I ~ I z I + lw I 
< R + tR = (1 + t) R 



and 

Next 

Take 

5. 

=> 

e i5 {R) c i5 ((1 + t) R,w) 

z E D((st + s)R,w) 

=> 

lzl = lz -.w+wl 

< lz ..,. wl + lw! 

< (st + s) R + tR = (st + s + t) R 

=~ 

• D( (st + s)R,w) c D( (st + s + t)R). 

1 
N (R, w, f) = fu ( s) 

JsR N(R,w,f) dr 
R r 

< 1 JSR N(r,w,f) dr 
- lri(s) O r 

r-r e 
l [ _!__ 12rr ln( If Cw+ sRe ) I )de] 

= lri(s) 2TI 0 jf (w) I 

z = w + sRe;:::r 8 • 
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Then 

lz ..... wl == .Jw + sRer-r 8- wl 

Therefore 

Spelled out 

N(R,w,f) == IN(R,w,f) I 

:: :en ~s) irr !~TT M(sR,w,ln cJ-1~) I) )de 

== ln~s) M(sR,w,ln(I~~~) I)). 

Finally 

N(R,f) SN( (1 + t)R,w,f) 

since 

i5 (R) c i5 ((1 + t) R,w) • 

And w::>rking in the al::x:>ve with (1 + t) R rather than just R, it follows that 

N((l + t)R,w,f) 

is rnajorized by 

1 ·~ ln(sl M(s;(l + tlR,w,tn(-rftwJrn 
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or still, by 

fu ~s) M ((st + s) R, w, fu (M'(l~! f))) 

which in tum is 

because 

D( (st + s)R,w) c D( (st + s + t)R). 

Accordingly 

( 1 If I N R,f) :'.: fu(s) M((st + s + t)R, fu(M(tR~f) 

< 1 fu(M( (st + s + t)R,f)) 
- fu(s) M(tR,f) • 

Keep to the ootation and assumptions of #5 and set for simplicity 

n 
D =. l:. d. + n. 

j=l J 

FACI' I.et R,y E R>O' y > 1 -- then 

D 
M(yR,F) S ~ = i eRn(y+l)M(R,F). 

·rnu.s technicality is dispensed with in the Appendix to this 91::.. 

With this preparation, let us take up the proof of #5. In the preceding, 

work with tR rather than R, hence 

D 
M(ytR,F) < y - l etRQ(y+l)M(tR,F). 

-. y - 1 



N:>w specialize and take 

Then 

Therefore 

8. 

y = (st + s + t)/t. 

t D 
=st+sY 

t = s (t + 1) 
(st + s + t)D 

t 

t (st + s + t)D-1 (st + s + t) = s (t + 1) t t 

1 (st + ~ + t)D-1 (s(t + l) + t) = s (t + 1) 

= (l + t ) (st + s + t)D-1 
s (t + 1) t 

< (l + ~)(st + ~ + t)D-1. -

M( (st + s + t)R,F) 

=> 

< (l +})(st+~+ t)D-1 e(st + s + 2t):R;1 M(tR,F) 

M( (st + s + t)R,F) 
M(tR,F) 

< (l + 1) (st + s + t)D-1 e (st + s + 2t)Rn 
s t 



9. 

=> 

N(R,F) 1 .fn(M( (st + s + t)RrF)) 
~ Rn (s) M(tR,F) (cf. #9) 

=> 

N(r,F) ~ fu~s) I fu(l + !) + (D - l)fu(st + ~ + t) + (st + s + 2t)M_I 

~ fu~s) [~ + (D - l)fu(st + ~ + t) + (st+ s + 2t)M-, 

Into this relation insert s = 5 and t = ~- 'Ibss the 11111 and note that s 

fu(31) 32 
fu(5) < 2.2 and 5fu(5) < 3.9 

giving 

N(R,F) ~ 3(D ~ 1) + 4RQ, 

the assertion of #5. 

10: N.B. cne can replace the origin by any canplex number wand, upon 

consideration of F(z - w), conclude that still 

N(R,w,F) ~ 3(D - 1) + 4M. 

APPENDIX 

Recall the seeup of #5. Thus, as there, let P 1 , ••• , P n be nonzero :pol ynanials 

in C [X] of degrees d1 , ••• ,dn and let w1 , ... , wn be distinct ccmplex numbers. Put 

and form 

n 
r6 = max{ jw1 j, ••• , !wn I}, D = L: d. + n, 

j=l J 
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n w.z 
F{z) = l: P. {z)e J 

j=l J 

PREFACI' Fix a rx:>int z0 E C -..,.. then 

c I z0 I + l> n 0-1 
IF<zo) I < e ( l: 

k=O 

FACI' Det R,y E R>O' y > 1 -- then 

k I z0 I > max 
j=l, •.. ,D 

D 
M(yR,F) < y - l eRrG(y + l)M(R,F). 

- y - 1 

PRCOF Choose z0 ( lz0 I = y) i 

consider 

G(z) = F (zR) 

max IF (z) [. 
!z !~_-yR 

n w.Rz 
= l: P . (zR) e J 

j=l J 

F(j - l)(O) 
(j - 1) ! 

Then by the above applied to G (hence nCM it is a question of w.R rather than w. 
J J 

and it is also a question of Rn rather than Q) we have 

But 

D-1 k D_ l L: y = _,_Y ___ 

k=O y - 1 

and, thanks to Cauchy's inequality, 

Rj - lF (j - 1) (0) I 
(j - 1) ! . 



Therefore 

max 
j=l, ••• ,D 

11. 

Rj - ~ (j - l) {O) 
(j - 1) ! 

M(yR,F) = max IF(z) I 
lzl::YR 

< max IF{z) I. 
lz!~R 

< YD_ 1 eRfl.(y + l) max IF(z) I 
- y - 1 lzj_sR 

D 
= ~ = t eRfl.(y + l)M(R,F). 

REMARK The estimate figuring in #5 can be sharpened to 

N(R,F) ,S 2(D - 1) +!rut. 
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§27. GELFONV-SCHNEIVER: SETTING THE STAGE 

Recall the claim: 

1: THEOREM If a -:/- 0, 1 is algebraic and if B ¢ Q is algebraic, then a B 

is transcendental. 

[Note: Here aB is the principal :tXJWer (cf. §23, #14) : 

:Methcrlology: AsSl.lrne that a":/ 0,1 is algebraic, that B is algebraic, and 

that a 8 is algebraic -- then the theorem will follow if it can be shown that 

B E Q. 

and 

2: NOTATION Given a i::ositive 00.d integer N > > O, put 

L = N8 ' s = !.(N4 - 1) I 2 

6 L = N - 1 0 

2 L1 =N -1. 

[N:>te: Restricting N to be 00.d guarantees that S is an integer. ] 

3: LEMMA 

L = (LO+ 1) (Ll + 1) = (2S + 1) 2. 

PROOF 

=> (LO+ 1) (11_ + 1) = N8• 
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And 

D.Iring the ensuing analysis, there will emerge a positive absolute constant c. 

·s: · N.B. · 'lherefore 

~ L(L) + L(L) = 2L2• 

• Choose an ordering of the integral pairs (sl's2) with !s1 ! < S and 

!s2 ! ~ S, i.e., (s1,s2) E z2 and - 5 ~ s1,s2 ~ S. 

[Note: There are S + (S + 1) choices for s1 and S + (S + 1) choices for s2, 

hence there are all told 
2 (2S + 1) x (2S + 1) = (28 + 1) = L 

• Choose an ordering of the integral pairs 

[Note: There are L0 + 1 choices for u and L1 + 1 choices for v, hence there 

are all told 

(LO + 1) (Ll + 1) = L (= (2S + 1) 2) 
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choices for (u,v) .] 

6: NOI'ATION Introduce a L x L ma.trix M via the prescription 

( . ) s1 {i) + s2 (i) B ( . ) 
M = ((s1 (i) + s2 (i)S)u J (a )v J) 

and let 

!:J. = det(M). 

[Note: j is the colurm. index and i is the row index.] 

7: N.B. The orderings for the colurm.s and rows has not been explicated 

rut a change in these orderings simply changes ma.tters by a factor ± 1, which 

has no effect on the absolute value ! !:J. ! of !:J.. 

Ief ine a function of one canplex variable z by 

and p.it 

f.(z)=zu(j)av(j)z (l~j~L) 
J 

8 : SUBLEMMA .v complex numbers z1 , z2 , 

PRCXJF For by definition, 

~v(j)z = exp(v(j)z IDg a). 
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choices for (u,v).] 

6: NOI'ATICN Intrcxluce a L x L matrix M via the prescription 

( . ) s1 (i) + s 2 (i) 6 ( . ) 
M = ((s1 Ci) + s2 (i)6)u J (a )v J) 

and let 

Ii = det(M). 

[Note: j is the column index and i is the row index. ] 

7: N.B. The orderings for the columns and rows has not been explicated 

rut a change in these orderings simply changes matters by a factor ± 1, which 

has no effect on the absolute value I ti I of ti. 

Define a fl.IDction of one canplex variable z by 

and µ.it 

f. (z) = zu(j)av(j)z (1 ~ j ~ L) 
J 

9: LEMMA V R ~ R>O' 

PRCDF For by definition, 

~v(j)z = exp(v(j)z Log a). 
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Therefore 

hl(M(R,fj)) ~ u(j)bl(R) + v(j)RjI.og aj 

10: RAPPEL In the notation of §25, #5, 

-L(L - 1)/2 L 
1~1 < <:> L! j~ jfj IR· 

[Note: The symbols If . IR and M (R, f . ) mean one and the same thing. ] 
J J 

In the case at hand, 

6. = det (f. ( c;;.)) , 
J 1 

thus the foregoing generality is applicable. 

• Take r = S (1 + I S I ) and note that 

~ s +sis!= sc1 + IBI>· 

2 • Take R = e r and note that 

-L(L - 1)/2 2 -L(L - 1)/2 
(R) = (e r) 
r r 

= e -L(L - 1). 

11: LEMMA 

-L(L - 1) L Its! < e L! 1T M(R,f .) , 
.... j=l J 
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where 

12: LEMMA 

PROJF Starting with #11, 

L 
£nCl~I) ~ - L(L - 1) + £n(L~) + L ln(M(R,f .)) 

j=l J 

< - L2 + L + Lln {L) + L max .en (M(R,f.)) 
- l~j~L J 

2 = LLo.en<e S(L + !Bf>> 

= LL0 c.ence2> + .encs> + .enc1 + Isl>> 

• LLlRjIDg al 

= LL1e2S(l + !Bl> IIDg al 

= e2 (1 + Isl> IIDg·_etlLL1S 
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Therefore 

the p::>sitive absolute constant c4 being independent of N > > O. Take now C ~ 4c4 

and unravel the data: 

(cf. #5) 

thereby canpleting the proof. 

13: LEMMA 

if ~ ~ o. 
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·14: N.B. Granted this, we have a contradiction; 

conclusion is that 

fj_ = det(M) = 0. 

1 1 
3 ~ 2· Thus the 

Bearing in mind that for #13, b. t- 0, fix T E N such that Ta, TB, and Ta.B 

are algebraic integers (recall that V x E Q, D is a nonzero ideal of z (cf. §14)) x 

LO + 2LlS 
then T times any element of the matrix M ·is an algebraic integer. More-

over the algebraic integer 

is a zero of a m::::>nic :r;:olynornial of degree d, where d is at rrost the product of the 

~ degrees of the minimal :r;:ol ynanials of a, ~, and a • 

15: SUBLEMMA 

{Note: The muse of an algebraic number x t- O is, by definition, the maximum 

of the absolute values of x and its conjugates (see the Appendix to §l4, in par-

ticular the result follillllated there, to be used infra).] 

On the other hand, 

hence 
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=> 

-dL L ~LS -dL LS 
x (1 + H(~) O (1 + H(a)) (1 + H(a~) l 

.enc I fl I> 2: - dL CL0 + 2L1 s> .en CT> - dLln CL> - dL0Lln cs> 

- dLOLln(l + H((3)) - d1l_LSln(1 + H(a)) - dLlLSfu(l + H(as)) 

=> 

=> 

the positive absolute constant IS being iridependent of N > > 0. Take now C :::_ 6IS -
then 

> !_ (- 2L2) (cf. #5) - 6 

the assertion of #13. 
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§28. GELFONV-SCHNEIVER: EXECUTION 

Under the assumption that a ~ 0,1 is algebraic, that f3 is algebraic, and 

that a 8 is algebraic, the central conclusion of §27 is that 

11 = det (f . ( z;; . )) = 0, 
J 1 

the goal being to show that B E Q. 

Proceeding, assrrne m:::mentarily that a,S,a8 E Q n R (a> 0), hence all data 

is real and the columns of the matrix (fj(z;;i)) are linearly dependent over R, 

thus there exist real numbers b1 , ••• ,bL not all zero such that 

But 

so 

or still, 

Introduce 

where t.~ R, and consider 

L 
l: b.f. (l;;.) = 0 

j=l J J 1 
(1 ~ i ~ L). 

(') v(j)z;;. 
f . ( z;; . ) = z;;l:! J a 1 , 

J 1 1 

L ( . ) v (j )z;;. 
L: b. z;;'I:! J a 1 = O 

j=l J 1 
(1 ~ i ~ L) 

vl;;. 
1 = o. 
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Since 

it follows that each of the L values of l;;. is a zero of 
]_ 

Ll wt 
A(t) = E av(t)e v • 

v=O 

At this point, #1 of §26 is applicable: 

• '!he degree of a (t) is < L0. v -

• '!he w are distinct real numbers. v 

• '!he sum defining A(t) consists of L1 + 1 polynanials. 

Accordingly A(t) has at nost 

real zeros counting multiplicities. And: 

= (L0 + 1) CLi + 1) - 1 

=L-1 (cf. ~27, #3) 

~ 

< L. 

Consequently two of the l;;. ImlSt be the same, so 
]_ 

for sane i,i' with 1 ~ i < i' < L. However, since the pairs (s1 (i) ,s2 (i)} and 
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(s1 (i'),s2 (i')) are distinct, either 

or 

In any event, S is rational. . • • 

'lb discuss the general case, it is necessary to elaborate on what has been 

said in §27. 

Step 1: Redefine S and replace} (N4 - 1) by 2N4 - then 

s 4 s2 8 z = N => T = N = L. 

And 

(2S + 1) 2 = 4s2 + 4S + 1 

> 16N8 = 16L > L. 

Step 2: Define the (2S + 1) 2 x L matrix M as in §27 and note that all 

the L x L sul:matrices of M have determinant zero, as can be gleaned fran the 

argumentation used there. 

Step 3: The columns of the matrix M are linearly dependent over C, 

thus there exist canplex m.nnbers b1 , ••. , hr, not all zero such that 

L 
L b.f. (r; . .) = 0 (i e {l, •.• , (2S + 1) 2}). 

j=l J J I 
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Step 4: Intrcx:luce as before 

and observe that 

Ow:ing to §26, #5, 

A(t) 

A(1:;.) = 0 (i ~ {l, ... ,(2S + 1)
2

}). 
1 

N(R,A) ~ 3(D - 1) + 4Rn 

or better, its fuiprovement 

N (R,A) < 2 (D - 1) + i_ AA 
TI ' 

as noted in the Appendix to §26. Here 

D ~ L0 (11_ + 1) + (Ll + 1) = L. 

And 

where a priori Bis canplex and ls1 1,ls2 1 ::: S, the choice 

R = S(l + I Bl) 

ensures that the disc of radius R centered at the origin contains all the points 

1:; . • In addition 
1 

Therefore 

Q= · max lw I = max v v=O I ••• 'Ll v=O ' ... I Ll 

N(R,A) $ 2(L - 1) + ~ S(l + lsl>1J. II.og al 
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or still, 

where 

But: 

N(R,A) ~ 2(L - 1) + KSL1 , 

K = ! (1 + IS I) [Log a [. 

82 - 82 
e 2 (L - 1) < 2L = 2 (4) - 2 

=> 

< N8 (N > > O) 

82 82 
N(R,A) < 2 + 4 

= l s2 < (2S + 1) 2• 4 

Since A admits (2S + 1) 2 zeros z;. , br.o of than must be the same, forcing in the 
1 

end the rationality of 8. 
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§29. THE SCHNEIVER-LANG CRITERION 

Fix an algebraic number field K. 

[Note: Therefore K is a subfield of C which, when considered as a vector 

space over Q, is finite dimensional, denoted [K:Q] and called the degree of K 

over Q.] 

1: THEOREM Let f 1 ,f2 be entire functions of finite strict orders 

::: 81 , ~ ~· .Assume: f 1 ,f2 are algebraically inde:pendent over C and that the 

derivatives ! f 1 , d~ f 2 belong to the ring K[f1 ,f2J (i.e., can be written as 

is finite. 

'Ihere are two "canonical" examples that illustrate this criterion. 

2: APPLICA.TION Schneider-Lang => Hennite-Lindernann 

I.e.: If a is a nonzero algebraic number, then ea is transcendental (cf. §21, 

#4). 

[suppose instead that eCJ. is algebraic, let K = QCa,ea), and take f 1 (z) = 

z (P1 = 0), f 2 (z) = ez (f'.2 = 1) (which are algebraically independent over C (cf. §20, 

#18)). Since it is clear that 

d d z dz z, dz e E K[f1 (z) ,f2 (z)], 



2. 

the assumptions of #1 are satisfied. en the other hand, :v n E N, 

na f 1 (na) = na E K, f 2 (na) = e E K, 

an infinite set of conditions, fran which a contradiction.] 

3: APPLICATION Schneider-rang=> Gelfond-Schneider 

I.e. : If a -::/ 0, 1 is algebraic and if S E Q is algebraic, then a S is trans-

cendental (cf. §24, #1). 

[Suppose instead that aS is algebraic, let K = Q(a,S,a8), and take f 1 (z) = ez 

Sz (P1 =1), f 2 (z) = e (P2 = 1) -- then f 1 (z),f2 (z) are algebraically independent 

over C (8 ~ Q) (cf. §20, #26). M:>reover 

so K[f1 (z),f2 (z)] is closed under differentiation, thus in view of #1 there are 

but finitely many points w E C such that f 1 (w) E K and f 2 (w) E K. But for all 

k = 1,2, ••• , 

an infinite set of conditions, fran which a contradiction.] 

4: REMARK The objective is to show that the set S figuring in #1 is finite. 

In fact, it will turn out that the cardinality of S is bounded by 

As for the proof, we shall not provide all the details but will say enough to 



3. 

render the whole affair believable. 

I.et N > > 0 be a positive integer. 

5: NOI'ATION Put 

Ri (= Ri (N)) 

and 

~(= ~(N)) 

6: N.B. 

P2 pl 
P + P I P + P 

Ri~ ~ N 1 2 (bl(N))l 2 N 1 2 (bl(N))l/2 

= Nbl(N). 

Therefore 

(Ri + 1) (~ + 1) ::::_ Nfu(N). 

[Note: If C E R>O, then 

Nfu (N) + CN ~ 2Nfu (N) 

provided N is large enough: 

N 1 
N > > 0 => Nfu(N) < c·l 

I.et w1, ••• ,wr be elements of s. 

7: SUBLEMMA There exists a nonzero polynanial PN E z [Xl'iS] whose degree 



4. 

w. r. t x1 is ~ f1_ and whose degree w .r. t. ~ is ~ ~ such that the function 

has the property that 

cf1 - FN(w.) = 0 
dzn J 

(n = O, .•• ,N - 1: j = l, ••• ,r). 

{Note: Explicated, there are integers 

with 

11. 
F = L: 

N A =O 
1 

M:>reover 

Bearing in mind that, by assumption, f 1 (z),f2 (z) are algebraically independent 

over c, let M be the srna.llest positive integer with the property that for sane 

8; N. B. yN E; K is an algebraic number. In addition 



s. 

1 _::: j _::: r 

0 _::: m _::: M - 1, 

hence N < M. 

9: NCY.rATION Put 

1 

Ultimately, all relevant data depends on N > > O. This said, choose N > > 0 

so as to force M > > 0: 

B.lt 

lwjl < ~ (j = l, .•• ,r). 

10: LEMMA If !zl = R, then V j = l, ... ,r, 

PIOJF 

=> 

lw·I J 

1 2 
lz - w. I ~ R • 

J 

lz - wjl > llzl-lw·ll J 

1 = ~, R--~,w-j ,~, . 

R >--2 



'Ihe function 

is entire and 

6. 

R R 
=> R - lwj I > R - 2 = 2 

1 2 
=> !R - lwj 11 < R · 

r 
G_( ) F ( ) TI (z - w.)- M ~z =NZ . _ J 

J=l 

M y 'l<T = M! G _ (w. ) Tf I (w. - w. ) . 
.lo" ~ Jo ·-t · Jo J JrJo 

'lb estimate !YNI, write 

• M! < rJ1 
• 1T lw. - w. IM = d'1 (C E R 0) 

·-t· Jo J > Jr Jo 

=> 

r - M 2 M 
sup Tf lz - wJ. j ~ (R)r 

!zl = R j=l 

• 
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< 

A.l A.2 
~ (11_ + 1) (~ + 1) max le;... ,A. I !f1 f 2 I R 

t..1 ,~ 1 2 

< (11_ + 1) (~ + 1) e3 [K:Q]rNC!f1 !R + 1)11_Clf2 1R + l)~ 

• !z I < R => 

=> 

The next step is to use these rnajorants and derive an estimate for fu(!YNI>. 

F.ACI' For N > > 0, 

11: LEMMA let x E K be a nonzero algebraic number -- then 

,enqxp + [K:Q]fn(dx) + ([K;QJ - l)fn(H(x)) :::_ 0. 



8. 

[Here d is the dena:ninator of x and H(x) is the house of x (cf. §14) .] x 

Take x = yN in #11. 

Therefore 

or still, 

or still, 

fn(jyNj) + [K:Q]M(Rn(M))l/2 

+ ([K:Q] - 1) (Mbl(M) + M(Rn(M))l/2) 

> 0 

+ [K:Q]M(fn(M))l/2 

+ ( [K: Q] - 1) (Men (M) + M(fn (M) l/2) 

> 0 

([K:QJ - r )Mfu(M) + M(ln(M)) 3/ 4 
"1 + (32 

+ [K:QJM(ln(M))l/2 

+ [K: Q] M (bl (M) l/2} - M (bl (M) l/2) 

> 0 



or still, 

or still, 

or still, 

or still, 

or still, 

9. 

([K:Q] - r )Mfp(M) + M(fp(M)) 3/ 4 
Pi.+ ~ 

+ (2[K:Q] - l)M(fp(M))l/2 

> 0 

( [K:Q] - p ~ p )Mb'l(M) 
1 2 

> - M(b:l(M) 3/ 4 - (2[K:Q] - l)M(b:l(M))l/2 

~ M(bl(M)) 3/ 4 + (2[K:Q] - l)M(bl(M))l/2 

( ~ - [K: Q]) Rn (M) 
pl ~2 

< (fu(M)) 3/ 4 + (2[K:Q] - 1) (fu{M))l/2 

( r - [K:Q]) < (fu(M))- l/4 + (2[K:Q] - 1) (fu(M))- l/2• 
~l + P2 

But N + co => M > co, hence 

=> 

r --- - [K:Q] < 0 
P1 + f'2 

r ---< fK~~] 
1'1 + f:l2 -
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=> 

fran which the claimed bound on S (cf. #4). 

z 12: EXAMPLE Take K = Q, f 1 (z) = z, f 2 (z) = e -- then 

w S = {w E C:w,e E Q}. 

But 

w E Q (w t- O) => ew E 1> (cf. §9, #1) , 

so S = { O}, a set of cardinality 1. On the other hand, 

thus ill this case, the estimate 

is the best J?OSsible. 

APPENVIX 

We shall illdicate the derivation of the estimate 

First of all, the tenn 

M(b:l(M))3/4 

results fran the discussion of IFNI R' hence can be set aside. As for 

r 
(1 - + )Mfu(M) r 

P1 P2 
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note that 

• fu (M! ) ~ Mfu (M) 

• fu (d1) ~ Mfu (C) 

• fu(2)rM 
R 

rM 

= Mrfu(2) - p ~ p Mfu(M). 
1 2 

cne Illl.lSt then add these tenns. But since N > > 0 => M > > 0, one can ignore 

leaving 

Mfn(C) and .Mrln(2), 

Mln(M) - p ~ p .Mfn(M) 
1 2 

= (1 - ~ p ).Mtn(M). 
pl 2 
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§30. SCHNEIVER-LANG CRITERIA 

There are extensions and variants of the Schneider-Lang criterion (cf. §29, 

#1), e.g., work with rrerarorphic functions (i.e., quotients of two entire functions) 

or raise the variables fran 1 to n (i.e., replace e by C1). 
Fix an algebraic number field K. 

1: RAPPEL A meranorphic function is said to be of finite strict order 

< p if it is the quotient of two entire functions each of finite strict order < P· 

2: THEOREM Let f 1 ,f2 , ••• ,fn (n :::, 2) be merarorphic functions such that 

f 1 ,f2 are of finite strict orders S p1 , S p2• A.ssume: fl'f2 are algebraically 

independent over C and that the derivative! maps the ring K[fl'f2 , ••• ,fn] into 

itself -- then the set s of w E C 'Which are not among the singularities of 

f1 ,f2 , ... ,fn but such that 

fi(w) EK (1 s i 5 n) 

is finite and in fact the cardinality of s is rounderl by 

(pl + ~2) [K:Q]. 

[The argument is a straight forward extension of that usErl to establish the 

Schneider-rang criterion. Thus let w1 , ••• ,wr be elanents of s which are not arrong 

the singularities of f 1 ,f2 , •.• ,fn but such that 

fi(wj) EK (1 $ i 5 n; 1 < j s r). 

Choose entire functions g1 ,g2 of finite strict orders 5 pl' < p2 with the property 



2. 

(1 :: j < r) 

(1 5 j ~ r). 

Define FN as in §.29, #7 and fonn 

an entire function admitting w1 , ... ,wr as zeros of order at least equal to M. Put 

~ ~ r -M 
~(z) = g1 {z) g2 (z) FN(z) TT (z - wJ.) , 

j=l 

take R as in §29, #9, and note that 

-~ -~ 
yN = M! G _ (w. ) g1 (w. ) g2 (w. ) TT 

~ Jo Jo Jo ·~· Jr Jo 
( ) M w. - w. • 

Jo J 

Procee:l fran this point as before.] 

'Ihere are also versions of Sclmeider-Iang where C is replaced by ~-

'lb set matters up, fix an algebraic number field Kand suppose that f 1 , ..• ,fm 

are entire functions of the canplex variables z1 , ••• ,z with m > n + 1. AsSUTIE: n -

f 1 , ••. ,fn+l are algebraically independent over C of finite strict orders_: p1 , ••• , 

~ Pn+l and that the partial derivatives a;. (1 ~ i ~ n) map the ring K[f1 , ••. ,fm] 
1 

into itself. Denote by s the set of w E en such that 



3. 

3: REMARK It can be shown that s is contained in an algebraic hyper-

surface of degree at most 

n ( Pi_ + • · · + %+ l) [Ki Q] • 

[Note: '!his means that s is the set of zeros of a nonzero :polynanial in 

e[Xi_, ••• ,~], its degree being the rnininru:m of the degrees of the nonzero poly-

nanials which annihilate S. ] 

4 : THEOREM Let e 1 , ••• , en be a basis for cf1' over e and let s1 , ••• , Sn be 

subsets of e. suppose further that 

'lhen 

min card S. ~ n(pl + ·•· + p +l) [K:Q]. 
1 . i n <1<n 

[Note: Take n = 1 to recover the Schneider-rang criterion.] 

5: N .B. TherefoI:!e the set s cannot contain a product s1 x · · • x Sn, 

where each s. is infinite. 
l 

Let r be an additive sutgroup of en which contains a basis for en over c --
then the points of r are linearly independent over the canplex numbers and this 

allows one to change coordinates so as to render r a product: 

r ~ s x ••. x s 
~ 1 n· 
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Consider the values 

where 

'Ihen the set s cannot contain r (cf. #5). 

6: EXAMPLE It is shown in §31, #13 that 

r 1 1 ax = !.. <ln c2) + .2'....) 
O 1 + x3 3 /3 

is transcendental. Here is another approa.ch. suppose that 

is algebraic -- then 

~ (fu(2) + ~) 
13 

a = 3 /3 A · ~ (ln(2) + -2!_) 
13 

= /3 r-r fu(2) + 3r-I 'IT 

is algebraic. Work in c2 with the functions 

and let K = Q(/3 r-1,a). Denote by f the additive subgroup of C2 generated by 

the points 

u = (3'IT r-1, ln(2)), v = (-3 ln(2), 3'IT 1-1) 

=> r = Zu + Zv. 



5. 

'Ihen these p:::>ints are linearly independent over C since their detenninant 

3TI r-I fu (2) 

= - 9TI2 + 3(fu(2)) 2 ~ 0. 

- 3fu (2) 3TI r-I 

'Ihe claim nCM is that S c r, a contradiction. It is trivial that 

'As for f 3, we have 

and 

f 3 (3TI r-1, fu (2)) = 3TI r-I + /3 r-I fu (2) 

= /3 r-I fu (2) + 3ATI 

=a 

f3 (- 3fu(2), 3TI r-I) = - 3fu(2) + /3 A 3TIA 

= - 3fu(2) - 3/3TI. 

By construction, /3 A EK. With this in mind, consider 

or still, 

13 A (- 3fu(2) - 313TI) 

= - 3 <13 Afu(2) + 3An) 

= - 3a 

- 3fu(2) - 3/3TI = - 3 a 
13 r-r 

E K. 



6. 

7: NOI'ATICN Given 

. n . 
in C , write 

'ZM=zw +···+zw. - 11 nn 

I.Bt d0 , d1 , and n be integers with 

8: N.B. The role of m above is playErl at this juncture by 

d = d0 + d1 > n => n + 1 ~ d. 

I.Bt x 1 , ... ,~ be Q-linearly independent elements of Qn and let y1 , ... r:in, 
1 

be a basis for ~over C. Write 

y. = (y1 ., ••• , y . ) (1 ~ j ~ n) -J J IlJ 

and call r the additive suh]roup of~ generatErl by they .• -J 

9: THEDREM At least one of the follCMi.ng numbers 

is transcendental. 

P:OOOF Consider the functions 



7 . 

The condition on the "finite strict orders" is certainly satisfied and since 

~l' . .. ,~ are linearly independent (Ner 0, the functions f 1 , . .. ,fd are 
1 

algebraically independent over the field 0 (z1 , . . . , zn) • M::>reover 

and 

_a_ f = ~J· = 
azj h 

lifh=j 

_a_ fd • = X • • fd • (1 <_ i <_ dl) t 
azj o+i Jl. o+i 

where ?!_i = (xli' . . . •>)u) (1 < i ~ a1) . 'nlerefore the partial derivative require-

ment is satisfied. Now let K be the field generated over 0 by the (d0 + 2d1)n 

numbers 

X • • t fh (y •) = yh • t fd • (y •) 
Jl. -J J o+i -J 

the range of the ~ters being 

x.y. 
-l. J = e , 

To arrive at a contradiction, assure that these nurrbers are algebraic, hence 

that K is an algebraic number field. Take a typical µ:>int 

on r - then 

f 1 (Y) E K, . . . ,fd(Y) EK. 

I.e. : r c S, an impossibil ity (cf . supra) . Acoordingly the supposition that K 



is an algebraic number field is false. 

8. 

Since the x. . are algebraic (by hypothesis) , 
Jl. 

it follows that at least one of the follCMi.ng numbers 

is transcendental. 

10: APPLICATION Take d0 = O, so d = d1 > n (fo:rrnally, this just means 

to ignore in the above anything involving d0), hence Y:nj is no longer part of the 

theory and the conclusion is that at least one of the 

x.y. 
e -l.'-J (1 s. i ~ d, 1 ~ j < n) 

is transcendental, hence at least one of the 

x.y. (1 5 i ~ d, 1 ~- j ~ n) -1.:--J ' 

does not belong to L. 

[Note: It suffices for the analysis that the set {y1 , ... ,¥Q_} contain a 

basis for cf1- over C. ] 

11: EXAMPLE Iet A1 ,t-2 ,;..,3 be elements of L and assume that 

Then 
3 3 

1, /I, 14 

belong to Q and VJe claim that 
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3 3 
To see this, start by multiplying the given relation by v2 and /tr: 

3 3 3 3 
2 A3 + v2 Al + /.f A2 = O and 2 ~ + 2 v2 A3 + /.f Al = O. 

Put 
3 3 

x = -1 (1,0), ~ = (0,1), x 3 ::::, (/2 , /.f) 

Here d = 3, n = 2 and 

~1Y1 = A2' Xll_2 = Al' ~1X.3 = 2A3' 

~2yl = >.3 , ~2X.2 = A.2, ~2y3 = Al' 

x y = --3-1 :\l' ~3Y2 = - 2:\3, ~3y3 = - 2A2· 

2 has rank 2, thus {x_1 ,~,y3 } contains a basis for C over c. Therefore this data 

realizes the setup of #10, hence at least one of the 

does not belong to L, an impossibility. Since the supposition that Al -=!- 0, 

A
2 

f O, 1,
3 

f 0 has led to a contradiction, at least one of A1 ,1,2 ,A3 is 0, say 



Obviously 

10~ 

~ = 0 7> A.3 = O 

A.3 = 0 => A:2 = o. 

If ru:M lx>th. >.z and A.3 are nonzero, then on general groonds {cf. §24, #10), the 

ratio A.2/A.3 is either rational or transcendental. But ~/A.3 is not rational but 

is algebraic. • . . 

12: APPLICATION Take do= 1, dl == n {=> d == l + n). Work this t:ime 

with ~1' ••• ,~ Q-linearly independent elarents of Qn and yl' •.. ,~ a basis for 

r!1 over c. Write 

y. = {y1 ., ••• ,y . ) {l ::: j ~ n) 
-J J IlJ 

and asSUIIE that the numbers 

y1 . (1 < j < n} (h = 1) 
J -

are algebraic -- then the conclusion is that at least one of the 

x.;s 
e-:-i (1 ~ i $ n, 1 ~ j ~ n) 

is transcendental, hence at least one of the 

xj y j {l ~ i ~ n, 1 ~ j < n) 

does not belong to Lw 

[Note: 'lhl.s is a literal transcription of #9 to the current setting. For 

later use, observe that the symbol d does not appear in any of the fornntl.as. 

Because of this, one can replace n by d thru out, so now at I.east one of the 

xiyj (1 ::: i ~ d, 1 ~ j < d) 

does not belong to L. ] 



1. 

§31. BAKER: STATEMENT 

1: NO'rn.TION Put 

or still, 

L = exp-1 c(r). 

2: LEMMA L is a Q-vector space. 

3: LEMMAQ n L = {O} (cf. §21, #4). 

4: N.B. 'l'herefore every nonzero element of L is transcendental. 

5: THEOREM '!he following assertions are equivalent. 

• If a is a nonzero algebraic number, then ea is transcendental (Hennite-

Lindemann) • 

• If A. E L is nonzero, then l,A. are Q-linearly independent. 

• If a is a nonzero canplex number, then at least one of the ~ m.mlbers 

a,ea is transcendental. 

6: THFDREM 'l'he following assertions are ~ivalent. 

e If a ~ 0,1 is algebraic and if 8 ~ Q is algebraic, then a8 is trans-

cendental (Gelfand-Schneider). 

• If A.1 E L, A.2 E L are nonzero and Q-linearly independent, then A.1 ,A.2 

are Q-linearly independent. 

• If a,b are nonzero canplex numbers with a ft Q, then at least one of 

the three mnnbers a, eb, eab is transcendental. 



2. 

7: REMARK L is not a Q-vector space. 

Items 5 and 6 serve to JIDtivate the central result 'Which is due to Baker. 

8: THEOREM If Ai_ E L, ••• , 'n E L are nonzero and Q-1.inearly independent, 

then 1, \, .•. , \i are Q-linearly independent. 

9: N .B. This is the so-called. "inhanogeneous case". Dropping the "l" 

gives the "harog-eneous case". I.e.: If t.1 E L, ••• , \i E L are nonzero and 

Q-linearly .independent, then A.1 , •.. , \i are Q-1.inearly independent. 

We shall postpone the proof of #8 until §33 and simply assurre its validity 

for the renainder of this §. 

10: SCHOLIUM If t..1 E L, ••• , \i E L are nonzero and Q-linearly independent, 

then 

B +BA. +···+BA. 'IO 0 11 n n 

for every tuple (B0,s1 , ••. ,Sn) of algebraic numbers different fran (0,0, .•• ,0). 

11: LEMMA Every nonzero l.inear canb.ination 

SA. +···+BA. 11 nn (>.1 E L, • •• , \i E L) 

with algebraic coefficients is transcendental. 

PRX>F Argue by induction on n, starting with n = 1, the validity in this 

case be.ing ensured. by #4. Proceed.ing, suppose first that A.l' ••• , ~ are nonzero 

and Q-1.inearly .independent and suppose that 



3. 

is algebraic, hence 

B + R_)... + ••• + s. A = 0 O ~i 1 n·h 

=> 

B1 = O, ••• ,f3n = O, 

contradicting the assumption that 

If now instead there exist rationals q1 , ••• ,CI:ri. such that 

with CI:ri. 'I O, then 

= q 13 /... + • • • + q B. /... - a (q /... + • • • + a 'A ) n·l l n·n n '"'n 11 -n·n 

a number 'Which, by the induction hypothesis, is transcendental. 

12: APPLICATION If ci,,(3. are nonzero algebraic numbers, then 

Bn + Log ex. 

is transcendental. 

[In #11, take 

A, ' 1 
(e = 1) '· ;...2 = Log ex. 



4. 

Then 

r-r [3(27f ;-:n + c- 2)IDg a 
is transcendental, i.e. , 

- [327f + (- 2)1Dg a 

is transcendental, i.e., 

- } (- [327f + (- 2)IDg a) 

is transcendental, L.e., 

[3TI + IDg Cl 

is transcendental. 

[Note: Take a= 1, B. = 1 and conclude that TI is transcendental (cf. §19, 

# 1) • On the other hand, if a 'I- 1, then IDg a is transcendental (cf. #4) • ] 

13 : EXAMPLE Put 

Then 

is transcendental. 

I = ?;; 1 3 dx. 0 1 + x 

I = ~ (fu (2) + ...:!!...) 
13 

14: LEMMA If a1 , .•. ,an and S0 ,[31 , •.. ,[3n are nonzero algebraic numbers, then 

(principal powers) 

is transcendental. 

PROOF Suppose that 



5. 

were algebraic. Take IDg' s -- then for sane k E z, 

= S0 + Si IDg a1 + • • • + ~ IDg ~ + 2n ;.:r k (cf. §23, #5). 

But 

IDg -1 = ln( 1-11) + 7T;=r 

= 7T ;:r. 
Therefore 

IDg ~+ 1 = Bo + f31 IDg a1 + . . • + 6n IDg ~ + 2k IDg -1. 

or still, 

s1 IDg a1 + • • • + 6n IDg ~ + 2k IDg -1 - IDg ~+ 1 = - s0• 

But the RHS is algebraic and nonzero, thus so is the IBS, which contradicts #ll. 

15: EXAMPLE ey2" 2/3 is transcendental. 

16: EXAMPLE Consider 

7Ta + f3 -e (a,f3 e Q, at O, f3 t 0). 

Then 

In the preceding, take 

Then 
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is transcendental. 

[Note: Take a = 2 r-I and conclude that es is transcendental (cf. §21, #4) .] 

17: LEMIY1A If a1 'I 0, 1, ••• , an 'I 0, 1 are algebraic numbers and if Bl' .•• , Sn 

are algebraic numbers with 1, Bl' •.. , Sn Q~linearly inde:pendent, then 

Sn 
a (principal powers) n 

is transcendental. 

P:OOOF Suppose that 

were algebraic. write 

Sl log a.l + · · • + Sn log a.n 
= e 

if 

fl.=13 loga +···+13 I.oga. 1 1 n n 

Then 

fl. e = an+ 1 => fl. E L. 

Put 

to get 



7. 

On the other hand, thanks to the assumption that l,S1, ••• ,.Sn are Q-linearly 

independent, the entity 

B \ + ••• + B \ + 1(- \ ) 1 1 ·n n n+l 

is nonzero (cf. §32, #3 (ii)). Contradiction. 

18: REMARK Consider Gelfond-Schneider (cf. #6). Here a.(3. = eS IDg a. 

is the principal :i:;:ower. Pass to its kth associate: 

and write 

2kn A S n (2k A S) e = e 

= (- l)- 1=1(2k r-I S) (cf. #16) 

'Iheref ore 

is transcendental. 

APPENVIX 

For the record, 

eI.i:Y:J z = z 

but 

TrvT z -
~ e = z (nod 2Tf r-1) . 

EXAMPLE Consider a. B -- then ::i k E Z: 



8. 

= s IDg a + 21T A k 

and 

(:3 Trv1' a + 2TI r-r k s T.l"'V'I' a 2TI r-r k 
e~ =e"'-"-":j e 



1. 

§32. EQUIVALENCES 

In this §, we shall fonrrulate various statements that are equivalent to 

i.nhorrogeneaus B:tker or hanogeneous B:tker. 

J,: THEOREM The following assertions are equivalent. 

(i) If A.1 =E L, ••• , >n E L are nonzero and Q-linearly independent, then 

1, A.1 , ••• , >n are Q-linear 1 y independent ( inha:nogeneaus Baker) • 

(ii) If A.1 E L, ••• ,\i-l E Lare nonzero and Q-linearly independent and 

if s0, B1, ••• ,Bn-l are algebraic numbers such that 

is an element of L, then Bo= 0 and s1 , ••• ,Bn-l are rational. 

(iii) If Al E L, ••• ,\i-l EL are nonzero and Q-linearly independent and 

if Bo' s.1 , ••• ,Bn-l are algebraic numbers such that 

Bo+ B1A1 + ••• + Sn-1>n-1 

is an element of L, then s0 = O and s1, ••• , Bn-l are Q-linearly dependent. 

The proof proceeds according to the scheme: 

(ii) =<> (iii) , (i) => (ii) , (iii) => (i) • 

(ii)=> (iii): Obvious. 

(i) => (ii): Fix the data per the assumption: 

So + 81 A.l + ••• + 8n-1A.n-l E L. 
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Then there exists ~ E L: 

Therefore 1, A1 , .•. ,~ are Q-linearly dependent. But A1 , .•• ,~-l are Q-linearly 

:independent, so by (i), there are rational numbers q1 , ... '~-l not all zero such 

that 

hence 

or still, 

Finally, appealing to (i) once again, it follo.vs that Bo = O and Bi = qi 

(1 ~ i ~ n-1), thus B1 , ... ,Bn-l are rational. 

(iii) => (i): Denote by l'(L) the set of finite nonempty subsets S of L 

subject to: 

1. The elements of S are Q-linearly independent. 

2. The elerrents of S U {l} are Q-linearly dependent. 

Then the claim is that l"(L) = f1, which will do it. Suppose instead that P(L) -F ~ --

then 

n = inf{card S:S E P(L)} 

is > 1. Fix an element S = {)..l' ••• ,\n} E p(L) at which the inf is attainerl --

then the \. (1 < i < n) are Q-linearly independent and. by definition of P(L) 
1 - - ' 

there exist algebraic numbers s.0 ,s1 , .•. ,sn with 131 , •.• ,Bn not all zero: 
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Assume now without loss of generality that ~I O, so 

Adjusting the notation, one can supi:ose fran the beginning that ~ = - 1 and work 

with 

S +a A + •·• + (-1)) = O, 0 ..,1 1 "n 

hence 

Therefore Bo= O and B1 , ••• ,Bn-l are Q-linearly dependent (cf. (iii)), thus 

there exist rational numbers q1 , ... ,qn-l not all zero such that 

Choose 

q. 
l (- -) B· qk l 

implying thereby that not all the Si (i I k) are zero. Meanwhile, since Bo = O, 

=> 

0 = 4 \.~. + \k~ ilk l .l .,..k 
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Put 

(i -:J k) • 

Then the y. E L (i -:J k) are Q-linearly independent (see infra) and 
1 

L:y.~.=O. 
i-:Jk 1 1 

Because the Bi (i -:J k) are not all zero, we have reached a contradiction to the 

minimality of n. 

[Note: 'lb check that the y. (i -:J k) are Q-linearly independent, consider a 
·1 

dependence relation 

'!hen 

=> 

=> 

where 

~ C.y. = 0 (C
1
. E Q). itk l 1 

qi 
l: c. (/... - /..k -) = O i-:Jk l l qk 

4 C.~. - C\k = O, i":Jk l l 

q. 
l c = z: - e Q. 

i-:jk qk 
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But the >... (1 < i < n) are Q-linearly independent (by fl.ypothesis), so c. = O 
l - - l 

(i ':/ k) (and C = O) .] 

2: N.B. The proof that we shall give of Baker in §33 does not go thru 

items (ii) or (iii). 

3: THEOREM The following assertions are ~iva'.teilt. 

(i) If Al E L, ••• , An E L are nonzero and Q-linearly independent, then 

A1 , ••• ,>..n are Q'-linearly independent (hom:Jgeneous Baker). 

(ii) If A.1 E L, • •• , An E L are nonzero and if Si, ... , i3n are Q-linearly 

independent elements of Q_, then 

(iii) If Al E L, ••• ,>.n E L are nonzero and Q-linearly independent and 

if i31 , ... ,13n are Q-linearly independent elements of Q, then 

The proof proceeds according to the scheme: 

(i) =!> (iii) ' (ii) => (i) ' (iii) => (ii) • 

(i) =!> (iii): (cf. ~31, #10). 

(ii) =!> (i): 'Ib derive a contradiction, assll!Ie given Q-linearly independent 

nonzero >..1 E L, ••• ,An EL and a dependence relation 

Observe that since (ii) is in force, (31' ••• ,Bn are not Q-linearly indepen:ient, so 
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m 
S· = E' c. ·Y· l j=l lJ J 

(1 ~ i ~ n). 

Here the c . . E Q and v i, 3 j : c . . =I- O. Next lJ lJ 

m n 
= I: y.( ~: c .. J..). 

j=l J i=l lJ l 

On the other hand, a rational linear canbination of the ;... remains in L (cf. #2}.} 
l 

thus in view of (ii) , 

provided 

m n 
L: y. ( L: c .. ;... ) =I- 0 

j=l J i=l lJ l 

n n 
L: c. 1;..., ... , Z c. >.. 

i=l l l i=l ]ffi l 

are nonzero (granted this, we have our contradiction). But >.1 E L, ••• ,A.n E L 

are nonzero and Q-linearly independent. 'Iherefore 

n 
L: c. 1>.. = o =>- c

1
. 1 = o (i = l, ••• ,n) . 1 l l i= 

n 
L: c. >.. = O => c. = 0 (i = l, ... ,n). . 1 lffi l 1l11 i= 
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And this implies that (31 =< 0, ••. ,(3n = 0, a non·sequitur. 

(iii) => (ii) : If 

BA. + ••• +SA. = O, 1 1 n n 
.. 

where B1 , ... ,Bn are Q-linearly independent elements of Q, then it will be shCM.n that 

fran which the result. Renumbering the data if necessary, assume that A.1 , ... , A.m 

(O < m < n) is a basis for the Q-span of {A.1 , ... ,A.n}: 

m 
/\. = E c . . A.. 

1. j=l l.J J 
(m + 1 < i ,::: n), 

where the c. . E Q. 'Ihen lJ 
m 

0 = L:: y./,. 
j=l J J 

n 
(y. = B. + t: c .. B.) • 

J J i=m+l lJ 1. 

Now apply (iii) (with n replace:l by m) : A.1 , ... ,A.m are Q-linearly .independent, 

hence y1 , ... ,ym are Q-linearly dependent. However B1 , ... ,Bn are Q-linearly 

independent, so the only possibility ism= 0, implying that 

[Note: If C. E Q (1 _::: j S m) , then 
J 

m 
4 c.y. 

j=l J J 

m n 
= l: c. (S. + E c .. S.) 

j=l J J i=m+l l.J l 

m n m 
= E C.B. + E ( E c .. C.)(3 .• ] 

j=l J J i=m+l j=l l.J J 1. 
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4 : REMARK One can add a fourth condition, viz. 

(iv) If Al, ... , An+ 1 are nonzero elarents of L such that Al, ••• , An 

are Q-linearly independent and if sl' ••. ,sn are elarents of Q such that 

then s1, ... , Sn are rational. 

[Note: Suppose that hanogeneous Baker is in force. Consider ite:n (ii) of 

#1 -- then the crux is to prove that s0 = O. ] 

5: N. B. Consider the arrow of inclusion: 

L + C. 

'Ihen it lifts to an arrav 

which ranains injective iff ite:n (iv) supra is in force. 

6: LEMMA Baker's inhanogeneous theore:n is equivalent to the conjunction 

of §31, #11 and §31, #16. 

7: LEMMA Baker's hanogeneous theore:n is equivalent to §31, #11. 

8: N.B. 

§31, #11 <=> §31, #14. 
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§33. BAKER: PROOF 

Olr objective is to establish that if Al E L, .•. ,An EL are nonzero and 

Q-linearly independent, then l,Al' ••• ,An are Q-linearly independent (cf. §31, #8). 

I.e. : If y 0 , y l' ... , y n are algebraic numbers and if 

then 

Yo= o, y1 = o, ... , yn = o. 

1: THEOREM Let K be an algebraic number field of degree d over Q, let 

{81 , ... ,Bd} be a basis of the Q-vector space K, and let A1, ..• ,Ad be elements of 

L. AsSllIIE : 

Then 

2: REMARK Granted Baker's theorem (in its inharogeneous version), it 

follows that #11 of §31 is in force. So, if 

is nonzero, then 

IlU.lSt be transcendental. en the other hand, under the assumption that it is 

algebraic, it nro.st be zero: 
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Still, this does not imply that 

The foregoing result can be used. to give a quick proof of Baker's inha:ro-

geneous theorem. So suppose that 

write 
d 

y . = L: c .. B. (1 ::_ j < n) 
J i=l JJ. ]. 

with c .. E Q -- then J]. 

where 

B 
= 4 y.').,. 

j=l J J 

n d 
= E ( ~ c .. S.}A. 

j=l i=l JJ. ]. J 

d 
= !: s. 

i=l J_ 

n 

n 
L: c .. .\. 

j=l ]1 J 

;>..! = 4 c . . ').,. EL. 
]. j=l JJ. J 



3. 

<:Ming to #1, 

'·'-O ''-O Al - r•••rAd - • 

But A.1 , ••• ,./n are nonzero and q-linearly independent, thus the relations 

:imply that 

hence 

n 
L: c .. ;\. = 0 

j=l Jl J 

c. . = O (1 < i ::: d, 1 S j S n} , Jl 

=> 'Yo = o. 

2: RAPPEL I.et K be an algebraic number field -- then the trace K + Q 

is the Q-linear map 
cr 

"( ' 

where cr runs over the set of canplex embeddings of K (a set of cardinality [K:Q]} 

and 'Y 0 is the image of 'Y under cr. 

3: NDrATION I.et K be an algebraic number field, let {S1 , ••• , Sd} be a 

basis for the Q-vector space K, and let cr1 :K + C, ••• ,crd:K + C be the ccmplex 

embeddings of K (label natters so that cr1 is the arraw K + C of inclus.iDn} • 

4: LEMMA 

2 det(tr((3.s.}) 1 . . d = (det B) , 
1 J s. 1,.J ::: 
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where 
(J. 

B = (R 1)1 < d ~k < i,k 

is nonsingular. 

We shall now take up the proof of #1. 

5: NDrATION Put 

d (J. 
1 

A,. = L: S k>.k 
1 k=l 

(1 < i ~ d). 

Case 1: At least one but not all of the A. vanish. 
1 

{Arrange the notation so that 

A1 t 0, ••• ,1\i to, J\i+l = o, ... ,Ad = o. 

-n • Define x. E A by -1 ~ 

(1 < i ~ d). 

If q1 , ••• ,% are rational numbers such that 

qx +•••+a~x =O, 1-1 "'d.::a. 
then 

d Q'l d 
o = .r. q1.~1· = L: q.B. 

1=1 1=1 1 1 

=> 

'lherefore ~11 ••• 1~ are Q-linearly independent elements of qr1. 



e Define y. E r!1 by 
-J 

5. 

01 °n y. = ((3. ti.1 , ... ,[3. A) 
-J J J n (1 .$: j s d) • 

Since the matrix 

has rank d, the d x n matrix 

a. 
1 

Bn = C\ ) 1 < k < d - - , 

has rank n (its n colurms are independent in K1>. 
diagonal matrix 

'!he product of B by the n x n n 

is the d x n matrix whose raw vectors are y 1 , ••• , Ya.: 

al q n 
Bd Al • • · B A d n 

crl cr 
Bl B n Al 0 1 

x = 
crl cr 

Bd B n 0 Ai d 

'Iherefore the set {x:_1 , ••• ,¥a_} contains a basis for~ over C.] 

The preceding considerations set the stage for an application of §30, #10, 
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hence at least one of the 

x.y. 
-1-J 

(1 < i < d, 1 < j < n) - - - -

does not belong to L, 'Which, however is false. 'lb see this, recall that 

and write 

where 

'n+l = 0, .•• ,1\i = O, 

d a a 
= l: 8.ms ·m.t\n 

IIFl 1 J 

d (j (j d 
= l: f3.mf3 .m !: 

IIFl 1 J k=l 

d 
= l: c. 'k>.k' k=l J.J 

d (j(j(j 
" a.ma.mR. m cijk = ~l µ1 µJ ,...,k 

= tr(f3.S.R.) E Q. J. J,...,k 

(j 

f\m/.k 

But Lis a Q-vector space (cf. §31, #2). Consequently 

a contradicti0n. 

x.y. EL, -l-J 

case 2: None of the Ai vanish. 
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['lb begin with, 

by ~thesis. 

d a d 
A = l: R. lA = l: R. )._ E Q 

1 k=l 'K k k=l 'K.k 

e Define~ E c'1 by 

(1 ~ k ~ d). 

Since the matrix 

a. 
B = (Si/) 1 s_ i, k ~ d 

is nonsingular, ~1 , ... ,~ are Q-linearly independent elements of~-

• Define y. E Cd by -J 

Since B has rank d and since 

al 
f3d Al 

al 
B1 

= 

al 
f3d 

Qd 
Bd Ad 

(1 :::. j :::. d) • 

ad 
B1 Al 0 

x . 
ad 0 Ad 

f3d 
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d it follows that x_l' •.. ':¥ci is a basis for C aver C. In addition, 

'11.herefore the assumptions of §30, #12 are satisfied, hence at least one 

of the 

x.y. (1 ~ i ~ d, 1 ~ j ~ d) -1'--J 

does not belong to L. On the other hand, 

d 
x.y. = L tr(S.S.~ )Ak E L -1'--J 1 J ~k k=l 

and we again have a contradiction. 

Case 3: All of the fl.. vanish. Consider the system: 
1 

.•. + 

... + 

Its matrix is the transpose of B, thus is nonsingular, thus 

as desired. 
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§34. ESTIMATES 

Given algebraic numbers a1 'I- 0,1, ... , C\i.-=/- 0,1 and nonzero integers b1 , ••. , 

b , put n 

Then for the applications, it is important to estimate j A I from belCM. 

1: NCJI'ATION Put 

2 : THEOREM AsSt.Irre: .L\ -=/- 0 -- then 

wtere C > 0 is a constant depending only on n and a1 , ... ,C\i.. 

3: REMARK The reason for introducing the "2" is to accarm:xlate the case 

when all the b. are ± 1 since then 
J_ 

4: EXAMPIE SupfX)se that P is a nonzero rational number with q > 2. Let q -

a> 0 (a-=/- 1), a' > 0 (a'-=!- 1) be algebraic numbers -- then 

jpln(a) - qln(a') I > 1 
- max{ !'Pi ,q}c 

(Cf• §15 I #33) I 

where c > O depends only on ln(a) and ln(a'). 

[Note: In the context of §15, #32, it is autanatic that a 1 -=!- 1. For if 
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x a = a' = 1, then 

ln(ax) = tn(l) => xtn(a) = 0 => tn(a) = 0 => a = 1, 

which was ruled out at the beginning.] 

Obviously 

5: THEOREM: AsSl.IIOO 

'!hen 

where C > 0 is a constant depending only on n and a1 , ... ,an. 

Some elementary prelimIDaries are needed in order to make the transition fra:n 

#2 to #5. 

[Note: '!he "C" in #5 is not the "C" in #2.] 

6: RAPPEL 

()() 

I.ogz= L:. 
n=l 

Put z = 1 + w, hence 

(-l)n-1 
n (z - l)n Clz - ll < 1) (cf. §23, #7). 

I.og(l + w) 
co: (-l)n-1 n 

= ~ w n <!wl < 1). 
n=l 
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7: LEMMA 

1 lw j 5. 2 = > II.og (1 + w)I < 2 lw I· 

b bl 
Passing to the proof of #5, put w =a1 C\in -- then there are two possibilities. 

1 • lw I > 2 . By definition, 

=> 1 1 1 
B ~ 2 => B ~ 2 => B < lw 1, 

so C = 1 will "VJOrk. 

1 • lw I ~ 2 . 'Ib begin with, for some k E z, 
bl b 

log(l + w) = log(a1 C\in) 

b n + log C\i + 21T r-T k (cf. §23, #5) 

But 

log -1 = .enc I -11) + 1Ti1=r 

Therefore 

log (1 + w) = b1 log a.1 + • • • + bn log ~ + 2k log -1. 

The right hand side has the fonn needed for an application of #2 (ignore 2k log -1 

if k = 0), thus setting 
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it follCMS that 

-co p:.og (1 + w) I 2: B0 

for sane c0 > O. NCM estimate l2TI R k I : 

n 
l2TI ;.:r kl S. II.og(l + w) I + L: lb· I !Log a.1. I . 1 1 F 

=> 

=> 

=> 

n 
s_ 1 + B L: 11.0g a,. [ 

. 1 1 1= 

n 
s_ B(l + L: !Log a. !) 

. 1 1 1= 

n 
l2k! < B(l + L: 11.0g ail)/TI 

- i=l 

n 
~ B(l + L: 11.og a.if) 

i=l 

2lwl > 11.og(l + w) I 



=> 

Write 

Choose D: 

Then 

5. 

c c c Dl-C 
2(C) OB O < BDB O = B O 

1 

Let C = C + c0 to conclude that 

so 

thereby completing the proof of #5. 

Under certain circumstances, one can go beyond #5. 

8: THEOREM. Let 

be nonzero integers. Assume: 

a1 > 2, •.. ,a > 2 - n -



and 

'Ill.en 

6. 

b n a =I 1. n 

'Where C(n) > 0 is a constant depending only on n. 

9: REMARK According to Waldscbmidt,an admissilile value for C (n) is 

226n 3n n . 

APPENVIX 

DEFlliITION Ccmplex numbers a1 , ••• ,a.n are nnlltiplicatively independent if 

none are zero and if for any relation 

where (a1 , ..• ,an) E -f1, there follows 

al= o, ... ,~ = o. 

LEMMA Suppose that C41 , .•• ,Cl,n are multiplicatively independent -- then for 

/... 
any choice (li.1 , ••• ,\i) E t1withe 1 

= °':± (1 ~ i ~ n), then+ 1 canplex numbers 



7. 

Sup:i;x:>se given algebraic numbers a1 ~ 0,1, ••• ,an ~ 0,1 and assume that they 

are rrn..tl.tiplicatively independent, hence that 

if the exponents are not all zero. 

Turning to #2, it can be shCM.n that if 

for a sufficiently large :i;x:>sitive constant C depending only on n and a1 , ••• ,an' 

then a1 , ••• ,an must be rrn..tl.tiplicatively dependent •••• 
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§35. MATRICES 

let A be an m x n matrix with entries in the canplex numbers (m rows and 

n columns) • 

1: DEFINITION The column space of A is the vector space spanned by its 

columns and the column rank of A is too dimension of the column space of A. 

2: DEFINITION The row space of A is the vector space spanne:l by its rows 

and the row rank of A is the dimension of the row space of A. 

3: THEOREM The column rank of A equals the row rank of A. 

Therefore the number of linearly independent columns of A egµals the number 

of linearly rows of A, their conrron value being the rank of A: rank A. 

[Note: Only a zero matrix has rank 0.] 

4: EXAMPLE 

1 0 1 

rank 1 = 2. 

3 3 0 

[The first two rCMs are linearly irrlependent, so the rank is at least 2 but 

the three rcMS in total are linearly dependent (the third is equal to the second 

subtracted from the first) , thus the rank is less than 3.] 

T 
5: N.B. Denote by A the transp::>se of A -- then 

T rank A :::; rank A • 
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6: EXAMPLE 

1 1 0 2 

rank = 1. 

-1 -1 0 -2 

In fact, there are nonzero columns so the rank is positive. On the other hand 

1 -1 

1 -1 
rank = 1. 

0 0 

2 -2 

7: LEMMA_ The rank of A is the smallest integer k such that A can be 

factored as a product A= BC, where B is am x k matrix and C is a k x n matrix. 

8: LEMMA T"ne rank of A is the largest integer r for which there exists a 

nonsingular r x r sub:natrix of A. 

[Note: A nonsingular r-:mimr is a r x r sul:::roatrix with nonzero detenninant.] 

9: LEMMA The rank of A is the snallest integer k such that A can be written 

as a sum of k rank 1 matrices. 

[Note: A matrix has rank 1 if it can be written as a nonzero product CR of 

a column vector C and a rCM vector R: 

C= 

c m 

R = [r • · • r ] ' 1 n 
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=> 

clrl . . . clrn 

CR= 

cmrl c r . ] mn -
10: Take A as in #6 - then 

1 [l 1 0 2] 
A= 

... 1 

is rank 1. 

11: LEMMA The rank of A is < min{m,n}. 

12: DEFINITION If 

rank A = min{m,n}, 

then A is said to have full rank; otherwise A is rank deficient. 

13: LEMMA If A is a square matrix (i.e., if m = n) , then A is invertible 

iff A has rank n, thus is full rank. 

14: LEM-1A If B is a n x k matrix, then 

rank AB < rnin{rank A, rank B} 

and if rank B = n, then 

rank AB = rank A. 

15: I...EM-1A The rank of A is equal to r iff there exists an invertible 
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m x m matrix X and an invertible n x n matrix Y such that 

I 0 

KNi. = 
0 

where I is the r x r identity matrix. r 

r 

0 I f 

16: NCYrATION A is the ccmplex conjugate of A:·:and A* is the conjugate 

trans:i;:ose of A. 

17: LEM1A 

rank A = rank A = rank A* 

=rank A*A =rank AA*. 

Attached to A is the linear map 

defined by 

fA(x) =Ax. 

18: LEMMA The rank of A equals the dimension of the image of f A. 

19: LEMMA 

• fA is injective iff rank A = n. 

• f A is surjective iff rank A = m. 
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§36. SIX EXPONENTIALS THEOREM 

This is the following statement. 

1: THEOREM: Supp:::>se given Q-l:inearly independent complex numbers 

AsSJme! 

mn > m + n. 

Then at least one of the numbers 

exp(x.y.) (1 < i ~ m, 1 < j ~ n) 
l J 

is transcendental. 

[As regards the proof, one can extend the ideas used in the proof of Gelfond-

Schneider but we shall omit the details opting :instead for a "gecmetric argument11 

later on (cf. §41, #1) .] 

Special Cases: m = 3, n = 2 or m = 2, n = 3. 

2 : EXAMPLE Take 

where §17, #2 has been silently invoked -- then the six exponentials are 

2 e e e , e 
e3 e2 e3 e4 

, e , e , e , e 

thus at least one of the numbers 

is transcendental. 

e e2 e3 e4 
e , e , e , e 
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3: EXAMPLE Take 

2 TI, Y1 = b1(2), Y2 = Tih1(2), Y3 =TI b1(2). 

Then the six e:xfX)nentials are 

thus at least one of the numbers 

is transcendental. 

(Note: Consider a dependence relation 

=> 

TI being transcendental (cf. §:19, #1) • ] 

4: REMARK It is unknown whether one of the numbers 

is transcendental. 

5: EXAMPLE Fix t E R, t ~ Q. Take 

x1 =1, x 2 = t, y1 = .fn(2), y2 = .ln.(3), y3 = ln(S). 
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Then the six exponentials are 

thus at least one of the numbers 

is transcendental. 

[Note: fu.(2), fu.(3), fu.(5) are Q-linearly inde:pendent. To see this, 

consider a de:pendence relation 

qlfu.(2) + q2fu.(3) + q3fu.(5) = o, 

where g1 ,q2,q3 E Q. Write 

ml ~ m3 
q1 = n, q2 = n, q =- . 

1 2 3 n3 

Here 

and the claim is that 

Clear the denominators and exponentiate to get 

=> 

so 

m1 = O, m2 = 0, ~ = O.] 



6 : EXAMPLE I.et 

Then E = N. 
00 

[Introduce 

Then 

=> 

But, in view of #5, 

Therefore 

4. 

E = {t E R:2t E N} 1 

t 5 I ••• E N}. 

E = {t E R:2t,3t E N} 2 
t t t E3 = {t E R:2 ,3 ,5 E N}. 

=> 
E3 n Q = N. 

(R - Q) n E3 = 0. 

N c E = (E n Q) u (E n (R - Q)) 
00 00 00 

c (E
00 

n Q) U (E3 n (R - Q)) 

= E n 0 c E n Q = N.] 
00 • 3 

[Note: True or False: E2 = N (cf. §44, #6).] 

7: N.B. By definiti('.)n, 
E1 = {t E R;2t E N}. 



5. 

And 

t t 2 = n EN=> exp(£n(2 )) = n 

t => £n(2 ) = £n(n) 

- - £n(n) 
-> t - fu(2) • 

And if t = m E N, then 

£n(i11) - £n(2) 
m = £n(2) - m £n(2) = m.] 

~ EXAMPLE Let x1 ,x2 be b...o elements of R U vCl R which are Q-linearly 

independent. Let ;yl'y2 be two complex numbers subject to yl'y2 ,y2 being Q-linearly 

independent -- then at least one of the numbers 

is transcendental. 
xy 

[Taking y 3 = y 2 , #1 is applicable so it is a matter of eli.i.-ninating e 1 3 , 

~Y3 f "d . e ran cons:L eration. E.g.: 

(1) Suppose x1 E R -- then 

-- -
X1Y3 X1Y2 X1Y2 X1Y2 X1Y2 

e =e =e =e =e 

xly2 xly2 
But e is transcendental iff e is transcendental. 

(2) Suppose x1 E r-1 R -- then 

- -
xly3 xly2 xly2 xly2 -xly2 

e =e =e =e =e 



6. 

But 

xly2 
is transcendental if f e is transcendental. 

-x y 
:Meanwhile e 1 2 is transcendental 

-xly2 
iff e is transcendental.] 

[Note: a transcendental <=> a transcendental and a transcendental iff !. a 
transcendental. ] 

9: LEMMA Consider a nonzero m x n ma.trix 

M = 

where A. • • E L. Assume: 
l] 

• The m rows 

are Q-linearly independent in en. 

• The n columns 

are Q-J.inearly independent in ~-

' ... , 
A. mn 
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Then 

rm>m+n 

implies that the rank of M is ~ 2. 

PROOF To get a contradiction, suppose that 

rank M = 1. 

Write (cf. §35, #9) 

A. •• = x.y .• 
l.J l. J 

The point then is to check that the conditions of #1 are satisfied, i.e., that 

are Q-linearly independent. 

For then the conclusion is that there is a pair (x. ,y.) such that 
l. J 

is transcendental. But 

exp(x.y.) 
1 J 

-x 
exp(x.y.) =exp(/., .. ) E Q , 

l. J lJ 

a contradiction. So consider dependence relations 

(q. E Q, p. E Q) 
l. J 

and for the sake of argurrent, set down a generic rational dependence relation for 



the colurms: 

xrr11 

=> 

We have 

=> 

=> 

=> 

Take now 

+ • •• +A n 

8. 

~n 

+Ax1y = 0 n n 

+Ax v = O. n Ilt'n 

= 

PY +···+py =O 11 nn 

xpy + ·•· +xpy =O 111 lnn 

+px1y =O n n 

+xoy =O :rrr- n n 

p x v + ... + p x v = 0. 1 IILl n m'Il 

0 

0 

Since by hyp:>thesis, the columns are Q-linearly independent in c1ll, it folla.vs 

that Al= O, ••• ,An = 0 or still, pl= O, ••• ,pn = O.] 
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10: SCHOLIUM Take m = 2, n = 3 and consider a nonzero 2 x 3 matrix M 

with entries in L: 

M= 

Supi;:ose that its rows are Q-linearly independent and its columns are Q-linearly 

independent -- then in view of #9, the rank of M is ~ 2. 

grounds (cf. §35, #11), the rank of Mis~ min(2,3) = 2. 

rank M = 2, 

hence M has full rank (cf. §35, #12). 

Hrnvever, on general 

Therefore 

11: N.B. We have seen al:ove that #1 => #9. The converse is also true: 

#9 => #1. 

['lb begin with, the assumption that 

{~, •. • ,xm} and {yl' ..• ,yn} 

are Q-linearly independent implies the. Q-linear independence of the rows and 

columns of M. E.g.: 'lb deal with the columns, note that there is at least one 

xi =f O, say x1 =f 0, thus from 

A1X1Y1 + ••• + Anxlyn = 0 

there follows 

=> 

Al= O, ... ,An = 0. 
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Put A. •. = x.y. and suppose that V i,j :A. •• E L - then the rank of 
lJ l: J lJ 

M = 

A. ml A. rnn 

is ~ 2 (bear in mind that rnn > m + n) • But this is false: rank M = 1. Con-

sequently 3 i, j: A. .• )t L, so lJ 

is transcendental. 

exp (A. •• ) = exp (x. y.) lJ l J 

APPENVIX 

QUESTION If rnn/(m + n) is large, can one find a lONer bound for the 

rank of M which is > 2? Without additional conditions, the answer is "no". 'lb 

see this, consider 

M = m 

fu(2) fu(3) 

fu(3) 

fu(p ) 
m 

0 

' 

where p is the mth prirre -- then rank M = 2 for each m > 2 (here m = n and m m 

m2 > 2m => m > 2). Therefore the mere Q-linear independence of the rows and 

colurrms does not suffice. 



CRITERION Let 

M = 

11. 

A rm 

be an m x n matrix with entries in L. Assume: 

the sum 

Then the rank of M is 

[Note: 

m n 
L: E 

i=l j=l 
(t.s.>. .. "IO. l J lJ 

mn > m+n· 

A . . -:I 0 (V i I j ) . ] lJ 

EXAMPLE Take m = d > 1, n = d > 1 -- then 

LEMMA Under these circumstances, the rows and columns are Q-linearly 

independent. 



PROJF Consider 

12. 

+ ••• +A 
n 

where witinut loss of generality, the A. E z are not all zero -- then the claim 
J 

is that this expression is f 0. 'lb be specific, assume Ai_ f 0 and tailor the 

expression 

m n 
l: l: t.s.1.. .. 

i=l j=l 1 J lJ 

as follows: Choose 

to get 

f o. 
Take 

hence 

AssurrE in addition that 

mn > m + n. 

Then what has been said above implies #9 which in turn implies #1 (cf. #11). 
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EXAMPLE Take m = d > 1, n = d > 1 - then the foregoing says that the 

rank of M is .2: ~- On the other hand, the theory also says that the rank of M is 

.2: 2 (cf. #9). To check consistency, note that 

mn > m + n becomes a2 > 2d => d > 2 => ~ > 1. 

case 1: d = 2r (r = 1,2, ••• ) -- then 

d 1 < -·- = r => r > 2 2 -

=> 

2 :S r ~ rank M. 

case 2: d = 2r + 1 (r = 1,2, .•• ) 

r = 1: Here 

d 3 -=-<rankM 2 2 - • 

But rank M is a tositive integer, so rank M ~ 2. 

r > 1: Simply write 

2 ~ r ~ Zr ; 1 = ~ 5 rank M. 

Therefore matters are in fact consistent. 
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§37. VECTOR SPACES 

Let K be a field, k _ c K a subfield. 

1: N.B. Typically, 

K = C, k = Q or Q. 

2: LEMMA Let V c if- be a K-vector subspace - then the following 

conditions are equivalent. 

(i) V has a basis whose elerre:nts belong to kd. 

(ii) V is the intersection of hyperplanes defined by linear fonns with 

coefficients in k. 

{Note: Such a subspace V is. said to be rational over k.] 

3: DEFINITION Let V be a K-vector subspace -- then a k-structure on V 

is a k-vector subspace V' of V such that any basis of V' over k is a basis of V 

over K. 

4: LEMMA Let V c if- be a K .... vector subspace -- then V n kd is a k-structure 

on V iff V is rational over k. 

5: EXAMPLE 

• Qd is a Q-structure on ed. 

-d - d • Q is a Q-structure on C . 

6: DEFINITION Given K-vector subspaces 

V c K~ 
1 



endowed with k-structures 

V' c: V 1 1 

2. 

a K-linear map f:V1 + v2 is rational over kif fCVp c V;2. 

7: 
dl d2 

EXAMPLE Take V1 = C , V2 = C to arrive at the notion of a C-linear 

dl d 
map f:C + C 2 which is rational over Q(or Q). 

APPENVIX 

Nor.ATION let~, ... ,~ be the canonical basis for Ka. 

let V c t1- be a K-vector subspace of dimension n. Consider the following 

properties. 

(1) If nv:Kd + Kd/V is the canonical projection, then (TIV(e1), ••• ,TIV(~-n)) 

is a basis for Kd/V. 

(2) Given z = (z1 , ••• , zd) E V, the conditions 

z = ... + z = 0 => z = 0. d-n+l d - -

(3) The restriction to V of the projection Kd + K1 of the last n coordinates 

is injective. 

(4) V is the intersection of d - n hyperplanes defined by the equations 

d 
z. = E a .. z. (1 ~ j S d-n). 
J i=d-n+l iJ i 

FACT Properties (1) , (2} , (3) , (4) are equivalent. 
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§38. VECTOR SPACES: L 

Recall that in §32, #3, various conditions were fonnulated which are 

equivalent to horrogeneous Baker. What follows is a supplement to that list. 

1: THEORE[vl The following assertions are equivalent to horrogeneous Baker. 

(i) Let V c. Cd be a C-vector subspace rational over Q with V n Qd = {O} --

then V n Ld = {O}. 

(ii) Let V c Cd be a C-vector subspace rational over Q -- then there 

exists a C-vector subspace v0 of Cd rational over Q and contained in V such that 

[E.g.: To see that (ii)=> (i), note that if V n Qd = {O}, then the only 

C-vector subspace v0 of Cd rational over Q and contained in V is {O}, hence 

V n Ld = V Ld { } d { } 
0 n = o n L = o .J 

2: REMARK One can replace item (ii) by a weaker assertion, viz.: If 

V c Cd is a C-vector subspace rational over Q, then 

v n La= u v0 n La, 
Vo 

where v0 ranges over the C-vector subspaces of Cd rational over Q and contained 

in v. 

3: THEOREM I.et V c Cd be a C-vector subspace -- then the Q-vector space 

V n Ld is finite dimensional iff V n Qd = {O}. 



The inlplication 

i.e., 

2. 

dim (V n Ld) < 00 => v n Qd = {O}, 
Q 

is straightforward: Take 

in v n Qd -- then v A E L, 

( 1 ') E v n Ld => ~~~ (V n Ld) q1A1•••1'la_A U..U.11q 

As for the converse, i.e. , 

= oo. 

it is not so easy to establish. However there is one situation when natters are 

immediate. For suppose that V n Qd = {O} AND in addition that V is rational over 

- d Q -- then V n L = {O} (cf. #1 (i)). 

4: N.B. If V is not rational over Q but V n Qd = {O}, then 

nay very well be positive (but, of course, finite) (cf. #7). 

5: THEDREM Let V c Cd be a C-vector subspace such that V n Qd = {O} --

then 



3. 

where 

6: EXAMPLE Take for V a complex line in Cd, hence n = 1. Suppose that 

V contains three Q-linearly independent points of Ld -- then V contains a nonzero 

point of Qa. 

IIn fact, if V n Qd = {O}, then 

dim (V n La) ~ n(n+l) = 1(1+1) = 2. 
Q 

But the assumption implies that 

d Therefore V n Q ":f {O}.] 

It is conjectured that n(n+l) in #5 can be replaced by n(n+l)/2 but this 

remains to be seen. 

7: EXAMPLE Fix nonzero Q-linearly independent elerrents A.1' ..• ,A.n+l of L 

and define V by the equations 

Then V n Qd = { O} and V n L d contains the n (n+ 1) /2 points 

d w .. = (w .. 1 , ••• ,w. ·a) E c (1::: i < j,::: d), lJ lJ lJ 

where 

w. 'k = A. • (k=i) , w .. k = - A.. (k = j) , lJ J lJ l 

and w. 'k = 0 otherwise (1 < k < d}.. And these points are Q~linearly independent, lJ 
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hence 

8: RAPPEL Let X be a vector space, S c:; X a nonempty subset - then the 

~ < S > of S is the intersection of all subspaces containing S or still, the 

set of all finite linear combinations of the elements of S. 

9: NOI'ATION Given a C-vector subspace V ·c: Cd, put 

t = dime < v n Qa >, 

-d the dimension of the C-vector space spanned by V n Q • 

10: N.B. For the record, 

0 ~ t ~ n < a, 

it being assumed that v ~ ca. 

11: THEOREM Iet V c Cd be a C-vector subspace such that V n Qd = {O} --

then 

dimQ(V n Ld) ~ d(n-t) 

::: d(d-1-t), 

where 

12: REMARK Sarneti:rres this estima.te is better than the one provided by 

#5 but it can also be worse. 

• Suppose that 
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Then 

d(n-t) = d(d-1-t) 

= d(d-l-(d-1)) = 0 

in accordance with expectation (V being rational over Q). As for #5, it just gives 

• Suppose that 

n = dime ( V) = 1, t=O. 

Then 

d(n-t) = d(l-0) = d, 

whereas 

n(n+l) = 2 

which is less than d if d > 3. 

13: EXAMPLE let V c c3 be the hyperplane defined by the equation 

Then 12, e, 1 are Q-linearly independent. To check this, consider a rational 

dependence relation 

Case 1: q = O => q e + q = 0 => q = O q3 = 0. 1 2 3 2 ' 

case 2: 



6. 

I.e.: 3 e is algebraic which it isn't Consequently, V n Q = { O}. Since here 

d = 3, n = 2, t = 1, 

it therefore follows from #11 that 

dim (V n L3) < 3(2-1) = 3. Q -

{Note: There are three possiliilities for t: 0,1,2. But 

PV -3 (1, 0, - v..:;) E V n Q 

which implies that t ~ 1. And t = 2 is impossilile ( V is not rational over q) , 
thus t = l.] 

It has been observed above that #l(i) is a particular instance of #11 

(cf. #12 (first •)) . 'lb repeat: 

14: THEDREM I.et V c Cd be a c-vector subspace rational over Q with 

d d V n Q = {O} -- then V n L = {O}. 

15: APPLICATION Here is one version of Gelfond-Schneider: I.et Al E L, 

A2 E L, let S E q, S ~ Q, and suppose that A2 = BA1 -- then the claim is that 

Al = A2 = 0. 'lb establish this, 'INOrk in c2 and let V c c2 be the canplex line 

2 C(l,S) -- then V n Q = {O} ((z,zB) = (q1 ,q2) => z = q1 => q1 B = q2 => B = 
q2/q1 if q1 -:f O). Moreover V is rational over Q (V being defined by the equation 
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2 The assumptions of #14 are therefore satisfied, hence V n L = {O}. 

16: APPLICATICN Let S1 "/; O, .•• ,Sd "/; 0 be algebraic numbers. Denote by 

V c Cd the hyperplane defined by the equation 

Then V is rational over Q. AssUIIB: V n Qd = {O} -- then V n Ld = {O} (cf. #14) . 

Next S1 , .•• ,(3d are Q-linearly independent: 

q1 Si + • • • + %sd = o => Cq1 , ... ,%) E v n Qd = {o}. 

To exploit this, take nonzero \ 1 E L, ••• ,\n E L and consider 

which "We claim is nonzero. For othel:wise, 

Now quote §32, #3(ii) to see that this setup implies harrogeneous Baker. 

[Note: In §32, #3 (ii)' the Sllpp'.)Sition is that sl' ... 'sd are Q-linearly 

independent (replace n by d). This implies tbat V n Qd = {O}. Proof: 

=> 

=> 
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§39. VECTOR SPACES: LG 

It will be useful to generalize the considerations in §38 as this provides 

a convenient forum for certain important applications. 

and set 

1: NarATION I.et a0 _::: 0, dl ~ 1 be integers and let d = a0 + a1 • Put 

2: NarATION 

GO= C x ••• x C 

x x 
G = C x ••• x C 1 

( a0 factors) 

(d1 factors) 

[Note: Accordingly an element of LG is a a0 + a1 tuple 

where Bl' ••• , B d are algebraic numbers, i.e. , are in Q , and t..1 , •.. , A. d are 
0 1 

logarithms of algebraic numbers, i.e. , are in L. ] 

3: N. B. The choice a0 = O puts us back into the setting of § 38. 

4: LEMMA LG is a Q-vector subspace of Ca. 

5: LEMMA I.et V c Cd be a C-vector subspace. 
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d 
• If v n ({O} x Q 1) 'I- {O}, then 

[Take 

g = (O, .•• ,O, g1 , .•• ,~)-:/- 0 

d 
in v n ({O} x Q 1) -- then v A E L, 

(0, ••. ,0, g1A, ... ,~A) EV n LG=> dimq(V n LG) = 00.] 

d 
• If v n (Q 0 x {O}) 'I- {O}, then 

[Take 

~ = ( Bl' ..• , ~ d , o , ••• , o) -:/- o 
0 

d 
in V n (Q O x {O}) -- then V y E Q, 

6: SCHOLIUM If 

then 
d d 

v n ({O} x Q 1) = {O} and v n (Q 0 x {O}) = {O}. 

7: DEFINITION The relations 

v n ({O} x Q~) = {O} and v n (Qdo x {O}) = {O} 

are the canonical conditions. 



3. 

8: THEOREM Iet V c Cd be a C-vector subspace for which the canonical 

conditions are in force -- then 

< 00 

and, in fact, 

[Note: As in §38, 

9: REMARK Taking d0 = O recovers 38, #11. As for the proof, it will 

be omitted since it depends on the so-called ~~linear subgroup theorem" which we 

shall not stop to fonnulate.] 

10: APPLICATION Harrogeneous Baker is the assertion that if Al E L, ••• , 

Ad EL are nonzero and Q-linearly independent, then A1 , ... ,Ad are 0-linearly 

independent. 

[Suppose that A1 , .•• ,Ad are Q-linearly dependent, say 

'Where i\, ... ,Sd-l are algebraic. It can be assllIIEd in addition that Al' .•• ,Ad-l 

are Q-linearly independent. Take nCM for V the hyperplane in Cd defined by the 

equation 

Explicate the parameters: d0 = n = d-1, d1 = 1 (so d :: d0 + d1 = n + 1 = (d - 1) 

+ 1 = d ..• ) , t = 0. The definitions imply that the canonical conditions are in 
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force, thus by #8, 

dimQ(V n LG) ~ ~ (n-t) = l(d-1-0) = d - 1. 

On the other hand, 

V n LG = V n ( Qd-l x L) 

contains d Q-linearly independent points s1r···rsd' namely 

and 

[Note: Take a point in V n cf, say ( s1 , ••• / Sd) , subject to 

Argue that necessarily Sa= o (cf. #14), hence s1 = O, .•• ,sd-l = O CA1 , ••• ,Ad-l 

- -d are Q-linearly independent) , hence V n Q = { O} , hence t = 0. ] 

11: APPLICATION Inhorrogeneous Baker is the assertion that if Al E L, 

••• ,Ad EL are nonzero and Q-linearly independent, then l,Al'···rAd are Q-linearly 

independent. 

[Suppose that l,Al'···iAd are Q-linearly dependent, say 

where 130,131' ••• ,sd-l are algebraic. It can be assumed in addition that Al'···rAd 

are Q-linearly independent and l,>.l' ••• '"d-l are Q-linearly independent. Take now 
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for v the hyperplane in cd+l defined by the equation 

Explicate the parameters: a0 = n = d, a1 = 1 (the role of d in the theory is 

played in this situation by d + l:d0 + a1 =d+1, t ~ 1 (since (l,O, ••• ,O,l) EV). 

The definitions imply that the canonical conditions are in force, thus by #8 

On the other hand, 

contains d Q-linearly independent p::>ints 1;;1 , ... ,l;;d' namely 

and 

[Note: 

t ~ 1 => - t ~ -1 => d - t s d - 1. 

Also, on general grounds, s0 = O (cf. #14) .] 

d -12: THEDREM I.et V c C be a c-vector subspace rational over Q and for 

which the canonical conditions are in force -- then V n LG = { O}. 

PROOF In #8, take t = n to get 

13: APPLICATION 

• If a is a nonzero algebraic number, then ea is transcendental (cf. §21, 

#4). 
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•• If (3 is an algebraic number such that e (3 is algebraic, then B = 0 • 

Claim: • • => • For if ea. was not transcendental, then it \llX)uld be algebraic, 

hence that a.= O, contradiction. 
-

To establish • e, take a0 = 1, a1 = 1 so that d = 1 + 1 = 2 and LG = Q x L. 

The complex line V = C (1,1) in c2 is rational over Q and contains ((3, (3) E LG. 

Ivbreover it is clear that the canonical conditions hold. Therefore 

vnLG={O} (cf. #12) => (3 = O. 

14: APPLICATION Suprx>se given a relation 

[Argue by contradiction and assume that B0 f o with d minimal, thus s1, ••• , Sa 

-
are Q-linearly independent and A1 , ... ,Ad are Q-linearly independent. Let 

v c cd+ 1 be the hyperplane defined by the equation 

Then V is rational over Q and the canonical conditions are satisfied. But 

and 

Meanwhile 
V n LG = {O} (cf. #12) • ] 



7. 

15: SQIOLIUM Suppose given a relation 

Bl Al + • • . + BdAd = o, 

'Where B1 , ••• ,Sd are algebraic and Al E L~ ••• ,Ad EL. 

• If (81 , ••• ,Bd) t (0, ••• ,0), then A1 , ••• ,Ad are Q-linea.rly dependent. 

• If (A1, ••• ,Ad) t (0, ••• ,0), then S1 , ••• ,Bd are Q-linearly dependent. 

16: N.B. Recall that every nonzero linear combination 

B1A1 + ..• + BdAd 

is transcendental (cf. §31, #11). 

17: LEMMA suppose that A1 , ••• ,Ad are nonzero elements of Land B1 , ••• ,Sd 

are nonzero elements of Q. Assume: 

Bl Al + .•. + BdAd = 0. 

Then there exist nonzero integers k1 , ••• ,kd such that 
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§40. VECTOR SPACES; Vmax, Vrnin 

1: d CONSTRUCTION Let V c C be a C-vector subspace -- then V contains a 

unique maxllna.l subspace Vma.x of the fo:r:::m w0 x w1 , where w0 is a subspace of 

d
0 

_ d 
C rational over Q and w1 is a subspace of C 1 rational over Q. 

do 
2: LEMMA w

0 
is the subspace of C spanned by 

d 
V n (Q O x {O}) 

dl 
and w1 is the subspace of C spanned by 

d 
V n ({O} x Q 1). 

3: RAPPEL (cf. §39, #7) The relations 

d d 
v n ({O} x Q 1) = {O} and v n (Q 0 x {O}) = {O} 

are the canonical conditions. 

4: N. B. V max = { 0} iff the canonical conditions are in force. 

d 5: THEDREM Let V c C be a C-vector subspace. Assurre: V is rational 
-over Q -- then 

PROOF Trivially, 

This said, if first the canonical conditions hold, then V n LG= O (cf. §39, #12). 
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But also Vmax = {O} (cf. #4) , hence Vmax n LG = 0. Proceeding in general, write 

put 

and introduce 

G0 = c x ••• x c ca0 factors> 

d d' 
Let C O + C O be a surjective linear map, rational over Q, with kernel w0 and let 

a1 a• 
C + C 1 be a surjective linear map, rational over Q, with kernel w1. Denote 

by cp their product 

d' c l_ 

Then the kernel of cp is Vmax and <P (LG) = LG'. M::>reover the canonical conditions hold 

d' d' 
for the subspace V 1 = cp ( V) of C O x C 1 , hence V 1 n LG 1 = { O}. Therefore 

-1 V n LG c cp ( V • n LG 1 ) = Ker cp = V max 

=> 

6: d CONSTRUCI'ION Let V c C be a C-vector subspace -- then V is contained 

in a unique minimal subspace V min of the fonn w0 x w1 , where w0 is a subspace 

a0 a 
of C rational over Q and w1 is a subspace of C 1 rational over Q. 
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d 
7: LEMMA w0 is the intersection of all hyperplanes of C O rational 

d 
over Q which contain the projection of V onto C O and w1 is the intersection of 

dl dl 
all hyperplanes of C rational over Q which contain the projection of V onto C • 

8: N.B. 

APPENVIX 

d FACT' Let V c C be a C-vector subspace. Assurre: The canonical conditions 

are in force -- then there exists a hyperplane H c Cd containing V and for which 

the canonical conditions are also in force. 
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§41. EXPONENTIALS (6 or 5) 

Specialized to the case when m = 2, n = 3, the six exp:mentials theorem is 

the following statem:mt (cf. §36, #1): 

of complex numbers -- then at least one of the six numbers 

is transcendental. 

PROOF To arrive at a contradiction, assurre that the six numbers x.y. (i = 1,2, 
1.: J 

j = 1,2,3) all belong to L (the vectors in a linearly independent set are nonzero, 

thus x. '/: 0 (i = 1,2), y. '/: 0 (j = 1,2,3), so x.y. =/- O). Work in c2 and take for 
1 J 1 J 

2 V the complex line Cx = C{x1,x2} -- then V n Q = {O}. For suppose that 

Then 

and the claim is that q1 = O, q2 = O. Consider the four possibilities. 



2. 

=> ql = o, q2 = 0, 

{x1,x2} being Q-linearly independent. 

• q1 ~ O, q2 = 0 => zx2 = 0 => x2 = O. 

• q1 = 0, q2 ~ 0 => zx1 = 0 => x1 = O. 

Therefore these three possibilities are untenable, leaving q1 = O, q2 = 0, as 

claimed. Next, V n L2 contains the points 

ylx' y2x, Y3~ 

which are Q-linearly independent. 'Ib see this, consider a rational dependence 

relation 

i.e.' 

Dividing the first of these relations by x1 ~ 0 (or the second of these relations 

by x2 ~ O) gives 

=> 
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{y1,y2,y3} being Q-linearly independent. Therefore 

3 ~ dimQ(V n L
2
). 

On the other hand (cf. §38, #5), 

Contradiction. 

The next result is known as the five exp::>nentials theorem. 

of complex numbers. I.et further y be a nonzero algebraic number - then at least 

one of the five numbers 

is transcendental. 

PROOF With §39, #8 in mind, take d0 = 1, d1 = 2 (=> d = 3) and let v be the 

hyperplane in c3 defined by the equation 

Note that 

,.,3 
(l,O,-y) E v n Q , 

hence t z: 1. If both x1 ,x2 are algebraic, then yx1/x2 ':f 0 is algebraic, so 

yx1/x2 e is transcendental (cf. §.39, #13). It can therefore be assurred that either 

x1 or ~ is transcendental, thus V is not rational over q, thus t ':f 2 => t = 1. 

M:>ving on, since xl'x2 are q-linearly in.dependent and y ':f O, it follows that the 



4. 

canonical conditions are in force. Consequently 

On the other hand, V contains the Q-linearly independent points 

so at least one of these does not belong to 

- 2 -LG = Q x L = Q x L x L. 

E.g.: Suppose that 

Then 

=> 

2;_ EXAMPLE Suppose that A.1 E L, A.2 E L. Assume: {A.1 ,A.2} is Q-linearly 

independent. Let w E C (w ¢ Q) and let B E Q (8 ~ O) -- then at least one of 

the three numbers 

is transcendental. 

[In #2, take x1 = w (¢ Qt, x2 = 1, y1 = A.l'y2 = A.2 -- then at least one of 

wA.1 wA.2 A.1 A.2 SW 
e ,e ,e,e,e 

is transcendental.or still, at least one of 

is transcendental.] 
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[Note: Put 

Then at least one of 

,..,,w ,..,,w ej3;v 
"'l' "'2' 

is transcendental.] 

4 : EXAMPLE Fix A. f. 0 in L. Let w E C (w ¢ Q) and let 8 E Q ( f3 f. 0) 

then at least one of the three numbers 

is transcendental. 

[In #2, take x1 = w (}l Q), ~ = 1, y1 = wt.., y2 = A. -- then at least one of 

w2t.. w/i, wt.. Ii. SW e , e , e , e , e 

is transcendental or still, at least one of 

is transcendental.] 

[Note: Put a = e/.,. -- then at least one of 

w2 w (3w 
Cl. ,a,e-

is transcendental.] 

1 5: EXAMPLE Let J..0 E L (1,0 f. O), li.1 E L, t..2 E L, f3 E Q (f3 f. O), Y = 13· 



6. 

Assume: {Al, A2 } is Q-linearly independent - then at least one of the two numbers 

is nonzero. 

[In #2, take x1 = ·AoB (~ Q), x2 = 1, y1 =Al' y2 = A2 , hence at least one of 

is transcendental or still, at least one of 

is transcendental. ] 

[Note: AoB is not rational (for if it were, then A0 1NOuld be algebraic 

whereas it is transcendental).] 

6: EXAMPLE Let t.0 , t.1 be nonzero elerrents of L and let s E Q ( s ':/ 0) --

then at least one of the two numbers 

is transcendental. 

[To illustrate, take S = 1, t.0 = ln.(2), 1.1 = ln.(2) -- then at least one of 

2ln(2) 2(ln.(2))2 , 
is transcendental.] 

7: REMARK Is i:5 true that 

five exponentials => six exponentials? 

In the literature, it is asserted that this is the case but no proof has been 

offered. 
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[To see the difficulty, in #2, take y = 1, and consider 

xlyl xly2 X2Y1 X2Y2 xl/x2 
e ' e ' e ' e e 

xly3 X2Y3 xlyl ~Y1 xJ!x2 e ' e e ' e ' e 

If e~/~ is algebraic, then we are done since one of the exponenti.3.ls in the 

xl/x2 xl/~ 
first row preceding e or in the second row preceding e must be trans-

cendental. 
. xl/x2 

However, if e is transcendental, then it is conceivable that 

the first four exp.:>nentials in both rows are algebraic •••• ] 
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§42. SHARP SIX EXPOfJENTIALS THEOREM 

This is the following statement. 

of complex numbers. I.et further f3 .. (i = 1,2, j = 1,2,3) be algebraic numbers. 1J 
Assume: The six numbers 

x.y.-B .. ]_ J 1J e 

are algebraic, hence that the :\ .. = x.y. - f3 .. are in L -- then 1J ]_ J 1J 

x.y. = f3.. (i = 1,2, j = 1,2,3). ]_ J 1J 
4 PROOF With §39, #8 in mind, take do = 2, dl = 2 (=> d = 4) and let v c c 

be the hyperplane defined by the equation 

Note that 

-4 (1,0 ,-l,.Q) E V n Q 

... 4 
(0,-1,0,l) E V n Q 

Note in addition that for j = 1,2,3, 

=> t > 2 • 

Since these points are Q-linearly independent (see below), the canonical conditions 

are not satisfied (see below). Therefore 

V n (Q2 x {O}) f {O}, 



say 

And 

2. 

-=> zl E Q, z2 E Q & Z3 = 0, Z4 = 0. 

=> 

x2 
=> - (z ) = z • x1 1 2 

But neither z1 nor z2 can be zero (see below) , thus 

x2 z2 
-=-
xl zl 

is an algebraic number not in Q (see below). Now put y = ~ and write 
xl 

:\2 . + s.2 . = y(>..1 . + s.1 .) (j = 1,2,3) J . J J J 

or still, 

The entity s.2j - ySlj is an algebraic number, thus on general grounds (see belCM) 

S2 j - yS1 j = O 

which then implies that 



3. 

To finish the pr<x:>f, make the claim that 

(j = 1,2,3). 

;\2. 
'lb argue this, assurre that ;\lJ' ':I 0, so y = _J is transcendental (see below) 

;\lj 

(recall that y ~ Q). Accordingly 

Y1j = 0 => yO - Azj = 0 => Azj = o. 

[Note: Details--

• Consider a dependence relation over Q: 

which, when unraveled, becooes 

= (O,O,O,O) 

=> 

=> 
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or still, upon dividing by x1 -.:/- 0, 

• Suppose that the canonical conditions were satisfied -- then 

dimQ ( V n L) 5. a1 (n - t) 

= 2(3 - t). 

There are tv.K> possibilities for t: 

But 

t = 2 => 2(3 - 2) = 2 

t = 3 => 2(3 - 3) = o. 

nl' n2 , n3 being three Q-linearl y independent points of V n LG. 

• The formula 

is a Q dependence relation per {x1 ,~}. Claim: z1 -.:/- 0, z2 -.:/- 0. E.g.: Suppose 

write 

x2 x2 
• - is a nonzero algebraic number and - ~ Q. 
~ xl 

x -2 

For if~ E Q, we could 
xl 
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and thereby contradict the Q-linear independence of x1,x2• 

e If 

where s0,s1 , •.. ,sd are algebraic and Al E L, ••. ,Ad EL, then s0 = O (cf. §39, #14). 

• The quotient u of tw nonzero elerrents of L is either rational or v 
transcendental. 

2: IMPLICATION 

sharp six exponentials => six exponentials. 

[Takes .. = O, so Vi, V j, x.y. = 0, which is false (Vi, x. t O, v j,yJ. t 0). 
1] 1 J 1 

The sup:i;:Dsition that the six numbers 

x.y. 
1 J e 

are algebraic is therefore contradictory, thus at least one of the 

x.y. 
1 J e 

is transcendental. ] 

3: IMPLICATION 

sharp six exponentials => five exponentials. 

[Explicate the pararreters in §.41, #2: 

Put 

let 
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and let 

'lb incorporate the denial of §41, #2, assume that the six numbers 

x.y. - s .. 
e 1. J 1.J 

are algebraic. Note that 

and 

Now apply #1: 

so 

so we have our contradiction. Of course, 

but these fo:r:mulas do not figure in the deduction and are :rrerely part of the 

fonnalism. 

[Note: '!here is a :i;:otential gap in the argument, viz. why is {y 1 , y 2, y 3} 

a Q-linearly independent set? 'Ihus consider a rational dependence relation 

Multiply through by x1 : 
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Since 

it follows that 

and our relation reads 

But {x1,x2} is a Q-linearly independent set, >..1 E L, A.2 E L are nonzero and 

Q-linearly independent, hence with 

VJe have 

Therefore s0 = O (cf. §39, #14) 

=> q3 = 0 => ql = O, q2 = O.] 
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§43. STRONG SIX EXPONENTIALS THEOREM 

Denote by L * the Q-vector space spanned by 1 and L in C, thus 

L * = {Bo + Bi >-1 + • • . + 6n \i: 

[Note: L *, like L, is stable under complex conjugation.] 

of complex numbers -- then 

i.e., 3 i E {1,2}, 3 j E {l,2,3}: 

x.y. 
hence e 1 J is transcendental. 

x.y. ¢ L*, 
1 J 

This result, due to Damien Roy, is the strong six exponentials theorem 

(proof omitted) . 

[Note: The reason for the appelation "strong11 as compared with the six 

exponentials theorem per se is that one of the x. y . (1 s i s. 2, 1 s j s. 3) is 
1 J 

not in L but even :rrore, viz. it is not in L *.] 

2: STRONG CONDITION x Suppose that "o E L*, Al E L*, "2 E L*, >-3 E L*. 

Assume: {;\0,t.1 } is Q-linearly independent and {t.0,;\2 ,;\3} is Q-linearly independent --



2. 

then 

PRO'.JF In #1, take 

Then 

AlA3 --} f:. L*. 
AO 

But by hypothesis, 

Therefore 

3: THEDREM The strong condition X implies the strong six exp::>nential 

theorem. 

PR(X)F 'lb devise a contradiction, assume that the six products x.y. (1 ~ i ~ 2, 
l J 

1 < j ~ 3) are in L *. Apply strong condition X as follows: Take 

Then {A0 ,A1 } is Q-linearly independent, as is {A0 ,A2 ,A3 }. Consequently either 

A1A2 A A 
--¢ L* or~¢ L* 

Ao Ao 
(or both). 
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But 

Contradiction. 

4: LEMMA Suppose that A1 ,A2 E L* (A2 f O). Assrnre: {l,A1 ,l/A2} is 

Q-linearly independent -- then 

PROOF If l/A2 ¢ L *, then we are done. Otherwise, apply strong condition 

5: SCHOLIUM Suppose that A E L*(A f O) is transcendental -- then 

[In #4, take A1 = A, A2 = A -- then the issue is whether {l,A,l/A} is 

Q-linearly independent. So consider a dependence relation 

r + sA + t(l/A) = O, 

where r,s,t E Q. Multiply up by ~ to get 

rA + sA2 + t = O. 

Since A is transcendental, it follows that {A,A2,l} is algebraically independent 
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-over Q, hence is algebraically independent over Q (cf. §20, #7), hence is 

Q-linearly independent, hence r = 0, s = O, t = 0.] 

6: APPLICATION Take A. = TIM -- then /... E L c L * and 

Therefore 

2 TI '/. L * or l/TI '/. L * (or ooth) 

which implies that either 

2 
eTI is transcendental or el/TI is transcendental (or both). 

7: SlJBLEMMA let x1 ,x2,y1 ,y2 be carrplex numbers and let 'Y be a nonzero 

algebraic number. Suppose that {x1 ,x2} is Q-linearly independent and {yl'y2 ,y/~} 

is Q-linearly independent. Assume: 

Then 

PROOF Apply #1 to 

which leads to 

Of course, 

and by hypothesis, 
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leaving 

8: LEMMA I.et ~,x2 ,y1 ,y2 be ccmplex numbers and let y be a nonzero 

algebraic number. Suppose that {x1 ,x2 } is Q-linearly independent and {yl'y2} 

is Q-linearly independent. Assume: 

-yx2/x1 E L *. 

Then 

{x1yl' ~y2 , x2yl' x2y2} /. L. 

PROJF' AssmrB instead that 

{xlyl' xly2, x2yl' ~y2} c L. 

• {x1y1 , x2y 1 } is Q-linearl y independent, hence is Q-linearly independent 

(Gelfond-Schneider) (for x1y1 E L, x2y1 E L), hence {xl'x2} is Q-linearly independent. 

• {x1yl' x1y2} is Q-linearly independent, hence {l, x1y1 , x1y2} is 

Q-linearly independent (inharrogeneous Baker) (for x1y1 E L, x1y2 E L), hence 

{y/x1 , y1 ,y2} is Q-linearly independent. 

Therefore (cf. #7) 

yx2/xl ~ L*. 

[Note: 'lb check that {y/xl'y1 ,y2} is Q-linearly independent, write 

r(y/x1) + sy1 + ty2 = 0, 
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-where r,s,t E Q -- then 

=> ry = O, s = O, t = o. 

But y E Q is nonzero, so r = 0.] 

9: N.B. The strong six exponentials theorem intervenes in #8 via an 

application of #7. 

numbers. I.et further y be a nonzero algebraic number -- then at least one of 

the five numbers 

is transcendental. 

{This is the five exponentials theorem (cf. §41, #2) (switch the roles of 

11: IMPLICAT~ON 

strong six exponentials => five exponentials. 

[The claim is that at least one of the five numbers 

is transcendental. 

• case l: yxz1x1 ¢ L * -- then 

"YX2/x1 
e 

is transcendental. 
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• Case 2: ~/x1 E L * -- then 

i.e., 3 i E {1,2}, 3 j E {1,2,3}: 

x.y. 
hence e i: J is transcendental. ] 

x.y. r/. L, 
l. J 

12: REMARK Refer to §41, # 7. Make the assumption that x 2;x1 E L * --
x. y. 

then for so.ne pair (i,j) :x.y. r/. L, implying thereby that e 1 J is transcendental, 
J.: J 

as desired. 

of complex numbers -- then 

[This is the six exponentials theorem. ] 

14: CONDITION x Suppose that Ao E L, Al E L, A.2 E L, A3 E 1. Assume: 

~ 

[In #2, replace Q by Q and L * by L. ] 

Imitating the proof that the strong exponentials theorem is equivalent to 

strong condition X, it follows that the six exponentials theorem is equivalent to 

condition X. 
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15: IMPLICATION 

strong six exponentials => six exponentials. 

[Start with the data for condition X -- then thanks to horrogeneous Baker, 

{A.0,A.1 } is Q-linearly independent and {A.0,A.2 ,A.3} is Q-linearly independent, the 

setup for strong condition X, hence (cf. #2), 

=> 

APPENVIX 

It was established in §.36 that the six exponentials theorem is equivalent to 

the following statement. 

SCHOLilJM Consider a nonzero 2 x 3 matrix M with entries in L: 

M = 

Suppose that its rows are Q-linearly independent and its columns are Q-linearly 

independent -- then 

rank M = 2. 

Analogously, the strong six exponentials theorem is equivalent to the following 

statement. 
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SCHOLIUM Consider a nonzero 2 x 3 rna.trix M with entries in L *: 

M= 

-Suppose that its rows are Q-linearly independent and its colurms are Q-linearly 

independent -- then 

rank M = 2. 

N.B. Once again, 

[Start with 

st.rang six exponentials => six exponentials. 

M = (/ .... EL). 
l.J 

Then the assumption of the Q-linear independence of its rows and columns implies the 

Q-linear inde:pendence of its rows and columns (horrogeneous Baker).] 

Finally, the sharp six exponentials theorem is equivalent to the following 

statement. 

SCHOLIUM Consider a nonzero 2 x 3 rna.trix M with entries in Q + L: 

M = 
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- -Sup:i;:ose that its rows are Q-linearly independent and its col1.m1S are Q-linearly 

independent -- then 

rank M = 2. 

REMARK Consequently 

strong six exponentials => sharp six exponentials. 

To help keep it all straight, ID3ke a chart of the various implications: 

11 v 
sharp 6 exp 

11 v 
5 exp ---·-7 6 exp +----

? 
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§44. FOUR EXPONENTIALS CONJECTURE (4EC) 

This is the following statement. 

1: CONJEC'IURE Let {x1 ,x2} and {y 1 , y 2} be b.D Q-linearl y independent 

sets of complex numbers -- then 

thus at least one of the numbers 

is transcendental. 

In terms of ma.trices (see the Appendix to §43): 

2: CONJECIDRE Consider a 2 x 2 matrix M with entries in L: 

M = 

SUpfOse that its rows are Q-linearly independent and its colurrms are Q-linearly 

independent -- then 

rank M = 2. 

3: EXAMPLE Consider the ma.trix 

1 TI 

TI 
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Its detenninant is 0 and its rank is 1. This is not a contradiction since 

2 
TI, 1T ft L. 

[Note: Still, its rows and colUI1U1s are Q-linearly independent.] 

4: ~ #1 <=> #2. 

5: REMARK The four exponentials conjecture is a long outstanding open 

problem in transcendence theory. 

6: EXAMPLE (Admit 4:0C) Use the notation of §36, #6. Introduce as there 

t t E2 = {t E R:2 , 3 E N}. 

Then 

[Given t ft R, t ft Q, take in #1 

~ = 1 

y 2 = fu(3). 

Then the four exponentials are 

and either 
t t 2 or 3 (or both) 

is transcendental. Therefore 

(R - Q) n E2 = ~-

But 

E2 n Q = N. 



And 

3. 

E2 n Q = E2 n ( Q u (R- Q) ) 

7: EXAMPLE (Adrni t 4EC) Let A E L, A Ff. R -- then e I A I is transcendental. 

[In #1, take 

x = 1 1 y =A 1 

Then the four exi;onentials are 

A -Here e E Q. And 

2 -2 ~ 1A1" AA -
IA! =AA=>~=T=A 

Therefore e I A I is transcendental. ] 

(Note: One should check that {x1 ,x2} and {y 1 , y 2} are Q-linearly independent. 

E.g.: Suppose that 

PY1 + qy2 = 0 (p,q E Q) 

or still, if A. = a + ;.:r b (b :/- 0) , 

p (a + r-r b) + q /a2 + b2 = O 
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=> 

pa + q 1a.2 + b2 = 0 

pb = 0 

=> 

p = 0 => q la.2 + b2 = 0 => q = O.] 

8: EXAMPLE (Admit 4E.c) In #1 1 take 

Then the four exponentials are 

The first of these is -1, the fourth is +l, leavd.ng 

which must therefore be transcendental (a consequence already of Gelfond-Schneider: 

9: EXAMPLE (Admit 4EC) Let A. E L - {O} and let w E C - Q (a canplex 

irrational number) -- then at least one of the two numbers 

is transcendental. 

[In #1, take 

A.w A./w e , e 

Y - 1 1 -

Y2 = l/w. 
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Then the four exponentials are 

eA E q, eA/w, ewA., eA E Q· 

[Note: There are circumstances when 4EC need not be invoked. E.g. : Consider 

the situation when w E Q-q. In view of §24, #8, one of the numbers w, e\ and 

ewA. is transcendental. But w is algebraic (by hypothesis), eA. is algebraic (by 

definition), thus ewA. is transcendental.] 

10: EXAMPLE (Mm.it 4EC). I.et w E C-Q -- then 

exp(2nr-l w) and exp(-2nFl/w) 

are not simultaneously algebraic. 

[Modify #9 in the obvious way. ] 

11: EXAMPLE (Mm.it 4EC). I.et a1 ,a2 be positive algebraic numbers 

different from 1 -- then n2 and fu(a1)..fu(a2) are Q-linearly independent. 

[Proceed by contradiction and assure that n2 and £n(a1)m(a2) are-q-linearly 

dependent, say for n,m E Z nonzero, 

Put 

Then [31 , B2 are algebraic, nonzero, and I B1 I t- 1, I [32 j t- 1. Moreover 



Let now 

so 

Then 

Since 

it follows that 

6. 

n 4m 2 2 = - - 1T = 4TI • m n 

= -2TI r-I/w. 

exp(-2TivCi/w) = s2 , 

exp (2'IT!=I w) and exp.(-2'ITH/w) 

are algebraic, which contradicts #10.] 

[Note: In the literature, this result is known as Bertrand's conjecture.] 

12: EXAMPLE (Admit 4:0C) Let w E C-Q. Assume: 2 lwl E Q -- then 

exp(2TIH w) 

is transcendental. 
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[Assume instead that 

exp(27Tr-l w) 

is algebraic and write w = x + 1-1 y (y 'I 0) • 

=> 

• lw 12 = x2 + y2 

2 2 2 => y = !wl - x E Q. 

Therefore y is algebraic. But y is not algebraic (for if so, then w = x + r-I y 

w:>uld be algebraic (cf. §21, #3) and exp(2TI!=Iw) w:>uld be transcendental (apply 

Gelfond-Schneider) } • 'Ihus we have reached a contradiction. ] 

[Note: With the overbar standing for canplex conjugation, 

27Tr-T wn = 2Til=I wn = 2Til=I WI1 = - 2Tir-I Wn. ] 1 1 1 l" 

13: EXAMPLE (Admit 4EC}. let w E c. Assume: lwl E Q and exp(2Tir-I w) 

algebraic -- then w E Q. 

[In fact, 
2 

lwl E ~ => lwl E Q, 
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so if w E C-Q, then 

exp (2TIR w) 

is transcendental (cf. # 12) • ] 

14: REMARK (A&nit 4EC) The Diaz curve is the set of points 

exp (2TIR w) ( lw I = 1) • 

If w = ± 1, then 

exp(2TI!-=l w) 

is algebraic. otherwise 

is transcendental. 

Here is one situation where the 4EC can be verified. 

15: THEOREM Suppose that xl'x2 are elements of R u A" R which are 

Q-linearly independent and suppose that y is a nonreal complex number with 

irrational real part -- then at least one of the numbers 

is transcendental. 

[Note: In the notation of #1, y1 = 1, y2 = y.] 

Proceed in steps. 

• The set {l,y,y} is Q-linearly independent. 

[Consider a rational dependence relation 

a +by + cy = O. 
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Then 

a + (b + c)Re y = 0 

(b - c) Im y = O. 

Since y is nonreal, Im y = 0, hence 

b - c = 0 => b = c =>a+ 2b(Re y) = 0 =>a= O, b = O.] 

• Apply the six exponentials theore:n to {xl'x2} and {l,y,y} (cf. §41, #1). 

Therefore at least one of the six numbers 

is transcendental. 

• By hyt0thesis, 

so 

Therefore at least one of the numbers 

xl xly x2 x2y 
e e , e , e 

is transcendental. 

[Note: 
~y x 2y 

If e (or e ) were algebraic, then the same v.:ould be true of 

- -
.xly x2y 

e (or e ) . ] 
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§45. STRONG FOUR EXPONENTIALS CONJECTURE (S4EC) 

This is the following statement. 

1: CONJECTURE Let {xl'~} and {yl'y2} be two Q-·linearly independent 

sets of canplex numbers -- then 

In tenns of matrices (cf. §44 , #2) : 

2: CONJECTURE Consider a nonzero 2 x 2 matrix M with entries in L *: 

M= 

.. 
Supp::>se that its rows are Q-linearly independent and its columns are Q-linearly 

independent -- then 

rank M = 2. 

3: IMPLICATION 

strong four exponentials => four exponentials. 

Then 



5: LEMMA 

PROOF 

e S4EX:: => PQ. 

{In #1, take 

to arrive at 

2. 

S4EX:: <=> PQ. 

y = 1 1 

But >..0, A.l' >..2 E L * - { 0}, thus it must be the case that 

( >..1 >..2) />..0 i L *. I 

e PQ => S4EC. 

[Start with {~,x2 } and {y1 ,y2} Q.-linearly independent sets of ccmplex numbers. 

Assume that 

ar:e in L * and then claim that x2y 1 ~ L *. Put 

which, by hypothesis, are in L * - { 0}. Since 

it follows that 



Then 

3. 

6: APPLICATION (Admit S4EC) let 1..1 , ":2 E L* - Q -- then !..1 ":2 ~ L *· 
[In #4 above, take 1..0 = 1. ] 

7: N.B. So in particular, if 1..1 , 1..2 E L - {O }, then 1..1 1..2 ~ L *, hence 

-"1 "2 ~ Q and "1 "2 ~ L· 

[Note: Bear in mind that L fl Q = {O }. ] 

2 
8: EXAMPLE (Admit S4EC) eTI is transcendental (cf. §43, #6). 

[In #7, take 

2 2 2 
A = - TI ~ L * => TI }t L *. 

2 
Therefore eTI is transcendental;] 

9: THEOREM (Admit S4EC) If !.. E L is nonzero, then I !.. I is transcendental. 
-

PROOF In #7, take 1..1 = /.., 1..2 = !.., thus 

thus I !.. i 2 is transcendental, thus I !.. I is transcendental (if I !.. I were algebraic, 

then I !.. j 2 would be algebraic) • 

10: EXAMPLE (Admit S4Ex:::) Take 

A. = {n(2) + r-r TI· 

Then !.. E L and 

is transcendental. 
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11: THEOREM (Admit S4F.c) Let w E C - {O }. Ass\.ll'IB: jw I is algebraic --

then ew is transcendental (cf. §44, #7). 

[In #1, take 

Then 

x = 1 1 y = 1 1 

-w 
Y2 = e . 

-W W WW x1y1 = 1, x1y2 = e , x2y1 = e , x2y2 = e e • 

[To deal with {x1 ,x2 }, suppose that 

a + f3 e w = 0 (a, f3 E Q) • 

Then f3 = 0 => a = O. Otherwise f3 'I- O 

w a -=> e = - - E Q - {O} f3 

=> w E L => lwl transcendental (cf. #9), 

contrary to the assumption that lwl is algebraic. Therefore f3 must be zero, as 

IIU.lSt <l.) 

Consider nekl the relation 
- -

{l w w w w} d L*. ,e,e,ee / 
- -W W WW If e was algebraic, then the same would be true of e and e e , an impossiliility. 

[Note: One can proceed without S4F.c when 

w E R u r-I R (w 'I- O) • 
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For in this situation, 

!w! = ± w Cw E R) 

!w I = ± Aw (w E H R). 

Therefore 

w E Q - { 0} => e w transcendental (Herrni te-Lindemann ( §21, #4) ) • ] 

-12: I.EMMA (Admit S.i!EC) I.et A E L*. Assurre: {>.,>.} is Q-linearly 

independent -- then jAj ~ L*. 

PROOF We shall utilize condition PQ. To this end, note that {A, I A I } is also 

Q-linearly independent: 

- 2 2 2 - 2 2 - 2 jAj = aA (a E Q) => j\j = a A => AA =a A => A = a >.. 

supr:osing that jAj f. L*, take in #4 

Then 

=> 

On the other hand, 

Contradiction. 

13: LEMMA (Admit S40Cl 

• If \ E L * - Q, then the. quotient l/A is not in L *. 
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-
• If A1 ,A2 E L* - Q, then the product A1A2 is not in L*. 

APPENVIX 

Let A E L - {O} and let w E C - {O} with !w! E Q. Assurre: eAw is algebraic --
-

then either w E Q or else wA/A E Q. 

[Note: Tacitly S4Ex:: is in force. ] 
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§46. TRANSCENVENTAL EXTENSIONS 

1: NorATION Let K be a field~""' then the field K(X1, ••. ,Xn) of rational 

functions in x1 , ... ,Xn is the quotient field of the polyncmial ring K[X1 , ... ,Xn], 

hence consists of all quotients 

f (Xl, .•. ,Xn) /g (Xl, ••• ,Xn) 

of polyncmials in x1 , ... ,xn with g f. 0. 

Let L be a field, K c L a subfield. 

2: NorATION Fix a subset S c L. 

• The ring K[S] generated by K and S is the intersection of all subrings 

of L that contain K and s. 
• The field K(S) generated by K and S is the intersection of all subfields 

of L that contain K and S. 

[Note: If S = {a1 , ... ,an} is finite, write 

K[S] = K[a1 , ... ,an] 

and 

3: N.B. If S is finite, then the field K(S) is said to be a finitely 

generated extension of K. 

[Note: 

finite extension => finitely generated extension 

finitely generated extension f.> finite extension.] 
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4: LEMMA K(S) is the set of all elements of L that can be expressed 

as quotients of finite linear combinations with roefficients in K of finite 

products of elerren.ts of S. 

5: TERMINOLOGY Let L be a field, K c L a subfield. 

• A finite subset S = {a1 , •.. ,a.n} ~Lis algebraically dependent over K 

if there is a nonzero polynomial P EK IX1 r ••• ,Xn] such that 

• A finite subset S = {al' ... ,an} c L is algebraically independent over K 

if there is no nonzero polynanial PE K[X1 , ... ,Xn] such that 

6: EXAMPLE Take L = K (X1 , ••• ,Xn) , the field of rational functions in 

[Note: 
rl rn 

Suppose that r 1 , ... ,rn are positive integers - then {X1 , ... ,Xn} 

is algebraically independent over K. ] 

7: EXAMPLE Working still with L = K(X1 , ..• ,Xn), let A= [aij] be an 

n x n matrix with roefficients in K. Put f. = 4 a .. x. -- then ff1 , .•• ,fn} is 
J i l.J J_ 

algebraically independent over K iff det A 'I O. 

8: N.B. Take S = 0, the empty set -- then it is deemed to be algebraically 

independent over K. 

9:. LEMMA If a.p .... ,C\i E L are algebraically independent over K, then 
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and K(2S_ 1 ••• ,Xn) are K-isoIIDrphic fields. 

[Note: The property is characteristic in that if K(a.1 , ••. ,a.n) and 

K(X1, ••• ,Xn) are K-isorrorphic fields, then {a.1 , •.• ,a.n} is algebraically independent 

over K.] 

10: REMARK The algebraic independence of a.1 , ••• ,a.n EL over K is equiv-

alent to the requirement that for each i, a.i is transcendental over K(a.1 , ••• ,a.i-l). 

11: DEFINITION A subset S of L is a transcendence basis for L/K if S is 

algebraically independent over K and if L is algebraic over K(S). 

[Note: A priori, S is infinite, the convention being that S is algebraically 

independent over K if every finite subset of S is algebraically independent over K.] 

r r 
12: EXAMPLE In the setup of #6, {2S_1 , ..• ,x;} is algebraically independent 

over K. 
r 1 r 

So, to establish that {X1 , ••• ,Xn~} is a transcendence basis for L/K, 

r 1 r 
it has to be shown that L is algebraic over K (x1 , •.• ,Xn n) • But for each i, the 

r. r. 
elemmt Xi is a zero of the polynomial Ti - Xii E L[T]. 

13: N.B. If S = ~ is a transcendence basis for L/K, then L/K is algebraic 

(and conversely) • 

14: THEOREM There exists a transcendence basis for L/K. 
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15: REMARK If 81 c 82 c L, if 81 is algebraically independent over K, 

if L/K(82) is algebraic, then there exists a transcendence basis X for L/K with 

81 c x c 82 . 

16: THEOREM If 81 c L, 82 c Lare transcendence bases for L/K, then 

card 81 = card 82. 

17: DEFJNITION The transcendence degree 

trdegK (L/K) 

is the cardinality of any transcendence basis for L/K. 

18: N.B. If 

trdegK (L/K) = 0, 

then L/K is algebraic (and conversely). 

19: EXAMPLE Take K = Q, L = C - then 

trdegQ(C/Q) = c. 

20: THEOREM Let k c K c L be fields -- then 

trdegk (L/k) = trdegK (L/K) + trdegk (K/k) • 

The situation when L is a finitely generated extension of K occupies center 

stage. 

21: SCHOLIUM Let L = K(o.1 , ••• ,an) -- then a max.ima.l algebraically 
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independent subset of the set {~, ••• ,an} is a transcendence basis for L/K and 

trdegK(L/K) :Sn 

Assuming that S = {~, .•• '°m}, it follows that L is a finite extension of 

K(a1 , ••• ,°m) and if this is separable (which is always the case in characteristic 

O), then 

L = K(~, ••• ,°m,(3) 

for some B in L (primitive element) • 

[Note: The extension L/K can be broken up into a series of subextensions, 

viz. let Ki= K(a1, ••• ,ai) (put K0 = K) -- then 

22: LEMMA Let L be a field, K c L a subfield. Let S be a s.Ubset of L 

with the property that each a E S is algebraic over K ~ then K(S) is algebraic 

over K and 

s finite => IK(S) :K] finite. 

23: EXAMPLE Take K = Q and consider Q (/21rr) -- then it is clear that 

{/2} is not algebraically independent, nor is {/2,1T}, which leaves {TI}, the claim 

being that it is a transcendence basis for Q(n,rr)/Q (per the theo:r:y spelled out 

in #21). To check this, in #22 take K = Q(rr), L = Q(/2,rr), S = {/2",rrJ.. 

• 12 is algebraic over Q(rr); 'W"ork with x2 - 2 E Q(rr) [X]. 

• 1T is algebraic over Q(1T); Work with X - rr E Q(rr) IX]. 
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Therefore Q(TI) (/2,TI) is algebraic over Q(TI). 

And 

24: REMARK The transcendence degree 

trdegQ Q (TI ,e) 

is either l or 2 but whether it is l or whether it is 2 is unknown since it is 

not knCMn if TI and e are algebraically indepeilaent or not. 

25: RATIONAL RECAPITUIATION" I.et M and N be finite subsets of C. 

e If N c Q, then 

trdegQ Q (M U N) = trdegQ Q (M). 

Therefore algebraic numbers do not contribute to the transcendence degree. 

e If N c M, then 

trdegQ Q(M UN)= trdegQ Q(M). 

Therefore only distinct numbers can contribute to the transcendence degree. 

• If the transcendence degree 

of the field Q(M) is card M, then Mis algebraically independent over Q and 

conversely. 

• I:f M = {m}, then the transcendence degree 

degQ Q(m) 

of the field Q(m) is 0 if mis. algebraic and 1 if mis transcendental. 
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-
• Q ••• Q:= 

-degQ Q (M) = deg_ Q (M). 
Q 

26: LEMMA Suppose that a1 , •.. , an are algebraically inde:pendent over K --

P1/q1 Pi/~ 
then so are a1 , ... ,an for nonzero rational numbers p1/q1 , ... ,prr'~· 

PROOF The transcendence degree of K ( a1 , ••• , an) over K is n (cf. #9) , whereas 

l/ql l/~ 
K (a1 , ••• , an ) 

l/q. q. 
is algebraic over K(a1 , ... ,an) since (aj J) J = aj. Therefore the transcendence 

degree of 

l/ql l/~ 
over K is also n. The numbers fo1 , ••• ,an } are algebraically inde:pendent 

pl/ql Pn/~ 
over K, thus the same is true of the numbers {a1 , ••• ,an } (cf. #6). 

27: LEMMA Suppose that Oil, ... ,an are algebraically inde:pendent over K. 

Let 

A[X1 , ••• ,Xn] 

B [X1 , ••• ,Xn] 

be two non:rcro polynomials whose quotient is not in K -- then 

A(Oi1 , ••• ,Cln) 

B(al, ... ,ci.n) 

is not in K. 
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PROOF If the ratio was equal to some a E K, then 

which contradicts the algebraic independence of the a.'s. 
J 



1. 

§47. SCHANUEL'S CONJECTURE (SCHC) 

This is the following staterrEnt. 

1: CON'JECI'ORE suppose that x1 , ••• ,xn are Q-linearly independent complex 

numbers --- then arrong the 2n numbers 

at least n are algebraically independent over Q, i.e., 

(cf. §46, #21) • 

This conjecture has many consequences, sorre of which are delineated below. 

2: LEMMA The set of n-tuples (x1 , ••• ,xn) in en such that the 2n numbers 

are algebraically independent over Q is a G0-subset of en and its carnplenent is 

a set of Lebes·gue measure 0. 

3: N.Br-The transcendence degree can be as small as n (cf. #6). 

4: x THEDREM Take n = 1 and consider x, e (x =I O) -- then at least one 

of x, ex is transcendental (cf. §31, #5), thus 

x trdegQ Q(x,e ) ~ 1, 

which is Schanuel in the simplest situation, 
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5: 
xl x2 

N. B. Take n = 2 and consider x1 , x2, e , e -- then the claim 

is that 

but this has never been verified in general. 

[;Note: Let w1 , w2 be two nonzero complex numbers - then SCHC implies -that 

wl w2 
trdegQ Q(w1w2, e , e ) ~ l.J 

6: THEOREM Suppose that x1 , ••• ,xn are Q-linearly independent algebraic 

x x 
numbers -- then the transcendental numbers e 1 , ••• ,e n are algebraically inde-

pendent over Q (cf. §21, #12), so 

thereby settling Schanuel in the particular case when x1 , ••• ,xn are algebraic. 

7: THEOREM (Mm.it SCHC) Let A.l' ••• ,A.n be Q-linearly independent elerrents 

A.1 ~ . of L (thus transcendental (cf. §.31, #4)) - then e , ••• ,e are algebraic numbers, 

hence 

< n. 
~ 

On the other hand, by Schanuel, 
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Therefore 

trdegQ QCA1 , .•• , A_n) = n, 

which implies that {Al' ... , \i} is algebraically independent over Q (cf. §46, #9). 

8: EXAMPLE It is not true in general that 

linear independence = > algebraic independence. 

Thus, e.g., {l, ;.2, .;.r, vb} is linearly independent over Q but is not algebraically 

independent over Q as can be seen by noting that if 

then 

P Cl, IZ, l.r, 16) = o. 

9: IMPLICATION 

Schanuel => inhonogeneous Baker. 

[If Al E L, ••• , An E L are Q-linearly independent, tjlen Al, ••. , An are Q-alge-

braically independent (cf. #7) or still, A1 , •.. ,An are Q-algebraically independent 

(cf. §20, #7), hence l,A1 , .•. ,An are Q-linearly independent. Proof: Given 

y+yA +···+YA =O 1 1 n n ' 

'INOrk with 

10: THEDREM (Admit SCHC) Suppose given elements A1 , .•• ,An in L and 

elem=nts et.1 , •.• ,etm in Q.. Assume: A1 , ... ,An are Q-linearly independent and 
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~, ••• ,am are Q-linearly independent -- then 

thus 
al 

{A11 • • • f \i I e I • • • f 

is algebraically independent over Q (cf. §46, #9). 

PRCX>F Define Bj:j = 1, ••• , m + n by Sj = \j for j = l, ••• ,n and Sj+n = aj 

for j = l, ••• ,m. Claim: 

Bi, ... , sm+n 

is Q-linearly independent. For suppose that 

is a rational dependence relation, hence 

From the definitions, 

a a +···+a.a -n+ 1 1 "'IItt'n m 

is an algebraic mn11ber, i.e. , is in Q. Accordingly, thanks to inhorrogeneous Baker, 

But a1 , ... ,am are Q-linearly independent. Therefore 

~+l = 0, ••• , '1:m+n = O, 

hence the claim. Now apply Schanuel: The transcendence degree over Q of 

is ?:. rn + n. To cut this down, note that 
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are algebraic, as are 

, ... , 
So we are left with 

which suffices. 

-11: THEOREM (Admit SCHC) If a f 0,1 is algebraic and if 1, S1 , ••. ,Sn E Q 

are linearly independent over Q, then the numbers log a and 

(principal powers) 

are algebraically independent over Q, hence are transcendental (cf. §31, #17). 

PROOF To begin with, 

are Q-linearly independent, thus the transcendence degree of the field 

is > n + 1 (quote Schanuel). But 

=> 

=> 

-1 B1 = ($1 log a) (log a) , 

Bl Sn 
Q(B1 log a, •.. ,Sn log a, log a, a , ... ,a ,a) 

Bl Sn 
=Q(B1 , ••• ,Bn,I.oga,a , ••• ,a ,a) 
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~n+l 

Bl Sn 
trdeg Q Q (IQg a, a , ••• , a ) = n + 1, 

from Which the algebraic independence over Q of Log a and 

12: N.B. In #11, take n = 1 and assume that B ~ Q -- then Log a and 

a 6 are algebraically in.dependent over Q. 

13: THEOREM. (Admit SCHC) If a -:/- 0, 1 is algebraic and if B E Q has 

degree d ~ 2, then 

B Bd-1 
trdeg Q Q (IQg a, a , •.. , a ) = d. 

PROOF First of all, 1, B, ••• , Bd-l are linearly independent over Q. In fact, 
. 

the minimal polynomial of B has degree d :::;, 2, whereas a rational dependence relation 

d-1 
g + g B + • • • +a~ B = o 1 ""'a.-1 

leads to a contradiction upon consideration of 

So, applying #11, the numbers Log a and 

B Bd-1 
a. , ••• ,a (principal powers) 

are algebraically independent over Q, from which the result. 
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[Note: It is not necessary to appeal to SCHC when d = 2 or d = 3 as these 

special cases have been resolved. For a case in point / take 

1/3 d = 3, Cl= 2, s = 2 . 

Then 
21/3 22/3 

bi (2) ' 2 ' 2 

are algebraically independent over Q. ] 

14 : REMARK It can be shown that unconditionally 

s sd-1 
trdegQ Q(a , •.. ,a ) > 

d+l 
-y-

the symbol on the right standing for the greatest integer less than or equal to 

d+l 
2 

15: THEOREM (.Admit SCHC) If x1 , .•• ,xn are complex numbers linearly 

independent over Q and if y is a transcendental mnnber, then 

PROOF Order the numbers x1, ... ,xn in such a way that a basis for the Q-vector 

space generated by 

is 

Claim: 
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For y is transcendental (by hypothesis), so there is a transcendence basis for 

which is 

{x. , ..• ,x. ,y} 
ll ~ 

with 

Then 

x1, ... ,x ,x. y, •.. ,x. y 
n il ~ 

are Q-linearly independent, thus 

k + n 5 m + n => k < m => k + 1 < m + 1, 

which establishes the claim. Next, invoking SCHC, 

xly V 
e , .•. ,e ) > n + m 

=> 

Taking into account the claim, it follows that at least n - 1 of the numbers 

xi xiy 
e , e (i = 1, ••• ,n) are algebraically independent. 

16: N.B. Specialized to the case n = 2, the upshot is that at least one 
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of the numbers 

is transcendental. 

17: IMPLICATION 

SCHC => 4EC. 

18: RAPPEL (4EC) I.et {x1 ,x2} and {yl'y2} be two Q-linearly independent 

sets of complex numbers -- then 

thus at least one of the numbers 

is transcendental. 

When dealing with 4EC, there is a little trick that can be used to advantage, 

viz.let 

Then 

So the list 

xlyl xly2 x2yl x2y2 
e I e I e I e 

becomes the list 

wlzl wlz2 w2zl w2z2 
e , e , e I e 
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i.e., the list 

i.e., the list 

i.e., the list 

i.e., the list 

where 

In order to utilize #16, it is necessary that y be transcendental. 

Case .1: y ¢ L * -- then y is transcendental (otherwise, y would be 

algebraic, while Q c L*). 

Case2: yEL* then #16 need not be applicable but in view of §43, #8, 

thus at least one of the numbers 

is transcendental. 

[Note: In the reference to §43, #8, take y = 1 and replace x2/x1 by y 2/y1 
(as is certainly permissible).] 

19: RAPPEL (Adrni t S4EC) Let w E C - { 0} . Assurre: I w I is algebraic --

then ew is transcendental (cf. §45, #11). 
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[Drop S4EC, impose instead SCHC, and bear in mind that the crux is when 

w ¢ R u l=T R, thus w, ware Q-linearly independent, so 

- w w trdegQ Q (w, w, e , e ) ;::, 2. 

w w w If e was algebraic, then e = e WJuld be too, reducing matters to 

trdegQ Q(w,w) 2 2, 

which is false since 2 - -Jwl E Q => Jwl E Q = wW E Q.] 

and 

20: NOI'ATION Wl:'i te 

x xl xn 
e = (e , ••• ,e ) . 

21: N.B. SCOC can thus be abbreviated to 

x 
trdegQ Q (~,e-) ;::, n. 

Consider a Q-linear combination 

x =qx +···+ax. n+l 1 l -n n 

Let M be a nonzero integer such that Mqk is an integer for all k = l, ••. ,n and 

assume with out loss of generality that 

are nonnegative and 

M~+l' .•. '~ 



12. 

are negative for some O ~ t ~ n. I.et 

t Mqk M n -Mqk 
=TT~ -x TT 

k=l n+l k=t+l ~ 

Then 

xl xn+l 
P(e , ••• ,e ) 

t t n n 
= exp ( l: Mqk~) - exp (M ( l: Mqk~ + l: Mqk~) ) exp (- l: Mqk~) 

k=l k=l k=t+l k=t+l 

t n n 
= exp( I Mqk~) (1 - exp( I, Mqk~)exp(- 2: Mqk~)) 

k=l k=t+l k=t+l 

t n n 
=::; exp ( 2: Mqk~) (1 - exp ( 2: Mqk~ - 2: Mqk~) ) 

k=l k=t+l k.=t+l 

t 
= exp( l: Mqk~) (1 - 1) = O. 

k=l 

22: SCHOLIUM The collection 

is Q-algebraically de:pendent. 
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xn+l 
So adding xn+l' e to 

does not change the transcendence degree. 

23: NorATIOO Given canplex numbers x1 , ••• ,xn, let 

denote the linear dimension of the vector space over Q spanned by x1, ... ,xn. 

24: COOJECIURE (SCHC) V x, 
":;· 

x 
trdegQ Q(~,e-) 2: lindimQ ~· 

'lb say that~ is a counterexample to SCHC :rreans that x1 , ••• ,xn are linearly 

independent over Q but 
x 

trdegQ Q(~,e-) < n. 

25: LEMMA If there is a counterexample to SCHC, then there is a dense 

subset of en comprised of counterexamples. 

PROOF If~ is a counterexample to SCHC, then for any nonzero q1 , ••• ,'\i in 

26: NOTATION Given ~, put 

x 
o(~) = trdegQ Q(~,e-) - lindimQ ~, 

the predimension of ~· 
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27: REMARK SCHC is thus the claim that \:/ ?f, 

so a counterexample to Schanuel is an x with 

0 (~) < o. 

If 

a.(~) < -1, 

then for any complex number C, 

a(~) S o(?f) + 1 < O, 

leailing therefore to continuum-many counterexamples. 

28: LEMMA \:/ n E N, the set X c en of n-tuples which do not satisfy - n 

Schanuel's condition is first category and of I.ebesgue measure O. 
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APPENVTX 

THEOREM (.Aamit SCHC) Let a -:/- 1 be a positive algebraic number and let 

f3 be a positive irrational number. Assume: 

Then f3 is transcendental. 

PROOF Suppose to the contrary that f3 is algebraic, so by Gelfond-Schneider, 

af3 is transcendental. Claim: 1, f3, af3 are Q-linearly independent. For suppose 

that 

r + ss + ta6 = o 

is a rational dependence relation: 

r + sf3 E q, ta6 ¢ Q (if t -:/- O) 

=> t = O => r,s = O 

NOVJ' multiply 1, f3,af3 by fu (a) -:/- 1, hence 

(S E p). 

,en (a) r f3ln (a) r . a6 fu (a) 

are also Q-linearly independent, hence by SCHC, 

i.e., 

. i.e., 

But 

Contradiction. 

f3 8 a 6 
trdegQ Q(fu(a), Bfu(a), a fu(a), a, a, a ) ~ 3, 

trdeg_ QCe.n(a) I [3bl(a), a8.en(a) I a8> ~ 3. 
Q 

trdeg_ Q(b1(a), Bfu(a) I a 8fu(a), a 8) 
Q 

= trdeg_ Q(fu(a), a6) < 2. 
Q 
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§48. SCHC: NUMERICAL EXAMPLES 

Unless stipulated to the contrary, throughout the § SCHC is in force. 

1: EXAMPLE The numbers e and ee are algebraically independent over Q. 

[Take x1 = 1, x2 = e -- then 

trdegQ Q(l, e, e1 , ee) ~ 2, 

e trdegQ Q(e, e ) ~ 2.] 

2: EXAMPLE The numbers fu(2) and 2£11 (2) are algebraically independent 

over Q. 
2 [Take x1 = fu (2), x 2 = (fu (2)) -- then 

i.e.' 

3: EXAMPLE The numbers fu (2) and fu (3) are algebraically independent 

over Q. 

[Take x1 = fu(2), ~ = fu(3) -- then 

trdegQ Q(fu(2), fu(3), 2, 3) ~ 2, 

i.e.' 

trdegQ Q(fu(2)' fu(3)) ~ 2.] 

fu(3) [Note: Recall that fu(2 ) is transcendental (cf. §24, #10), hence irrational.] 
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4: EXAMPLE The numbers e and 'TT are algebraically independent over Q. 

[Take x1 = 1, x2 = Hrr -- then 

i.e.' 

trdegQ Q c;:r 'TT, e) 2 2. 

Therefore e and ;=r 'TT are algebraically independent over Q. Sup:i;:ose now that e 

and TI are algebraically dependent over Q, so there exists P(X,Y) E: Q[X,Y] nonzero 

such that P(e,TI) = 0. I.et G(X,Y) = P(X, - ;:TY) and H(X,Y) = P(X, - ;:TY) --

then 

G(e, r-r 'TT) = P(e, (- H) r-r TI) = P(e,'TT) = 0 

and 
-

H ( e, ;:r 'TT) = P ( e, (- !=I) r-r TI) = P ( e, TI) = 0 = 0. 

Consequently 

(G + H) (e, A TI) = 0. 

But G + H is a nonzero :i;:olynomial with rational coefficients, thereby contradicting 

the algebraic independence over Q of e and !=I n.] 

[Three applications: 

• e + TI is transcendental. 

[SUp:i;:ose e + TI = a E Q· Form 

P(X,Y) = X + Y - a, 

an element of Q[X,Y] -.. then 

P(e,n) = e + n - a = 0. 

Contradiction.] 

• en is transcendental, 
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-[Suppose err = a E Q· Fo:rm 

P (X, Y) = XY - a, 

an elanent of Q[X,Y] -- then 

P(e,rr) = err - a= o. 
Contradiction. ] 

• e/rr is transcendental (hence rr/e is too) • 

[suppose e/rr = a E Q· Fonn 

P(X,.Y) = X - aY, 

an element of Q [X, Y] -- then 

P(e,n) = e - an= an - arr= o. 
Contradiction.]] 

5: REMARK It can be shown that unconditionally at least one of the 

following statements.is t...rue. 

2 
• The number err is transcendental. 

• The numbers e and 'TT are algebraically independent over q. 
2 

[Note: It is unknown whether err is even irrational.] 

6: EXAMPLE The numbers e, b1(2), and 'TT are algebraically independent over Q. 

(Take x1 = 1, x2 = b1(2), x3 = H 'TT .to arrive at 

trdegQ Q(l, £n(2), ;;:l rr, e, 2, -1) > 3.] 

[Note: The numbers 1, .en (2), r-r n are q .... linearly independent (because ,en (2) 

is irrational (cf. §10, #5) .] 
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7: LEMMA The eight numbers 

are Q-linearly independent. 

PROOF The numbers r-r TI, e, £n(2) are algebraically independent over Q, 

hence are algebraically independent over Q (cf. §20, #7) • Consider now a rational 

dependence relation 

A+ B r-r TI+ ci +De+ Fe2 + G£n(2) + H21/ 3fu(2) + K4113.en(2) = o. 

Define a polynomial P E Q IX, Y, Z] by the preseription 

P(X,Y,Z) =A+ BX - cx2 +DY+ FY2 

Then 
2 2 P(;.:r TI, e, fu(2)) =A+ B ;.:r TI+ CTI +De+ Fe 

Therefore 

A = B = C = D = F = G = H = K = 0. 

8: APPLICATION The eight numbers 

are algebraically independent over Q. 
[Consider 

TI2 e e2 21/3 22/3 
e, -1, e , e , e , 2, 2 , 2 • ] 
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The next objective is #14 infra, the verification of which proceeds in a 

series of steps. 

9: LEMMA Suppose that x1 , ... ,x is an algebraically independent set of 
~ n 

positive real numbers -- then x1 , ••• ,xn is multiplicatively independent (cf. §34, 

Appendix). 

10: EXAMPLE The numbers 2, 3, n, and £n(2) are multiplicatively inde-

pendent: 

(a,b,c,d g Z) 

=> a = b = c = d = O. 

[The numbers n and m(2) are algebraically independent over Q (cf. #6). This 

said, suppose that 

(a,b,c,d E Z), 

take for sake of arguIIEnt c ,;:: O, d ~ O, and introduce the polynomial 

Then 

ab => c = O, d = 0 => 2 3 - 1 = 0 =>a= O, b = O.] 

11: LEMMA Suppose that x1 , ••• ,xn is a multiplicatively independent set 

of positive real numbers -- then the set m(x1), ••. ,m(xn) is Q-linearly inde-

pendent. 

12: EXAMPLE The. numbers. m (TI) , m (2) , m (3) , bl (bl l2)) are Q-linearly 

independent (cf. #10) .. 
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Therefore the numbers 

!-=l TI, fu(TI), fu(2), fu(3), fu(fu(2)) 

are Q-linearly independent (consider real and .imaginary parts) • 

Now use SCHC to arrive at 

trdegQ Q(J-=l TI, fu(TI), fu(2), fu(3), fu(fu(2)), 

-1, TI, 2, 3, fu(2)) '.:: 5, 

from which the conclusion that 

TI, fu(TI), fu(2), fu(3), £11(£11(2)) 

are algebraically independent over Q. 

Next the numbers 

1, yCI~·,fu(TI), fu{2), fu(3), fu(fu(2)) 

are Q-linearly independent, thus invoking SCOC once again gives 

so 

trdegQ Q(l, ;.:I TI, fu(TI) 1 fu(2), fu(3), fu(£n(2)), 

e, -1, TI, 2, 3, fu(2)) ~ 6, 

e, TI, £n(TI), £n(2) 1 fu(3), fu(£n(2)) 

are algebraically independent over Q. 

13: LEMMA The seventeen numbers 

1, v'-I TI, TI, ln(TI), e, eln(TI), Tiln(TI), £n(2) 

Tiffi(2), el:n(2), H .ln(2), Fl, H fu(TI), fu(3) 

£n(£n(2)), (ln(3)) (ln{£n{2))), ~ln(2) 

are Q-linearly independent (cf. #7). 
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14: THEOREM (Waldsclnnidt 1 s menagerie) (Admit SCHC) The seventeen numbers 

rr e 
'If', m(Tf) I e, _fu(2) I fu(3) f _fu(fu(2)) I e f e 

e 'IT 'IT e r-I r-I .,,.r-1
1 

(on(2) )ln(3), 212 rr , n , 2 , 2 , 2 , e , " ~ 

are algebraically independent over Q. 

15: REMARK e'IT is transcendental (unconditionally) (cf. §20, #10) but 

it is not even knovm whether ee, rrrr, and rre are irrational, let alone transcendental. 

16: MISCELIANEA. (Admit SCHC) 

,d2 
• ff L. is transcendental. 

• ~is transcendental. 

Tr 
• r-1e is transcendental. 
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§49. THE ZERO CONV1T10N 

To begin with: 

1: THE EUNDAMENTAL CONJOCTORE (F'OC) Let Ai' ... ' A.a be elements of L 

which are linearly independent over Q -- then A.1 , ... , A.a are algebraically 

independent over Q, hence are algebraically independent over Q (cf. §20, #7). 

[Note: To appreciate how far away this conjecture lies, there is no known 

example of a Q-linearly independent pair V..1 , A.2 } which is algebraically inde-

pendent over Q. I 

2: N.B. Recall that the flmdamental conjecture is implied by SCHC (cf. 

§47' #7). 

3: N<Ym.TION Fix P E Q IX1 , ••. ,Xd], put 

d Z(P) = {~ E C :P(~) = O}. 

4: DEFINITION A nonzero :i;:olynomial P E Q rx1 , ••• ,Xd] is said to satisfy 

the zero condition if 

where V ranges over the C-vector subspaces of Cd rational over Q and contained 

in Z (P). 

5: EXAMPLE Sup:i;:ose that 

where c1 , ••• ,cd E Q -- then P satisfies the zero condition. 
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6: LEMMA If every nonzero P E Q rx1 , ••• ,Xd] satisfies the zero condition, 

then the fundamental conjecture is in force. 

PROOF 'lb get a contradiction, assume that A1, ••• ,Ad are linearly independent 

over Q but not algebraical! y independent over Q 1 hence there exists a nonzero 

polynomial P in Q rx1, ••• ,Xd] such that P (Al, ••• , Ad) = O, hence there is a C-vector 

subspace V of Cd rational over Q and contained in z (P) with 

Using the rationality of V over Q, write V as the intersection of hyperplanes 

defined by linear forms with coefficients in Q (cf. §37, #2). Denoting by 

a typical such hyperplane, we then have 

thus 

and so V = {O}. But 

d d (A11•••1Ad) Ev n L = {O} n L = (0, ••• ,0). 

7: REMARK It is also true that the fundamental conjecture implies that 

every nonzero PE Qix1, ••• ,Xd] satisfies the zero condition. 

Ollr objective now will be to establish the four exponentials conjecture 

nodulo yet another conjecture. 
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[Note: It was shown already in §47, #17 that 

SCHC => 4F.C.] 

8: CONJECI'URE W:>rk in c4 and define P E; Q[Xi_,2S,X3,x4J by 

P(x1 ,2S,x3 ,x4) = x1x4 ~ x2x3. 

Then P satisfies the zero condition. 

9: CQN.:JECI'(JRE Consider a 2 x 2 matrix M with entries in L: 

M = 

Supi;:ose that its rows are Q-linearly independent and its columns are Q-linearly 

independent -- then 

rank M = 2 (cf. §44, #2). 

10: N.B. The claim now is that 

#8 => #9. 

Here is another way to phrase it: If 

M = 

is a 2 x 2 matrix with entries in L and if 

rank M = 1, 
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then either its rows are Q-linearly dependent or its colUIIU1s are Q-linearly 

dependent. 

11: N. B. The condition 

rank M = 1 

.implies that 

= o. 

Per #8, take for P the rx>l ynomial 

Substitute in 

thus 

and so 

But 

= 0 

Z(P) n L4 = u v n L4 • 
v 

Choose V: A C-vector subspace of c4 rational over Q and contained in Z (P) with 
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12: LEMMA :i (a:b) E P1 (Q) such that Vis included either in the plane 

4 *1:{(z1 ,z2,z3,z4) EC :az1 = bz2, az3 = bz4} 

or in the plane 

{Note: See the Appendix for the verification. ] 

13: N.B. (a:b) is the class of (a,b) in the projective line P1 (Q). 

Return to 

M = 

• Assmne *1 in #12 and work with the colUTIIl1s of M: 

Then 

Fonn now 

- a + b 
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or still 

= 

0 

= 
0 

Since (a:b) E P1 (C), the columns of Mare linearly dependent and the four expo-

nentials conjecture is thereby established. 

• Assume *2 in #12 and work with the rows of M: 

This tine 

and one can consider 

It is not necessary to utilize #8 in order to arrive at a restricted but 

unconditional result, the idea being to reduce the elerrents ~in Z(P) n L4 for 

which there is a V: A C-vector subspace of c4 rational over Q and contained in 

Z(P) with A E v n L4 • 
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13: THEOREM Take a 

Then ei th.er A. E V for sane V per supra or else 

14: SCHOLIUM The statement of the four exponentials conjecture holds true 

for the set of those 

with the property that 

[Note: The point, of course, is that for this set of A., #12 is applicable.] 

15: N.B. The A.. (i = 1,2,3,4) are transcendental (if not zero). 
-- 1. 

APPENVIX 

The issue is the validity of #12. Write 

*2 = W2 (a:b) 

and note that 

W1 (a:b) 
c. Z (P) • 

W2 (a:b) 
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Matters are trivial if Vis contained in 

Assume; therefore, that there exists v: (w,x,y,z) E V such that ~z -:/- 0. Since 

wz = xy, we have (x:w) = (z:y) and (y:w) = (z:x) / the claim then being that the 

supp:Jsition 

leads to a contradiction. Choose v' = (w' ,x• ,y' ,z') in V which does not belong to 

Accordingly 

M:>reover 

2 for all (u,u') EC , hence 

P(uv+u'v') =O 

or still, 

P((uw,ux,uy,uz) + (u'w' ,u'x' ,u'y' ,u'z')) = 0 

or still, 

P(uw + u•w•, ux + u'x', uy + u•y•, uz + u'z') = 0 

or still, 

(uw + utw') (uz + utz•) - (ux + u 1x') (uy + u'y') = O 

or still, 
2 2 (wz - xy)u + (w'z - xy• - x'y + wz 1 )uu' + (w'z' - x'y')u' = 0 

=> 
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( ') 2 be" b" u,u E C ing ar 1trary. Therefore 

(yz' - y'z) (xz\ - x'z) 

= ZZ I (WI Z - xy I - XI Y + WZ I ) = Q • 

So at least one of the numbers 

yz' - y'z, xz' - x'z 

IIDJSt vanish. 

• yz' - y'z = 0 

w _ y _ y' _ w' => v' E; w1 (x:w), x--z-zr-X' 

a contradiction. 

=> 

• :xZ' - x'z = 0 

w _ x _ x' _ w' 
=> v' E w2 (y:w), y-z--zr-yi-

a contradiction. 

Since Vis rational over Q (by hypothesis), there is a basis e1, ••. ,ed 

for V (d ~ 2) with 
4 

ei = (eil' ei2' ei3' ei4) E Q · 

If V is included in w1 (a:b) for some (a:b) E p1 (C), then the system of equations 

{i=l, ••• ,d) 

has a nontrivial solution (u,u') E c2, thus it has a nontrivial solution 

(u,u') E q2 • Consequently Vis included in w1 (a:b) for some (a:b) E P1 (Q). The 

story for w2 (a:b) is analogous. 
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§50. PROPERTY (~ ~) 

Let K be a field, k c; K a subfield. 

l: DEFINITION Two m x n matrices M and N with entries in K are 

k-equivalent if there exist nonsingular matrices P and Q with entries in k such 

that N = PMQ. 

[Note: The ditrension of the Q-subspace of K1 generated by the rows of M 

(or N) is the same as the dimension of the Q-subspace of K11 generated by the 

columns of M (or N).] 

2: N. B. The rank of M equals the rank of N, this being the largest 

integer r for which there exists a nonsingular r x r sub:natrix of M (or N) 

(cf. §35, #8). 

3: THEDREM Let E be a k-vector subspace of K which is spanned by a family 

(finite or infinite) of ele:rrents of K which are algebraically independent over k --

then every matrix M with entries in E is k-equivalent to a matrix of the fo:rm 

A B 

c 0 

where A is either zero-size or nonsingular. 

'lb orient ourselves, here are tv.D examples of the overall structural setup 

(ignoring for the ti.Ire being the validity of the assumption on E). 

4: EXAMPLE . Take K = C / k = Q / let E0 be the Q-vector space L of logarithms 
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of algebraic numbers, and put E = Q + L. 

[Note: The sum is direct. In fact, 

Q n L= {a} (cf. §31, #3) => Q n L= {a}.] 

5: EXAMPLE Take K = c, k = Q, let Ea be the Q-vector space of ho.nogeneous 

linear combinations of elerrents of L with coefficients in Q, and put E = Q + Ea 

(hence E = L*) • 

[Note: The sum Q +Ea is direct (cf. §39, #14).] 

6: LEMMA Supi;:ose that E is a k-vector subspace of K -- then the following 

conditions are equivalent. 

(i) E is spanned by a family (finite or infinite) of elements of K which 

are algebraically independent over k. 

(ii) Subsets of E which are linearly independent over k are algebraically 

independent over k. 

(iii) If E' is a vector subspace of E and x is an elerrent of E which does 

not belong to E', then x is transcendental over k(E'). 

PROOF 

(i) => (ii) Per the assumption, fix a basis B for E over k consisting of 

elements of K which are algebraically independent over k. Iet ~, ... ,Xm be a set 

of k-linearly independent elements of E and write each x. (1 :::_ i ::: m) as a linear 
J. 

combination with coefficients ink of elerrents yj EB (1,:::. j,:::. n), say 

n 
x. = 4 a .. y .• 

J. j=l J.J J 
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Since the matrix [a .. ] has rank m, it follows that there is a subset {z1 , ... ,z } 1J n-m 

k (y1 , .•. , y ) = k (x1 , ... ,x , z1 , .•. , z ) • n m n-m 

And this relation implies that x1 ~ ... ,xm are algebraically independent over k. 

(ii) => (iii) Assume instead that x E E, x ~ E' is algebraic over k(E'). 

Choose yl' ••• ,yn in E', linearly independent over k, such that x is algebraic 

over k(y1 , ... ,yn) -- then y1 , ... ,yn,x are algebraically dependent over k, hence 

by (ii), are linearly dependent over k, say 

a y + • • • + a y - ax = 0. 1 1 n n 

But a cannot be zero (since otherwise a= 0 ~uld force y1 , ... (yn to be linearly 

dependent over k), hence 

al an 
x = - y1 + • • • + - y E E', a a n 

contradicting x ~ E' • 

(iii) = (i): I.et B be a basis for E over k. Claim: Any subset 

{y1 , ... ,yn1 c B of k-linearly independent elements of B consists of k-algebraically 

independent elements. 'lb establish this, proceed by induction on n. 

• n = 1: Use (iii) with E' = {O}: 

Therefore y1 is transcendental over k. 

• n ~ 2: Assume the result holds at level n.,.., 1 and let y1 , ... ,yn be 

k....J..inearly independent elements of B. Denote by E" the vector subspace of E over 
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k s:i;:enned by y1 , ••• ,yn_1• ONing to the induction hypothesis, y1 , ••• ,yn-l are 

algebraically independent over k. But yn 5l E' ~ so by (iii), Yn is transcendental 

over the field k(y1 , ... ,yn_1) from 'Which y1 , ... ,yn are algebraically independent 

over k. 

{Note: There is yet another equivalent condition that can be added to this 

list, viz: 

(iv) For any nonzero p::>lyncmial P E k [X1 , .•. ,Xn], 

z (P) n t1 = u v n r?, 
v 

'Where V ranges over the K-vector subspaces of K1 rational over k and contained in 

Z(P) = {~ E K°1: P(~) = O}.] 

7: NorATION Let E0 be the k-vector subspace of E spcmned by the entries 

of M. 

The proof of #3 goes via induction in the dimension n of E0• 

• n = 1: Write M = Nx, 'Where N has entries in k and x E E, x 'I 0. 

Let r be the rank of N and let P and Q be nonsingular matrices with entries in 

k such that 

PNQ = 

0 0 
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'!hen 

PMQ = 

0 0 

so matters are satisf ie::l with the choices 

• n = 2: Write 

A = I x, B = 0, C = O. r 

where M1 and M2 are matrices with entries in k and where x1 ,x2 E E are linearly 

independent over k (hence algebraically independent over k (cf. #6 (ii)). Denote 

by r 1 the rank of Ml" Choose nonsingular matrices P1 and Q1 with entries in k 

such that 

0 0 

Denote by A2 , B2 , c2 , D2 the matrices with entries in k such that 

where A2 is a r 1 x r 1 matrix. Then 

trlxl + Ar2 Bxx2 
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Choose nonsingular matrices P2 and Q2 with entries ink such that 

0 0 

where r 2 is the rank of o2• Then 

0 0 

0 0 

equals 

Irlxl + A2x2 B2x2 B' I 2 x2 

c~ I x r 2 2 0 

C' 'x 2 2 0 0 , 

where B2, B' I 2 , c2, c2· have entries ink. Put now 

A= 

and take for B,C what remains. 'lb check that A is nonsingular, note that the 
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rl r2 
determinant of A is a polynanial in x1 and x2 and the coefficient of x1 x2 
is 1. Therefore 

det A -:/- a. 

• n > 2: Fix a nonzero element x E Ea. let E1 be a subspace of Ea 

such that Ea = E1 E& kx. Write M = xN + M1, where N has entries in k and M1 has 

entries in E1• Denote by r the rank of N. Choose nonsingular matrices P and Q 

with entries in k such that 

Ir a 

PNQ = 

0 0 

Then 

xI r + Al 

PMQ = 

cl 
' 

where A1 ,B1,c1 ,o1 have their entries in E1• Apply now the induction hypothesis 

P'D Q' = 1 

A' B' 

C' 0 



8. 

Here A' is nonsingular with entries in E1 • Next 

equals 

Here 

I r 

0 

A= 

0 

p• 

A B 

c 0 

c II A I 

0 

0 Q' 

and the entries of B ' ' , C' ' are in E1 • To assertain that A is nonsingular, note 

that the detenninant of A is a polynomial in x with coefficients in k(E1) whose 

term of highest degree is xr det A'. Since x ¢ E1 , it follows frcm #6 (iii) that 

xis transcendental aver k(E1) and since A' is nonsingular, the bottom line is that 

det A ":/- o. 

8: DEFINITION' Let Ebe a k-vector subspace of K - then by property (~ ~) 

we shall understand the following: Any nonzero rna.trix M with entries in E is 

k-equivalent to a matrix of the form 
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A B 

c 0 

where A is nonsingular. 

[Note: Strictly speaking this is a property of the triple 

(k,K, E) 

A B but usually one abuses the language and simply says that E has property (C 0).] 

9: N.B. The upshot of #3 is that if E is a k..-vector subspace of K spanned 

by k-algebraically independent elements, then E satisfies property (~ ~). 

la: LEMMA If Ea is a k-vector subspace of K spanned by k-algebraically 

independent elements and if Ea n k = {a}, then E = k + Ea satisfies property (~ ~). 

PROOF As a k-vector space, E is isom:>rphic to the subspace E' = kX + Ea 

of K(X) and property (~ ~) holds for the triple 

(k, K (X) ' E I ) • 

11: EXAMPLE As in #4, take K = c, k = q, Ea = L, and admit FDC (cf. §49, 

#1) -- then #6(ii) is in force which implies that #6(i) is in force. Accordingly, 

since Ea n k = {a}, it follows that E = k + Ea satisfies property 

[:Note: Of course, Ea also satisfies property ( ~ ~) . ] 

12 : RErvlARK The satisfaction of property ( ~ ~) is not autanatic. 

['lb illustrate, choose elements x and u in K such that u, ux, ux2 are 
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k-linearly independent (=> x ~ k). Denote by Ethe k-vector space ku + kux + kux2 

(=> din\ (E) = 3) -- then the triple (~,K, E) does not satisfy property (~ ~). 

Thus consider the line V = K(l,x) in K2 (the hyperplane defined by the equation 

z2 = ~l:) and note that V n k2 
= {O}. Furtherrrore V n ?- contains the k-linearly 

independent fX)ints 

2 (u,ux), (ux,ux ) 

implying thereby that din\ (V n ?-) > 2. On the other hand, taking inti:> account 

§51, #3 infra (with d = 2, n = 1), 

So, on the basis of this contradiction, the triple (k,K,E) does not satisfy 

A B property <c o).] 

APPENVIX 

Let K be a field, k c K a subfield. 

LEMMA Supp:>se that E is a k-vector subspace of K containing k -- then the 

following conditions are equivalent (cf. #6). 

{i) There exists a basis {xi :i E I} for E over k with 0 E I, x 0 = 1, and 

{x.:i EI, i 'f:. O} algebraically independent over k. 
1 

(ii) If x1 , ... ,xn are elements in E such that 1, xl' •.. ,xn are linearly 

independent over k, then x1 , ... ,xn are algebraically independent over k. 
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(iii) For any tuple (x0, ••• ,~) consisting of k-linearly independent 

elements of E and for any nonzero hom::>geneous polyncmial PE k[X0 , ... ,~], the 

number P(x0 , ••• ,xn) is not zero. 

(iv) If PE k[x0, ... ,Xn] is a nonzero horrogeneous polynanial, then 

z (P) n E11+1 = u v n E11+1 
V e 

where V ranges over the K-vector subspaces of r+l rational over k and contained in 

Z(P) = {~ E r+1 :P(~ = O}. 
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§51. VECTOR SPACES:. L(bis) 

1: d d RAPPEL I.et V c C be a C-vector subspace such that V n Q = {O} -- then 

(cf. §38, #5), 

where 

2: N. B. This result is unconditional. 

Return now to the setup of §50. 

A B 3: THEOREM I.et E be a k-vector subspace of K satisfying property ( C 0) . 

I.et V c ~ be a K-vector subspace - then 

where 

~CV n ~) ~ n(n+l)/2, 

PROOF When d = 1, V = {O} and V n E = {O}. Assume now that d :::: 2 (=> n < d). 

• By induction on d, if r < d and if W is a K-vector subspace of ~ such 

that W n kr = {O}, then the k-vector space W n Er is finite dimensional, in fact 

(see below) • 

Take now l elements xl' ••• ,~ in V n z:d which are linearly independent over 

k, the claim being that 

l s. n(n+l)/2. 
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Denote by M the d x .e. rna.trix whose columns are given by the coordinates of the 

x. (i = 1, ••• ,£.) -- then the entries of M are in E, so M is k-equivalent to a 
-J_ 

rna.trix 

A B 

c 0 _,. 

where A is a nonsingular r x r rna.trix. In addition 

d > n ~ rank M ~ r => r ~ n < d. 

Put t = .e. - r, thus B is a r x t matrix. I.et W be the K-vector space spanned by 

the columns of B in If". Since V contains W x { O} d-r, we have W n kr = { O}. On 

the other hand, the columns of M are k-linearly independent, hence the same is 

true of 

A B 

c 0 

hence too for B. Therefore 

and by the induction hypothesis, 

=> 

t 5 r(r-1)/2 

£. = t + r = r + t 

~ r + r(r-1)/2 

::: n + n (;n...-1}/2 

= n(n+l)/2~ 
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Finally 

n < d - 1 => 

£_ ~ (d~·l) (d-1+1)/2 = d(d-1)/2 

which completes the induction. 

4: APPLICATION' Take K = c, k = Q, and Eo = L- Admit FOC (cf. §49, #1) --

then Ea is a Q-vector subspace of C satisfying property(~~) (cf. §50, #11), so 

d d for any C-vector subspace V c C such that V n Q = {O} there fella.vs 

[Note: It is not known if 

trQ Q (L) 2:. 2. 

A B HCMever the mere presence of property (C 0 ) is not enough to imply that .there 

exists two algebraically independent logarithms of algebraic numbers.] 

5: N.B. The estimate 

is sharp (cf. §.38, #7). 

6: IMPLICATICN 

dim (V n Ld) :5. n(n+l)/2 Q 

FDC => 4EC. 

PROOF Refer back to the proof of #1 in §.41. Folla.v it line by line, working 

independent points (viz. y1x, y2x), hence 



4. 

On the other hand (cf. #4), 

dim (V n L2) 5 1(1+1)/2 = 1. Q 

Contradiction. 

[Note: Recall that 

SCHC => 4EC (cf. §47, #17) 

and 

SCHC =>FCC (cf. §47, #7 and §49, #1) .] 

7: REMARK Under SCHC, it can be shown that a finite subset of L* consisting 
- -of Q-linearly independent elements along with 1 is Q-algebraically independent. 

Agreeing to denote this property by the symbol SFCC, we therefore have the impli-

cation 

SCHC => SFCC. 

One can then ~rk with the triple (Q, C, L*), which thus satisfies property (~ ~). 

d -d So, for any C-vector subspace V c C of dimension n such that V n Q = { O}, the 

Q-vector subspace V n L*d has dimension$ n(n+l)/2. 

8: N.B. 

SCHC => S4EC. 
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§52. ON THE EQUATION z + ez = o 

This equation has exactly one real root. Can it be expressed in "elementary" 

tenns? 

1: DEFJNITION A subfield F of C is closed under exp and log if 

e z E F => exp z E F 

e z E F - {O} => log z E F. 

2: NarATION Write E for the intersection of all subfields of C that are 

closed under exp and log, the elements of E being the elementary numbers. 

3: CONSTRUCTION Set E0 = { O} and for each n > O, let E be the set of - n 

all canplex numbers obtained by applying a field operation to a pair of elements 

of E 1 or by applying exp or log to an element of E 1 • n- n-

[Note: Division by zero or taking the logarithm of zero are not, of course, 

penni tted. ] 

4: N.B. Therefore 

Q c E. 

5: LEMMA 
00 

E = u En. 
n=O 

(Note: Consequently E is countable.] 

6: EXAMPLE 

e = exp(exp O) E E. 



7 : EXA.l'vfPIB 

8: EXAMPLE 

9: EXAMPLE 

2. 

A= exp(IDg(-l)) E E. 
2 

TI = - H IDg (-1) E E. 

10: THEOREM (Admit SCHC) The real root p of the equation z + ez = 0 

is not in E. 

This is definitely not obvious and it will first be necessary to step 

through sore preliminaries. 

11: NorATION Given a finite set 

of nonzero oomplex numbers, if A = ¢ put A0 = Q and if At- ¢, put 

al ai 
A.= Q(a1 ,e , ••• ,a.,e ) (i E {l, ••. ,n}). 

J. J. 

12: N.B. Each elenEnt of A. is a rational function (with rational co-
-- J. 

efficients) of the mnnbers 
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13: DEFINITION A tower is a finite set 

of nonzero complex numbers with the property that for each i E {l, ... ,n} there 

m. a.m. 
J. J. J. exists an integer m. > 0 such that a. EA· 1 or e E A· 1 (or both). 

J. J. J.- J.-

14: EXAMPLE 

is a to.iver. 

[ One can choose 

because 

15: DEFINITION A reduced tower is a tower 

such that fol' ... ,an} is linearly independent over Q. 

16: N.B. The tower figuring in #14 is not reduced (in fact a1 - 3a2 = O). 

17 : LEMMA I.et 

be a tower and suppose that q 1 , •.. , qn are nonzero integers. Set 

B = { s1 , ••• , Sn} , 



where 

Then v j;, 

and B is a tower. 

PRCDF Since 

4. 

O'.i 
B· = - (i = 1, ... ,n) • 

1. qi 

A· c B· 1. 1. 

ri.! B· q. 
d --i (e 1.) i.

1 Ci.! = s.q. an e = --i l. 1. 

it follows that every element of A· is a rational function (with rational co-
l. 

efficients) of the numbers 

hence V i, 

A· c B. (cf. #12). 
l. l. 

m. a..m. 
l. 1. l. This said, let i E {l, ... ,n}, thus a.i E Ai-lore E Ai-l (or both) and put 

n. = m.q .. 
1. 1. l. 

m. 
l. e suppose that a.i E Ai-l -- then 

n. mi q. 

B·1 = 
l 

O'.. l. 
(_i_) A B E . 1. c . l" m. i- i-

1 
qi 

a .m. 
1. 1. e suppose that e E Ai-l -- then 

s.n. a..m. 
1. l l l e = e E A. l c B. 1 • 1- 1.-
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Therefore B is a to.ver. 

18: REDUCTION PRINCIPLE Given y E E, there is a reduced tower 

such that y E ~· 

PROOF If y E Q, take for A the empty sequence. If y ~ Q, let T ( y) be the 

set of all towers 

with the property that y E ~ - then T(y) is not empty and, as will nON be shown, 

the assumption that every element of T(y) is not reduced is a non sequitur. So 

choose a tower 

and taken :minimal (n .2: 1). Let i be the smallest integer such that {a.1 , ..• ,a.i} 

is linearly dependent over Q, hence 

i-1 p. 
a,.= E .-la.. 

l j=l qj J 

for certain integers p1 , q1 , ••• , pn, ~. Consider the sequence 

Then the claim is that A' E T (y), which contradicts the minimality of n. To 

establish this, note that the sequence 
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is a tower (cf. #17) • In addition, 

°i E Aj_ _ 1 (by the fonnula above for °i) 

and 

°i a:i_/ql a.i,_l/qi-1 
e E .nj__1 (it is a polynomial in the numbers e 1 ••• ,e ) • 

But 

.\-l c Aj__1 (cf. #17) 

a.i-1 
Therefore the tower condition for A' is satisfied at the boundary between 

qi-1 
and ~+land 

Y E Pri c ~-1 => A
1 

E T(y), 

as cla.i!red. 

19: SUBLEMMA Suppose that 

is a tower - then V i, 

trdeg A. < i. Q l. 

PROOF Start with the situation when n = 1, say {a.~eO'.}, and for sake of 

argurrent, assume that a.m E Q - then a. is algebraic (consider t11 - a.m), hence 

< 1. 

Proceed from this point by induction, the underlying hypothesis being that 

trdegQ A. 1 < i - 1. 
1.- -
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0:· l. Iet r. stand for O:· ore -- then 
l. l. 

a. 
l. A· = A· 1 Co:. ,e ) l. 1.- l. 

= A. 1 (r.). 1.- l. 

Ibwever, on general grounds (cf. §46, #20), 

trdegQ A. 1 (r.) = trdegA A. 1 (r.) + trdegQ Ai.-l, 
1.- l. i-1 1.- l. 

or still, 

I.e.: 

trdegQ A. l (r. ) < 1 + i - 1 = i. 1.- l. 

20: LEMMA (Admit SCHC) Suppose that 

a. 
is a reduced tower -- then not l::x:>th a. and e l. can be algebraic over A. 1 . 

l. 1.-

PRCOF In the notation of §46, #20, 

trdegQ(A./Q) = trdegA (A./A. 1 ) + trdegQ(A. 1/Q). l. . l. 1.- l.-i-1 
0:. 

'lb get a contradiction, suppose that both ai and e l. are algebraic over Ai-l' thus 

a. 
l. A. 1 (a. ,e ) 

J_- J_ 

is an algebraic extension of A. 1 , so A. is an algebraic extension of A. 1 , hence 1.- l. J_-

trdegA (A./A. 1 ) = o . 1 J.: 1.-1.-
(cf. §46, #18) • 
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Therefore 

c:wing now to Schanuel, 

> i. 

On the other hand (cf. #19), 

Contradiction. 

21: N.B. V i, 

Turning finally to the proof of #10, suppose that p E E - then in view of 

#18, there is a reduced tower 

such that p E ~· Obviously p fl Q and it can be assurred without loss of generality 

that p fl A. if i < n. 
1 

Put 

Then 

and 
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Accordingly A' (which is clearly a t.c:Mer) cannot be reduced (cf. #20). On the 

other hand, A is reduced, thus 

tenns of this data 

Let 

n p. 
l p = l: - a . . 1 q. l i= l 

Here p ':f 0 since p ~ A. for i < n. n i 

n pi n 
p + e 0 = 0 => L: - a. + IT 

i=l qi l i=l 

a./q. p. 
(e i i) i = o. 

In 

Then B is a tnver (cf. #17) and since A is reduced, the same is true of B. But 

p ':f 0, hence 
n 

I 1 eb . aiJ<1xi al eb . a o a g craic over B 1 => e g raic over B 1 rr "'Il n- n-

and vice versa. It therefore follows that B cannot be reduced (cf. #20). Con-

sequently the supposition that p E E has led to a contradiction. 

22: NOI'ATION Write E for the smallest algebraically closed subfield of 

C that is closed under exp and IDg. 

23: N.B. Evidently 

E c E. 

24: THEDREM (Aarni t SCHC) Suppose that P (X, Y) E Q [X, Y] is an irreducible 

p::>lynanial such that 
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degX P ~ 1 per C[Y] [X] 

degy P ~ 1 per C [X] [Y] • 

Assume: For some nonzero a E C, 

a P(a,e ) = O. 

Then a. ~ E. 

[Note: a. is necessarily transcendental. For if a was algebraic, then the 

relation 

irrq?lies that ea would also be algebraic, which rontradicts Hennite-Lindemann 

(cf. §21, #4) • ] 

25: APPLICATION Take P (X, Y) = X + Y and take a = p -- then 

-
=> p ¢ E => p ¢ E, 

thereby recovering #10. 
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§53. ON THE EQ_UATION P(z,ez) = O 

1: RAPPEL Let f be an entire function. Assume: f has no zeros -- then 

there is an entire function g such that f = eg, 

[Note: If f is of finite order, then g is a polynanial (and the order of 

f is equal to the degree of g) • ] 

2: RAPPEL Let f be an entire function. Assume: f has finitely IIEnY zeros 

z1 f. O, ••• ,zn t- 0 (each counted with :multiplicity), as well as a zero of order 

m > 0 at the origin -- then 
n 

f (z) 

where g(z) is entire. 

[Note: If f is of finite order, then g is a polynanial (and the order of f is 

equal to the degree of g) • ] 

3: DEFINITION A polynomial P E C[X~YJ satisfies the standard conditions 

if P is irreducible and 

Given such a P, let 

Then f (z) has order 1. 

degX P ~ 1 per C[Y] (X] 

degy P ~ 1 per C[X] [Y). 

z f (z) = P(z,e ) • 

4: LEMMA f (z) has infinitely many zeros. 
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PROOF Suppose that f (z) has finitely many zeros -- then there exist carrplex 

constants A,B and a polynomial p(X) E C[X] such that 

Az+B f (z) = e p(z) 

Az B Az = e e p(z) = e q(z), 

where 

q(z) = e~(z) E C[X]. 

But the relation 

z Az P(z,e ) - e q(z) = 0 

is possible only if A E N {expand the data and compare coefficients), hence 

P(X,Y) = /iq(X). 

Since P depends on both X and Y, neither 0 nor q(X) are equal to 1, thus P(X,Y) 

is reducible, which contradicts the fact that P (X, Y) is irreducible. 

[Note: To rule.out from first principles the possibility that A= 0, observe 

that the relation 

P(z,ez) = q(z) 

would imply that ez is algebraic (cf. §20, #13), 'Whereas ez is transcendental 

(cf. §20, #15) .] 

We cane now to the main result 'Which is an illustration of the old adage 

"assume nore, get nore", there being, however, a price to pay, viz. the imposition 

of SCHC. 

5: THEOREM (Admit SCHC) Suppose that P satisfies the standard conditions. 
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suppose in ad.di tion that P E Q [X, Y] -~ then 

z f (z) = P(z,e ) 

has infinitely many Q-algebraically independent zeros, 

The proof is lengthy and will be developed in the lines that follOVJ. 

6: DEFINITION A zero a f: 0 of f (z) is said to be generic if 

a trdegQ Q(a,e) = 1, 

[:Note: Therefore the point (a,ea) is a generic point of the curve C c C x Cx 

given by P(X,Y) = O.] 

7: LEMMA Every zero a f: 0 of f (z) is generic, 

PROOF According to §52, #24, a is necessarily transcendental, hence 

trdegQ Q (a) = l. 
But 

p (a, Y) E Q (a) [Y] I 

so ea is algebraic over Q (a), which implies that 

a trdegQ Q(a,e ) = 1. 

8: N.B. Distinct nonzero a,(3 with f(a) = 0, f(B) = 0 are not autanatically 

algebraically independent over Q. 

[Take 

P(X,Y) = 1 + x2Y + y2_ 

Then 
-a = 0 => P(- a,e ) = 0,] 
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However: 

9: SUBLEMMA (Admit SCHC) Suppose that 

- f (a) = 0 (a ":/ O) 

and a ":/ ± B· 
f (S) = O (S°:f O) 

Then a and B are algebraically independent over Q. 

PRCXJF Bear in mind that a ":f 0, B ":f 0 are transcendental and generic (cf. #7) • 

This said, assume that a and Bare algebraically dependent over Q -- then 

a B trdegQ Q(a, S,e ,e ) = trdegQ Q(a, B) = trdegQ Q(a) = 1. 

O.Ving now to Schanuel' s conjecture, a and B are linearly dependent over Q: Linear 

independence over Q would irrply that 

a B trdegQ Q(a,B,e ,e ) ~ 2. 

Accordingly choose relatively pri.ne integers m and n such that ma = nS (take n > 0 

and suppose m::mentarily that m > O) • a Put v = - hence ' n' 

For every positive integer j , let 

be the curve given by 

Then 

x c. c: c x c 
J 



=> 

5. 

(y,e Y) E c n c . n m 

Since C and C have a nonempty intersection, it follows that they have a carrnon n m 

irreducible component and this means that 

P (nX, Y1) and P (mX, Y11) 
have a carrm::m irreducible factor. 

FACT The nth roots of unity operate transitively on the irreducible components 

of c and the mth roots of unity operate transitively on the irreducible components n 

of C . m 

• Factor P(nX,Y1) into relatively prime irreducibles: 

k s. 
P(nX,Y1) = TT U.(X,Y) J. 

j=l J 

Then it can be shown that each Uj(X,Y) is of the fonn u1 (X,wY) for some nth root 

of unity w and s1 = · · · = sk, call their comm:m value s, hence 

and 

• Factor P(mX,yn) into relatively prime irreducibles: 

l t. 
P (rnX, yffi) = Tf V. (X, Y) 1 

. 1 J_ i= 
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Then it can be shown that each Vi (X,Y) is of the form v1 (X,t.Jl) for sane mth root 

of unity wand S = · · · = tl..' call their camron value t, hence 

and 

It can be ass1..IITEd that 

u1 (X,Y) = V1 (X,Y), 

the comrron irreducible factor of P(nX,yll) and P(mX,Y11) -- then 

But 

degx P ~ o => ks = lt ~ o. 

Next 

= m degy P. 

But 

degy P 'I- 0 => n = m, 

contradicting the assumption that m,n are relatively prine. 

[Note: To treat the case when m < o, consider the polynomial 

-m degy P 
T(X,Y) = Y P(mX,yffi}. 
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'!hen 

and 

So as above, 

rm = n(3 => -no: = n(3 => -a. = (3 => a. = -(3, 

whcih is forbidden by hypothesis. ] 

10: DEFINITION Under the assumptions of #5, P is said to be primitive 

if v n E N, the curve C given by n 

p (nX, t1) = 0 

is irreducible. 

11: LEMMA (Admit SCHC) SuppJse that Pis primitive and let a.1 , ••• ,a.n 

be nonzero zeros of f (z) = P(z,ez) subject to a.. f ± a.. for all if j -- then 
J_ J 

a.1 , ••• ,a.n are algebraically independent over Q. 

PROOF Searching for a contradiction, the first step is to tabulate the data. 

So assume that over Q there exists an algebraically dependent collection a.1 , ••• ,a.n' 

a. +l of n + 1 nonzero zeros off such that a.. f ±a.. for all if j and taken n i J 

mini.mal. In view of #9, two such zeros are algebraically independent over Q, hence 

n :2: 2, and, by the minimality of n, the collection a.1 , ••• ,a.n is algebraically 

independent over Q, hence 
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Meanwhile, by Schanuel, if a1 , ••• ,an,an+l were linearly independent over Q, then 

Since this cannot be, it follows that there exist nonzero integers m1, ••• ,mn,m 

with no c::annon factor such that 

n 
L: m. a. - ma (m > O) • k=l K K - n+l 

Put yk = ; . I.et C c e x ex be the curve defined by P (X, Y) = 0 and let 

C c e x ex be the curve defined by P (rnX, y1Il) = 0. Since P is primitive, C is m m 

irreducible and since a1 , ••• ,~ are algebraically independent over Q, the same 

Y1 Yn 
Therefore (y1 ,e ) , ••. ,(yn,e ) are generic points in Cm. 

MJreover 

= n. 

12: CONS'IRUCrION Define a map 

x n x 
~= Ce x e ) + e x e 

by the prescription 

n n ~ 

+ ( L: ~~, Tr yk ) • 
k=l k=l 

Then 
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= ( ~ Ilk~ 
k=l m 

a generic point in c, hence cp maps (Cm) n to C. So if z1 , ••• , zn are zeros of f, 

then the pairs 

lie in cm, from which it follows that the sum 

m 11k 
L: - z 

k=l m k 

is a zero of f. In particular: 

is a zero off (take z1 = z2 = a1 and 2k =Ok_ (k > 2)). 

n > 2: In this situation, the collection a.l'a.3 , ••• ,~,a is algebraically 

dependent over Q and consists of n nonzero zeros of f, contradicting the minirrality 

of n. 

[Note: The condition n > 2 implies that a is nonzero and a"/ ± ai v i.] 

n = 2: It is a question of dealing with the collection a1 ,a2,a3 of 

Q-algebraically dependent nonzero zeros of f such that a. "/±a. for all i "/ j 
1 J 

satisfying 
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where, as above, 

is a zero of f. The claim then is that such a scenario is impossible. To this 

end, it will be shown below that each of the following conditions leads to a 

contradiction. 

(1) Il\ + m2 = O; (2) Il\ + ~ = m; (3) Il\ + m2 = - m. 

Therefore 

a:/- O (cf. (l)); a:/- a1 (cf. (2)); a:/- - a1 (cf. (3)). 

Consequently a and a1 are algebraically independent over Q (cf. #9). But this is 

nonsense since a and a1 are linearly dependent over Q: 

1 ·a - q ·a = 0 (q =II]_~ E Q). 1 m 

Ad(l) (II]_ + ~ = 0): 'lb begin with, note that ; a1 and a1 are nonzero 

Q-algebraically dependent zeros of f, hence by #9, 

To pin things down, take II]_ = +m -- then 

Now interchange the roles of a1 and a2 to get 
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or still, 

Contradiction. 

Ad(2) (m1 + ~ = m): By switching the roles o:E the variables and multi-

plying by -1 if necessary, it can be assumed that Im I ~ I~ I 1 I~ I and m > 0, 

~ > 0. Construct a sequence { 21<.} of zeros of f by the following procedure: 

Take z1 = a1 and via recursion, take 

Then the fact that 

leads to the relation 

Since 

~ ~ -= 1- -m m 

~ 0 < - < 1, m 
m k 

the coefficient ( ;) of a1 takes a different value for each k, thus thanks to 

the Q-algebraic independence of a1 and a 2 , the sequence {zk} assurres infinitely 

many distinct values. Put 

Then 
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But this ~ans that the entire function f has infinitely many zeros in the disc 

of radius 2M centered at the origin, so f = O, a contradiction. 

Ad(3) (IIJ_ + ~ = - m): 

and 

=> 

On the other hand, 

is a zero of f. And 

ml 
Let s = - -- then m 

m (1 + s) -= -
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Now treat ~' ~2 , was a collection of Q-algebraically dependent nonzero zeros 

of f. Invoking the earlier analysis, we thus have 

s 2 - (1 + s) 2 = - 2s - 1 = 0 or ± 1. 

e If - 2s - 1 = 1, then 

So 

Contradiction. 

Il1_ 
s = - 1 => - 1 = -m 

=> - m = Il1_ 

=> ~ = o. 

• If - 2s - 1 = - 1, then 

s = 0 => Il1_ = o. 

So 

Contradiction. 
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• If - 2s - 1 = O, then 

s2 - (1 + s) 2 = s 2 - (1 + 2s + s2) 

= - 1 - 2s = 0. 

So matters reduce to "m1 + IDz = 0 1
'... • 

13: N.B. It won't hurt to repeat: P E Q [X,Y] satisfies the standard 

conditions and 
z f (z) = P(z,e ) 

has infinitely many zeros (cf. #4). 

PROOF OF #5 In view of #11, it can be assumed that P is not primitive. 

Choose, accordingly, an n E N such that C is reducible (cf. #10) -- then C has n n 

an irreducible canponent defined by sane polynomial Pn (X,Y) E Q[X,Y] depending 

on both X and Y and 

Noting that degx P > 1, proceed by induction on degx P, suPfOsing that for all 

irreducible polynomials T(X,Y) E Q[X,Y] satisfying the standard conditions such that 

the entire function 
z T(z,e ) 

has infinitely many Q-algebraically independent zeros - then by hypJthesis, the 

entire function 
z f (z) = P (z,e ) n n 
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has infinitely many q-algebraically independent zeros, say z1 ,z2 ,... • But 

P n (X, Y) is a factor of P (nX, T) , hence 

Therefore 

is an infinite collection of q-algebraically independent zeros of f. 

-14: REMARK The result remains valid if Q is replaced by Q, i.e., granted 

SCHC, if PE Q[X,Y] satisfies the standard conditions, then 

z f (z) = P(z,e ) 

has infinitely many Q-algebraically independent zeros. 

15: EXAMPLE (Admit SCHC) Consider P (X, Y) = X - Y -- then the entire function 

z z f (z) = P(z,e ) = z - e 

has infinitely many Q-algebraicall y independent zeros, thus the exp:mential function 

ez has infinitely many Q-algebraically independent fixed p:>ints (cf. §52, #10). 

16: THEDREM (Admit SCHC) SUpp:>se that K c C is a finitely generated field --

then for any P E K[X,Y] satisfying the standard conditions, the equation 

has a solution a generic over K: 

z P(z,e ) = 0 

a trdegK K(a,e ) = 1. 

[This was proved in 2014 by V. .Mantova.] 
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17: APPLICATION (.Mmit SCHC) 

#16 => #14. 

[Start with the field K obtained by adjoining the coefficients of P to Q. 

Choose an a per supra. ] 

Here is a w::>rd or tWJ on the proof of #16. The key is to show that P(z,ez) 

has on.ly. finitely many zeros in K, the algebraic closure of K (this forces the 

other zeros to be generic over K). The rx:>int of departure for this is the following 

result. 

18: LEMMA (khnit SCHC) There exists a finite dimensional Q-vector space 

F c K containing all the zeros of P(z,ez) in K. 
[Without loss of generality, add to K the coefficients of P so that P is 

defined over K. Recall that for any z = (z1 , ••• ,z ), - n 

~ 
trdegQ Q (~,e ) ~ . lindimQ ~ (cf. §47, #24). 

z. z. 
- J_ J_ -If now each zi E z is in Kand P(zi,e ) = O, then e EK.] 
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§54. ZILBER FIELVS 

These are fields subject to the follo.ving conditions. 

• (EAC) 

• (STD) 

• (SCHP) 

• (SFACP) c (FACP) 

• (CCP) 

The meaning of these abbreviations will be explained below. 

1: DEFINITION An E-field. is a field (K, +, • 1 o, 1) of characteristic 

0 equipped with a surjective ho.rrorrorpbism E frc:m its additive group (K,+) to its 

multiplicative group (Kx, ·),thus 

V x,y EK, E(x+y) = E(x)· E(y) 

and E(O) = 1. 

2: EXAMPLE To exhibit an E-field, take K = R, take a > o, and equip it 

with the exponential function to base a, i.e. , 

x expa(x) =a (x ER) (cf. §5, #1). 

[N9te: Denote this setup by the symbol R when a = e ~] exp 

3: DEFINrrION An E-field K is an EAC-field if K is algebraically closed. 

4: EXAMPLE To exhibit an EA-field, take K = C and equip it with the usual 

exponential function z -::r e 2 • 

[Note: Denote this setup by the symbol C • ] exp 
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5: N.B. If K is an E-.field, then Q can be considered as a subfield of K, 

since K has characteristic O. 

· 6: DEFIN"ITION Supp:>se that K is an E-field -- then the kernel of the 

exp:>nential map, i.e., 

{x E K:E(x) = l}, 

is said to be standard (STD) if it is an infinite cyclic group generated by a 

transcendental element a, thus 

Ker (E) = al. 

[Note: a is transcendental provided that it is not the root of a nonzero 

p:>lynomial with coefficients in the copy of Q in K.] 

7: EXAMPLE Take K = C -- then the kernel of the exp:mential map is exp 

2rr A z, hence is standard (take a = 2rr A) . 

8: DEFINITION Supp:>se that K is an E-f ield -- then to say that K has 

Schanuel' s property (SCHP) means that if x1 , ... ,xn are elements of K which are 

linearly independent over Q, then the field 

has transcendence degree 2: n over Q. 

[Note: When K = C, SCHP is, of course, conjectural (SCHC) .] 

9: NOI'ATION Given an E-field K, transcribe :§:47, #20 from c to K and given 

x, put 

the predimension of~ (cf. §47, #26). 
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Therefore SCHP per K is the claim that v x, 

10: NOI'ATION (Admit SCHP) Given an E-field Kand a finite set X c K, 

view X as a tuple - .then oK (X) > 0 and the dinension of X in K is 

11: DEFilITTION (Admit SCHP) Let Kand L be E-fields -- then L is a strong 

extension of K if K c L and 

d.llrJc (X} = dIBJ:. (X) 

for all X c K, where X is finite. 

12: THEOREM (Admit SCHP) C is not a strong extension of R . exp exp 

PROOF It will be shown that 

TI e UR(TI) = trdegQ Q(TI,e) - lindimQ(TI) 
/ <Ming to Nesterenko (cf. §.20, #10): 

=2-1=1. 

TI = trdegQ Q(TI,Tii=l,e ,-1) - 2 

= trdegQ Q(TI,TIH,eTI) - 2 

1T = trdegQ Q(TI,e ) - 2 

= 2 - 2 = 0, 
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rrR being algebraic over Q ( rr) . Therefore 

If now Cexp was a strong extension of Rexp' then we'd have 

so there w:>uld be a finite subset X c R with TI E X such that oR (X) = 0. Explicate: 

X = {rr,x1 , ... ,xn} 

and suppose that 

linclimQ x = k + 1. 

Write 

=> 

= k + 1 

=> 

= k + 1. 

On the other hand, thanks to Schanuel, 

= k + 2. 

Contradiction. 
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The next definition, viz. that of strong exponential closure, is on the 

technical side. 

Let K be an FAC-field. Put G = K x .Kx -- then G is a Z-:rrodule: 

(•): Z xG+G 

m m · (x,y) =(rnx,y ) • 

This action can be generalized to ma.trices with integer coefficients: 

(. ) : M (Z) x Gn + ef1, nxn 

where a matrix M = (m .. ] sends 
J.J 

to 

n n n ~· n m. 
( L: m .. x., ••• , L: m .x.; 1T y. J, .•• , Tr y.nJ). 
j=l J.J J j=l n] J j=l J j=l J 

13: NorATION If V c cP, write M • V for its irna.ge and observe that if 

V is a subvariety of cf-, then so is M · V. 

14: DEFINITIOO A subvariety V c: Gn satisfies the dim:msion condition if 

for all M E M (Z) , nxn 
dim M • V ~ rank M. 

[ Note: In particular, dim V ~ n.] 

15: DEFINITIOO A subset V of Gn is additively free if V is not contained 

in a set given by equations of the fonn 

n 
{ (x,:t.l: L: m.x. = a} r -· · 1 J_J_ i= 
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where the m. E z are not all zero and a E K. 
J:. 

16: DEFINITION A subset V of r:P is multiplicatively free if V is not 

containe:l in a set given by equations of the fonn 

n m. 
{ (~, ;i) : 1T y i I = b} ' 

i=l 

where them. E z are not all zero and b E Kx. 
l 

17: N.B. call V free if V is both additively and multiplicatively free. 

18: DEFINITION A subvariety V c r:P is admissible if V is irre:lucible, 

satisfies the dimension condition, and is free. 

19: DEFINITION Suppose that K is an EAC-field -- then K has the exp::mential 

algebraic closure property (EACP) if for all admissible subvarieties V of r:f1 that 

are define:l over Kand of dimension n, there is an x in K1 such that (x,E(x)) EV. 

[N:>te: Therefore K is exp'.)nentially algebraically close:l iff each such 

variety V intersects the graph of exp::mentiation.] 

20: REMARK (Admit EA.CJ?) It can be shown that there are infinitely many 

Q-algebraically independent ~such that (x,E (x)l E V. 

21: EXAMPLE (Admit SCHC) Take K = C -·- then it is unknown whether exp 

EACP obtains in general but the simplest case, namely when n = 1, can be dealt with. 

'lb see how this goes, recall that a variety V in c2 is the set of cornrron zeros 

of a collection of :i;:x:>lynomials in C[X,Y] and, in fact, is the zero set of a single 
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p:>lyncmial, i.e., given V, there is a tnlynomial P(X,.Y) E C[X,Y] such that 

V = Z(P) = {(X,Y) E C x C:P(X,Y) = O}. 

And V is irreducible iff this is so of P. Working with V c C x Cx (being 

interested only in solutions to P(z,ez) = O), transfer matters frcm V to P by 

iintnsing the standard conditions on P (cf. §53, #3) -- then V is admissible. 

E.g. : To check freeness, v nonzero m E Z, 

x VJ {(X,Y) E C x C :rnX =a} 

V f {(Xr.Y) EC x Cx;yn =bf O}. 

z Proceeding, to produce a tnint (z,e ) EV, what has been established in §53, #5 

serves to settle things if P E Q[X,Y] or if instead P E Q[X,Y] (cf. §53, #13) and 

the general situation can be handled by an appeal to §53, #15. 

22: REMARK There is a reinforcement of EACP to SEACP, where the "S" stands 

for "strong". This is done by demanding that the outcomes (x,E(~) EV be generic 

in a suitable sense. 

[Note: The discussion in #21 is actually strong. ] 

Agreeing to admit SCHP, recall the notation of #10. 

23: N0rATION Let K be an E-field with Schanuel 's property. Given a finite 

set X c K, put 

24 : N. B. ec.Sz (X) is called the exp:::mential closure of X. 

25: DEFINITION (Admit SCHP) An E-=f ield K has the countable closure 
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pro:r;erty (CCP) if for any finite set X c K, ec.t}z (X) is countable. 

There is another approach to exponential closure which forgoes SCHP and has 

the merit that it can be used to establish that C has the CCP. exp 

26: DEFINITION An exponential :polynomial is a function of the fo:rm 

f (x.) = P(~1E(~)), 

where 

27: N.B. Formal differentiation of :polynomials can be extended to 

x 
ex_tX)nential :polynomials in a unique way such that ~x = ex 

28: DEFINITION A Khovanskii system of width n consists of exponential 

:polynanials f 1 , .•• ,fn with equations 

and the inequation 

df n 
i:lx1 · 

fi (x1 , .•• ,xn) = O (i = 1, .•• ,n) 

of n 
~ rx-

n 

the differentiation.being the fonnal differentiation of exponential :polynomials. 

29: LEMMA. (Admit SCHP.1 Let K be an E-field, X c K a finite subset -
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then ec~(X) consists of those p:>ints x EK with the property that there are 

n E N, x1 , ••• ,xn EK, and exponential p:>lynornials f 1 , ••• ,fn with coefficients 

from Q(X) such that x = x1 and (x1, ••• ,~) is a solution to the Khovanskii system 

given by the fi. 

Now drop SCHP and for any E-field K take for the definition of ec~(X) the 

property figuring in #29, thereby extending the definition of CCP to all E-fields K. 

30: THEDREM cexp has the countable closure property. 

PROOF Given a finite subset X c C , there are only countably many Khovanskii exp 

systems with coefficients from Q(X). The inequation in a Khovanskii system anounts 

to saying that the Jacobian of the functions f1 , ••• ,fn does not vanish, so by the 

implicit function theorem, solutions to a Khovanskii system are isolated, hence 

there are but countably many solutions to each system, thus implying that 

is countable. 

eclc (X) 
exp 

We come now to the fundarren.tal definition: A Zilber field is a field K 

subject to the conditions listed at the beginning. 

[NJte: Denote this setup by the symbol ~.] 

31: THEDREM For K uncountable, up to isorrorphism there is a unique 

Zilber field of size K. 

32: CON.TICI'URE The Zilber field of size continuum is isonorphic to C • exp 
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§55. E-RINGS 

1: DEFINITION An E-ring is a :pa.ir (R,E), where R is a ring (conmutative 

with 1) and 

E: (R,+) + (UR,·) 

is a map from the additive group of R to the multiplicative group of units of R 

such that 

V x,y EE, E(x + y) = E(x) · E(y) 

andE(O) =l. 

[Note: Every ring R becorres an E-ring via the stipulation 

E(x) = 1 (x ER).] 

2: EXAMPLE Every E-field is an E-ring (cf. §54, #1). 

[Note: By definition, an E-field has characteristic O, matters being trivial 

in J;OSitive characteristic. Thus supfOSe that K is a field of characteristic 

p > 0 -- then V x E K, 

1 = E (O) = E (x + x + • · • + x ) 
1-------

p 

= E(x) + E(x) + ··· + E(x) 

=> 

= E(x)P - 1 = 0 => E(x) = l.] 
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3: EXAMPLE Take R = Z and define E by the prescription 

E (x) = 1 (x E Z) • 

Another :i;:ossibility is the prescription 

1 if x is even 

E(x) = (x E Z). 

- 1 if x is odd 

[Note: These ~ are the only :i;:ossibilities. ] 

4: RAPPEL If G is a rrru.ltiplicative group (finite or infinite) and R is 

a ring (conmutative with 1), then the group ring R [G] of G over R is the set of 

all finite linear combinations of elements of G with coefficients in R, thus 

l: r g, 
gEG g 

where r = 0 for all but finitely many elements of G and the ring operations are g 

defined in the obvious way. 

[Note: If 1 is the identity of R and e is the identity of G, then le is the 

identity of R[G].] 

I.et x1, ••• ,Xn be distinct indetenninants. 

5: DEFJNITION The free E-ring, denoted 

is an E-ring containing x1 , ••• ,Xn as elements and having the property that for 

each E-ring Rand elements r 1 , ••• ,rn ER there is one and only one E-ring rrorphism 
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such that 

== r. 
J_ 

(i==l, ... ,n). 

6: N.B. The free E-ring on no generators, denoterl (.0]E ("n == O"), is 

adrnitterl. It has the property that for each E-ring R there is an E-rrorphism 

E fran [,0] to R. 

The existence of 

is establisherl via an argument of recursion, itself a special case of the following 

considerations. Given an E-ring R, one can fonn the free E·-ring extension of R 

on generators ~, ... ,Xn, denoted 

E R[Xl' ... rXhl , 

its elements being by definition the E-,,ring of exponential p::>lynomials. 

[Note: Take R == Z (E = 1) to recover 

7: CONSTRUCTION We shall construct three sequences: 

• (!\:, +, ·) k ~ _ 1 are rings; 

• (~, +) k 2 0 are abelian groups; 

• (~) k 2 _ 1 are E-morphisms fra:n !\:to Ul\:+i· 
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Initial Step: Put R_1 = R, 

and let A0 be the ideal generated by x1 , ... ,Xn. So, as an additive group, 

Ro = R EB Ao (= R_l EB Ao). 

Define the rrorphism 

by the composition 

Inductive Step: Suppose that k '.:: 0 and 1k-l' 1k' ~, And Ek·-.1 have been 

defined in such a way that 

Let 

be a fonna.l isanorphism (additive +multiplicative). Define 

Therefore 1k is a subring of 1k+l and as an additive group 

1k+l = 1k EB ~+l' 

where ~+l is the !k-suJ:m::xlule of Ik+l freely generated by the ta (a E ~'a 'I- 0). 

Next extend 
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by 
a 

~(x) = Ek-l (y) • t (x = y +a, with y E lk-l'a E ~). 

In this way there is assembled a chain of partial E-rings (the dana.in of 

exp::mentiation of ~+l is ~): 

Definition: 

Roc11_c···. 

00 
E R[X1 , .•• ,X] = U R, 

n k=O -k 

its E-ring morphism being the prescription 

E(x) = ~(x) (x E ~). 

8: N.B. ~+l as an additive group is the direct sum 

R E9 AO E9 Ai E9 • • • E9 ~+ l. 

[Note: The group ring ~+l is isonorphic to 

A ffi···EB~ 
R [t O ] 

0 

or still, is ison:orphic to 

~ffi···ffi~ 
11_[t ] 

or still, is isarrorphic to 

9: N.B. 
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as an additive group is 

RE9A E9A E9 ••• E9A.. E9 ••• 0 1 -K 

and as a group ring is 

10: EXPQ\JENTIATIONS 

• I.et P E 11c (k 2: 0) - then P can be written uniquely as 

• I.et P E ~ (k ~ 1) -- then P can be written uniquely as 

N 
P = L r. E (a.) , . 1 ]. ]. i= 

where a. EA. 1 - {O} and a. =!-a. for i ::/- j and r 1 , •.• ,rN are nonzero elements of 
1 -K-· 1 J 

11c-1· 

[Note: The isonorphisrn t:~ + t~ is the restriction of the exponential map 

E to~: 

11: EXAMPLE Take n = 2 and work with 

Then (k = 2) 

2__ 5 7 P(X,Y)= - 3X-Y - X Y 
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is an element of ~ (per Z) : 

12: EXAMPLE Consider the free E-ring [,0]E on no generators -- then the 

E elements of [,0] are "exponential constants", e.g., in suggestive notation, 

13: LEMMA Given an E-ring T and elements t 1 , .•. , tn E T, every E-ring 

rrorphism cjl:R + T has a unique extension to an E-ring rrorphism 

such that 

¢(X.) =t. (i=l, •.• ,n). 
l l 

[Use the corresi:onding property of 

and extend step.vise to each 11<. (k > 0) • ] 

SU.pi:ose that (R,E) is an E-ring. Given a set I "I JJ, let RI be the set of 

functions I + R -- the R1 is an E-ring: Let f E; RI and define Ef by the rule 

(Ef) (i) = E (f (i) ) , 

i.e., operations are i:ointwis.e. 
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n 
Take I = If and consider RR , the functions fran If to R. Define the 

n 
coordinate functions x1 , ••• , ~ E RR by 

x.(r1 , ... ,r)=r. (i=l, ..• ,n). 
i n i 

#13 tak If =-1-.~-'I • If b . . ch th tan In , e T = R • J:!&Liu=.i. R in R i'f assigning to ea r E R e cons t 

function C (C (r1 , •.. ,r) = r) -- then the assignment r r n 

C: 
r+C r 

is an E-ring norphism, hence c admits a unique extension to an E-ring norphism 

that sends each X. to x. , the canonical arrow, call it r. 
l l 

14: NOI'ATION Write 

in place of 

its elements being by definition the E-ring of exponential polynomial functions. 

15: LEMMA If (R,E) is an E-ring and if R is an integral domain of 

characteristic 0, then R[X1 , ... ,Xn]E is an integral domain (and its units are of 

the fonn uE(P), where u is a unit of Rand P E R[X1 , ..• ,Xn]E). 
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[Without going into detail, let us recall only that if R is an integral domain 

of characteristic 0 and G is a multiplicative group, then the group ring R[G] is 

an integral domain of characteristic 0 iff G is torsion free.] 

16: N.B. By induction on k ~ 0, assume that ~ is an integral danain of 

characteristic 0 -- then ~ is torsion free. 

implies that 

Therefore t~ is torsion free, which 

~ 
~+l = ~[t ] 

is an integral domain of characteristic 0. 

In general, the canonical arrow 

may have a nontrivial kernel. 

17: EXAMPLE Consider a ring R equipped with the trivial exponentiation, 

i.e., E(x) = 1 for all x ~ R -- then E(X1) - 1 is in the kernel of r. 
[In fact, 

And 
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=> 

Therefore 

18: THEOREM Suppose that (R,E) is an E-ring and R is an integral dorrain 

of characteristic 0. Make the following assumptions. 

• There are derivations d1 , ... ,dn of R[x1 , ..• ,xn]E which are trivial on 

R and satis·Fv the condition d. (x.) = cS. • (1 < i, J. < n) . 
~.z l. J l.J - -

• There is a nonzero element r E R such that 

d. (E {f)) = rd. {f)E (f) 
l. l. 

for all fin R[x1 , ••. ,~]E (i = l, .•. ,n). 

Then r is one-to-one. 

Specialize now the theory outlined above and take R = C, shifting matters to 

which, as will be recalled, is a group ring (cf. #9) . Iv:Joreover, since C is an 

integral domain of characteristic O, it follows from #15 that 

is an integral domain. 

[Note: While C [X1 , •.. ,xn] is noetherian,, this is definitely not the case of 
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19: THEOREM 'Ihe canonical arrow 

is one-to-one. 

[Apply #18 (take d1 , ..• ,dn as the partial derivatives a/ax1 , .•. , a/axn and 

choose r = l} .] 

20: NarATION Put 

21: LEMMA (cf. #10} Each function f in EXP(~} can be written as a finite 

sum 

where 

f = i:. p. • exp (gl.} ' . l 
l 

n P. E C[Xl, ..• ,x] and g. E EXP(C}. 
i n i 

22: EXAMPLE Take n = 1 and let x1 = X -- then the function z -+ e 2 belongs 

to EXP(C}. 

[For 

X E AO => EX E A:i_. 

And rx = x, where x:C-+ C is the function z-+ z (i.e., x(z} = z}, hence 

rEX = exp rx = exp x, 

the function C -+ C that sends z to exp x(z) = exp z. 

23: EXAMPLE 'Ihe function 

2 belongs to EXP(C }. 
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§56. SCHANUEL => SHAPIRO 

1: DEFilUTION Working over C, an exponential polynomial is an entire 

function f of the fonn 

where \ 1 ••• ,A.n and µ1, ••• ,µn are complex numbers. 

µ z n 
+ \ie ' 

Under addition and multiplication, the set of all such functions fonn a 

ccmnutative ring E with 1. 

[Note: The units are the elements of the fonn ,\eµz (,\ f O) • ] 

2: REMARK This is the simplest situation since one could, e.g., allow 

3: SHAPIRO 1 S CON'JECI'URE If f, g are two exponential polynomials with 

infinitely many zeros in comrron, then there exists an exponential polynomial h 

such that h is a carmon divisor of f ,g in the ring E and h has infinitely many 

zeros in C. 

As will be seen below, the proof of Shapiro's conjecture breaks up into two 

cases (tenninology per infra). 

case 1: Either f or g is simple. 

case 2: !30th f and g are irreducible. 

4: N.B. It turns out that the proof of Case 1 does not require Schanuel 

but the proof of Case 2 does require Schanuel, hence the rubric 

Schanuel => Shapiro. 
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'lb prepare for the case distinction, vve shall need some definitions and 

a few classical facts. 

5: DEFJNITION Let 

be an exponential polynomial·-- then its support, denoted spt(f), is the vector 

space over Q generated by µ1 , ... , % . 

6: DEFINITION An exponential polynomial f is said to be simple if 

dimQ spt (f) = 1. 

7: EXAMPLE 

f (z) = sin z = 
Az - Az e - e 

is simple. 

8: DEFJNITION An exponential polynomial f is said to be irreducible if 

it is not a unit and has no divisors in the ring E other than associates. 

Here is Ritt's factorization theorem. 

9: THEOREM Every exponential polynomial f can be written uniquely up 

to order and multiplication by a unit as a product in E of the fo:r:m 

where all the S. are simple with 
J 

spt (Sj) n spt (Sj ,) = {O} 
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for j f j ' and all the ~ are irreducible. 

Suppose that f ,g are two exponential polynomials with infinitely many zeros 

in corrm:m and nei th.er one is simple. Write :i;:er Ritt: 

f = s 1 

g = T ··· T J ··· J. 1 u 1 v 

Then a cormon zero of f ,g must be a zero of a factor of each function, thus two 

factors f ,g of f ,g respectively have infinitely many zeros in ccmron, thus if 

f ,g have a ccmnon divisor h in E with infinitely many zeros, then h is the cormron 

divisor of f,g postulated in Shapiro's conjecture. 

Matters have accordingly been reduced to case 1 and case 2 fonnulated at the 

beginning. 

APPENVIX 

Let R be a cammutati ve ring with 1. 

DEFINITION 1 Let x,y E R -- then y divides x (or y is a divisor of x) and 

x is divisible by y (or x is a multiple of y) if there exists z E R such that x = yz. 

[Note: The only elements of R which are divisors of 1 are the units of R, 

i.e., the elements of UR.] 

DEFINITION 2 If x, y E R and if x = yu, where u E UR, then x and y are 

said to be associates. 

[Note: Therefore y divides x. -1 But also y = xu , thus x divides y.] 
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DEFlliITICN 3 The associates of an element x E R are the improper divisors 

of x. 

[Note: A unit u EUR divides every element x of R: 
-1 x = u(u x). Still, 

the convention is not to include UR in the set of divisors of x.] 

DEFlliITION 4 An element x E R is irreducible if it is not a unit and its 

only divisors are associates, i.e., are irrproper. 

DEFlliITION 5 Irreducible elements x,y E R are distinct if they are not 

unit rrul tiples of one another. 

LEMMA Distinct irreducibles x,y E R do not have a comron divisor. 

PROOF suppose that a is a camrron divisor: 

x =au 
(u,v EUR). 

y =av 

Then 

-1 -1 a = yv => x = yv u, 

i.e., x is a unit rrrultiple of y. Contradiction. 
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§57. SHAPIRO'S CONJECTURE: CASE 1 

Recall the setup: f ,g are two exponential polynomials with infinitely many 

zeros in corrmon and either for g is simple (cf. #3). 

1: THEOREM (Skolem-Mahler-Lech) Let f E E and let A c Z be the set of 

integers on which f vanishes -- then A is the finite union of arithmetic pro-

gressions, i.e., sets of the fonn {m + kd:k E Z} for some m,d E z. .rvbreover, 

if A is infinite, then at least one of these arithmetic progressions has a nonzero 

difference d. 

This is a wellknown result on the distribution of zeros of exponential poly-

nanials and will be taken without proof. 

2: LEMMA Let f E E. Suppose that f (k) = 0 \:/ k E Z -- then sin(Tiz) divides 

f in the ring E. 

PROOF Let 
µ z n + A e , n 

with A1, ••• ,An-:/- O. It can be assurred that f is not identically zero and that 

µlz 
n 2: 2 (since A1e = 0 only if A1 = 0). Proceed by induction on the length n off. 

• n = 2: 

with t..1 ,A2 -:/- O. Put z = 0 to get 
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Put z = 1 to get 

=> µ2 = µ1 + 2kTIR (3 k E Z - {O}) 

µ z ,., 
=> f (z) = A.le 1 (1 - e2kTiv-l z) • 

Without loss of generality, take k > 0 (otherwise switch the roles of µ1 and µ2). 

Next 
;.::r z - ;.::r z 

sin z = e - e 

2;.::r 

=> 

2 ,,.1 TIH z . ( ) 1 2TIH z - v-.L e sm TIZ = - e 

=> 

= 1 + e2TI;.:::r z + e4TI;.:::r z + + e2 (k-1) TI;.:::r z 

21T ;.:::r z 4 TI ;.:::r z - e - e - 2 (k-1) TI;.:::r z 2kTIH z - e - e 

= 1 _ e2kTI;.:::r z 

=> 

µlz rr f(z) = A. e (1 - e2knv-.L z) 
1 

µl z TIM z = A.1 e F (z) (- 2H e sin (Tiz)) 
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if 

F (z) = 1 + e2TI/-T z + e 4TIB z + ... + e2 (k-1) TI!-=I z. 

Therefore sin(Tiz) divides f(z). 

• n > 2: Suppose now that for all exponential :90lynomials h(z) of length 

~ n - 1 which vanish at the integers, sin(Tiz) divides h(z). Setting z = 1,2, ••• ,n 

in f (z) leads to the relations 

... + 

µ 2 
+ A. (e n) = 0 n 

µ n 
+ A. (e n) = O. n 

µ, 
Leto.= e J (j = l, ••• ,n), hence in matrix notation 

J 

0 n 

A. n 

= 

0 

0 

0 

Since A.l' ••• ,A.n ~ 0, they constitute a nontrivial solution of the corresponding 

system of linear equations, thus the determinant of the matrix vanishes: 

01 °2 on 

02 02 02 
1 2 n 0 = 

on on r ~ 
on 
n 
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1 1 1 

0 n 

n-1 n-1 .t'n-1 0 0 • • • u 1 2 n 

= o. 

This is a Vandenronde determinant, so we are led to 

o1 · • · on Tr ( o. - o.) = o. 
1.$.i<j.$.n 1 J 

Since all the o. are nonzero, it rrn.ist be the case that o. = o. for sane i < j. 
1 l J 

µl µ2 
Without loss of generality, assurre that o1 = o2, i.e., e = e Put 

h(z) 

Then 

= f(z). 

And V k E Z, 

= o. 



5. 

Consequently h(z) vanishes at the integers. But its length is < n, hence by the 

induction hypothesis, sin(TIZ) divides h(z). On the other hand, arguing as in the 

µ1z ~z 

case n = 2, sin(rrz) divides A2 (e - e ). So finally sin(TIZ) divides f(z). 

[Note: 

00 

eµz = L: 
n=O 

is, in general, not the same as 

But they are the sai.ne if z = k E Z: 

(µz)n ., n. 

3: THEOREM If f ,g are br.D exµmential r:olynomials with infinitely many 

zeros in cormon such that at least one of f ,g is simple, then there exists an 

exr:onential PJlynamial h such that h is a corrmon divisor of f ,g in the ring E and 

h has infinitely many zeros in C. 

PROOF Take f simple and write 

L 
f (z) = u (z) 1T (1 - alepz) , 

l=l 

where a1 , ••• ,~,p are nonzero complex numbers and u(z) EE is a unit (the simplicity 

off implies that there is a nonzero KE C and s1 , ••• ,sn E Z such that µ1 = 
s1K, ••• ,µn = snK). Since this is a finite product, g IrnlSt have infinitely many 

zeros in carmon with one of the factors, say 1 - a1ePz. So supr:ose that 



Then 

=> 

=> 

=> 

6. 

1 PZ -= e 
Ci1 

IDg _!_ 
°i oz e = e 

pz - IDg _!_ = 2kTIH ( 3 k E Z) 
O'l 

z = --------
p 

Therefore the exponential p::>lynomial 
1 IDg (-) + 2zTIH 
al 

G(z) = g(-------
p 

vanishes at infinitely many integers. Now apply #1 -- then for some m0 ,d0 E Z 

(d0 f O), G vanishes on {m0 + kd0 :k E Z}, thus G(m0 + zd0) is an exponential paly-

nornial which vanishes at all the integers, so sin(Tiz) divides G(m0 + zd0) (cf. #2). 

M:>ving on, any integer is a zero of the exponential p::>lynomial 

log(_!_) + 2z7TyCf 
al 

F(z) = f( ). 
p 

Therefore F(m0 + zd0) is an exponential p::>lynomial which vanishes at all the 

integers, so sin(Tiz) divides F(m0 + zd0) (cf. #2). 'lb conclude, consider 
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pz - Log(_!_) 
O'.l 

h(z) = sin(~o ( 2nvCI - mo)). 

To analyze G (ditto for F), start from 

Then 

1 
G(mo +a 

0 

1 pz - IDg(-) 
O'.l 

2nA 

1 pz - IDg(-) 
a'l 

= G(m0 + ----- - m0) 
2nA 

pz - Log(-1) 
O'.l 

=G(-----) 
2nA pz - log (-1) 

O'.l 
Log(_!_) 

O'.l 
+ 2 (- ) 

2nr-I 
nA 

= g(-----------~ 
p 

Log(_!_) + pz - Log(_!_) 
O'.l O'.l 

=: g(---------
p 

= g(z) 

= h(z) G
0 

(···). 
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§58. SHAPIRO'S CONJECTURE: CASE 2 

In this situation, both f ,g are irreducible. If f = gu for sorre unit u E E, 

(technically, f,g are associates), then g can serve as the "h" in §56, #3. On 

the other hand, if f ,g are distinct irreducibles (meaning that they are not unit 

multiples of one another), then they cannot have a cormon divisor (see the Lemma 

in the Appendix to §56). Matters thus reduce to the follO'itJ'ing staterrent. 

1: THEDREM (Admit SCHC). Let f.,.g be distinct irreducible exponential 

polynomials in E - then f ,g have at rrost a finite number of zeros in cam:ron. 

The proof is difficult and lengthy, thus an outline of the argument will 

have to do. 

2: REMARK Let f ,g be exponential polynomials and assume that f is 

irreducible. suppose further that f ,g have infinitely many zeros in cam:ron --

then f divides g in the ring E (i.e., g/f is entire) . 

[Note: This assertion is equivalent to #1.] 

Proceeding to #1, assUire that f ,g are distinct irreducibles with infinitely 

many zeros in commn, the objective being to show that this forces a contradiction 

(namely that g divides f) • 

(Note: If g divides f, then g must be an associate of f, say f = gu (u E UE), 

thereby forcing f to be a unit multiple of g, contradicting the supposition of 

"distinct". ] 

3: N0rATION Let S be the infinite set of nonzero corrm::m zeros of f,g. 
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4: MAIN LEMMA (Admit SCHC) There exists an infinite subset S' of S 

such that the Q-vector space spanned by S' is finite dimensional. 

Without changing the notation, assume henceforth that S spans a finite 

dimensional vector space over Q. 

Write 

and let r be the divisible hull of the nn..lltiplicative group generated by 

µ.s 
{e J :1 < j 5 n, s E S}, 

that is, v y E r and any nonzero integer .t, :i z:; E r such that r;,.t = y and r is 

the smallest such group containing 

µ.s 
{e J :1 5 j 5 n, s E S}. 

Since spanQ S is finite dimensional, r has finite rank. 

5: DEFINITION A solution a1, ••• , ~ of the linear equation 

over C is nondegenerate if for every proper nonempty subset J of {l, ••• ,N}, 

L: a.a. f. 0. 
jEJ J J 

6: THEDREM (Evertse-Schlickewei-Schmidt) Let N be a positive integer 

and let fl. be a subgroup of (Cx) N of finite rank r --· then any linear equation 
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over C with a1 , ••• ,~ f O has at m:>st 

exp ((6N) 3N_(r + 1)) 

many nondegenerate solutions in A. 

[Note: Only the fact that there exists a :Einite upper bound on the number 

of nondegenerate solutions in A will actually be used.] 

7: DISCUSSION I.et q = iin - a.imq S and fix a Q-basis {s1 , ••• , sq} of 

spanQ S. I.et s E S -- then there exist c1 , ••• ,cq E Q such that 

=> 

O = f (s) 

=> 

q 
<lT 
i=l 

q 
s = r c.s. . 1 1 1 1= 

•.. + 
q ii c.s. 

A 1Ten11 
n . 1 1= 

µ1c.s. 
1 1 e I • • • I TT

q µ c.s. 
e n 1 1) E r 

i=l 

is a solution of the equation 

Put 

q µ c.s. -1 
A.~ = ( - A TT e n 1 1

) A. . (1 ::; j :::. n - I) • 
J n i=l J 

Then 

q µ1c . s . q u 1c . s . 
A., TT e 1 1 + . • . + A., Tf e n- 1 1 
1 i=l n-l i=l 
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q µ c.s. -1 q µ1c.s. 
= ( - A. IT e n l l) A. Tr e l l 

n i=l 1 i=l 

q µ c.s. -1 q µ 1c.s. 
+ . . . + ( - A. Tr e n l l) A. Tr e n- l- -l 

n . 1 n-1 . 1 i= i= 

q 
Tr 

µ1c.s. 
l l e 

i=l -----+ ... 
q µ c.s. TT en ii 

i=l 

µ1c.s. 
e ii+ 

q µ 1c.s. 
+ A. Tfe n- i i 

n--1 . i=l = - -------------------
q µ c.s. 

A. Tfenii 
n.l i= 

q µ c.s. 
-A. Tfenii 
n.l i= = - ------- = 1 

=> 

q µ c.s. 
~ Tfe n ii 

i=l 

q 
( Tr 

i=l 

µ1c.s. 
l l e I • • • I 

is a solution of the equation 

A.'y + ... +A.' y = 1, 1 1 n-1 n-1 

all_ ~luti<l>ns~G>f 'wb.i~h lie in some group r 0, a subgroup of r of finite rank. Now 
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apply #6 to conclude that there are only finitely many nondegenerate solutions of 

\'y + ••• + \' y = 1 1 1 n-1 n-1 

8: LEMMA Let a, (3 E S (a. -:f. (3). Supp::>se that 

is the solution of 

corresp::>nding to a and 

is the solution of 

>..x +···+A.x =O 11 nn 

corresp::>nding to (;3. Then 

if f 

if f 

PROOF If~= b, then for j = l, ••• ,n, 

q µ.s. c . q µ.s. ~ . 1T (e J 1.) a,i = 1T (e J 1.) _,i 
i=l i=l 

TI (eµjsi) c~,i - ~,i = 1 
i=l 

q 
µ . 'l: s. (c . - 'b . ) E 2nr-l Z. 

J i=l i a,i _,i 



So, for any j = l, .•. ,n, 

where N. E.: Z. Therefore 
J 

6. 

q 
L: s. (c .. - ~ . ) = 

i=l l a,I _,l 

21TA N = 21TH N = 
µl 1 µ 2 .2 

=> 

21TH N 
µ. j' 

J 

µl 
Now put y = - -- then f (z) is a polynomial in e yz, i.e., f is simple, a contra-

Nl 

diction since f is not simple. 

With this preparation, we are ready to tackle the proof of #1 (as refonnu-

lated at the beginning: f ,g are distinct irreducibles with infinitely many zeros 

in conm:::m). It will be shown by induction on the length n of f that g divides f. 

Since f ,g are distinct irreducibles, this is a contradiction. 

n = 2: Suppose that 

f (z) 
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or still, 

Then g (z) has infinitely many zeros in corrm::>n with 

and as in §57 there is an exponential :i;olynomial of the fo:rm sin(T(z)) dividing 

lx>th f(z) and g(z). Since g is irreducible, this implies that g divides f. 

Proof: 

f = sin(T)u 

(u,v E UE) 

g = sin(T)v 

=> 

-1 gv = sin(T) 

=> 

-1 f = gv u. 

Induction Hyp:::>thesis: Assume that for every exponential polynanial h =I g 

and of length < n, if h and g have infinitely many zeros in comnon, then g divides h. 

n > 2: Let as alx>ve 

be the linear equation associated with 

µlz 
f(z) = :>.1e + 

µ z n + \ e . n 
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'!hen r0 contains just a finite number of nondegenerate solutions of this equation 

(cf. #7) • Consider the equation 

:\ x + · · • + :\ x = 0. l 1 n n 

'!hen each s E S gives rise to a solution and since S is infinite, it follows from 

#8 that this equation has infinitely many distinct solutions 

where 

q 
= 1T 

i=l 

~s - (w{s) , •.• , 

e 
µ1c.s. 

]. ]. 
I • • • I 

W (s)) r 
E ' n 

q 
= 1T 

i=l 

µ c.s. n ii e 

F.ach w can be turned into a solution of -s 

A •y + ... + A I y = 1 1 1 n-1 n-1 

by simply rerroving its last canp:ment. Bottom line: There are an infinity of 

distinct solutions to 

\'y + ••• + :\' y = 1, 1 1 n-1 n-1 

any such being detennined by an s E S. MJreover all but finitely many are 

degenerate (cf. #6) and for a degenerate ~s there exists a proper nonempty 

Js c {l, ••• ,n} such that 

:\.w~s) = 0 J J • 

In fact, if 

q µ.c.s. 
L: A.'. 1T e J 1 1 = O, 

'EJ J i=l J s 



then 

9. 

q µ c.s. -1 q µ.c.s. 
L: ( - 'A lT e n 1 i) A . lT e J 1 i = O 

"6J 'h i=l J i=l J s 

=> 

=> 

q µ.c.s. 
L: ;..,. lT e J i i = O 

"6.J J i=l J s 

L: 
"6.J J s 

/..w~s) 
J J = o. 

Owing now to the Box Principle (cf. §7, #15), we can find a proper nonempty subset 

such that for infinitely many s E s, 

Therefore the equation 

L: :\.w~s) = O. 
jET J J 

has infinitely many solutions corresponding to corrro::m zeros of f ,g. 

9: LEMMA g divides f. 

PRCX>F Put 

.•. + 

Then g has infinitely many zeros in co.rmon with fT which are also zeros of f, thus 

also zeros of f - fT. Both fT and f - fT are elements of E of length st:J:::ictly le5s 
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than n (the length of f) . Thanks to §56, #9, g has infinitely many zeros in 

corrrcon with either an irreducible or a sinple factor of fT in E, call this 

factor h.r. If h.r is simple, then we are in Case 1 and g, h.r must have a comron 

divisor. Since g is irreducible, it then divides h.r ( g = au, h.r = ab, gu - l = a, 

h.r = gu-~). If h.r is irreducible, then it is either a unit multiple of g, in 

'Which case g divides h.r, or g and h.r are distinct irreducibles, in which case 

g divides h.r (induction hyp:::>thesis). So, in all cases g divides h.r, thus it 

also divides fT. Analogously, g divides f - fT. Therefore g divides f. 

10: N.B. #9 is the sought for contradiction. 
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§59. VIFFERENTIAL ALGEBRA 

Let K/k be fields of characteristic 01 where k is algebraically closed in K. 

1: DEFINITION Suppose that V is a K-vector space -- then a linear map 

d:K +Vis a k-derivation if v x,y EK, 

d(xy) = xd(y) + yd(x) 

and if Va Ek, 

d(a) = 0. 

[Note: In particular, d (1) = 1.1 

2: RAPPEL There is a K-vector space ~ and a k-derivation ~ :K + ~ 

with the property that for any K-vector space V and any k-derivation d:K +V 

there is a unique K-linear map ~: ~ + V such that d = ~ o %/k: 

v <·-------~-

3: SCHOLIUM Associated with every k-derivation d:K + K there is a unique 

4: SUBLEMMA Suppose given a k-derivation d:K + V -- then for y E K, 



x z EK , 

if 

2. 

6i</k (z) 
D(~(y) - z = 0 

d(y) = d(z) 
z 

PROOF The LHS equals 

<\jk (d(y)) - ~ ~ (d(z)) + d~z) ~ (z) 
z 

or still, 

cL (d(z)) - ! Cl (d(z)) + d(z) a__~ (z) l</k Z Z l</k 2 K/K z 

- ~ <\jk (d (z) ) + d ~z) <\jk (z) 
z 

= o. 

5: SUBLEMMA Suppose given a k-derivation d:K + V -- then for y E K, 

D(<\/k(y)) = 0 

if d(y) = 1. 

PROOF The LHS equals 

= 0 + %/k (1) = o. 
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6: NOI'ATICN Given y. EK, z. E Kx (i = 1, ••. ,n), put 
1 1 

7: LEMMA Suppose that d:K + V is a k-derivation. Assume that d(y1) = 1 

and that y. E K, z. E Kx are oonnected by the relation 
1 1 

d(zi) 
d(y.) = 

1 z. 
1 

(i=l, ••• ,n). 

D ( L: f . w. + gd._ n (y1 )) 
. 1 1 K/.K 

1 

= L: d(f.)w. + d(g)d._n (y1). 
. 1 1 K/.K 

1 

In what follows, d:K + K is a derivation such that 

Kerd=k(=>Q}. 

8: CRITERICN let K 3 F => k, where F is a field and 

Denote by E the K-vector subspace of ~ generated by ~F -- then 
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9: EXAMPLE Take F = K -- then 

• If x1 , .•• , xn E K are algebraically de:pendent over k, then ~/k (x1) , .•. , 

<\vk(xn} E ~are linearly de:pendent over K. 

• If x1 , .•. ,xn EK are algebraically independent over k, then ~/k(x1), .•• , 

~ (xn} E ~ are linearly independent over K.] 

[Note: 'Iherefore ~ (x} = 0 iff x is algebraic over k.] 

Keep to the setup of #7 and in #8, let 

and suppose that trdegk F < n + 1 - then there are elements f 1 , •.• ,fn, g EK 

not all zero such that 

E f.W. + gd__n (y1 ) = 0. 
. l l K/K 
l 

It can be assumed that f 1 , ... ,fn, g EK have been chosen so that a minimal number 

of them are nonzero and at least one of them is 1. 

Write 

0 = DO 

to conclude by minimality that 

d(f1) = o, ... ,d(fn} = o, d(g} = o, 
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thus 

fl E k, ••• ,fn E k, g E k, 

the field of constants of d being k (by hypothesis). Bearing in mind that 

~ f.w. + gd._~ (y1) = 0, . 1 1 K/K 
1 

let c. = f. , c 0 = g, hence 
1 1 

10: NOI'ATIOO Put 

11: LEMMA 

PRCX)F In fact, 

or still, 

=> 

=> 

C=c +cy +···+cy. 0 1 1 n n 
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=> 

- ~/k(zi) 
d_/k(C) - L: c. . l< . l. z. 

l. l. 

Suppose that c1 , .•. ,~ is a Q-basis for c1 , ... ,cn, hence 

c. = 
l. 

L 
L: qo .co 

£.=l .{..11. .{.. 

(i = l, ... ,n). 

Here, at least a priori, the q 0 • E Q but there is no loss of generality in taking 
.{..1 l. 

q 0 • E Z • 
.{..~.l. 

Accordingly 

where 

L n a__~ (z.) = L: c ( L: q . K/k l ) 
£.=l l i=l £.,i zi 

_n_ 

w = 11 
l i=l 

qo . 
.{..1l z. • 

l 

12: LEMMA I.et a1 , ••• ,~ Ek be linearly independent over Q, let 

x 
u1 , .•• ,l\, EK , let v EK, and assurre that 
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L %Jk(ul) 
d._~ (v) = L a 0 • 
K/K £.=l ..(.. Ul 

Then 

13: APPLICATION Take a 1 = c1 , ••• , c3r, = CL, take v = C, and take 

Then 

14: N. B. Since the standing assumption is that k is algebraica.11 y closed 

in K, each W.e. Ek (cf. #9). 

15: APPLICATION For l = 1, ••• , L, 

Finally 

=> 

rrn ql i 
z. ' E k. 

. 1 1 i= 

L 
= L ql . d(y.) 

j=l ,] J 

L 
= d ( L. ql . y. ) 

j=l ,] J 



=> 

8. 

L 
I ql .y. Ek. 

j=l ,J J 

16: SCHOLIUM There exist integers ~, •.. ,mn not all zero such that 

Recall: 

n 
I m.y. E k. 

. 1 l l l= 

x 
e y. EK, z. EK , and 

l l 

d(zi) 
d(y

1
.) = (i = l, .•• ,n). z. 

l 

trdegk F < n + 1. 

Then under these assumptions: 

(1) There are II]_, ••• ,mn E Z not all zero such that 

n 

TT 
i=l 

m. 
l z. E k. 

l 

(2) There are II]_, ••• ,Il\i E Z not all zero such that 

n 
L: m.y. E k. 

i=l l l 

17: STATEMENT Maintain the supposition that 

d(zi) 
d(y.) = (i = l, ••• ,n) 

l z. 
l 
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but assurre that the y. are Q-linearly independent rrodulo k, i.e., 
1 

n 
L q.y. Ek=> q. = 0 (i = l, ... ,n). 

i=l 1 1 1 

Then 

trdegk F ?: n + 1. 
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§60. FORMAL SCHANUEL 

This is a version of Schanuel that can be established rigorously. However, 

before proceeding to the particulars, let us review the situation. 

As is usually fonnulated, Schanuel's conjecture is the following statement 

(cf. §4 7, #1) • 

1: CONJECTURE suppose that x1 , ••• ,xn are Q--linearly independent complex 

numbers --- then a:rrong the 2n numbers 

at least n are algebraically independent over Q, i.e., 

There are other equivalent fonnulations. E.g. : v x, 

o(x) > 0 (cf. §47, #24 and #27). 

Here are tv..o rrore. 

2: CONJECTURE Suppose that x1 , ••• ,xn are complex numbers such that 

is< n -- then there are integers m1 , ... ,mn not all zero such that 

n 
I: m.x. = 0. 

i=l ]. ]. 

3: CONJECTURE Suppose that x1 , ••• ,xn are complex numbers such that 
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lie in an algebraic subvariety V of c2n defined over Q and of dimension strictly 

less than n -- then there are integers m1 , ... ,mn not all zero such that 

n 
L: m.x. = 0. . 1 l l 1= 

[The assumption that 

forces 
xl xn 

trdegQ QCx1 , ... ,xn' e , ••• ,e ) < n.] 

We shall turn now to a setting in which an analog of Schanuel:s conjecture 

is true. 

4: NOI'ATION Let R be a corrmutative ring with 1 -- then 

R[ [X]] 

is the ring of fonnal p::>Wer series over R, a typical element of which is denoted by 

00 

f (X) = L: a '2(1 (V n, a ER). n n n=O 

5: N.B. If R is an E-ring, then R[ [X]] is also an E-ring. 

[Given £ E R[ [X]], write 
00 

f = ao + g (g(x) = n~l an'2!1) 

and put 

exp(f) = E(a0)exp(g), 
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where E(a0) is that derived from Rand 

exp(g) = 
oo n 
L: ~ .] 
0 n. n= 

6: CONSTRUCTION let 

00 

f (X) = L: anX1 = a1x + a2x?- + · · • 
n=l 

00 

g(X) = L: bnX1 = bo + blX + b2x2 + 
n=O 

Then their com:posite g 0 f is the formal :power series 

00 00 

g(f(X)) = L: b (f(X))n = L: c X1. 
n=O n n=O n 

7: REMARK The foregoing operation is valid only when f (X) has no constant 

tei:m (for then each c depends on but a finite number of coefficients of f (X) and n 

g (X)) • 

['lb illustrate, let 

x2 x3 x4 
exp (X) = l + X + 2f + 3f + 4T + 

Then it makes sense to fonn 

exp(exp(X) - 1) = l + x + x2 + 2. x3 + 2-x4 + 6 8 

but 

exp (exp (X)) • •. ?] 

[:Note: If f (X) has no constant tenn, then E (a0) = E (0) = 1 and one can fonn 

exp 0 f' 

which agrees with #5.] 
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8: LEMMA If R is an integral danain, then so is R [ [X] ] • 

9: DEFINITION A fo:rnal I.aurent series over R is a series of the fonn 

f (X) = L: a t1, 
nEZ n 

where a = 0 for all but finitely many negative indices n. n 

10: N.B. The fo:rmal I.aurent series form a ring, denoted by R( (X)). 

11: LEMMA If R = K is a field, then K((X)) is a field. 

[Note: K( (X)) can be identified with the field of fractions of the integral 

domain K [ [X] ] • ] 

12: DEFINITION Take R = K of characteristic 0 -- then the fo:rmal deriva-

tive of the fo:rmal I.aurent series 

is 

13: N.B. 

f {X) = l: a t1 
nEZ n 

f' = af = l: na x.11-1 . 
nEZ n 

() : K ((X) ) + K ((X) ) 

is a K-derivation (Ker a = K) • 

Having dispensed with the fo:rnalities, specialize and take per §59, 

K = C((X)), k = C, d =a. 
Let 

y1 E XC I[X]], ••• ,yn E xC [ [X]] 
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be Q-linearly independent and put 

zl = exp(yl), ••• , zn = exp(yn) · 

14: THEOREM 

trdegc C(y1 , •.• ,yn, zl' ••• ,zn) 2:. n + 1. 

[Quote §59, #17 (obviously, if the yi are Q-linearly independent, then they 

are ([-linearly independent m::xlulo C) .] 

to 

Then 

This result can be rephrased. 

15: RAPPEL (cf. §46, #20) Given fields k c K c L, 

trdegk (L/k) = trdegK(L/K) + trdegk (K/k). 

Abbreviate 

(y ,~) • 

Take in #15 

k = C, K = C(X), L = C(X) (y_,~). 

trdegc C(X) (y,z) = trdegC(X)C(X) (y,~ + trdegc C(X). 

Fran #14 

trdegC C(X) (y_,~) > trdegC C(y_,~_) ~ n + 1. 

And 

trdeg C C (X) = 1. 
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Therefore 

n + 1?. trdegc C(X) (y,z) 

= trdegC (X) C (X) ('f_,Z) + l 

=> 

n ~ trdegc (X) c (X) (y_, ~ • 

16: SUMMARY The fact that 

trdegc (X) C (X) (yl' ... ,yn' zl' ••. ,zn) :::. n 

is formal Schanuel, a result due to J. Ax. It is the power series analog of #1 

(which remains conjectural). 

17: N.B. 

c c C{X] c CHXU· 

n n 

C (X) c C ( (X) ) • 
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§61. AN ARITHMETIC CRITERION 

Recall: 

1: SCHANUEL'S CONJOC'IURE Suppose that x1 , ••• ,x are cr1inearly independent - n 

canplex numbers -- then 

2: NorATIOO The symbol V stands for the derivation 

3: DEFINITION The height H (P) of a polynanial p E c [XO' xl] is the rnax-

irrnml of the absolute values of its coefficients. 

4: DATA I.et n be a positive integer, let x1 , ••• ,xn be Q-linearly inde·-

x x 
pendent ccmplex numbers, and let a1 E C , ... , an E C • 

and 

6: ROY' s CONJECI'URE In the presence of #4 and #5, assume that for any 

sufficiently large positive integer N, there exists a nonzero polynomial 
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and with height ~ eN which satisfies 

....Jc n n m. 
I ('LrpN) ( L: m.x., 1T ~4 J) j=l J J j=l J 

for all nonnegative integers k,m1 , ••. ,mn, where 

so sl 
k < N and rrax{m1 , ••• ,m } S. N • - n 

Then 

7: THEOREM Roy's conjecture is equivalent to Schanuel 's conjecture. 

This result is due to Damien Roy. While we shall anit the proof, some hints 

will be given below. 

[tbte: Spelled out: If Iby's conjecture is true for some n and some choice 

of s 0,s1,t0,t1 ,u (per #5), then Schanuel's conjecture is true for this value of n. 

Conversely, if Schanuel's conjecture is true for some n, then Roy's conjecture is 

In one direction, assume that the conditions in Roy's conjecture are in force 

then it can be shown that there exists an integer K ;:: 1 with the property that 

K Kx. 
a. = e J (j = 1, ... ,n) . 

J 

Since xl' ••• ,xn are Q-linearly independent, the same is true of Kx1 , ••• ,~, hence 
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by Schanuel 

Kxl Kxn 
trdegQ Q(Kx1 , ..• ,Kxn' e , ... ,e ) ~ n 

or still, 

trdegQ Q(Kx1 , ..• ,Kxn' ~, •.• ,~) ~ n 

or still, 

Therefore 

SCHANUEL => ROY. 

x. 
In the other direction, take the data as in #4 and put a. = e J (j = 1, ••. ,n). 

J 

fol.ID.d there. 

8: NOI'ATION Given R > 0, let 

and for any continuous function F :B ( O, R) + C , put 

(Note: By the maximum rrodulus principle, when F is holorrorphic in the interior 

of B(O,R), !FIR is the supremum of !Fl on B(O,R).] 

9: EXAMPLE I.et L be a positive integer, let r 0 , r, R be positive real 

numbers with r '.'.'., r 0 , R ~ 2r -- then 



or still, 

or still, 

where 

4. 

jFj + (2L + 4) (~) ro 

L 2L-j-k = 2L + 4. 
j+k;:L 

j+k r 

L 

[Note: The conditions on F are, of course, the obvious ones. . . . ] 

10: LEMMA For any sufficiently large r::ositive integer N, there exists 
t 

a nonzero I_X:>lynomial PN E Z[XO'Xl] with partial degree 5 N O in x0 , with partial 

tl 
degree s. N in x1 , and with height :::_ eN such that the function 

satisfies 

[Note: Here 

where 

sl 
r=l+AN , 
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The claim now is that 

ROY => SCHANUEL. 

To verify that this is so, let k.t,It]_, ••• ,mn be normegative integers, where 

Then 

= 

so sl 
k < N and rnax{m.. , ••• ,m } < N • 

- · i n 

dk~ n 
-k- ( E m.x.) 
dz j=l J J 

if N is sufficiently large. consequently 

xl xn 
trdeg Q Q (x1 , ... , xn , e , ... , e ) 2':. n, 

thus 

ROY => SCHANUEL 

as claimed. 

11: N.B. COnsider the situation when n = 1 --- then 

< k! 
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Next 

Jmxl + 1 
sl 

< lxJN + 1 = r 

=> 

Since s 0 < u, it can be assumed that 

fran which 

=> 

=> 

s s 
N O fu (N O) < Nu - ' 

s s 
exp(Nu) ?: exp(N O fu(N O)) 

u u u '.'.: exp(N )exp(- 2N ) = exp(- N ) • 

12: REMARK When n = 1, Schanuel is an acquired fact: x If x E C , then at 

least one of the b.o numbers x,ex is transcendental (Hermite-Lindanann), hence 

x trdegQ Q (x,e ) ~ 1, 

so Roy is auta:natic in this case. 
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APPENVIX 

numbers satisfying the inequalities of #5 - then the following conditions are 

equivalent: 

(1. ) Th . . 1 h that K Kx ere exists an mteger K ~ sue a = e . 

(ii) For any sufficiently large p:>sitive integer N, there exists a non-
t 

zero p:>lynomial PN E Z[X0,x1] with partial degree :5. N O in x0, with partial degree 

tl N 
< N in x1 , and with height :5. e 'Which satisfies 

for all nonnegative integers k,m with 

In what follows, we shall sketch the proof that 

(ii) => (i) or -. (i) => --, (ii) • 

Now -t (i) means that V K E N, aK ~ eKx, hence ae -x is not a root of unity; 

-x K K K Kx Kx ae = s (s = 1) => a = s e = e • 

OBJECI'IVE IBt (x,a) E C x Cx and let s 0,sl't0,tl'u be p:>sitive real 

numbers such that 

-x SUpp:>se that ae is not a root of unity --. then condition (ii) does not hold 



8. 

for the p:iir (x, a:) • 

than that of #5. Observe too that there is no restriction fran arove on u.] 

NorATION Given y. E C - Q and a r::ositive integer N, put 

LEMMA For infinitely many N, 

f (N) > 2Nl , y -

i.e., for infinitely many N, 

Im+ nyj >-.!:._ - 2N 

for any pair (m,n) E -? with 

0 < rrax{lml, In!}< N. 

PRCX>F Assume to the contrary that for any integer N larger than some N0, 

there are integers m(N) and n(N) such that 

0 < rrax {j m (N) r ' In {N) I } < N 

and 

I m (N) + n (N) Y I < 2; • 

Then n(N) ~ O and 

I m(N)n (N + 1) - m(N + l)n (N) J 

::! I m(N) + n(N)yj • jn(N + 1) I 

+ I m (N + 1) + n (N + 1) Y I · In (N) I < 1, 



=> 

Therefore the ratio 

9. 

m(N)n(N + 1) - m(N + l)n(N) = 0. 

m(N) 
n(Nf 

is a constant q E Q. But 

I q + Y I = I m (N) + n (N) Y I I I n (N) I 

< _!__ 
2N 

for any N > N0 , hence y = -q, a contradiction. 

One can thus attach to each y E C - Q an infinite subset Sy of N, where the 

elements of SY are the N figuring in the definition of ry(N). 

N.B. Choose >.. such that el.. = a -- then the ratio 

y = A. - x E C - Q. 
2TIH 

[ SupJ?Ose instead that 

A. - x = q (E Q), 
2TIH 

m say q = - (n > 0) , so n 

=> 

A. - x = q (2TIH) - ~ (2TIH) n 

A.-x m ~ e = exp(- 2Tiv-l) n 



=> 

=> 

NorATION Let 

[Note: 

10. 

-x m r=;-; ae = exp{- 2n-v-l) n 

-x n r=;-; (ae ) = exp(m2TI-v-l) = l.] 

u = (O, 2n/-T), v = (x, >..), w = (1,1). 

v - -yu = (x, >..) - y(O, 2nH) 

= (x, >..) - >.. - x ( 0, 2 TI i-I) 
2n!-=l 

= (x, >..) - (>.. - x) (O,l) 

= (x, >..) + (O, x - >..) 

= (x, >.. + x - >..) = (x,x) = xw,] 

FACT There exists a constant C > 1 {With u,v E B(O,C)) such that for any 

N E S and for any pair of real numbers r, R with R > 2r and r > CN and for any 'Y - -

continuous function F:B(O,R) + C which is hola:rorphic in the interior of B(O,R), 

the estirrate 

x rrax{iZi. [D~ F(mu + n~) l ~:O S k < if, 0 S m,n < N} 

obtains. 



11. 

[Note: Here 

'lb establish our objective, proceed in steps. 

Step 1: Take 

A.-x y = . E C - Q. 
2rr!-=l 

Then S is an infinite subset of N, a generic elerrent N ES being allowed to y y 

.. float". 

Step 2: Put 

s = min{s0/2,s1 } 

and let M denote the smallest positive integer such that N < "ti3 (tacitly, N E S ) • - y 

Note that M dpends on N (but M need not belong to S ) and we shall actually work y 

with M rather than N in the staterrent of the objective. 

Step 3: Choose a nonzero polynomial QM E zrx0 ,x1J with partial degree 

t t 
~ M O in x0, with partial degree :s, M 1 in x1 , and with height ~ eM. 

Step 4: let 

and put 

A= max 
k,m 

s 
0 < k < M O 

s 
O<m<M 1 

- -
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the claim being that if N is sufficiently large, then 

A > exp (- Mu) (:l u > > O), 

hence for some k, for some m, 

thereby completing the proof. 

Step 5: Define an entire function ~: c2 + C by the prescription 

w 
~(z,w) = %(z,e ) • 

Let 

a = a/az + a/aw. 
Then 

k _k w a ~ (z,w) = (V-~) (z,e ) 

for any integer k ~ 0 and any (z,w) E c2• 

Step 6: For any (n,m) .E r, 

s s 
Step 7 : N2 .S M O, N S. M l 

=> 

oo Jc N 
S.A l: k9=Ae. 

k=O • 
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Step 8: Intrcxluce the constant C ~ 1 as above and specialize r,R by 

taking r = CN and R = eCR -- then in review 

!Fir S (~) 
N2 

x max{k1! I ca\.) (mu+ n~ l~:O s k < N2 
I 0 ::: m,n < N} 

and in the situation at hand (F = ~) 

so 

Step 9: Since rnax{l, t 0, s + t 1} < 2s, the definitions imply that 

t t 
IG.J < (M O + 1) (M l + 1) 
~R..., 

x exp (M + M to .ln (R) + R.111 s) 
2 

S. eN /2 

provided N is sufficiently large. 
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Step 10: ~ is a nonzero polynomial with integral coefficients, hence 

if r ~ n. 

Step 11: Explicate the relation 

2 2 
IGI < c2N AeN + e-N l~-1 
~r- -MR 

to arrive at 

for N large enough. 

I.e.: 

I.e.: 

2 
~ < C2N NA 2 - e . 

I.e.: 

2 
A > ~ C""!2N -N - 2 e . 

Step 12: Apart from the restriction that 

the parameter u > > 0 is at our disposal and can be chosen as large as we please. 

Bearing in mind that 2s is < u, or now, as will be notationally convenient, 2s is 

< v, write 
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N2 v => e < exp(M ). 

Consequently for some u > v > > O, 

2 1 -2N -N u 
A~2C e >exp(-M). 

[To see this, ignore the~ and for simplicity take C = e -- then 

Here 

In fact, 

Therefore 

.en (2.L"Vl) 
w = v bl(M) > v. 

=> vfu(2M) = wfu(M). 

2 2N N w v e e < exp(M )exp(M ) 

w = exp( (2M) ) 



if 

Accordingly 

16. 

£.n(2M) > w (> v). u = w fu(M) 

-2N2 e -N > exp ( - Mu) • ] e 
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§62. REAL NUMBERS (bis) 

"Few mathematical structures have undergone as many revisions or have been 

presente:i in as many guises as the real numbers. Every generation re-examines 

the reals in the light of its • . • mathematical objectives. " 

[F. Faltin et al., Advances in Mathematics 16 (1975), p. 278.] 

* * * * * * * * * * 

"How do we get future generations to take the validity of real numbers for 

grante:i? We indoctrinate them early in their careers when they are eager but 

.impressionable undergraduates. Here's how we do it. First we soften them up with 

a "Constructing the Real Numbers 11 blurb in their first calculus course. Nee:iless 

to say we don't really construct real numbers as they are by definition uncon-

structible. But the phrase sticks in their minds long after the details are 

forgotten." 

[N. J. Wildberger, The Mathematical Intelligencer 21 (1999), pp. 4-7.] 

* * * * * * * * * * 

"How real are real numbers? ••• The frightening features are the unsolvability 

of the halting problem (Turing, 1936), the fact that most reals are uncanputable, 

and last but not least, the halting probability rG, which is irre:iucibly complex 

(algorithmically random), maximally unknowable, and dramatically illustrates the 

l.imits of reason." 

[Gregory Chaitin, arXiv:math/0411418 v 3 [math. HO] 29 :Nov 2004. 

* * * * * * * * * * 
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APPENVIX 

In algorithmic information theory, a halting probability (or Chaitin 

constant) is a real number Qwhich represents the probability that a randomly 

constructed program will halt. 

'lb be precise, let PF be the domain of a prefix-free universal computable 

function F -- then the halting probability °:r of PF is by definition 

where IP I denotes the length of a binary string p. The sum defining °:r is infinite 

and converges to a real number lying between 0 and 1. 

FACT ~ is transcendental. 

There is a probabilistic interpretation of ~, from which the tenninology. 

Thus let (X,µ) be the Cantor space and suppose that F is a prefix-free universal 

computable function -- then the domain PF of F consists of an infinite set of 

binary strings: 

Each of these strings pi detennines a subset Si of Cantor space (viz. all sequences 

in Cantor space that begin with p.). MJreover the s. are pairwise disjoint and 
l l 

0. =µ(US.). 
-F iEN 1 

REMARK ~ is not computable, i.e., there is no algorithm which, given 
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n, returns the first n digits of ~· 

For rrore infonnation on this material, consult George Barnpalias (arXiv:l707.. 

08109 v 3 [math. ID]). 
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TRANSCENVENCE OF SERIES 

The overall theme is to discuss the transcendence of numbers of the fo:rrn 

00 

E A(n) 
n=l B(n) 

(or 
00 

E A(n) ) 
n=O B(n) 

or 
00 

E A(n) lirn E A(n) 
-B(n) - B(n) . 

n=-oo N + oo !n!<N 

The literature on this subject is extensive and no attempt will be made at 

a systematic exposition. Foregoing this, we shall first examine a number of 

instructive special cases and then take a look at the general picture. 

[l\bte: Quitted details cu:e to be regarded as exercises ad libiturn..] 

§1. CANONICAL ILLUSTRATIONS 

§2. THE ROLE OF THE COTANGENT 

§3. APPLICATION OF NESTERENKO 

§4. INTRODUCTION OF SCHC 

§5. INTRODUCTION OF SCHC (bis) 

§6. CONSOLIDATION 

§7. CONSIDERATION OF ~ 

§8. AN ALGEBRAIC SERIES 
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§1. CANONICAL ILLUSTRATIONS 

1: EXAMPLE 

ex> ex> 

L: 1 
n=l n(n+l) = 1 1 

L: (n - n+l) = 1. 
n=l 

2: EXAMPLE 

ex> ex> 

L: .!._= e and n!. n=O 
L: 

n=l 

(-l)n-1 _ 'IT 

2n-l - 4 ' 

both of 'Which are transcendental. 

3: EXAMPLE 

oo n-1 
L: (-l~ = .fn(2), 

n=l 

a transcendental number (cf. §21, #9) • 

4: EXAMPIE. 

ex> 1 
L: 3 = z; (3), 

n=l n 

an irrational number, the transcendence of which has yet to be shown. 

5: EXAMPIB 

ex> 
1 1 (- - .en (1 + -) ) = y n n ' L: 

n=l 

y being Euler' s constant, which is not known to be irrational, let alone trans-

cendental. 



6: EXAMPLE 

00 

2. 

(- l)n - G 
(2n + 1) 2 - I 

G being Catalan's constant, whose irrationality status is unknown. 

[Note: By comparison, 

~ (- l)n = 1T3 • ] 
n=O (2n + 1) 3 32 

. 2 1+15 7: LEMMA The zeros of the J;Dl ynonual X - X - 1 are cf> = 2 (the 

1 - /5 golden ratio) and 'ljJ = 2 
1 

(= 1 - cf> = - cp> • 

[Note: cf> and 'ljJ are quadratic irrationals (cf. §8, #4).] 

8: EXAMPLE 

00 00 

2n - 1 b -2----= L: 
n=-oo n - n - 1 n=--oo 

( 1 + 1 ) = o. ii.---=--ll n - 't/J 

9: DEFINrrION The integers O, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 

144, are the Fibonacci numbers: 

Fo = 0, Fl= 1, F = F 1 + F 2 (n ~ 2). n n- n-

10: LEM1A 

11: N.B. cp and 'ljJ are both solutions to the equations 
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hence 

~n = ~n-1 + ~n-2 • 

12: EXAMPLE 

= _!_ ln(l + <j>) - _!_ ln(2 - <j>), 
/5 /5 

a transcendental number (cf. §31, #11). 

13: EXAMPLE 

14: EXAMPLE 

00 
1 

L: FF =l. 
n=l n n+2 

oo (- l)n 
l: F F = 

n=l n n+l 
1 - /5 (= ~). 

2 

are algebraic numbers with s0 f:. O, then 

n s0rr + l: s.ln(a.} 
j=l J J 

is a transcendental number. 

PRCXJ.F ·Replace - 'tr by A Iog(-1) and quote §31, #11. 
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[The underlying supposition is that 

n 
Bo TI + L: B. Rn (a.) 

j=l J J 

is nonzero. 'lb see this, let {Rn(a.) ij ES} be a maximal Q-linearly independent 
J 

subset of 

hence 

n 
SoTI + L: BJ·ln(aJ.) = ~ ;::I" So I.og(-1) + L: C.Rn(a...:) 

j~ j~ J J 

for algebraic numbers c.. The claim now is that 
J 

-are linearly independent over Q, thus are linearly independent over Q (harogeneous 

Baker), thereby implying that 

- ~Bo I.og(-1) + L: c.£n(a.) 
jES J J 

is nonzero. So consider a rational dependence relation 

q0 I.og(-1) + L: q_,fu(a.) = o. 
jES -J J 

The sum over j E S is a real number, while I.og (-1) is pure imaginary, which forces 

% = 0. But then ~ = 0 V j E S. ] 

16: EXAMPLE (I.cllmer) 

~ 
6 

£ TT 
n=O j=l 

1 
6n + j 

= 43~Q (192 £n(2) - 81 £n(3) + 7 ./3 (~TI)), 

a transcendental number. 
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§2. THE ROLE OF THE COTANGENT 

1: RAPPEL V z E C - Z, 

00 

TI cot(Tiz) = L: 1 
n+z n=-oo 

2: THEDREM Let C E Q - Z -- then the series 

00 

n=-oo 
1 

n+c 

is transcendental if C f. ~ nod Z. 

PROOF Write 

TI r-f C -TI r-1 C 
TI cot(TIC) = TI r-1 e + e 

Let c = 12: q 

Therefore 

TI r-r C -TI r-r C e - e 

2TI r-f C + l = TI r-1 e f 0. 
21T r-r c e - 1 

00 

n=-oo 
1 

n+c 

is transcendental (being TI tines a nonzero algebraic number). 

{Note: If C :: } mcxl Z, then the series vanishes. In fact, V m E Z, 

1 
2TI M(2 + m) 

e 
TI yCI 

= e = -1. 
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One can also argue directly without an appeal to the formula: V m E Z, 

00 00 
1 1 

L 1 = L 1 
n=-oo n + 2 + m n=-oo n - 1-:-- 2m + 2 + m 

00 00 
1 = L ---=--= L 1 n=....oon- 2 -m 

.1 
1 n=-00 - n - - - m 2 

00 
1 = - L ---=1,__- . ] 

n=-oon+ 2 +m 

3: LEMMA V k ;:: 2, V z E C ":' Z, 

dk-1 00 1 
k-1 ( L n + z) 

00 

= (-l)k-l (k-1) !. L 1 
k • 

(n+z) dz n=-oo n=-oo 

Therefore 

00 l = (-l)k-l(TI cot(nz))(k-l) 

n=-oo (n+z) k (k. - 1) ! 

4: LEMMA V k ~ 2, V z E C - Z, 

dk-1 
k-l (n cot(nz)) 

dz 

21T r-r z e ..... 1 

where A. .E Z and A 1 I- 0, A k "I 0. i,J --k, -1<., 

+ ... + ---~~'-k--~), 
(e2n r-I z _ l) k 
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PROOF Write 

21T r-r z + 1 1T cot(Tiz) = 1T r-I e ____ _ 
21T r-r z e - 1 

21T r-r z 
=Til=le -1+1+1 

21T r-r z e - 1 

2'TT r-1- z 
- 1 2 = 1T r-r (e + ) 

21T r-r z - 1 21T r-r z - 1 e e 

= 1T r-r (1 + 2 ) . 
21T r-r z -- 1 e 

Differentiating this gives the result for k = 2. Proceeding by induction, assume 

matters have been established at level l - 1, hence 

with Al-l,l :f. 0, Al-l,l-l :/- 0 and 

or still, 

d dl-2 
dz (-:r-:2 (TI cot (Tiz)) 

dz 

A 
= (21T r-l)l-1 .i_( t-1,1 + .•• 

dz 21T r-I z 
e - 1 

A + t-1,.t-1 ) 
(e2'TT r-1 z _ l)l-1 

21T r-r z 21T r-r z - ~..e e e (21T v-1) (- Al-l l ------ - • · · - (l-l)Al-l,l-l -------) 
' (e21T /:I z _ l) 2 te21T r-r z _ l) l 
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or still, 

l e21T r-I z - 1 + 1 
(21T H) (- Al-1,1 - ..• -

(e21T r-I z _ l) 2 

e21T r-r z - 1 + 1 
(l-l)Al-1,l-l )-, 

~e21T r-I z _ l) l 

which equals (21T r-I) l times 

2'IT r-r z 1 e - {e21T r-I z _ l) 2 

(l-l)Al-1,l-l - ... --~--~-~ (l-l)Al-1,l-l 

thereby leading to the result at level l. 

[Note: 21T r-r z 'Ib see the :pattern, take l = 3 and put w = e - 1 -- then 

~,l + ~,l + ~,2 + 2~,2 
w 2 2 3 w w w 

= ~,l ~,l -i: 2~,2 + ~,2 ] 
w + 2 3 • 
- w w 

Therefore 

00 

1 = (-l)k-1 (2TI ;:I)k 
(n+z) k (k-1) ! n=-oo 

x ( ~' 1 + • . . + --~---'-,k----) . 
e21T /:I z _ 1 (e21T r-I z _ l)k 

5: NaI'ATION Put 

c l - c-1lk"1 (2 r-r1kc 1\.,1 + •• ~ + --~-=-,_k ___ ). 
l\_ z - (k~l). ! 2TI C'l'"l z 1 r=;-e v-L _ (e21T v-1 z _ l)k 
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Therefore 

CX> 

1 k = 1T. ~ (z). 
(n+z)k n=·...aa 

6: N .B. V C E Q - Z, ~ (C) is an algebraic number. 

7: THEOREM V k > 2, V C E Q - Z, the series 

CX> 
1 

n=-oo 

is either transcendental or zero. 

8: REMARK It can happen that 

dk-1 
k~l (TI cot(TI7.)) (k ~ 2) 

dz z=C 

= o. 
'lb see this, take k odd and observe that v m E Z, 

CX> 

L: 1 
n=-oo 1 k (n + 2 + m) 

CX> 

L: 1 = 
n=-oo 1 k (- n - - - m) 2 

CX> 

= (- l)k L: 
n:-00 

1 
1 k (n + 2 + m) 

[Note: The series does not vanish if k is even and in that case we have 

transcendence.] 
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§3. APPLICATION OF NESTERENKO 

1: CRITERION For any :i;:ositive integer D, TI and eTI ID are algebraically 

independent over Q (cf. §20, #10) (proof anitted). 

[Note: In particular, TI and eTI are algebraically independent over Q.] 

. r 11v15s 2: N.B. If r and s are nonzero rational numbers, then 1T and (e ) are 

algebraically independent over Q (cf. ~46, #26). 

3: THEOREM I.et C E Q - {O} - then the series 

is transcendental. 

00 
1 

L: 2 2 
n=-00 n + C 

PROOF Take C > 0 and let 

f (x) 

Then, using Poisson summation, 

00 00 

f (n+t) = L: 
n=-oo n=-oo 

Now put t = 0 to get 

1T 
C L: e- 2nC!nl = ~ 2 1 2 

n=-oo n=-oo n + C 

00 

or still, 
00 2nC 

1 = TI (e + 1) 
L 2 2 c 2nC I n=-oo n + C e - 1 



2. 

a transcendental number (cf. infra). 

[Note: I.et 

and write 

If 

then 

c = E (p,q E N) q 

ff (e2TIC + 1 -
C 2TIC )=a.EQ-{O}, 

e - 1 

TI (e2TIC + 1) - a.(e2TIC - 1) = o. c 
Define a :polynomial P E Q[X,Y] by the prescription 

x P(X,Y) = C (Y + 1) - a.(Y - 1). 

Then 

. TIYD1q P (11 7e ~ · ) = O. 

But TI and enlD/q are algebraically independent over Q (cf. #2), hence are alge-
-braicall y independent over Q (cf. § 20, #7) • ] 

4: N.B. For any :positive real number C (not necessarily rational), 

oo 2TIC 1 _ TI (e + 1) 
~ 2 2 - C e2TIC _ l n=-oo n + c 

rrC -TIC 
TI(e +e) 

= C rrC -TIC • e -e 



5: RAPPEL 

3. 

z -z 
coth z = a;>sh z = e + e 

sinh z z -z e - e 

6: N.B. So, for any :i;ositive real number C (not necessarily rational), 

00 
1 7T 

L: 2 2 = C coth(TIC). 
n=-oo n + C 

[There is another approach to this result using complex variables. Thus let 

1 f (z) = 2 2 (C > 0). 
z + c 

Then f (z) has simple poles at z = ± C A. 

• The residue of 

at z = C His 

7T cot (7TZ) 
z2 + c2 

lim 
z+cA 

(z - c r-1) TI cot(Tiz) 

(z - C A) (z + C A) 

-- TI cot(TIC A) TI ------ = - 2C coth (TIC) • 

2C A" 

• · The residue -of 

at z = - C A is 

Since the sum of the residues is 

TI cot(TIZ) 
z2 + c2 

- TI 
2C coth(TIC). 

- TI --C- coth (TIC) , 



4. 

it follows that 

CX> 
1 

L: 2 2 
n=-ro n + c 

= - (sum of residues) 

= ~ coth ( nC) • ] 

[Note: The formalism here is that 

CX> 

L:. f (n) = - S, 
n=-oo 

where S is the sum of the residues of TI cot(nz) f (z) at the poles off (z) .] 

7: LEMMA For any positive real number C (not necessarily rational) , 

CX> 1 'TT 1 
L: 2 2 = 2C coth(nC) - -2 . 

n=l n + C 2C 

PROOF Write 

-l 1 1 CX> 1 'TT 
L: 2 + ~2 + 2 + L: 2 2 = C coth ( nC) • 

n=-ro n C- C n=l n + C 

8: EXAMPLE Take C = 1 -~ then 

By comparison, 
CX> 

1 - 3 
L: 2 -4· 

n=O n - 1 

[Note: For the record, 



s. 

9: REMARK It is also possible to sum the series 

oo (-l)n 
L: 2 , 

n=O n + 1 

the result being 

21T 
TI -TI e - e 

10: THEOREM I.et C E Q>O - then the series 
00 

L: l 
2 n=-oo n + c 

is transcendental. 

PROOF Write 

and let 

Now apply #2. 

00 1 2TI yC" + 1 
L: -2-- = ...!._ (e ) 

n=-oo n + C vC" e2TI IC _ 1 

C = ~ (p,q E N) => IC = (E) 1/2 = ypq 
q q 

=> 2TI vC = 7T /4 yW q 

/4pq 
=TI--. q 

11: EXAMPLE Take c = 3 -- then 

1 = _TI_ e
2

TI l3 + 1 1 r-2-- +6. 
n=O n + 3 2 /3 e27f 13 _ 1 

00 



6. 

12: THEOREM I.et C E Q - {O} -- then for every positive integer k, the 

series 

00 1 
n=--oo 

is transcendental. 

PROOF Write 

1 1 
---~ = -----------
(n2 + c2)k k k 

(n + ;=r C) (n - ;=r C) 

and decornr:x::>se the tenn on the right into partial fractions: 

k ~ ~ ------=--- + -----=--- (a. , B. E Q) • 
. J J 

(n - ;=IC) J 
L: 

n=l (n + ;.:r C) j 

Proceed •..• 

13: EXAMPLE Take C = 1 -- then 

oo 2TI 2 
L: 1 =2!.e +1+2!._ 

n=O (n 2 + 1) 2 4 e 2n - 1 4 

2n 1 e +-
(e2TI _ l)2 2 • 

[Consider 

R (X' Y) = X y + 1 + X2 y + 1 
4 Y - 1 4 (Y _ l) 2 2 

and write 

2n nl4 e = e (so D = 4).] 

14: THEOREM let C E Q>O - then for every positive integer k, the series 

00 1 
n=-oo 

is transcendental. 



1. 

§4. 1NTROVUCTION OF SCHC 

1: THEOREM let C E Q - Z -- then the series 

is transcendental. 

PROOF Since 

00 

00 1 
L: 3 3 n=-oo n + c 

00 00 
1 

L: 3 3= L: 
n=-oo n - c n=-oo 

1 
-~~--= -
(-n) 3 - c3 

1 
L ~--3 I 

n=-oo n + c 

it can be assl.lrted that C is J:X>Sitive. This said, write 

3 3 2 n + C = (n + C) (n + Cp) (n + Cp ), 

where 

p = (-1 - r-r /3)/2 

is a primitive cube root of unity. Decanpose ~3 into partial fractions: 
n + C 

Then 

equals 

2 1 1 p 1 p 1 
2 +2 +2 2· 
3C n + C 3C n + Cp 3C n + Cp 

00 
1 

L: 3 3 n=-oo n + c 

2TI r-T C + l e21T 
e + p 

2 
r-T Cp + 1 2 e 2n r-T Cp + 1 

;.:I Cp _ 
1 

+ P e 2n iFT Cp 2 - 1 2TI H C l 2TI e - e 

Here we have used the fonnula for the cotangent in terms of exponentials (see §2, 



2. 

#2) (proof thereof) • Expand the data to arrive at a fraction 

where A equals 

A 2'IT A-B ' 

+ 2 ( 'IT A c -'ITC /3 + -'IT A c TIC 13") p e e e e 

and B equals 

2 
3C2 (e2'IT AC -l) (e2'IT A Cp -l) (e2'IT A Cp _ l). 

owing now to §3, #2, 'IT and (e1T /3)C = e'!TC /3 are algebraically independent aver 

Q, hence the numerator is either transcendental or zero. If the numerator is 

zero, then the algebraic coefficients of e 'ITC /3 and e -'ITC /3 must both be zero, 

which implies that 

TIMC 2-rrAC pe + p e = O 

The first equation implies that 

1 
C = 6 + Ki (3 Ki E Z) 

and the second equation implies that 

=> 

1 1 1 
6 + Kl = - 6 + ~ => 3 = ~ - Ki' 

a contradiction. Therefore the series is transcendental. 



3. 

2: REMARK At least one of 

()() 1 ()() 1 
L 3 3 and L 3 3 

n=l n + C n=l n - C 

is transcendental. 

3: THEOREM I.et C E Q - z -~ then for every positive integer k, the series 

()() 

1 L 
n=-oo 

is transcendental or zero (transcendental if k is even). 

[Start by decomposing 

1 

into partial fractions.] 

4: CRITERION (Admit SCHC) If q1 , .•• ,an are algebraic numbers such that 

r-1, a1 , ... ,an are linearly independent over Q, then 

'ITC]_ 
n,e , ... ,e 

are algebraically independent over Q. 

TI a .n 

5: N.B. Take n = 1, a1 = 1 -- then the conclusion is that TI and eTI are 

algebraically independent over Q (cf. §3, #1) (no need for SCHC in this situation). 

6: EXAMPLE (Admit SCHC) Take n = 2, a1 = ~ 13, a2 = r-r le, where 

CE Q - Z, C ~ o3 (DE Q). 



4. 

Then 

are algebraically independent over Q· 

['lb check that ;.:r, a1 ,a.2 are linearly independent over Q, consider a rational 

dependence relation 

Then s = O, leaving 

or still, 

= r r-T + s 7c 4 + t ;:r 7c = O. 

3 
r r-T+ t r-r ;t'C"= O 

r + t X = 0 => 3
17" = - r JI~ t 

=> c = ( - ~) 3.] 

7: THEOREM (P.dmit. SCHC) suppose that CE Q - z is not a cube in Q --

then the series 

is transcendental. 

CJ() 

1 
3 n='""'°° n + C 

PROOF The verification is an elab:>ration of that used in #1 (which considers 

the situation when "C" is a cube). So, to begin with, recast matters into the fonn 



1T r-r + p 

3 %2 

5. 

e2rrr-f 7c P + 1 

2rrr-l ~ p 1 e -

This done, combine ter.ms in the sum to fonn a fraction and, using #6, check that 

its nurrerator is not zero. 



1. 

§5. INTROVUCTION OF SCHC (bis) 

1: EXAMPLE 

oo 4TI 
L: 1 = TI e - 1 + !_ 

n=O n4 + 4 8 e4TI - e2TI + 1 8 . 

[To ascertain that the right hand side is transcendental, supr:ose that 

4'TT 1 
TI e - = a E Q - {O}. 

4TI 2TI + l e -e 

Then 

4TI 4TI 2TI TI(e - 1) - a(e - e + 1) = 0. 

-Define a r:olynomial PE Q[X,Y] by the prescription 

P(X,Y) = X(Y4 - 1) - a(Y4 - Y2 + 1) = 0. 

Then 

TI 4TI 4TI 2TI P(TI,e ) = TI(e - 1) - a(e - e + 1) = O, 

which contradicts the fact that TI and eTI are algebraically independent over Q.] 

2: LEMMA (Admit SCHC) 

TI /2 TI A /2 TI, e , e 

are algebraically independent over Q. 

PROOF In §4, #4, taken= 2, a1 = /I, a2 = r-I II. 

-3: THEOREM (Admit SCHC) I.et C E Q - {O} -- then the series 

00 1 
L: 4 4 

n=-oo n + C 

is transcendental. 



PRCOF Write 

where 

Then 

equals 

Note tha.t 

2. 

s = err r-1/4 = /ii./2 + r-I /ii./2. 

00 
1 

l: 4 4 
n=-oo n + C 

(e2rr !=I t,;C + l) (e2rrt,;C _ l) _ !=I(e2rrt,;C + l) (e2rr r-1 sC _ l) 

!=I (e2rr !=I sC _ l) (e2rrt,;C _ l) 

2rr H 1:c rr !=I C /2" -TIC//2" e "'=e e 

and use the fact that 

1T 12" 1T r-r n. rr, e , e 

are algebraically independent over Q (cf. #2). 

r . 
I 
I 



1. 

§6. CONSOLTVATTON 

Our objective here is to analyze the series 

co 
L: 1 , 

n=-co nP + cP 
where p = 1 or p is a prime 2:. 2 and c E Q - Z • 

• p = 1: 

co 1 
n+C n=-co 

is transcendental or zero (cf. §2, #2) • 

• p = 2: 

co 
1 

L: 2 2 
n=-co n + c 

is transcendental (cf. §3, #3) • 

• p = 3: 

co 
1 

L: 3 3 
n=-co n + C 

is transcendental (cf. §4, #1). 

1: THEOREM (Admit SCHC) I.et p be a prime 2=_ 5 and let C E; Q - Z -- then 

the series 

co 
l: 1 

n=--oo nP + cP 
is transcendental or zero. 

PROOF I.et 



2. 

be a primitive pth root of unity _.. then 

p-2 1, 1;;, ••• ,1;; 

are linearly independent over Q, thus 

are also linear 1 y independent over Q. Therefore 

TI r-r /;; TI r-r l;;P-2 
TI, e , •.• , e 

are algebraical1¥ independent over Q (cf. §4, #4). Write 

np + _p = ( ) ( p-1 ) c- n + C • • • n + I;; C 

to arrive at 

2TI r-r C + l 
Tir-l(ao e + 

27T r-r c e - 1 
+ ap-1 

-where the ci.. E Q. Using the fact that 
1 

2TI e 
2TI e 

TT p-1 
v-i Cl;; + l 

1 ) , r-r c1;;P- - 1 

p-1 p-2 
I;; = - 1 - I;; - ••• - I;; , 

the sum inside the parenthesis can be reduced to a rational function in algebraically 

independent terms which can be transcendental, zero, or algebraic nonzero but the 

TI out in front rules out the last possibility. 



1. 

§7. CONS1VERAT10N OF~ 

-Let A(X), B(X) be elements of Q[X] with 

deg A < deg B. 

Assume: 

B (X) = (X + ~) 11J. •• • (X + C\) ~, 

where cx.1 , ••• ,°J<. are algebraic, nonintegral, and such that 

1, cx.1,···1°J<. 

are linearly independent over Q. 

1: THEOREM (.Adrni t SCHC) The series 

00 

L: A(n) 
n=-oo B(n) 

is transcendental or zero. 

2: RAPPEL (cf. §2, #3) V j ~ 2, V z E C - Z, 

00 (-1) j-l (TI cof (nz)) (j-l) 
L: 1 

(n + z) j 
= 

n=-oo (j - l)t 

3: N.B. When j = 1, 

00 

n=-co 

1 
+ = n cot(nz). n z 

Using partial fractions, write 

k mi 1 
AB ((n~ = L: L: C . . . • 

n i=l j=l lJ (n + a.)J 
1 



Then 

where 

00 00 

L: A(n) = L: 
n=-oo B (n) n=-oo 

2. 

k mi 
( L: L: c.. 1 .:) 
i=l j=l lJ (n + a.)J 

l 

k mi oo 
1 = L: L: c. . L: 

(n + a.) j 
l 

i=l j=l lJ n=-oo 

k m. 
l (j-1) 

=TI L: L: D .. (cot(rra.)) , 
i=l j=l lJ l 

(-1) j-1 
Dij = Cij (j - l)!" 

FACI' For any integer m > 1, 

d m 
(dz) cot z 

is a polynomial in cot z. 

IThe formula is 

equals 

(2 r-i)m (cot z - r-i) 
m .ti .e. 
L: -± s (m,l) ( r-r .cot z - 1) • 

l=l 2 

Here the S(m,l) E Z are the Stirling subset numbers (a.k.a. the Stirling numbers 

of the second kind) • ] 



3. 

[Note: Vk 2: 2, V z E c - Z, 

00 
1 k k (l-l)!S(k,l) L: = (-21T ;=I) 

L: k n=-oo (n + z) (k - 1) ! l=l -27T ;.:r z yl (e - 1 

4: RAPPEL 

5: APPLICATION 

cot (1TZ) 
21T ;:r z + 1 = ;:r _e __ ~--

e21T ;-:r z - 1 

(cot(Tia·)) (j-l) 
l 

(cf. §2, #3) .] 

21T ;.:r a· 
is an algebraic linear canbination of rational functions evaluated at e 1 

The assumption on the a· is that 
l 

are linearly independent over Q or still, that 

are linearly independent over Q or still, that 

are linearly independent over Q. Therefore 

2 Tr ;::r CX.1 2 Tr ;.=r cx.k 
1T, e , ... , e 

are algebraically independent over Q (cf. §4, #4). 

'lb finish the proof, rearrange the sum s.o. as to fo:rm a rx>lynanial in 1T, 



4. 

the coefficients of a given power of rr being a rational expression in 

, .. ~ ' 2rr r-r ~ 
e 

Ccmplete the argument by citing algebraic independence over Q (which eliminates 

the algebraic nonzero fX:>Ssibility). 

There is one set of circumstances under which the series 

00 
L: A(n) 
_ B(n) n'--oo 

is transcendental (thereby ruling out the zero contingency). 

Assu:rre: The roots of B (X) are sirrple, hence 

IDi = 1, • o • I~ = 1. 

'lb proceed, write 

or still, 

k 2n .r-T a. 
00 

l + 1 L: A(n) _ r-r L: c. e 
B(n) - TI I 

i=l l 2TI r-r a. n=-oo 
l - 1 e 

the claim being that the expression on the right is nonzero, thus that the series 

00 
L: A(n) 

B(n) n=-oo 

is transcendental. 

Rewrite the expression as 



5. 

TI r-f k 2TI /.=I Ct. 
L: C. (e 1 + 1) 

-· 1 l I= 

2TI /.=I Ct 
(e a - 1). 

k 2TI r-f Ct. 
TT (e i - 1) 
i=l 

Matters then reduce to showing that the polynomial 

k 
L: c. (X. + 1) TT (X - 1) . 1 i i .+' a i= ari 

is not identically zero. Suppose it were identically zero. Given i, take 

x. = O, X. = - 1 (j ~ i), X = 2 (a~ i) 
i J a 

to see that C. = O. But i is arbitrary, so C. = 0 V i, contradicting the tacit 
l l 

assumption that A i 0. 



l. 

§8. AN ALGEBRAIC SERIES 

Instead of look.lng for a transcendental series, this time we shall exhibit 

an algebraic series. 

-1: THEOREM Supp:>se that P(X) E Q[X] and z E Q (0 < !z! < 1) -- then 

the series 
00 

L: z~(n) 
n=O 

is algebraic. 

PROOF First of all, the manipulations mfra are justified by the absolute 

convergence of our series, so if 

then 

Write 

k i 
P(X) = L: a.x , 

i=O 1 

00 

L: zl\> (n) 
n=O 

k 00 

= L a. L 
i=O 1 n=O 

i 

ni z n • 

L s (i I j) (X) . , 
j=O J 

where (X) 0 = 1 and for j > 1, 

(X). = X(X - 1) ••· (X - j + 1). 
J 

Insert.mg this data leads to 

k i 
L: a. L: S(i,j) 

. 0 1 . 0 i= J= 

00 

L: 
n=O 

n (n) .z 
J 



or still, 

or still, 

or still, 

or still, 

or still, 

or still, 

or still, 

k i 
l: a. l: S(i,j) 

. 0 l . 0 i= J= 

k i 
l: a. l: S(i,j) 

. 0 l . 0 i= J= 

k i 
l: a. l: S(i,j) 

. 0 l . 0 i= J= 

k i 
L: a . E S (i, j) 

. 0 l . 0 l= J= 

2. 

()() 

l: n(n - 1) ·•• (n - j + l)zn 
n=O 

()() 

E n (n - 1) • · • (n - j + 1) zn 
n=l 

()() 

E n(n - 1) ·•• (n - j + l)zn 
n=j-1 

()() 

L: n (n - 1) • • • (n - j + 1) zn 
n=j 

k i . co 

E a. L:. S(i,j)zJ l: (n + 1) ••• (n + j)zn 
i=O 1 j=O n=O 

k i . j (") 
L: a. l: S(i,j)zJ ( z ) J 

. 0 l . 0 1 l= J= _- z 

k i sc· ")'' j l: l: i,J J.Z 
i=O ai j=O (1 - z)j + 1 ' 

an algebraic number. 
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1. 

§1. BERNOULLI fJUMBERS 

I.:lefine the Bernoulli polynomials B (x) (n == 0,1,2, ... ) via the generating n 
function 

[Note: 

1 2 1 == 1, B1 (x) == x -. 2 , B2 (x) == x - x + 6 . ] 

There are two sign conventions at play here. 

(+) I.:lefine the Bernoulli numbers B+ (n == 0,1,2, ..• ) by taking x == 1, n 

hence the generating function 

[Note: 

(-) 

tet oo n 
== L B+ ~ . 

et - 1 n=O n n. 

+ + 1 + 1 
BO = l, Bl == 2' B2 = 6 . ] 

I.:lef ine the Bernoulli numbers B- (n == 0, 1, 2, ••• ) by taking x = 0, n 

hence the generating function 

fNote: 

1: 

t oo - tn 
t =LB-1 • 

e - 1 n=O n n. 

:... 1 - 1 
BO = l, Bl = - 2' B2 == 6 °] 

REMARK A Bernoulli number is real and rational. 



2. 

3 : LEr"'IMA If n is an odd integer :;: 3 , then 

4: N .B. In fonnulas involving even index Bernoulli numbers, it is per-

missible to drop the ± and simply use the symbol B . n 

5: EXAMPLE 

xcotx= L: 
n=O 

6: LEMMA V n :::_ 1, 

7: LEMMA V n ,?: 1, 

22n 2n 
(-l)n B (2n) ! 2n x (0 < Ix I < TI) • 

1a Bn(x)dx = 0. 

i!:O Bn(x)Bm(x)dx = (-l)n-1 m!n! B-
(m + n) ! m+n· 

8: LEMMA V n 2: 1, 

d 
dx Bn(x) = nBn-l(x). 

APPENVIX 

IBt>'.iMA (MULTIPLICATION FORM.UIA) 

n...J.. m-1 k 
B (mx) = m L: B (x + -) . 

n k:=;O n m 



i.e.' 

3. 

APPLICATION Take x = 0, m = 2 -- then 

B2n(~2) = 21-2n B - B 2n 2n 

= (21-2n - l)B2n" 

LEMMA (ADDITION FORMULA) 

B (x+y) n 
n n n-k = L (k) ~{x)y • 

k=O 



1. 

§2. r; (2n) 

1: 'rtiEOREM V n ~ 1, 

00 

1 1:;(2n) = l: -
- k=l k2n 

2n 
= (-l)n-1 (2TI) 

B2n 2(2n)! 

or still, 

1:;(2n) 
n-1 22n-l 2n = (-1) (2n) ! B2n7T • 

2: APPLICATION I:; (2n) is transcendental. 

[Recall that TI is transcendental, hence in is transcendental.] 

The stated formula for I:; (2n) can be proved in nmay different ways. What 

follows is one of them. 

3: NOI'ATION Given an f E L l [O<l], put 

f (k) = fr: f (x) e-2rrA kx dx (k E Z) • 
0 

4: PLANCHEREL Given an f E L2 [O,l], 

00 

!~ if(x) j2dx = l: jf(k) j2. 
-oo 

[Note: Recall that 

2 c 1 L (0,1] L (0,1].] 

5: LEMMA Take f (x) = Bn (x) -- then 



2. 

n! = - ---'---
(27TA k)n 

" if k -:J 0 while B (0) = 0. n 

PROOF The second point is covered by §1, #6. As for the first point, take 

n ~ 1 and write 

n = 1: 

~ (k) = ?,: B (x) e-27Tr-l kx dx 
n 0 n 

1 ..1 d -27Tr-l kx = - J: B (x) - e dx 
21TH k o n dx 

= - 1 B (x) e-27TH kx 
27TH k n 

1 

0 

+ 1 f 1 ~ B {x) e - 27Tr-l kx dx. 
27T!=I k 0 dx n 

1 
" 1 1 -27Tr-l kx B1 (k) = - (x - -)e 

27Tr-l k 2 0 

1 f 1 1 . -21Tr-l kx 
27TH k o 

e dx 

1 (~ + ~) = -
21Ti=I k 2 2 

1 0 (k -:J 0) 
27TH k 

1 = -
21TH k 



3. 

n > 1: To begin with 

And 

But 

Therefore 

leaving 

1 B (x) e-2nA kx 
2TIH k n 

B (1) - B (O) = B+ - B-n n n n 

1 

0 

= (-l)n B- - B- (cf. §1, #2) 
n n 

- n = B ((-1) - 1). n 

n - n n even, > 2 => (-1) = 1 => B ( (-1) - 1) = O - n 

- - n n odd, > 3 => B = O (cf. §1, #3) => B ((-1) - 1) = O. n n 

B (1) - B (O) = 0, n n 

1 fl ~ B (x) e -2TIH kx dx. 
2nr-I k 0 dx n 

Using §1, #8, replace dxd B (x) by n B 1 (x) to arrive at n n-

B (k) = n ! 1 B (x)e-2nr-I kx dx 
n 2n/:l k 0 n-1 

n "' = --- Bn-1 (k)' 
2nr-I k 



so, inductively, 

Hence the lerrma. 

4. 

A n B (k) = ---
n 2TIH k 

n - 1 :B (k) 
n-2 2TIH k 

= n (n - 1) ••• ~ B (k) 
(2TIH k)n-1 1 

= n! (- 1 ) 
(21TvCl k)n-l 21TvCl k 

n! =-----
(2TIF-r k)Il 

'lb prove the theorEm, take f = B (n ~ 1) in Plancherel: n 

Here 

On the other hand, 

()() 

-oo 

fl 
0 

fl 
0 

00 2 IBn (k) 12. IB (x) I dx = L: n 
- 00 

!B (x) !2dx n 

1 = J0 B (x)B (x)dx n n 

= (-l)n-1 (n!) 2 
B;n (2n) ! 

= (-l)n-1 (n!) 2 
B2n (2n) ! 

(cf. 

(cf. 

§1, 

§1, 

113 (k) 12 = z: 
n k~O I 

n! I 2 
(2TIH k) n 

#7) 

#4). 



5. 

co (n!) 2 = 2 L: 
k=l (2nk) 2n 

(n!)
2 ~ _l 

=2-~- t... 

(2TI) 2n k=l k2n 

(n!) 2 
= 2 s(2n). 

(2TI) 2n 

2 Now cancel the (n! ) to get 

s(2n) 

6: SCHOLIUM 

2n 
= (-l)n-1 _j_2_2Q__ B ~ 

2 (2n) ! 2n 

2 Q[s(2),s(4),s(6), ••• ,J = Q[rr J. 
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§3. 1;;(2) 

In §2, #1, take n = 1 to get 

Of course there are a "million" proofs of this result but for rrotivational pur-

poses we shall single out one of these. 

1: NorATION The symbol 

1 1 J0 J0 f(x,y)dxdy 

stands for a double integral over the unit square [0,1] x [0,1], possibly improper. 

2: SUBLEMMA 

00 

~ l,; (2) L: 1 = 
(2n+l) 2 . n=O 

PROOF 

00 

i;; (2) L: 1 = 2 n=l n 

00 00 

L: 1 L: 1 = ---2+ 
(2n) 2 n=O (2n+ 1) n=l 

00 00 

L: 1 + !_ l: 1 = 2 n=O (2n+l) 2 4 n=l n 

00 

= l: 1 + ! l,; (2) 
n=O (2n+l) 2 4 

=> 

00 

~ l,; (2) l: 1 = 
(2n+l) 2 

. 
n=O 
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3: LEMMA 

00 

ro ro 1
2 2 dxdy = ro ro 

1-x y 
l: (xy)2ndxdy 

n=O 

co 

= l: 1 
n=O (2n+l) 2 

3 = 4 1:;(2) • 

[Note: The singularity at the corner (x,y) = (1,1) can be safely ignored •... ] 

Define a bijective :rmp from 

r~ = { (u,v) :u > o, v > o, u + v < ;} 

to ]O,l[ x ]0,1[ by the prescription 

with Jacobian 

acx,y) = 
a(u,v) 

= 1 

sin u sin v) (u,v) + ( , cos v cos u 

cos u/cos v 

. . / 2 Sll1 U Sll1 V COS U 

. 2 . 2 
Sll1 U Sll1 V 

2 2 cos u cos v 
2 2 = 1 - x y 

. . / 2 Sll1 U Sll1 V COS V 

cos v/cos u 

[IDte: The details are in the Appendix to this § • ] 

Therefore 

i r; (2) = f~ f~ 1
2 2 dxdy 

1-x y 

2 
1T = Area(IT2) - B 
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=> 

Z:(2) 

4: LEMMA 

1 1 1 z:<2) = J0J 0 l-xy axdy. 

PROOF The RHS equals 

or still, 

or still, 

or still, 

00 
1 1 n n !0! O L x y dxdy 

n=O 

00 

L (!~ x~) · (!~ yndy) 
n=O 

oo n+l 
L ~ 

n=O n+l 

00 

1 

0 

n+l 
• _y_ 

n+l 

00 

1 

0 

l: 1 = l: 12 = s (2) • 
n=O (n+l) 2 n=l n 

To establish the connection between #3 and #4, write 

1 1 1 1 
• 1o 1o <1-xy - l+xy)dxdy 

1 1 1 1 = 2 f 0 f 0 1-xy dxdy. 
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1 1 1 1 
• J 0 J 0 <1-xy + l+xy)dxdy 

1 1 1 = 2 Jo Jo 2 2 dxdy. 
1-x y 

Then 

1111 11 1 = 2 J 0 J 0 1-Xy dxdy + 2 J 0 J 0 2 2 dxdy 
1-x y 

=> 

1 1 1 1 2s(2) = 2 s(2) + 2 J0 J0 2 2 axdy 
1-x y 

=> 

3 1 1 1 4 s<2) = Jo 1o 2 2 dxdy. 
1-x y 

APPENVIX 

NOI'ATION 

[Note: In 'What follows the illdices i of the n coordinates of a rnillt ill Rn 

are to be regarded as illtegers m:xiulo n, thus 

sill u. - 1. 
x. = 

1. cos ui+l 
(i E N m:x1 n) • ] 
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Introduce 

sin u. sin u2 sin u 1 X = L X - X = n-1 cosu2 ' l-oosu3 , ... , n-1 cosun 

to get an arrow II + Rn. n 

sin u n x =---' n cos~ 

LEMYIA 1 The arrow rn_ + Rn is one-to-one and its range is the open unit 

n cube (]O,l[) • 

LEMMA 2 The Jacobian 

equals 

a (xl' .•• ,xn) 
d (Ul, ••• , Un) 

the sign - or + according to whether n is even or odd. 

The volume of rn_ is 

or still, 

fl ___ 1 ___ =-2 axl ..• axn 
01+_( ) xl ... xn 

or still, 

[Note: When n is even, the integrand in the second integral is singular at 



6. 

but the change of variable rema.ins valid s.ince the .integrand is elsewhere positive.] 

Take now n > 2 - then .in view of absolute convergence, the third .integral 

equals 

But 

1 =---
(2k+l)n 

Therefore the volUIIE of I\i is 

a rational multiple of nn. 

00 (-l)nk 
l: 

k=O (2k+l)n 

N.B. When n = 1, TI reduces to the l.ine segment 0 < u1 < n/4 and the -- n 

bottcrn l.ine is the wellknovm f onnula 

the value of 

TI 1 1 1 -=1--+---+ 4 3 5 7 

1 1 
Jo --2 ax. 

l+x 

REMARK Take n even -- then 

-n (1 - 2 ) t; (n) • 
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§ 4. r;, (2) (bis) 

2 
Since r;,(2) = ~ , it follows that r;,(2) is transcendental, hence irrational. 

But let's ignore this, the objective being to prove from first principles that 

r;,(2) is irrational, the point being that the methods utilized can be extended in 

the next § to establish that r;,(3) is irrational. 

1: NarATION Let d be the least carrm:>n IlDJ.l tiple of 1, 2, ••• , n and set n 

2: LEMMA V K > e, 

if n > > O. 

PROOF 

d < K1 n 

d = Tf p[fu(n)/fu(p)] 
n 

p~n 

~ Tf Pfu(n)/fu(p) 
p<n 

= Tf n = n TI (n) ' 
P:Sn 

TI (n) the prime counting function. CMing now to the prime number theorem, 

so if A > 1, then 

lim n(n).ln(n) = 1, 
n n -+ co 

n > > 0 => TI(n)fu(n) <A 
n 
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or still, 

n > > 0 => n(n).tn(n) < nA 

n(n) An _ _n 
=> n < (e ) = K , 

A where K = e > e, i.e., 

Then 

n > > 0 => d = nn(n) < K1. 
n 

3: N.B. In particular, 

n n > > 0 => d < 3 . n 

4: NorATION Let 

1 dn P (x) - - -- (xn(l-x)n). 
n n! dxn 

a polynomial of degree n with integral coefficients. 

5: SUBIEMMA For i ~ n - 1, 

6: LEMMA Suppose that f (x) is sufficiently differentiable -- then 
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11 n ndn J -, x (1-x) - f (x)dx 0 n. dxn 

PROOF Write 

1 .lldn n n fo p (x)f (x)dx = r;.o -, - (x (1-x) ) f(x)dx n n. dxn 

1 1 dn-l n n d 
= ""': f 0 n! dxn-l (x (1-x) ) dx f (x)dx. 

Proceed from here by iteration. 

So 

7: INTEGRAL FORMULAS 

• Let r be a nonnegative integer -- then 

r r oo 
fl fl ~ dxd = L: _l_=-
0 O 1-xy Y n=l (n+r)2 • 

1 1 1 
r = 0 =>Jo fo 1--xy dxdy = l;;(2) 

r r 
r > 0 => !1 ! 1 x~y dxdy 0 0 1-xy 

(cf. §3, #4). 
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• let r,s be nonnegative integers with r > s -- then 

rs 
1 1 x y dxd - 1 { 1 + 1 + 1 

f o lo 1-xy Y - r-s s+l s+2 + r} 

8: APPLICATION 

1 1 r r 
10 10 ~-~ dxdy = 1:;(2) - ~ 

r 

and 

where a,b are integers. 

Therefore: 

9: LN\1MA If P (x) , Q (y) are :i;:ol yncmials of degree n with integer coefficients, 

then 

f l fl P(x)Q(y) dxd = A;(2)+B 
0 0 1-xy y d2 , 

n 
where A,B are integers. 

10: NOI'ATION Put 

n 1 1 Pn(x) (1-y) 
In= lo fo 1-xy dxdy. 

Take Q (y) = (1-y) n to get 

where A ,B are integers depending on n. n n 
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11: LEMMA 

n nn n jr I = ;; ;; x (1-x) y (1-y) dxdy. 
n 0 0 (l-xy)n+l 

PROOF Taking into account #6, 

= 

= 

n n ;; x (1-x) 
0 n! 

n n 
~ x (1-x) 
O n! 

n n 
(~ ~ ( (l-y) )dy)dx 

0 dxn 1-xy 

;; xn(l-x)n (;; n!yn(l-y)n d )dx 
0 n! 0 (l-xy)n+l Y 

n nn n = ~ ;; x (1-x) y (1-y) dxd 
0 0 (l-xy)n+l Y • 

12: N.B. I is nonzero (the integrand is i::ositive for all x,y E ]O,l[). -- n 

The function 

f ( ) = x (1-:-x) y (1-y)' 
x,y 1 -xy (0 s x < 1, 0 s y < 1) 

vanishes on the boundary of [O,l] x [O,l] and, although not defined at (1,1), 

it does however tend to 0 as x, y t l. 

13: LEMMA The maximum of f (x, y) in 0 < x < 1, 0 < y < l is 

PRCDF Consider the relations 

a~ f(x,y) = O, a~ f(x,y) = O, 
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i.e. I 

2 2 1 - 2x + yx = 0, 1 - 2y + xy = 0. 

Then 

2x-l 2x-l 2x-l 2 Y = - 2-=> 1 - 2(-2 -) + x(-) = o 
x x x2 

3 => x - 2x + 1 = 0, 

the roots of which are 

Analogously 

-1 1, ± /5 
2 I SOX= 

rs -1 
y = 2 

15 -1 
2 

Therefore f (x,y) achieves its maximum at 

the value being 

14: APPLICATION 

Jr I 1 1 1 
= JO f O f (x, y) r=xv dxdy n xy 

< ,rs -1>sn fl f1 _1_ axa 
2 0 0 1-xy y 

= (15 -1) Sn r; (2) (cf. §3, #4)' 2 

15: N.B, 

15 -1 2.27 -1 1.27 .635, = =~ = 2 ·2 



And 

7. 

(.635)5 ~ {o => 9n(v5"2-1)5n 

= (9 • (15 -1) 5)n 
2 

1 n 9 n 
~ (9 • 10) = <10> -+ 0 (n -+ oo) • 

16: THEOREM r; (2) is irrational. 

PROOF Supp::>se instead that 1:;(2) was rational, say 1:;(2) = ~ (a,b EN). Write 

=> 

Anr;(2) + Bn 
I = 

n d2 
n 

a· 
A. (b) + B n n =----

d2 
n 

=> (n > > O) 

=> (n > > O) 

(cf. #10) 



But I is nonzero (cf. #12), hence n 

8. 

O < IA a + B bl + O n n (n + oo) 1 

a contradiction (a sequence of positive integers cannot tend to O) • 
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§5. !'.; (2n) (bis) 

1: RAPPEL 

2 00 1 TIX cot('TlX) = 1 + 2x 2: 2 2 • 
k=l x -k 

2: RAPPEL 

()() 22113 n 2n 2n2n 
TIX cot(TIX) = 1 + 2: (-1) (2n) ! rr x • 

n=l 

3: N.B. These expansions are valid for !xi sufficiently small. 

Given k, expand 

in p::>wers of x: 

Therefore the coefficient of x2n is 

00 
1 -2 2: - • 

n=l k2n 

And then 

00 2 00 00 2 n 
L: 2x = -2 2: 2: (~) 2 2 2 k=l x -k k=l n=l k 

00 00 2n x = -2 2: 4 2n 
n=l k=l k 
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00 00 

= -2 L: ( L: ___!_)x2n 
n=l k=l k 2n 

00 

= -2 L: s(2n)x2n, 
n=l 

i.e., -2s (2n) is the coefficient of x2n. But the coefficient of x2n is also 

Consequently 

n 2~2n 2n 
(-l) (2n) ! 7f · 

n-1 22n-l 2 
s(2n) = (-1) (2n)! B2n7f n 

as prerlicterl by the considerations of #2. 
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§6. z;;(3) 

1: THEOREM z;;(3) is irrational. 

The proof is similar to that for z;;(2) (cf. §4, #16), albeit technically rrore 

complicated. In outline fonn, here is how it goes. 

Step 1: 

• Let r be a nonnegative integer -- then 

In particular: 

- ?: ! 1 fu (xy) dxd = 2z;; (3) 0 0 1-xy y • 

• I.et r,s be nonnegative integers with r > s -- then 

_ _?,: 11 fu (xy) xrys dxdy = __.!__ ( 1 + 
0 0 1-xy r-s 2 

Step 2: 

where A ,B E Z. n n 

Step 3: 

(s+l) 

1 1 Pn(x)Pn(y) 
In = - f o Jo 1-xy fu(xy)dxdy 

A s(3)+B n n = -----,,----
d3 

n 

_ ln (xy)_ = 11 __ l~- dz 
1-xy 0 1-(1-xy)z · 
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Step 4: 

.1 :i J_ P (x)P {y) 
II I = Ir:. J: r:. n n dzdxdyl n 0 0 0 1-(1-xy)z 

.1 xn(l-x)n ~ .1 .1 Pn (y) 
= I 10 n! dxn U0 10 l-(l-xy) z dydz)dx I 

n nnn 
= ·1- r: p ( ) (.r!- .r!- X (-l_-x) y Z. dxdz)d ., 

0 n Y 0 0 n+l Y (1- (1-xy) z) 

Step 5: I.et D = {(u,v,w) :u,v,w E ]O,l [} -- then the map 

defined by x = u, y = v and 

(u,_v,w). + {x,y,.z}. 

z = 1-w 
1-(1-uv)w 

from D to D is one-to-one and onto. In addition, 

UV ()(x,y ,z) 
a(u,v,w) = - ------=-2 . 

(1- (1-uv)w) 

Step 6.: The function 

u(l-u)v(l-v)w(l-w) 
1-(1-uv)w 

is bounded above by 2
1
7 in the region D. 

Step 7: In I make a change of variable and use the relations n . 

n (1-w)n z =-----
- (1-(1-uv)w)n 



to get 

3. 

n+l 1-w )n+l (1-(1-xy)z) = (1-(1-uv) l-(l-uv)w 

(uv)n+l 
=------

(1-(1-uv)w)n+l 

Step 8: Therefore 

11 
lnlll l 

O < In = <27> f O f O f 0 1-(1-uv)w dudvdw 

Step 9: 

0 < II I = n 

IA i:; (3)+B I n n 
d3 

n 

fu(uv) dudv 
1-uv 

Step 10: To derive a contradiction, suppose that 1:;(3) is rational, say 

( ) - a N 1:; 3 - b (a,b E ) -- then 
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=> 

0 < I A a + B b I < 2b (};_) n d 3 
n n 27 n 

< 2b(2
1
7)n (2.8) 3n (cf. §4, #2 (take K = 2.8)) 

3 n 
= 2.b)( < 22~) -1 < 2b(0.9)n + 0 (n + co). 

2: N.B. The irrationality of c;; (3) is thereby established but the issue 

of its transcendence remains open. 

3: REMARK It was shown by T. Rivoal that the Q-vector space generated by 

1, c;; (3) , c;; (5) , c;; (7) , ••• 

is infinite dim:msional, hence there exist infinitely many n such that i';;(2n+l) 

is irrational (but it is unknown whether 1';;(5) is irrational). 

[Note: For an account, consult S. Fischler (arXiv:math .• 0303066) .] 

In the book 11 Zeta and q-Zeta Functions and Associated Series and Integrals11 

by H.M. Srivastava and Junesang Choi, the reader will find a large collection of 

fontnllas for 1';;(2n+l). 
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§7. CONJUGATE BERNOULLI NUMBERS 

1: DEFINITION If f is a 1-periodic function, then its periodic Hilbert 

transform H[f] is given by 

H[f] (x} = PV .(:{~2 f (x-y)cot(ey)dy. 

2: CONSTRUCTION Start with the Bernoulli :i;:olynomial Bn(x) and put 

Bn(x) = Bn(x-[x]), 

a so-called Bernoulli function. It is 1-periodic and 

B (x) n 
n! = - l: 

kEZ 
kid 

2nr-l kx e 
(2nM k)n 

a formula which holds for all real x if n ;:: 2 and for all x ¢ Z if n = 1. 

-3: DEFINITION The conjugate Bernoulli functions B (x) are defined for - n 

x E [O,l[ (x ~ 0 if n = 1) by the restriction of H[Bn] to [O,l[. 

4: EXAMPLE For 0 < x < 1, 

5: EXAMPLE 

= PV J1/ 2 B (-2
1 - y)cot(ny)dy -1/2 2n+l 
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- 1/2 1 
- FV f-1/2 B2n+l (2 - y)cot(rry)dy. 

[:Note: By definition 

1 1 1 82n+l (2 - y) = B2n+l (2 - Y - [2 - y]) • 

But 

1 1 1 1 
-2<Y<2=>2>-y>-2 

1 1 1 1 1 
=2 "'2 + 2 > 2 - y > 2 - 2 

1 => 1 > 2 - y > 0 

1 => [2 - y] = 0.] 

6: N.B. 

00 sin(2rrkx-nrr/2) Bn (x) = - 2 {n!) L: n (x ~ 0 if n = 1) • 
k=l (2nk) 

7: LEMMA V n E N, 

B (1-x) = (-l)n+l B (x) (O < x < 1). n n 

PROOF Fran #6 I 

Bn(l-x) = _ 2 (n!) ~ sin(2rrk(!-x)-nrr/2) 
k=l (2nk) 

WLite 

sin(2rrk(l-x)-nrr/2) 

= sin(2nk-2rrkx-nrr/2 + nrr/2-nrr/2) 

= sin ( (-2rrkx+nrr/2) + (2rrk-nrr)) 
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= sin (-2'rrkx+n 1T/2) cos (2 Tk-mr) 

+ sin (21Tk-n 1T) cos (-21Tkx+n1T/2) 

= - sin (21Tkx-n 1T/2) cos (-n1T) 

+ sin (-n 1T) cos ( -21Tkx+n 1T/2) 

= sin ( 21Tkx-n 1T/2) ( -1) cos (n TI) 

+ (O)cos (-21Tkx+n1T/2) 

= sin(21Tkx-n1T/2) (-1) (-l)n 

= (-l)n+l sin(21Tkx--n1T/2), 

matters then being manifest. 

1 8: APPLICATION Take x = 2- -- then 

=> 

9: DEFIN"ITION The conjugate Bernoulli numbers B are def ine:i by n 

g = ~ (0) (n > 1) • n n 

10: RAPPEL V n > 1, 

~ (-l)k+l = 1 ~ (21T)-n (1 ~ 2 -n)~(n). 
k=l (21Tk)n 

11 l LEM!..'1A v n > 1, 
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PROJF Fran #6, 

But 

Therefore 

lbwever 

Therefore 

()() B (1) = _ 2 {n!) l: sin {rrk-n rr/2}~ 
n 2 k=l {2Tik)n 

sin {rrk-nTI/2) = sin {Tik)cos (~TI) - sin (~TI)cos (Tik) 

= - sin (~TI) COS {Tik) 

1 ()() (-l)~+l B {-) = - 2 (n!) sin (mr) l: 
n 2 k=l 2 k=l (2rrk) n 

nTI -n 1-n = - 2 (n!) sin (2 ) (2TI) (1 - 2 ) 1; (n) 

1-n nrr -n = (2 -1) 2 (n!) sin (2 ) (2rr) s (n). 

. { IlTI) 00 Slll - -
B = B co> = - 2cn1) z: 2 

n n k=l (2rrk)n 

()() 

= 2(n!)sin(n
2
TI) l: 1 

k=l (2rrk)n 

nTI --n 
= 2 (n!) sin (T) {2TI) l,; {n) • 

B c!.> = c21-n - l)B . n2 n 
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12: DEFINITION Given x E R, put 

J/2 ~ n(x) = F!V 1:112 e cot('TlY)dy, 

the cmega function. 

13: N. B. Therefore the cmega flmction is the periodic Hilbert transfonn 

at 0 of the 1-periodic function f defined by periodic extension of f (y) = e-~ 
1 1 

(y E [- 2' 2 [): 

Q(x) = PV jl/2 e-(O-y)x cot(yTI)dy 
-1/2 

14: LEMMA There is an expansion 

ll(x) 

where 

00 n. . 
=" JXJ t... -.. , 

j=O J. 

. l 1/2 . Qj = D~Q(x) x=O = F!V !_112 yJ cot(ey)dy. 

The omega function figures in the generating function for the Bn(}). 

15: THEOREM For lxl < 2TI, 

PROJF Ignoring the minus sign, on the UIS, it is a question of the cauchy 
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prc:duct of tv..o infinite series: 

( ~ B. (l' xk) x ( ~ ~ k) 
k=O - k 2' k ! k=O k ! x ' 

a generic tenn being 

or still, 

k k l xk 
( L: (.) B. . (-2)Q.) k! • j=O J -k-J J 

owing to the addition fonnula (see the Appendix to §1), 

1 k k l . 
B. (- - y) = L: (.) B. . (-) (-y)J. -k 2 j=O J -k-J 2 

On the other hand, 

And n2 j = 0. So in the sum 

k 
L: (~) B. . (-21> n.' 

j=O J -k-J J 

only the c:dd j contribute. This said, consider 

1/2 k k l j 
PV !_112 .t: (.) 1\-· (2) y cot(Tiy)dy 

J=O J J 

or still, 

k 
_ PV ;1/2 ~ k 1 j 

1/ 2 t... ( .) B. . (-2) (-l)y cot(rry)dy. 
- . 0 J -k-J J= 



7. 

Assume that j is odd, say j = U + l -- then 

(-y)j = (-y)U+l = (-l)2l+l(y)2l+l 

= (-l)l(y)2l+l = (-l)yj. 

The data thus reduces to 

from which the result. 

16: THEOREM 

l -TIX TIX rl(2nx) = - (e -e ) 
7T 

00 
k k 

L: (-1) 2 2 • 
k=l x +k 

[It can be shown that 

or still, 

or still, 

00 

2 L: (-l)k+l !~ e2'11XYsin(2nky)dy 
k=l 

1 2TIX = - (e -1) 
TI 

00 

L: 
k=l 

(-1) k k 
2 k2 x+ 

00 

L: 
k=l 

00 
k k L: (-1) 2 2 .] 

k=l x +k 

17: REMARK By way of ccmparison, recall that 

7T 1 00 k x = - + 2 L: (-1) 2 2 . 
sin(rrx) x k=l x -k 
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§8. 7;;(2n+l) 

T'ne ~onnula for 7;;(2n) in terms of Bernoulli numbers (cf. § 2, #1) admits an 

analog for 'Z,:(2n+l) in terms of conjugate Bernoulli numbers. 

1: THEOREM 

r;; (2n+l) 

PROOF 

Step 1: Jxl < 1 

=> 

00 oo 2n 
L: 

k=l 
L: )-l)n (x) 

k 

00 

= L: 
k=l 

n=O 

00 

L: 
n=l 

Step 2: Write (cf. §7, #15) 
- 1 

oo ~(2) k TIX 
l: k! (2TIX) = - 2TIX 2~ Q (2TIX) 

k=O e -1 

e TIX -TIX 
= - 2TIX ~-- Q (27TX) 

e2TIX_l e-TIX 

= - 1 2TIX ----TIX -TIX e -e 
Q (2nx) 

00 

+ L: 
R=I 



Accordingly 

2. 

::; 2TJX -'TIX 
1 

TJX S"2(211X) 
e --.e 

TI 
== 2x -11X 1lX S"2(211X) 

e -e 

(cf. §7, #26) 

So, comparing coefficients, 

and 

- 1 
B2n+l (2) 22nTI2n+l == n 

00 
k 1 

(2n+l) ! (-l) L: (-l) k2n+l · 
k==l 

Step 3: First (cf. §7, #10) 

00 
k 1 

L: (-l) 2n+l == 
k==l k 

Therefore 
- 1 

s(2n+l) _ l (-l)n 22nTI2n+l B2n+l (2) 
- 2-2n_1 (2n+l)! 



But (cf §7, #11) 

thus 

3. 

- 1 -2n -82n+l(2) = (2 -l)B2n+l' 

-2n -
1 2 2 1 (2 -l)B2n+l 

l; (2n+l) = ___,=--- (-l)n 2 nTI n+ 
2-2n_1 (2n+l)! 

the statement of #1. 

Question: Is 

-
= (-l)n 22n1T2n+l B2n+l 

(2n+l) ! ' 

l;(2n+l) 
2n+l 1T 

rational or irrational? Ans: Nobody knows. Of course, part of the problem is 

the structure of i32n+l which appears to be complicated. E.g.: 

i3 <1> = £n(2) - 2 !1;+2 y3 cot(rry)dy 
3 2 4TI Q 

-2 -= (2 -l)B3• 

2: THEOREM 

l; (2n+l) 
n+l 22n1T2n+l 1 = (-1) (2n+l)! fo B2n+l(y) cot(rry)dy. 

PROOF In fact 

:B2n+l = :B2n+l(O) (cf. §7, #9) 

1 = - I'V J0 B2n+l(y) cot(rry)dy 



4. 

= - 1 
J0 B2n+l(y) cot(ny)dy 

after replaclilg y by -y and taking into account the 1-periodicity. 

{1bte: The PV is not necessary slilce 

lim x cot x = 1.] 
x -+ 0 

3: REMARK In a similar vein, 

l; (2n) 
n+l 22n-1TI2n 1 -= (-1) (2n)! J0 B2n(y) cot(ny)dy. 
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