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ABSTRACT 

Apart from an account of classical preliminaries, these notes contain 

a systematic intrcx:luction to Sobolev spaces and functions of :bounded variation, 

along with selected applications. 
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SECTION 1: MEASURE THEORY 

§ 1.1. FACTS 

Let X be a nonempty set and let E c P(X) be a collection of subsets of X. 

1.1.1. DEFINITION The pair (X, E) is called a measurable space if E 

a a-algebra. 

1.1.2 EXAMPLE If (X,T) a topological space, then (X,B(X)) is a 

measurable space, B (X) the a-algebra of Borel subsets of X, i.e. , the a-algebra 

generated by the open subsets of X. 

1.1. 3. DEFINITICN Let (X, E) be a measurable space. 

• A function µ:E -+ [O, + oo] is a positive measure provided µ(¥1) = 0 and 

µ is a-additive on 

1.1. 4. LEMMA Let (X, E) be a measurable space and suppose that 

µ:E -+ [O, + oo] (µ(¥1) = 0) is a-subadditive and additive -- then µ a-additive, 

hence µ is a positive measure. 

PROOF Let E
1 

,E
2

, • • • be a sequence of pai:r:wise disjoint elements of E - then 

00 00 

< l±m 
N -+ oo 

N 
l: µ(E ) 

n=l n 

N 
= lim µ( U E ) n N -+ 00 n=l 

00 

<µ(U E). - n n=l 
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1.1.5. DEFINITION Let (X,E) be a measurable space. 

• A function µ:E + ~ (m ~ 1) is a vector measure provided µ([&) = O 

and µ is a-additive. 

[Note: If µ is a vector measure and if m = 1, then µ is a real measure. 

Since+ 00 is admitted, a positive measure is not necessarily a real measure.] 

1.1. 6. REMARK If µ is a vector measure and if E1, E2 , • • • is a sequence 

of pairwise disjoint elements of E, then 

00 00 

µ( U E) = L µ(E ). 
n=l n n=l n 

Here the series on the right is absolutely convergent since its smn does not depend 

on the order of its terms (this being the case of the union on the left). 

1.1. 7. DEFINITIOO Suppose that µ: E + Rm (m ~ 1) is a vector measure --

then its total variation I Iµ 11 is the arra.v E + [ 0 1 + 00] defined by the prescription 

- 00 00 

I Iµ 11 (E) = sup L 11 µ (E ) 11 : {E } pairwise disjoint, E = U En-I • 
n=l n n n=l 

1.1. 8. THEOREM I Iµ 11 is a positive finite measure (hence 11 µ I I (X) < + 00
) • 

1.1.9. m m REMARK Denote by M(X;R ) the set of R -valued vector measures 

µ:X + Rm (m ~ 1) -- then M(X;Rm) is a real vector space and the total variation 

is a nonn on M(X;Rm) under which it is a Banach space. 

1.1.10. NarATIOO Given a real measure µ, let 

11 + = ~+_l! (positive part) 

µ = Iµ I - µ (negative part). 
2 
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1.1.11. N. B. Therefore µ + and µ- are J:?OSi ti ve finite raeassres and 

+ 
µ = µ - µ ' 

the Jordan decomposition of µ. 

1.1.12. SCHOLIUM If µ is an Rm -valued vector neasure, say 

put 

Then 

1.1.13. NOI'ATICN' let µ be a positive measure on (X, E). Given an 

1 m f E L (X,µ) , say 

and an E E E, put 

1.1.14. SUBLEMMA The assignment 

is an Rm-·valued vector neasure, call it f].r. 

1.1.15. LEMMA The total variation I Ifµ 11 of fµ is the assignment 

E + J E 11 f 11 dµ. 

PROOF First 

I Ifµ 11 < 11 f 11 µ • 
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This said, fix a countable dense set {l\_} c ?-·l ( c r{Il) and let E E E. Given 

£ > 0, put 

cr(x) = inin {k E N: <f (x) , 1\ > ~ (1-e) I If (x) I IJ 
and write 

Then 
00 

(1-E) I If I lµ(E) = (1-t.:) fE I If I Idµ = I (1-c) !Ek_ I If I Idµ 

00 

00 

~ L I Ifµ(~) 11 < I Ifµ 11 (E) • 

1.1.16. DEFINITION Let (X, E) be a measurable space. 

• Let v be a p:::>sitive measure and let µ be a vector measure -- then µ is 

absolutely continuous w.r.t. v, denotedµ << v, if for every E E E, the implication 

\) (E) = 0 =>I Iµ 11 (E) = 0 

obtains. 

1.1.17. 
1 m 

EXAMPLE If f E L (X, \)) ' then fv <«v. 

1.1.18. CRITERION µ is absolutely continuous w.r.t. v iff for every 

£ > 0 there exists 6 > 0 such that for every E E E, 

v CE> < a => 11 µ 11 CE) < t.: • 

1.1.19. DEFINITION Let (X, E) be a measurable space. 
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denoted µ1 J. µ2 , if there exists E E E such that 

1.1. 20. N. B. Vector measures µ1 , µ2 are mutually singular provided this 

is the case of I 1µ1 11, J 1µ2 I I· 

[Note: If v,µ are as above, write v J. µ when v J. 11µ 11.J 

1.1.21. RADON-NIKODYM Let (X,E) be a measurable space. 

• Let v be a positive measure and let µ be a vector measure, say 

E Rm ( 1) . f. . then .i-1.-. • • • a s µ: -+ m _'.:: . Assume: V J.S O- J.nJ.te -- w1ere J.S a unique pair µ 1 µ 

m of R -valued vector measures such that 

and 

a s 
µ < < v, µ J. v 

a s 
· .. µ = µ + µ • 

1.1.22. N.B. In addition, there is a unique f E L1 (X,v)m such that 

µa = fv, the so-called density of µ w. r. t. v, denoted ~~. 

[Note: Uniqueness is taken to mean in the sense of equivalence classes of 

functions which agree v - a.e.] 

1.1.23 LEMMA Let µ be an Rm-valued vector measure --- then there is a 

unique srn-1-valued function f E L
1 (x, I Iµ 11 )m such that µ = f I Iµ 11 · 

PROOF Trivially, µ < < I Iµ 11, so µ = f 11 µ 11 ( f E L 
1 

(X, 11 µ I I ) m) • Therefore 

= I I f I I I I µ I I <cf. i. i.15 . ) 
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thus 11 f 11 = 1 ( I Iµ 11 - a. e. ). 

1.1.24. DEFINITION I.et (X,E) be a measurable space. 

• A function µ:E-+ [ - 00 , + oo] is a signed measure providedµ($) = 0, 

µ takes at most one of the two values + oo and - 00 , i .. e. , either µ: E -+ ] - oo, + oo] 

or µ:E -+ [ - oo, + oo[, and µ is a-additive on E. 

1.1. 25. N. B. A positive measure is a signed measure. 

1.1.26. N.B. A real measure is a signed measure. 

1.1. 27. DEFINITION Suppose that µ is a signed :measure on (X, E) • 

• A set E E E is a positive set for µ if µ(E0) 2: O for every E0 E E 

such that E
0 

c E. 

ft A set E E E is a negative set for µ if µ(E0) < O for every E0 E E 

such that E
0 

c E. 

1.1.28. DEFINITION Suppose that µ is a signed :measure on (X,E) -- then 

a set E E E is a null set forµ if µ(E0} = 0 for every E
0 

E E such that E0 c E. 

1.1.29. DEFINITION I.et (X,E) be a measurable space. 

• Given a signed measure µ, sets E+,E- are said to constitute a Hahn 

decanposition for µ provided E+ n E_ = ¢, E+ u E_ = X, and 

E+ is a positive set for µ 

E_ is a negative set for µ. 

1.1.30. THEOREM Hahn decanpositions exist. Moreover, if (E+,E_) and 
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(E~,E~) are two such, then E+ D. E~ and E_ D. E' are null sets for µ. 

1.1. 31. LEMMA If µ, v are signed measures on (X, E) , at least one of which 

is finite, then the set function µ - v is a signed measure on (X, E) • 

1.1. 32. LEMMA Suppose that µ is a signed measure on (X, E) and let 

1.1. 33. LEMMA Suppose that µ is a signed measure -- then there exist 

... +- + -d+ -unique positive measures µ , µ such that µ = µ - µ an µ .L µ . 

[I.et X = E+ U E_ be a Hahn decomposition for µ and put 

(E E E).] 

µ-(E) = - µ(En E_) 

1.1. 34. REMARK If µ omits the value + 00 (- 00), then µ + (µ-) is a finite 

positive measure. So the range of µ contained in R, then µ is bounded, 

i.e., µ is a real measure. 

1.1.35. DEFINITION Let (X,E) be a measurable space. 

• A signed measure µ is finite if lul is a finite positive rneasure. 

1.1. 36. LEMMA µ is finite iff µ (X) E R. 

1.1.37. RESTRICTION I.et (X,E) be a rneas:urable space and suppose that 
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µ is a :positive, real, signed, or vector measure in {X,E). Given E E E, put 

(µLE) (S) =µ(En S) (SEE). 

Then 

In fact, 

1.1.38. EXAMPLE Per Radon-Nikodym, consider v and µ -- then there exists 

s a set E E E such that v(E) = 0 and µ = µ L E. 
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§1.2. BOREL MEASURES 

I.et X be a locally canpact Hausdorff space (IDbspaee). 

1.2.1. NOI1ATION 

• O(X) is the collection of open subsets of X. 

• K(X) is the collection of canpact subsets of X. 

• B(X) is the collection of Borel subsets of X. 

1.2.2. DEFINITION A positive measure on (X,B(X)) 

as a Borel measure on X. 

referred to simply 

1. 2. 3. DEFINITICN I.et µ be a Borel measure on X and let E E B (X) • 

o µ is outer regular on E if 

µ(E) = inf{µ(U):U ~ E, U E O(X)}. 

• µ is inner regular on E if 

µ(E) = sup{µ(K):K c E, KE K(X)}. 

1. 2. 4. DEFINITICN I.et µ be a Borel measure on X and let E E B (X) -- then 

µ is regular on E if µ is both inner and outer regular on E. 

1.2.5. DEFINITICN I.et µ be a Borel measure on X and let C be a subset 

of B(X) -- thenµ is outer regular for C, inner regular for C, or regular for C 

according ,to whether µ is outer regular, inner regular, or regular for every E E C. 

1. 2. 6. TERMINOI.£GY A Borel measure µ on X is outer regular, inner regular, 

or regular if µ is outer regular, inner regular, or regular for B(X). 
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1. 2. 7. LEl1MA If every open subset of X is a-compact, then every Borel 

measure on Xis inner regular for O(X) ( c .B(X)). 

1. 2. 8. EXAMPLE Every open subset of R11 is er-compact. 

1. 2. 9. REMARK If X is a-compact, then the a-algebra generated by K (X) 

is B(X). 

1.2.10. LEMMA I.et µ
1 

and µ2 be two Borel measures on X. 

• µ1 and µ2 are outer regular for B(X} and µ1 = µ2 on O(X}, then 

µ
1 

= µ
2 

on B (X) • 

• If µ1 and µ2 are inner regular for B(X) and µ1 = µ2 on K(X), then 

µ
1 

= µ
2 

on B (X) • 

[To establish the first point, let E E B (X) and write 

µl (E) = inf{µ1 (U):U ~ E, U E O(X)} 

= inf{µ2 (U):U ~ E, U E 0(X)} 

* * * * * * * * * * 

APPENVIX 

A locally compact Hausdorff space X is o-canpact if X can be expressed as 

the union of at rrost countably many compact subspaces. 

[Note: Q = u {q} and V q, {q} is compact but Q is not locally compact .. ] 
qEQ 
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LEMMA Every open subset of a second countable I.CH space X is a-compact. 

E.g.: This is the case of Rn. 

RAPPEL A second countable topological space is separable (but, in general, 

not conversely) • 

RAPPEL Every separable metric space is second countable. 

86.,' if X is a rnetrizable separable ICH space, then every open subset of X is 

cr-compa.ct. 

N.B. Every compact metric space is separable. 
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§1.3. RAVON MEASURES 

I.et X be a locally compact Hausdorff space (ICII space). 

1. 3 .1. DEE'INITIOI\J A Borel measure µ on X is said to be locally finite if 

V K E K (X) , µ (K) < + co. 

1. 3. 2. DEE'INTTIOI\J A locally finite Borel measure µ on X is a Radon measure 

provided 

• µ is outer regular for B (X) 

• µ is inner regular for O (X) . 

1. 3. 3. N .B ~ A Radon IIEasure is a positive measure. 

1. 3. 4. REMARK A finite Borel measure µ on a canpact Hausdorff space X is 

locally finite but it need not be Radon. 

1. 3. 5. EXAMPLE Take X = Rn -- then the restriction of Lebesgue measure 

to B(X) is a Radon roeasure. 

[Note: Counting measure on Rn is not locally finite, hence is not Radon.] 

1.3.6. LEMMA Every a-finite Radon measure is inner regular for B(X), 

hence is regular for B(X). 

In particular: Every finite Radon measure is regular for B (X) , thus every 

Radon measure on a compact Hausdorff space is regular for B(X). 

1. 3. 7. LEMrvlA Suppose that X is a-compact -- then every Radon neasure on X 

is inner: .regular for B (X) , hence is regular for B (X) • 
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[A Radon IIJ£::;asure is locally finite, so here 

cr---compact => a-finite.] 

1. 3. 8. LEMMA Suppose that X is a-compact, let µ be a Radon ~ure on X, 

and let v be a locally finite Borel measure on X. Assume: v = µ on O(X) - then 

v is regular for B (X) • 

1. 3. 9. RIESZ REPRESENTATION THEOREM (RRT) If I is a pJSi ti ve linear 

functional on C (X), then there exists a unique Radon m=asure µon X such that c 

for all f E C (X) • c 

I (f) = JX f dµ 

1. 3.10. SUBLEMMA I.et U be an open a-compact subset of X--:- then there is 

an increasing sequence fl'f2 , ••• on Cc(X) such that lim fn = Xu· 
n -+ oo 

[Note: An open subset of a conpact Hausdorff space need not be a-compact.] 

1.3.11. THEOREM If ~every open subset of X is a-compact, then every locally 

finite Borel measure v on X is a regular Radon m=asure. 

PROOF The issue is outer and inner regularity for B (X) per v. Define a 

pJsitive linear functional I in Cc(X) by the prescription 

I (f) = f X f d \). 

Then by the RRT, there exists a unique Radon m=asure µ on X such that v f E Cc(X), 

I(f) = fx f dµ. 

The claim navv is thatµ= v on O(X). So let U E O(X) and choose as above 

{fn}' lim fn =Xu -- then by rronotone convergence, 
n -+ oo 
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v(U) = fx Xu dv = lim fx fn dv 
n -r oo 

= J X Xu dµ = µ (U) • 

Therefore v = µ on 0 (X) , thus v is regular for B (X) . 

[Note: Consequently, v = µ (cf. 1. 2 .10) • ] 

1. 3 .12. RAPPEL let (X, E) be a measurable space -- then a simple function 

is a finite linear combination with real coefficients of ~characteristic 7functions 

of sets in E. 

1.3.13. LEMMA For any positive measure µ:E -r [O, + 00], the simple functions 

are dense in LP (X, µ) (1 s_ p < + 00). 

1. 3.14. THEOREM If µ is a Radon measure on X, then C (X) is dense in 
c 

PROOF It is enough to show that for any Borel set E with µ(E) < + 00 , XE 

can be approximated in the LP-nonn by elenEilts of C (X) . Given s > 0, choose a c 

compact Kc E and an open U ::) E such that µ(U-K) < s and using Urysohn, choose 

an f E Cc(X) such that xK :S f :S Xu -- then 



1. 

§1.4. OUTER MEASURES 

I.et X be a nonempty set -- then the pair (X, P(X)) is a measurable space. 

1. 4 .1. DEFTIJITION A :rronotone function µ*: P(X) + [O, + co] is an outer 

ireasure provided µ* (~) = O and µ* is o-subaddi ti ve on P (X} • 

1. 4. 2. DEFlliITION I.et µ* be an outer measure -- then a set E E P(X) 

is µ*-rreasurable if for every A E P (X) , 

c µ*(A} = µ*(A n E) + µ*(A n E ) • 

1. 4. 3. NDrATICN M ( µ*) is the collection of all µ*-measurable sets 

E E P(X). 

1.4.4. THEOREM M(µ*) is a a-algebra. 

1. 4. 5. NDrATICN I.et µ be the restriction of µ* to M ( µ*) • 

1.4.6. THEOREM µ is a positive measure. 

1. 4. 7. THEOREM µ is a complete measure .. 

1.4 .. 8. DEFINITICN An outer measure µ* is said to be regular if every 

E E P(X) is contained in a µ*-measurable set F of equal outer measure. 

[In symbols: VEE P(X) 3 FEM(µ*): F ~ E & µ*{F) = µ*{E).] 

1. 4. 9. DEFINITICN An outer measure µ* on a topological space (X, T) is 

Borel if B(X) c M(µ*) and is Borel regular if in addition for ever:y EE P(X) 

there exists an FE B(X) such that F ~ E and µ*(F) = µ*(E). 
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1.4.10. DEFINITICX\I An outer measure µ* on a metric space (X,d) is a 

metric outer measure if 

µ*(EU F) = µ*(E) + µ*(F) 

for all sets E,F E P(X) such that dist(E,F) > 0. 

1. 4 .11. THEOREM An outer rneasure on a metric space (X,d) is Borel iff 

µ* is a rnetric outer ireasure. 
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§1.5. LEBESGUE MEASURE 

n* ..n 1. 5 .1. NDrATIQ.\J L is outer Lebesgue measure on K • 

1. 5. 2. DEFINITIQ.\J ~ (= M ( L n*) ) is the a-algebra comprised of the 

Ln*-measurable subsets of Rn, the members of~ being referred to as the I.ebesgue 

measurable subsets of Rn. 

n on R • 

1. 5. 3. THEOREM n* 
L is a nEtric outer measure, hence 

1 5 4 Nor ON Ln · th · · f n* . .n th • • • ~TI is e restriction o L to ML, e I.ebesgue measure 

1. 5. 5. THEOREM Ln is a complete measure and is the completion of the 

restriction of Ln to B(Rn). 

The restriction of Ln to B(Rn) is locally finite and Borel regular, thus is 

Rad.on. 

1.5.6. NDrATION Put 

n/2 
7T 

wn = f (l + n/2) ' 

the I.ebesgue measure of the unit ball in Rn. 

1.5.7. 
n 

ISODIAL'\11n'RIC INEQUALITY For every bounded Borel set E c R , 
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B(x,r) n 
= {y E R : I IY - x 11 :S r }, 

th.en 

Thus the interpretation of the iscxliametric inequality that the Iebesgue 

measure of E cannot exceed the Iebesgue measure of a ball with the same diameter 

as that of E, i.e., an:ong all E with a given diameter d, a ball I~ (x,r) with 

diameter d has Lebesgue measure Ub (~ n and 

1. 5. 8. NDrATION Given a nonsingular linear transformation T: Rn + Rn, 

let~ be the matrix of T per the standard basis of Rn. 

and 

and 

1.5.9. LEMMA 

1. 5 .10 LEMMA 

1.5.11. 

E E ~ => T (E) E M~ 

n LEMMAVEcR, 
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On general grounds, Cc(Rn) is dense in Lp(Rn) (1 ~ p < + oo) (cf. 1.3.14). 

But more is true: 
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§ 1 • 6. HAUSVORFF MEASURES 

n 
In what foll<Ms, take X = R • 

exists. 

1.6.1. NOI'ATIOI:\I Given s E [O, + oo[, put 

s/2 
- 1T 

ws -r(l + s/2) 

1. 6. 2. NOI'ATIOO' Given 0 < o ::_ + oo and a subset E c X, put 

w 00 00 

~ (E) = ~ inf { L: (diam{~)) s :E c U Ekr diam(Ek) ::_ o}. 
2s k.=l k=l 

1. 6. 3. SUB.LEMMA 

1.6.4. LEMMA VE c X, 

1. 6. 5. THEOREM 

HS (E) = lim H~ {E) 
a+O 

s 
= sup H (E) 

o>O a 

s H :P(X) ~ [O, + oo] 

is a metric outer measure, the s-dimensional Hausdorff outer measure on x, hence 

Hs is Borel, hence 
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1.6.6. LEMMA ff is Borel regular. 

[In fact, if E E P(X) , then there exists a G 
0 

set G => E such that ff (G) = 

ff (E) and, of course, G E B(X). I 

1.6. 7. N.B. The restriction of ff to M(tf) is a caoplete rreasure. 

1.6.8. LEMMAVXEX, 

tF(x + E) = tf (E) 

and v t > O, 

ff (tE) = tSff (E). 

1.6.9. LEMMA 

ff = 0 

if s > n. 

Therefore matters reduce to the consideration of H8 in the range 0 < s < n. 

1. 6 .10. LEMMA HO is counting measure. Moreover, M CHO) = P (X) • 

Therefore matters reduce to the consideration of Hs in the range 0 < s < n. 

n* n Recall that L is outer Iebesgue rreasure on R • 

1. 6 .11. THEOREM 

Therefore matters reduce to the consideration of Hs in the range 0 < s < n. 

1.6.12. LEMMA I.et E c Rn and let O ~ s < t < + oo. 
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• If tf (E) < + oo, then Ht(E) = O. 

PROOF The second point is implied by the first point. To arrive at the 

00 

latter, choose sets ~ such that diam(~) :s o, E c u ~, and 
k=l 

OJ 00 

__§_ l: (diam(E. )) s :S fl! (E) + 1 :S tf (E) + 1. 
2s k=l -k. u 

Then 

t Wt oo t 
ff {E) (diam(R ) ) 

0 :s 2t k~l -k. 

Noting that t - s > O, send a+O to conclude that Ht(E) = o. 

1. 6 .13. LEMMA I.et E c Rn -- then there exists at :rrost one point 

s* s* E [O, + oo[ such that H (E) E ] 0, + oo[. 

PROOF Take two distinct points s,t E [O, + oo[ with s < t. If Hs (E) E ] 0, 

+ oo[, then Ht{E) = 0 while if Ht(E) E ]O, + oo[, then Hs{E) = + oo. 

1. 6 .14. NarATION Given E E P (X) , denote by ~ (E) the function 

- (O, + oo[ + (0, + ool 

s + ff (E). 

1. 6 .15. LEMl.\1A H• (E) is a decreasing function on [ 0, + oo [ which vanishes 

on ]n, + oo[. 
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1.6.16. THEOREM There are three possibilities for the range of ff (E). 

(i) H•(E) assumes one value, viz. O. 

{ii) ff'CE) assurres two values, viz. + 00 and 0. 

(iii) tt'(E) assumes three values, viz. + oo, 0 and one finite positive 

value s*. 

1.6.17. EXAMPLE 

Hs(Rn) = + 00 {s E [O,n]) 

Hs(Rn) = 0 (s E ]n, + 00 (). 

1. 6.18. LEMIYIA If tJ9 (E) assumes a finite positive value at sane point 

s* E [O, + 001, then 

Hs(E) = + 00 (s E [O, s*[) 

H5(E) = 0 (s E ]s*, + oo[). 

1.6.19. N.B. tf"(E) is identically zero on [O, + 00! iff E = J1. 

1.6.20. N.B. If E ~ $1, then ti"(E) has exactly one point of discontinuity 

in [O, + 00 [ and it belongs to [O,n]. 

1. 6. 2r. DEFINITION The Hausdorff dimension of a nonempty subset E of Rn, 

denoted ~(E), is the unique number s* E [O, + 00 [ at which H9 is discontinuous. 

1.6.22. N.B. 
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1.6.23. LEMMA 

dinJI(E) = sup{s ~ [O, + co[:rf (E) > O} 

= sup{s E [O, + co[:rf (E) =+co} 

and 

dinJI (E) = inf {s E [O 1 + co[: rf (E) = 0} 

= inf {s E [O, + co [: tf (E) < + 00
}. 

1. 6. 24. LEMMA If tf (E) E ] 0, +co [, then s = dinJI (E) • 

1.6.25. EXAMPLE 

1. 6. 26. LEMMA If E E P(X) is countable, then dinJI (E) = 0 • 

1. 6. 27. LEMMA If E E P(X) has a nonempty interior, then dinJI (E) = n. 

In particular: If U E F{X) is open and nonempty, then dinJICU} = n, so 

ff' (U) = + i;io ( 0 < s < n) • 

1. 6. 28. THEOREM For every s € ] 0 ,n [, there exists a canpa.ct K c Rn such 

that dinJI(K) = s. 

1.6.29. EXAMPLE Taken= 1 and let C c R
1 

be the Cantor set - then 

log 2 
log 3 • 

1. 6.30. DEFINITION A metric outer measure \J* on X is locally finite if 

µ*(K) < + oo for every K ~ K(X). 
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1.6.31. THEOREM Sup:f:X>se that p* is locally finite -- then for every Borel 

set E E ~ {X), 

and 

µ* {E) ={inf fl* (U) :U => E, U ~ 0 (X)} 

µ*(E) = sup{µk(K):K c E, KE K(X) }. 

If U c X is open and nonempty, then 

1.6.32. SCHOLIUM Hs is not locally finite if 0 < s < n. 

f Pretend it was -- then for a generic K E f((X) , 

Hs (K) = inf{Hs (U) :U => K, U E O(X)} 

=+co•••.} 

1.6.33. N.B. Bearing in mind that B (X) c M(Hs), it follows that the 

restriction of Hs to B(X) is not Radon. 

1.6.34. THEOREM Let <I>:].n -+ Rn be an isometry (a distance preserving bi­

jection) and suppose that E E P(X) -- then 

s s q>(E) E M(H) <=> EE M(H )(s E [O, +co[). 

[Note: The assunption that <I> is an isometry implies that 
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SECTION 2: V1FFERENT1AT10N THEORY 

§2.l. SCALAR FUNCTIONS 

Let n be a nonempty open subset of Rn and let f :rl + R be a function. 

2 .1.1. DEFINITION f is differentiable at a p:>int x
0 

E Q if there exists 

a linear function T:Rn + R (depending on x
0

) 

. f (x0 + h) - f (x0) 

such that 

- T(h) 

h1~0 I lhl I = 0. 

2.1.2. N.B. Consider the situation when n = 1, n = R and suppose that 

f: R + R is differentiable at x 0 in the traditional sense, i.e. , 

f (x0 + h) - f(x0) 
f' (x ) = lim 

0 h + 0 h 

Then f is differentiable at x0 . Thus view the number f' (x
0

) as the linear map 

R + R that sends h to f' (x
0

) (h), hence 

f (x0 + h) - f (x0) - f' {x0) (h) 

h 

f (x0 + h) - f(x0) 
=-------

h 

+ f' (x
0

> - f' {x
0

) {h + O) 

= 0. 

T is called the differential of f at x0 and is denoted by df {x
0
). 
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[Note: The differential is unique, if it exists at all. Prcx::>f: Per the 

definition, suppose that T = T1 and T = T2 -- then V h f O, 

=> 

=> 

=> 

I (Tl - T2) (h) I 
I !hi I + 0 as h + 0 

I (Tl - T2) (th) I 
I Ith.I I +Oast+O 

2.1.3. N.B. f is differentiable in Q if f is differentiable at every 

i;x:>int of n. 

2 .1. 4. EXAMPLE Take n = Rn -- then i;x:>lynanials in several variables are 

everywhere differentiable. 

2 .1. 5. EXAMPLE Take Q = Rn and let T: Rn + R be linear -- then dT (x
0

) = T. 

2.1.6. LEMMA If f is differentiable at x
0 

E n, then f is continuous at x0 • 

[Given hf O, write 

lfCx0 + h) - f(x0) - T(h) I 

f (x
0

-·+ h) - f (x
0

) - T (h) 

~ 1 lhl I I h 

to conclude that 

f(x
0 

+ h) - f(x
0

) + o (h + O).] 
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[Note: Since T is linear, lim T (h) = 0. ] 
h+ 0 

Given x
0 

E n, suppose that B(x
0
,r

0
) is contained inn - then for each nonzero 

v E Rn I XO + tv 6. n for I ti ::; r cl 11 v 11 • 

2.1. 7. DEFINITION The directional derivative of f at x0 in the direction 

v is 

. f (x0 + tv) - f (x0) 
lJ..In t I 

t + 0 

denoted 

[Note: The underlying assumption is that the limit exists and is finite.] 

2.1.8. N.B. V >.. f 0, 

2.1.9. af 
LENMA. If f is differentiable at x 0 , then av (x0) exists for all 

v f 0 and 

[Observe that 

l
f(x0 + tvt) - f(x0) I 
-------- - T (v) 
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2 .1.10. EXAMPLE The function 

f (x,y) = 

2 
x y if x "I- 0 

x2 + y2 

0 if x = 0 

is continuous at (O,O) and all its directional derivatives exist at (O,O). Still, 

the differential df (0,0) does not exist. 

[To see the last point, suppose instead that df (0,0) does exist, thus being 

linear, 

On the other hand, 

Meanwhile 

I.e.: 

Contradiction. ] 

df(O,O) (1,0) + df(O,O) (0,1) = df(O,O) (1,1). 

df (0, 0) (1, 0) = af (O, 0) 
d (1, 0) 

df(O,O) (0,1) = af (0, O) a ( o, 1) 

3f (0, 0) 1 
a (1, 1) -2 

1 df(O,O) (1,1) = 2". 

= 0 

= o. 

2_1.11 REMARK If n is convex and if f:n + R is convex, then f is differ-

entiable at x
0 

iff f has ordinary partial derivatives at x0 • 
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Suppose that < , > is the standard inner product in Rn. Since the differential 

<ilf f at x
0 

is a linear function from Rn to R , there is a unique vector V f (x
0

) E Rn 

n such that for all h E R , 

2 .1.12. DEFINITION V f (x
0

) is called the gradient of f at x 0• 

2.1.13. NOI1ATION Iet (e1 ,e2 , ••• ,en) be the standard basis for Rn and let 

(xl'x2, ••. ,xn) be the associated system of coordinates. 

2.1.14. DEFINITION The derivative of f at x 0 in the direction ei is 

called the p:rrtial derivative of f w.r.t. 

2.1.15. LEMMA 

x., 
1 

denoted 

2.1.16. DEFINITION The Jacobian matrix of f at x 0 is the 1 x n matrix 

2.1.17. n LEMMA For all h E R , 

n 
df(x

0
) (h} = L df(x0) (e.)h . 

. 1 1 1 1= 
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n C1f = E - (x0)h
1
. . 1 ax. 

1= l. 

. 
~ ... 
h 
n 

= <h,Vf(x0)> • 

Consider two points x
0

, x0 + h - then the line segnent l joining x 0 and x 0 + h 

is the curve x
0 

+ th (0 ,:S t .:S 1) • 

2.1.18. MEAN VAllJE THEOREM Suppose that f is continuous at the points of 

l and differentiable at the points of l except perhaps the end:r;oints -- then there 

exists ans E ]O,l[ such that 

f(x
0 

+ h) - f(x
0) = df(x

0 
+sh) (h). 

PR(X)F Introduce 

$(t) = f(x
0 

+th) (Ost s 1). 

rrhen $ is continuous in [O,l] and 

$(0) = f(x0), $(1) = f(x0 + h), 

$' (t) = df(x
0 

+th) (h) (O < t < 1). 

By the :rrean value theorem for functions of one variable, there exists an s E ] 0, l [ 

such that 

$(1) - $(0) = $' (s). 

2.1.19. APPLICATION SUpp:>se that n is not only open but is connected as 

well. Assume: f is differentiable in Q and that df (x) = 0 for every x E n - then 

f is a constant function. 
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* * * * * * * * * * 

APPENVIX 

What has been said in 2.1.10 can be substantially generalized. Indeed, 

there are continuous functions of 2 variables which have partial derivatives al.rrost 

everywhere but for which the differential fails to exist anywhere. 
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§2.2. VECTOR FUNCTIONS 

I.et n be a nonerrpty o:pen subset of Rn and let f :&1 -+ Rm be a function. 

2.2.1. DEFINITION f is differentiable at a point x 0 E Q if there exists 

a linear function T: Rn -+ Rm (depending on x
0

) such that 

lim f (x0 + h) - f(x0) - T(h) 
= 0. 

h -+ o 1 lhl I 

Tis called the differential off at x0 and is denoted by df(x0). 

[Note: As in the scalar case, the differential is unique, if it exists at all.] 

2.2.2. N.B. f is differentiable in n if f is differentiable at every p:>int 

of n. 

I.et £1 (x), f 2 (x), ••• , f11(x) be the cornp:>nents off and let~, T2, ••• , i11 be 

the corrp:ments of T - then the defining relation for the differential of f at x0 

anounts to the relations 

f 1 (x0 + h) - f 1 (x0) - T
1

(h) 
li.m = 0 

h-+ o l lhl I 

2 2 2 
f (XO + h) - f (xo) - T (h) 

lim = 0 
h-+ o llhl I 

lim 
h -+ 0 

:fl (x0 + h} - £111 (x
0

) - T11Ch) 

1 lhl I 

= o. 
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Therefore f is differentiable at x0 iff all the (X)!ll}?Onents of f are differentiable 

at x0 and when this is so, f is continuous at x0• 

2.2.3. SCHOLIUM For all h = (11_, h2, ••• , h
0
), 

i 1 af1 
T (h) = df (x0) (h) = ah (x0) 

n ()fl 
= L: - <xo)hi. . 1 ax. 

1= 1 

2 2 3f2 
T (h) = df cx0 > (h) = ah ·ex0) 

n :a£2 
= z: -..... - (x

0
)h

1
. 

i=l oXi 

2.2.4. DEFINITION The Jacobian ma.trix of f at x
0 

is them x n ma.trix 

denoted by Df(x0). 

[Note: The partial derivatives of f are the partial derivatives of its com-

p:>nents, i.e., the 
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2.2.5. DEFINITION Suppose that n = m -- then the detenninant of the 

Jacobian matrix Df (x
0

) is called the Jacobian of f at x
0

, denoted by 

2. 2. 6. OPEN MAPPING THEOREM Suppose that n = m and suppose that J f (x) -:/- 0 

for all x E n -- then the image f (U) of any open set u c n is open. 

n m 
2. 2. 7. CHAIN RULE I.et U c R and V c R be nonerrpty open sets and let 

f:U + Rm and g:V + RP subject to f (U) c V. Assume: f is differentiable at x
0 

E U 

and g is differentiable at £ (x
0

) -- then g a £ is differentiable at x 0 and 

d (g o £) tx
0

> = dg {f {x
0

) ) o df (x
0

) 

<Dr, in tenns of the Jacobian matrices, 

2. 2. 8. RAPPEL The set Hom (Rn, Rm) of linear transfo:anations fran Rn to Rm 

is a vector space of dimension nm. Moreover, it is a Banach space under the nonn 

I !All =max{ I !Ax! I: I lxl I :S l}. 

1md "d x, 

2. 2. 9. EXAMPLE Given £:n + Rm, 

[Note: 

n m df{x0) E Hom(R ,R ). 

n m If f =A E Hom{R ,R ) , then df {xo) =A.] 
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2.2.10. DEFINITION A differentiable function f:Q + Rm is continuously 

differentiable if 

n m df:n + Hom(R ,R ) 

is continuous. 

[Spelled out, given x0 E n and E > O, there is a o > 0 such that 

I j df (.x) - df <x0> 11 < e: 

if 11 x - XO 11 < 0. ] 

2. 2 .11. NarATION c 1 (n; Rm) is the set of continuously differentiable 

functions from n to Rm, often referred to as the C'-functions (a vector space over R). 

2.2.12. THEOREM f:~ ~ R11 is C' iff the partial derivatives of f exist 

and are continuous through out n. 

PROOF That the differentiability of f implies the continuity of the partials 

can be seen by noting that 

en. fi> ex> I ::: 11 af <Y> - df <x> 11 • 
J 

In the other direction, take m = 1, fix XO E n I let E > 0 I and ch:>ose 

r 0 > O:B(:x0,r0)0 
c n and 

Write 

and put 

n 
h = E h .e. , 11 hi I < r 0, 

j=l J J 

v
0 

= o, vk = hi_e1 + •·· + 11cE\. (1 :5 k ~ n). 
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Then 

n 
= L [f(x0 + v.) - f(x0 + vJ._1)]. 

j=l J 

Since I lvkl I < r 0 , the line segments with endp::>ints x 0 + vj-l and x 0 + vj lie in 

0 
B(x

0
,r

0
) • Taking into acconnt that 

v. == v. 
1 

+ h.e., 
J J- J J 

the MVT inplies that 

= h. (D.f) (x
0 

+ v. l + S .h.e.) 
J J J- J J J 

for sane 6 . E ] 0, 1 [ • Next 
] 

lhjlc: 
lh. (D.f) (x

0 
+ v. 

1 
+ 6 .h.e .) - h. (D.f) (x0) I < -------

Consequently 

J J . J- J J J J J n 

n 
If (x

0 
+ h) - f cx0> - L h. (D.f) Cx0) I 

j=l J J 

n n 
== I l: [f ex0 + vJ.) - f (x0 + vJ._1 )1 - l: hj (Djf) (x0) I 

j=l 

n n 
== I l: h. (D.f) (x

0 
+ v._

1 
+ 6.h.e.) - l: h. (D.f) (x0) I 

j=l J J J J J J j=l J J 

li1 

< z: lh. (D.f) (x
0 

+ v. 1 + e.h.e.) - h. (D.f) Cx0) I 
j=l J J J- J J J J J 

< 
n lh· Is 1 n 
Z: J <-(L: lh·l>s 
·1 n -n ·1 J ]= J= 
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s~ cm llhll>£ 

~ llhl 1£. 
Therefore f is differentiable at x0: 

J1l 

df <.x0> (h) = df (x0) ( L: h .e.) 
j=l J J 

n 
= E h. (D .f) (x0). 

j=l J J 

.8.ince ro = 1, the Jacobian matrix is a row: 

or stil1, 

df df df 
Df (x ) = [- (xo>, ax (xo>, ••• , 3x (xo>]. o a~ 2 n 

Its entries are continuous functions of x0, thus f is a C'-function. 

2.2.13. DEFINITION Take m = n and sup:pose that f:n + Rn is a C'-function --

then a :point x0 E n is a critical :point for f if the rank of Df (x0) is not maxinal, 

i.e., if the rank of Df <.x0) is < n or still, if Jf (x0) = O. 

2.2.14. NOr.ATION Write zf for the set of critical :points of f. 

2.2.15. SARD f {2f) is a set of Lebesgue measure O. 

The:ce ate.nurrerous variants on this ~ which need not be.:considered at 

this juncture. However: 

2.2.16. LEMMA Under the al:x:>ve assumptions, for any Lebesgue measurable 

set E c n, the set f (E) is Lebesgue neasurable and 
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2.2.17. N.B. SARD is an immediate conseqence of this result. 

The mean value theorem does not hold in general for a vector valued function 

f:n + Rm (Jn > 1) (but it does bold if the number of auxiliary points is increased 

(details omitted)). However: 

2.2.18. THEDREM Suppose that f: [a,b] + Rk is continuous and that its 

restriction to ] a ,b [ is differentiable - then there exists an x E ] a, b [ such that 

11 f (b) - f (a) 11 ~ (b - a) 11 f' (x) 11. 

PRDJF let 

cp(t) = <f(b) - f(a), f(t)> (a~ t ~ b). 

Then w satisfies the assumptions of the MVT, hence 

w (b) - w (a) = (b - a) cp' (x) 

= (b - a) < f(b) - f(a), f' (x)> 

for same x E ]a,b[. On the other band, 

Then 

hence 

w(b) - w(a} = <f(b) - f(a), f(b)> - <f(b) - f(a), f(a)> 

= <f(b) - f(a), f(b) - f(a)> 

= I lf<b> - fCa) I 1
2

• 

2 
I If {b) - f(a) 11 = (b - a) <f (b) - f(a), f' (x)> 

< (b - a) 11 f (b) - f (a) 11 11 f' (x) 11, 

I !f(b) - f(a) II < (b - a) I If' (x) II· 
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§2.3. LIPSCHITZ FUNCTIONS 

n I.et E be a nonempty subset of R • 

2.3.1. DEFINITION A function f :E + Rm is said to be L-Lipschitz (L ~ O) 

if for all x,y E E, 

11 f (x) - f (y) 11 ~ L 11 x - YI I • 

2.3.2. EXAMPLE A constant function x -+ C(E Rm) is 0-Lipschitz. 

2.3.3. EXAMPLE I l·I j:Rn + R is 1-Lipschitz. 

[In fact, 

I I !xi I - !!YI! I :;: I Ix - Yll ·l 

2.3.4. LEMMA I.et {f. :i E I} be a collection of L-Lipschitz functions 
1 

fi:E + R -- then the functions 

x + sup f. (x} = F(x) 
iEI 1 

x -+ inf f. (x) = f (x) 
iEI 1 

are L-Lipschitz if finite at one point. 

·(x E E) 

PRCX>F To establish the first assertion, note that for all x,y E E, 

Take now the suprerrrum on the RHS and then on the LHS to get: 

F (y) :: F (,x) + L 11 x - y 11 • 

If F(x} < + oo., then F(y) < + 00 for all y EE, hence F(y) - F(x) < LI Ix - YI I / 
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hence F (x) - F (y) ::: L 11 x - y 11, hence IF {x) - F {y) I ::: L 11 x - Y 11 • 

2. 3. 5. APPLICATION The function from Rn to R defined by the rule 

y + dist(y,E) = inf {j j x - YI l:x EE} 

is 1-Lipschitz. 

2.3.6. THEOREM If f:E + R is Ir-Lipschitz, then there is an L-Lipschitz 

function F:Rn + R such that F I E = f. 

[Consider 

F (y) = inf (f (x) + L 11 x - y 11 ) • ] 
xEE 

2.3. 7. NOI1ATION Given f:E + Rm, put 

Lip(f;E) = sup 
x,yEE 
x~y 

11 f ex> - f <Y> 11 

I Ix - YI I (::: inf{L}). 

[Note: Oni.t the "E" if it is Rn:Lip (f) • ] 

2. 3. 8. DEFINITION A function f :E + Rm is Lipschitz if it is L-Lipschi tz 

for some L > 0. 

2. 3. 9. N. B. If f: E + R is Lipschitz, then f is unifonnly continuous. 

[Conversely, it can be shown that if f:E + R is rounded and unifonnly con-

tinuous, then f is the uniform limit of a sequence of Lipschitz functions.] 

[Note: The function f (x) = rx (0 ::: x ~ 1) is not Lipschitz but it is uniformly 

continuous.] 

2. 3 .10. THEOREM. I.et f: Rn + Rm be Lipschitz -- then for any nonempty E c Rn, 

H8 (f(E)) < (Lip(f))s Hs(E) (s E [O, + 00 [). 
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PROOF Fix o > 0 and choose sets {~} c Rn such that 

00 

E c U ~' diam(~) :'.: o. 
k=l 

f(E) c u f(~), diam(f(~)) < Lip(f)o, 
k=l 

it therefore follows that 

s 
HLip (f) o (f (E) ) 

00 

L: (diam(f (~)) s 
k=l 

w 00 

< -2- Lip (f) s L: (diam(F.. ) ) s. 
- 2s k=l -k 

N:>w take the infimurn over this data to arrive at 

H~p(f)& (f(E)) :'.: Lip(f)s H~(E), 

from which the assertion up::m sending 8 + 0. 

2.3.11. EXAMPLE If n > m and if P:Rn -+ Rm is the usual projection, then 

for all E c Rn, 

[In fact, Lip(P) = l.] 

2. 3 .12. SUBLEMMA I.et 
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subject to the condition that 

I IY· - Y· 11 < I Ix. - x. JI 
1 J - 1 J 

for all i, j P: { 1, ••• , k} • Sup:r;x::>se that r 1, ••• , rk are positive mnnbers such that 

k 

Then 

n 
i=l 

k 
n 

j=l 

B (x . , r . ) -:J 13. 
1 1 

B (y . , r . ) -:J f3. 
J J 

2. 3 .13. LEMMA Let E c Rn l:>e a nonempty finite set and let f :E -+ Rm be 

a I-Lipschitz function -- then for any x E Rn, there is an extension of f to a 

1-Lipschi tz function on E u {x}. 

PROOF I.et E = {x1, ••• ,~} and assume that Vi, x f xi. Put r. = I Ix - x. 11 > 0 
1 1 

and let y. = f (x. ) -- then there exists a :r;x::>int y E Rm such that 
1 1 

I I y - f (xi) 11 :: I Ix - xi 11 

for each i, so it remains only to let f (x) = y. 

2.3.14 ElCT'ENSION PRINCIPLE let f:E -+ Rm l:>e an L-Lipschitz function -­

then there exists an L-Lipschitz function f:Rn-+ Rm such that F I E = f. 

PROOF Upon dividing f by L, it can be assumed that f is 1-Lipschitz and it 

will l:>e enough to deal explicitly with the situation when E and Rn'\E are lx>th infinite • 

.Accordingly, choose a countable dense set {x1 ,x2, ••• } in E and a countable dense set 

{y 1, y 2, ••• } in Rn\E. This done, for each k = 1, 2, ••• , use the previous lemna 

repeatedly to obtain a I-Lipschitz function 
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l:xmnded. Proof: 

=> 

<· I IY1 - x1 11 + 11f(x1)11 

.imdependently of k. Proceeding, extract a convergent subsequence, say {f 1 (y1)}, 
k. 

J 

and then extract from it yet another convergent subsequence { f 2 (y 2) } • EI'C. Pass 
k. 

to the diagonal sequence { g. } : g. = f . , hence for every 
J J k~ 

there follows 

J 

g ( c) = lim g . { c) E ff\. 
j -+ 00 J 

J 

In addition, g:C-+ Rm is 1-Lipschitz and g(x.) = f(x.) (i = 1,2, ••• ). And finally, 
l. l. 

in view of the density of C in Rm and the density of {x1 ,x2, ••• } in E, g extends 

to a I-Lipschitz function F:Rn -+ Rm such that F I E = f. 

2.3.15. THEOREM Suppose that f :Q -+ Rm is differentiable (thus, by definition, 

n is open) • Assume: n is convex and that there is an L ~ 0 such that 

I l df (x) 11 .:S L 

for all x E Q -- then f is L-Lipschitz. 
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PROJF Given x,y E n, the convexity of n implies that 

tx + (1 - t) y E Q (0 ~ t ~ 1). 

let 

g(t) = f (tx + (1 - t)y) (0 ~ t ~ 1). 

Then 

d 
dt g(t) = df (tx + (1 - t)y) (x - y) 

=> 

11 :t g Ct) 11 < 11 df (tx + (1 - t) y) 11 11 x - Y 11 

< LI Ix - YI I· 
Take now in 2.2.13., [a,b] = [O,l] and apply it tog, thus for some t 0 E ]0,1[, 

But 

=> 

I lg(l) - g(o) 11 < (1 - o) I Jg' (t0) 11 

= 11 g' (t0) 11 

.S LI Ix - YI I· 

g(l) = f(x), g(O) = f(y) 

11 f (x) - f (y) 11 .S L 11 x - Y 11 • 

2.3.16. EXAMPLE The sine function is 1-Lipschitz (since its de.rivative 

is the cosine which is rounded by 1). 

2.3.17. DEFINITION' A function f:n +Rm is said to be locally Lipschitz if 

for each compact set K s n, there exists a constant ~ ~ 0 such that for all x,y E K, 

11 f ex) - f Cy) 11 .:: ~ 11 x - Y 11 • 
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[Note: If there exists L such that S<: = L for all K, then f is said to be 

locally L-Lipschi tz.] 

2.3.18. 2 EXAMPLE In R , let 

E = {(r,8):0 < r < + oo, - TI< 6 < ~}. 

Then the function E -+ R2 given by 

(r,~) -+ (r,8/2) 

is locally 1-Lipschitz but not Lipschitz. 

2.3.19. THEOREM If n c Rn is convex and if f:Q -+ R is convex, then f 

is locally Lipschitz. 

2.3.20. RAPPEL Suppose that E c Rn is Lebesgue measurable -- then there 

"exists an increasing· seq:uence {Fk} of closed sets Fk contained in E and a set N 

of Lebesgue measure 0 such that 

2. 3. 21. N. B. A closed set is the union of a countable family of compact 

sets and a continuous function f :Rn -+ Rn sends a countable union of compact sets 

to a countable union of compact sets. 

2.3.22. DEFINITION I.et n c Rn be nonempty and open -- then a continuous 

function f :Q -+ Rn is said to have pr-qperty (N) if f sends sets of I.ebesgue measure 

0 to sets of Lebesgue measure 0. 

f:Rn-+ Rn is continuous and E c Rn is closed, then f (E) is Lebesgue 

measurable. Conseq:uently, in the presence of property (N), it follows that f sends 
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Iebesgue measurable sets to Lebesgue measurable sets. 

2. 3. 23. THEOREM If f: Rn + Rn is locally Lipschitz, then f has property (N) • 

PROOF The claim is that 

'lb this end, fix a closed cube K in Rn, write 

11 f (x) - f (y) 11 ~ CK 11 x - YI I (x,y E K), 

and note that a cube I of side r in K has diameter of length r/n. Since f is Lipschitz, 

f (I) has diameter at rrost r/rl S<' thus is contained in a cube of side r/n CK, and so 

or still, 

=> Ln*(f(N n K)) = 0. 

Choose now an increasing sequence {K. } of closed cubes K. such that Rn = u K. , hence 
J J i J 

f (N) U f(N n K.), 
. J 
J 

and therefore 

Ln(N) < L Ln* (f(N n K.)) = o. 
j J 

2.3.24. LEMMA Suppose that f is a C'-function, i.e., 1 m f E C (rG;R ) --

then f is locally Lipschitz. 
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§2.4. RAVEMACHER 

If n is a nonempty open subset of R and if f :n + R is L-Lipschitz, then f is 

absolutely continuous, hence is differentiable alrrost everywhere (per L1) . 

2. 4 .1. THEOREM If n is a nonempty open subset of Rn and if f: n -+ Rm 

is L-Lipschitz, then f is differentiable at Ln alrrost all :E::xJints inn. 

The proof will be given in the lines below. 

First Step: It can be assumed that m = 1,. 

IFor f is Lipschitz (or differentiable) iff every component of f is Lipschitz 

(or differentiable) • ] 

Second Step: n n It can be assumed that n = R I so f :R -+ R. 

[Invoke the Extension Principle. ] 

2.4.2. RAPPEL A Lebesgue measurable function f:Rn :+ R is locally integrable 

if 

J K I f J dl n < + oo 

n for every compact K c R • 

Denote the space of such by 

n J f q:> dl = 0 
Rn 

oo n for all c.p E Cc(R ), then f = 0 alrrost everywhere. 
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Third Step: n n-1 Given x E R , v E S , fonn 

f (t) = f (x + tv) (t E R) • x,v 

Then f as a frmction of t is Lipschitz, hence is differentiable alrrost every-x, v 

where (per L 1) • 

Fourth Step: Recall that by definition, 

af (x) = lim f (x + tv) - f (x) 
av t 

t-+ 0 

whenever the limit exists. 

Fifth Step: Let 

E = {x E Rn: af (x) exists}. v av 

Then E is Borel and the frmction v 

is Lebesgue' measurable. 

Sixth Step: Write 

Then 

E -+ R v 

8f 
x -+ av (x) 

= f f x (tv + w) dtdw 
vj_ Rv Rn\E 

v 
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= o, 

where 

S = {t E R:tv + w E Rn\E }. w v 

Seventh Step: Therefore E is of full measure in that ~f (X) exists for alrrost 
V oV 

n n every x E R per L • 

Eighth Step: In particular, the partial derivatives ~f (x) (i = 1,2, ••• ,n) ox. 
J.. 

exist for alrrost all x per Ln, hence the sane is so of the forma.l gradient 

2.4.4. 

a£ af af 
Vf (x) = <axl (x) I dX2 (x) I ••• I axn (x)). 

n-1 LEMMA For each v E S , 

af (x) 
dV 

<v, Vf (x)> 

a.lnost everywhere (per L n) • 

th f . . 1 (Rn) E PRCXJF Po unctions are in L loc . . g • : 

[f (x + tv) - f(x) I 
It! 

Bearing in mind 2.4.3, it suffices to show that 

a£ n 
f n av~) w(x) dl (x) 

R 

< L I Ix + tv - xi I 
- ltl 

= L ~ = LI lvl I· 
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oo n 
for all <p E Cc (R ) • Start with the left hand side and proceed: 

= f lim f(x + tv) - f (x) (x) dln(x) 
Rn t + 0 t 

= lim f f(x + tv) - f(x) (x) dln(x) 
t + 0 Rn t 

= lim f - f (x)cp(x) - w(x - tv) dln(x) 
t + 0 Rn t 

= - f f(x) lim cp(x) - <p(x - tv) -dln(x) 
Rn t + 0 t 

n af 
= E v. f -'\ -(x) cp(x) dl n(x) 

i=l 1 Rn oXi 

n 
= f <v,Vf(x)>w(x) dL (x). 

Rn 

[Note: The justification of the fornalities is left to the reader.] 

Ninth Step: I.et D c Sn-l be a countable dense set -- then there is a 

I..eOOsgue measurable set E c Rn such that Ln(Rn\E') = 0 and V. v E D, 

3f(x) = <v,Vf(x)> (x EE). 
dV 

Tenth Step: Fix x
0 

E E -- then the claim is that f is differentiable at x
0

: 
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h -+ 0 

the ambient linear function T:Rn -+ R being the arrow 

2.4.5. LEMMA f is differentiable at x0 if V. s > 0, 3 o > 0 such that 

!f (x0 + tv) - f(x0) - t<v,Vf (x0)>1 s sit! 

n-1 provided !ti S o and v E S • 

To verify tbat this condition is satisfied, fix s > 0 and choose a finite set 

n-1 
D0 c D with the property that for every v E S there is a v

0 
E D

0 
such that 

I Iv ~ v 0 I I < s • Since the directional derivatives indexed by the v 0 E D 0 are finite 

in number, there is a o > 0 such that V v0 E D0, 

lf<x0 + tv0) - f(x0) - t<v0,Vf(x0)>1 ~ s!tl 

if !ti < cS. Given now v E Sn-l, determine v
0 

E DO for which I Iv - v
0

i j < s -- then 

If cx0 + tv) - f (x0) - t<v,Vf(x0)>1 

.::-r::ltl + 1£Cx0 + tv) - f (xo + tvo) I 

+ !ti l<v - v0,Vf(x0)>1 

< (1 + Lip(f) + I I v f <xo) I I ) s I t I -

for all I t I < cS • 
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§2.5. STEPANOFF 

n m I.et n be a nonempty open subset of R and let f :n -+ R be a Lebesgue measurable 

function. 

where 

2. 5 .1. DEFINITION The pointwise Lipschitz constant of f is 

Lipf (x) = lim sup 
y -+ x,y E S1 

11 f (x) - f (y) 11 (x E n) 
11 x - Yll . 

2.5.2. THEOREM f is differentiable a.lrrost everywhere in the set 

2.5.3. REMARK 

Lf = {x E D:Lipf (x) < + oo}. 

Lf = u R D' k,l -k,-c 

R
1 

0 
= {x E Lf: 11 f (x) 11 < k and 11 f (x) - f (y) 11 < k if 11 x - YI I <_ i}. 

-k -c I I x - Y I I ,(. 

.r.breover f l~,,e. is Lipschitz: 

• I Ix - YI I 
1 

< -- => l 11 f (x) - f (y) I I ~ k I Ix - YI I 

1 
• I Ix - YI I .:: I => I I f (x) - f (y) I I ~ 2k ~ 2Ke I I x - Y 11 , 

and it turns out that f is differentiable a.lrrost everywhere in each Eic,t (details 

omitted) • 

[:Note: The Eic,,e. are Lebesgue measurable, hence the same is true of Lf.] 

2.5.4. SUBIEMMA I.et g,f,h be functions from n to R. Suppose that g ,::: f ,::: h, 

g(x0) = f(x0) = h(x0), and g,h are differentiable at x0 -- then f is differentiable 
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PROOF Since h - g ~ 0 and (h - g) (x
0

) = 0, it follows that d (h - g) (x
0

) = o, 

hence dh (x
0

) = dg (x
0

) , call it T -- then 

g(x) - g(x
0

) - dg(x
0

) (x - x
0

) 

- 11 x - XO -11---------

f (x) - f (x
0

) - T(x - x
0

) 

< ---------rrx-=-x~-rr----

h(x) - h(x0) - dh(x
0

) (x - x
0

) 

s -----------11 x-=-x~-rr---------

The first and third tenns converge to 0 when x + x
0

, thus so does tbe second term. 

Passing to the proof of the theorem, take rn = 1 and assume that Lf is nonempty. 

Consider the countable collection {B
1

,B
2

, ••• } of all open balls B(x,r)
0 

contained in 
00 

n with x E Qn and r E Q n ] 0, + oo [ such that fj B(x,r)
0 

is rounded -- then Lf c U Bn. 
n=l 

Given x E Bn' introduce 

u (x) 
n sup{ u (x) :u ,::: f on Bn' Lip (u;Bn) < n} 

vn (x) = inf{v (x) :v .2:: f on Bn' Lip (v;Bn) ::: n}. 

Here the "sup" ("inf") is over all the u(v) with the stated properties, thus 

and 

u < £1 B < v n - n - n 

Lip(u ;B ) < n n n 

I.et E stand for the set of x E B at which J:oth u and v are differentiable at x, n n n n 

hence by Rademacher, the set 
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00 

Z = U B \E 
n=l n n 

has Lebesgue measure 0. The claim now is that f is differentiable at all :points of 

Lf \Z. So let x0 E Lf\Z -- then it need. only be shown that there is an index n such 

Next, choose n > M: 

=> 

=> 

=> 

Therefore un (x0) = v n (x0) , completing the proof. 

Proceeding, V x E B 
n 

2. 5. 5. APPLICATION Suppose that Lipf (x) < + 00 almost everywhere -- then f 

is differentiable almost everywhere. 

2.5.6. EXAMPLE Quasiconforrnal maps are differentiable al.rrost everywhere. 

2.5.7. REMARK It can be shown that the subset E c n consisting of those x 
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at which f is differentiable is I.ebesgue measurable, as are the partial derivatives 

df 
-:E-+R ax. 

l 

(i = 1, .•. ,n) • 

2.5.8. ~The set of :points where a given first order partial derivative 

f exists need. not be Lebesgue measurable. 

2. 5. 9. EXAMPLE Let S c R be a non Lebesgue measurable set and let 

f (x,y) = Xq (x) x8 (y) 
2 ( (x,y) E R ) • 

Then f is Lebesgue measurable but the set of :points (x,y) at which---~~ exists is not 

Lebesgue measurable. 

2.5 .. 10. REMARK It can be shown that if f :rt -+ R is continuous and if E. is 
l 

the set of all x E n such that ~f exists, then E. 
oX. l 

function in E .• 
1 

1 

a Borel set and ~f is a Borel ox. 
l 

[Note: df If ihstead f:Q -+ R is merely Borel measurable, then the -..... - are 
oX. 

l 

Lebesgue measurable.] 
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§2. 6. LUSIN 

Convention: Be it a set or a function, measurable means Lebesgue measurable. 

2. 6 .1. THEOREM Suppose given a function f: Rn + R -- then the following 

conditions are equivalent: f is measurable or 

n n • For every e > 0 and any compact K c R , there is an open set G c R such 

that l n (G) < e: and f I K\ G is continuous. 

e For every s > 0 and any compa.ct K c Rn, there exists a continuous function 

n 
cp:R + R such that 

n L ({x E K:f(x) ~ cpjx)}) < s. 

• For every compact Kc Rn, there exists a sequence {cpn} of continuous 

functions cpn:Rn + R such that cpn + f alrrost everywhere on K. 

2. 6. 2. THEOREM Suppose given a function f: Rn + R -- then the following 

conditions are equivalent: f is measurable or 

• For every s. > O, there exists an open set G c Rn such that L n(G) < e: 

and f I R1\ G is continuous. 

• For every e > 0, there exists a continuous function cp:Rn + R and an open 

set G c Rn such that L n (G) < E and cp f on R1\G. 

• There exists a sequence {cpn} of continuous functions cpn:Rn + R such 

n that cp + f alnost everywhere on R • n 

2.6.3. CHARACr.ERIZATION I.et f:E + R be a function defined on a measurable 

set E c Rn -- then f is measurable iff for every s > 0 there exists a closed set 
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F c E such that L n (E\F) < E: and the restriction of f to F is continuous. 

2.6.4. SCHOLIUM Suppose that f:Rn-+ R is measurable -- then for any 

rreasurable set E and any E: > O, there exists a continuous function g:Rn -+ R such that 

n L ({x E E:f(x) t g(x)}) < e 

In particular: Take E = Rn -- then the conclusion is that a measurable function 

coincides with a continuous function outside a set of arbitrarily small measure. 

There is also a C' version of this result, the proof of which depends on an 

extension theorem due to Whitney. 

2. 6. 5. THEOREM Let K c Rn be a cornpa.ct set and let f: K -+ R, T: K -+ Rn 

l::e continuous functions. Assume: For every e > 0, there is a cS > 0 such that 

lf(y) - f(x)_- T(xl(Y - x)l ~ E: 

1 IY - xi I -

whenever x,y E K, x t y, and I IY - xi I .:S. cS -- then there exists a C' function 

g:Rn -+ R such that 

glK = f and ~glK = T. 

2. 6. 6. NOI'ATION As usual, rt is a nonerrpty open subset of Rn. 

2.6.7. APPLICATION Suppose that f:rt-+ R is measurable and differentiable 

a.lrrost everywhere -- then for any c: > 0, there is a function g E c1 (r2;R) such that 

Ln({x E rt:f(x) t g(x)}) < e. 

2. 6. 8. N. B. Thanks to Rademacher, this applies in the special case when 

f is Lipschitz. 
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SECTION 3: VENSTTV THEORY 

§3.1. LEBESGUE POINTS 

3 .1.1. DEFINITION A J?Oint x E Rn such that 

lim - 1 -. J If - f(x) I dln = 0 
r -+ 0 w .. :rn B (x,r) 

n 

is called a Lebesgue J?Oint of f. 

[Note: Recall that 

In particular, if n = 1, then 

n L (B (x,r)) 
n =wr. 

n 

Til/2 Til/2 Til/2 

wl = f (l + 1/2) = f (3/2) = ~ f (l/2) 

Til/2 
= 1 1/2 = 2 -J 

2 TI 

3 .1. 2. DEFINITION The Lebesgue set of f is the set of its Lebesgue points, 

denoted A (f). 

and 

3 .1. 3. THEOREM 

J\(f) E Mn 
L 

3 .1. 4. N. B. Every continuity point of f is a Lebesgue point of f. 

[Supposing that f is continuous at x, given s > 0, there exists cS > 0 such 

that jf(y} - f(x) I < E if y E B(x,o), so 
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r E ] 0, o I ==> B (,x, r) c B (x, o ) 

_l_ J I f - f (x) I dL n 
n B(x,r) 

w r 
n 

1 n 
_:: --n J B (x, r) r:: dL = r:: ·] 

w r 
n 

3.1.5. DEFINITION If E c Rn is Lebesgue measurable, then the density 

of E at a point x E Rn (not necessarily in E) is 

n 
DE(x) = lim L (E n nB(x,r)) (e [O,l]) 

r + O w r 
n 

provided the limit exists. 

where 

hence 

3 .1. 6. EXAMPLE Work in R and let 

00 

E = U Ik' 
k=O 

1-
- 1 1 

I :::::: k 
2

2k + 1 I 22k 

but DE(O) does not exist. In fact, 

L1 (E n B(0,2-2k)) 1 
L1 (B(0,2-2k)) = '3 
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and 

Therefore 

L 
1 

(E n B ( 0, r) ) 

L l (B (O,r)) 

1 -2k I -2k-l assumes the value 3 for r = 2 and the value 6 for r = 2 , so DE(O) does 

not exist. 

3.1. 7. N.B. 

n 
3 .1. 8. LEMMA I.et E E ML -- then 

E0 u (RY\E) 
0 

c ti. (xE) • 

PRCDF If x E E0 (or if x E (Rn\E) 0
), then XE is continuous at x, thus x E A(xE). 

3.1.9. EXAMPLE It can happen that DE(x) exists for some x }t. i\(xE). 

{Wm"k in R and let E = [O, + oo[ -- then 

On the other hand, 

lim 1 1 JB(O,r) lxE - xE(O) I dLl 
r -+ 0 L (B ( 0 , r) ) 

= lim _.!__ Jr ( 1 - XE (y) ) dL l 2r -r 
r + 0 

= lim l (2r - fr dl 1) 
0 

2r 0 
r -+ 
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. r· l 
= 11.ffi - = - • ] 

0 2r 2 
r -+ 

3. l.10. LEMMA If E c Rn is a set of Lebesgue measure 0, then E c Rn\J\.(xE) • 

PRCX>F The assertion is trivial if E = ~' so take an x EE -- then XE(x) = 1, 

while XE = 0 alrrost everywhere in Rn, hence 

1 n 
= lim n f B(x,r) l dl 

r -+ 0 w r 
n 

n 
= l ~ 0 => x E R \A(XE). 

3.1.11. EXAMPLE Take for E the Cantor set in R -- then A (XE) = R\E • 

.MJreover, V x E R, DE(x) exists and is equal to zero. 

[Recall that E is a closed subset of R, thus R\E is an open subset of R, thus 

R\E = (R\E) a c A (XE) • But E is also a set of Lebesgue measure 0, hence 

E c R\A (E) 

=> 

R\E ~ A(E) => A(E) ~ R\E ~ A(E) 

As for the other contention, simply note that 
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n 
3 .1.12. LEMMA let E E ML -- then 

3 .1.13. SCHOLIUM 

1 for alrrost all x E E 

n 0 for alrrost all x E R \E. 

[It is a question of establishing that 

E.g.: 

E\(E n A(xE)) 

= Rn\E n (En A(xE)) 

= E n;: ( (Rn\E) u Rn\A (xE) ) 

3 .1.14. NOI'ATION Given E E M~, let 

n VE= {x E R :DE(x) exists}. 
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3 • 1.15. N. B. 

3.1.16. LEMMA 

3.1.17. LEMMA The function 

is Iebesgue measurable. 

3.1.18. THEOREM 

BROOF Write 

Then this is a disjoint union of Iebesgue measurable sets, the third of which, viz. 

n R \A (XE), being of Lebesgue measure 0. Therefore 

J D dln 
Rn E 

Write 
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from which 

n = L (E), 

thereby completing the proof. 

3.1.19. DEFINITION If E c Rn is Lebesgue measurable, then a point x E Rn 

(not necessarily in E) is a point of density 1 for E, denoted x E E1 , if DE(x) = 1 

:.and a µJint of density 0 for E, denoted x E EO, if DE (x) = O. 

3. 1. 20. DEFINITION 

• E1 is the measure theoretic interior of E. 

• EO is the measure theoretic exterior of E. 

3 .1. 21. DEFINITION The measure theoretic roundary of E, denoted a~, is 

the set of points where the density is neither 0 nor 1. 

3 .1. 22. DEFINITION A Lebesgue measurable set E c Rn is d-open if each 

µ:>int of Eis a point of density 1, i.e., if V x EE, DE(x) = 1. 

3.1.23. EXAMPLE Take n = 1 -- then the set of irrational numbers is d-open. 

3.1.24. LEMMA Eve:ry open subset of Rn is d-open. 

3.1.25. THEOREM The collection of all d-open sets fonns a topology, the 

density topology. 

3.1.26. N.B. The density toµJlogy is strictly finer than the euclidean 

to:pology. 
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n 
Let E c R be I.ebesgue measurable -- then 

Thus it follows that 

n n n L (En B(x,r)) + L ((R \E) n B(x,r)) 
n n 

w .. r w r n n 

_ Ln{Rn n B(x,r)) 
n 

w r 
n 

n 
Ln(B{x,r)) _ wnr _ 

= ----1. 
n n wr wr 

n n 
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§3.2. APPROXIMATE LIMITS 

let f: Rn + R be a Lebesgue measurable function. 

3. 2 .1. DEFINITION An element l E R is the appr,9~~~-~~!-of f as y + x, 

denoted 

ap lim f (y) = l , 
y+ x 

if for every c > 0, the set 

{ Y = I f (y) - t 1 > d 

has density 0 at x, i.e., 

lim 
r + 0 

L n ({ I f - l I ~ d n B (x, r) ) = 
n w r 

n 

0. 

3.2.2. LEMMA Approximate limits are unique (thereby justifying the use of 

•;t.bhe11 in the definition). 

ition. 

PR(X)F let t
1 

and t
2 

be tw::> candidates for the approximate limit per the defin-

n 
Assume that t 1 :I .t2 and take c = j t 1 - t

2 
j /3 -- then for each y E R , 

Proof: If there were a y E B (x, r) which was not in the union, then 

jf (y) - l1l < c 

lf(y) - l2l < c 
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=> 

=> 3£ < 2s => 3 < 2 ••.• 

Therefore 

Now divide through by w rn and send r to zero to get 1 ::; 0. 
n 

3.2.3. THEOREM 

ap lim f (y) = l 
y+x 

iff there exists a Lebesgue measurable set E c Rn with DE (x) = 1 such that 

lim f (y) = l. 
y+x 
yEE 

[The discussion infra supplies the proof.] 

3. 2. 4. N. B. In view of established principles, x may or may not belong to 

E. A.s for the syrntol 

lim f (y) = l, 
y+x 
yEE 

it means: V s > O, 3 r > 0 such that 

!f (y) - ll < £ 

if y EE n (B(x,r)\{x}). 

Start matters by assuming that the limit al:ove is in force -- then the claim is 

that for every £ > O, the set 
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{y:lf(y) - ll ~ 8} 

has density 0 at x or, equivalently, that the set 

{y:jf(y) - lJ < £} 

has density 1 at x. This set, however, contains En (B(x,r)\{x}) for small r. 

Therefore 

But 

=> 

Ln({lf - ll < s} n B{x,r)) 
n 

wnr. 

~ Ln(E n (B(x,r)\{x})). 
n w r 

n 

Ln(E n B(x,r)) = Ln(E n (B(x,r)\{x})) + Ln(E n {x}) 

= Ln(E n (B(x,r}\{x})} 

Ln({lf - lJ < s} n B(x,r)) 
n 

wnr 

Ln(E n B(x,r)) 
~ + 1 (r + 0). 

n w r n 

In the other direction, assume that 

ap l.im f (x) = l, 
y+x 

the objective being to construct an E E M~ with the stated property. To this end, 

choose a strictly decreasing sequence {rk} such that 



and put 

4. 

L n (B (x,rk)) 
s----

2k 

00 

E =Rn\ U (B(x,rk)\B(x,rk+l)) n {jf - lj ~ kJ. 
k=l 

Then E is Isbesgue measurable and 

lim f (y) = l. 
y+x 
yEE 

There rerna.ins the contention that DE(x) = 1 or still, that 

By definition, 

Given r > 0, denote by K the integer for which rK+l < r < rK -- then 

00 

~ l: L n ( (B (x,rk) \B (x,rk+l)) n {If - l I ~ ~}) 
k=K 

00 

s L Ln(B(x,rk) n {jf - ll ~ ~}) 
k=K 

oo Ln(B(x,rk)) 
s L 

k=K 2k 

3.2.5. DEFINITION A Isbesgue measurable function f:Rn -+ R is approximately 
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continuous at x E Rn if f is defined at x and 

ap lim f(y) = f(x). 
y -+ x 

3.2.6. SCHOLIDM f is approximately continuous at x iff there exists a 

Iebesgue measurable set E c Rn with DE(x) = 1 such that flE is continuous at x. 

3!'2.7. REMARK In tenns of the density tqpology, f is approximately continuous 

at x if f f is d-continuous at x. 

3. 2. 8. THEDRElY1 A Lebesgue measurable function f: Rn -+ R is approximately 

oontinuous Ln a.ln:ost everywhere. 

PRCX:>F Given E: > O, there is a continuous function g:Rn -+ R and an open set 

G c Rn such that Ln(G) < E: and f = g in Rn\G. On general grounds, alrrost every point 

of Rn\G is a p:>int of density 1, thus f is approxirnately continuous at alrcost all 

p::>ints of Rn\G. The arbitrariness of the data then implies that f is approximately 

continuous at al.roost all p:>ints of Rn. 

Then 

n and let £. E R • Assume: 

lim - 1 - J It - ti dLn = o. 
r-+ 0 hlXn B(x,r) 

n 

ap lim f (y) = £.. 
y -+ x 

PROOF Thanks to Chebyshev, V £ > 0, 

Ln({lf - £.I ~ £} n B(x,r)) 
E: . . ~ 

n wr n 

-
1

- f 1£ - ll dln. n w r B(x,r) 
n 
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3. 2 .10. APPLICATION The approximate liroi t exists at each Lebesgue J;X>int 

x of f and coincides with the value f (x) . 

The literal converse to 3.2. 9. is false in general, i.e., it can happen that 

v c > o, 

yet the relation 

lim Ln({lf - ll ~ c} n B(x,r)) = O, 
n 

r -+ 0 w r 
n 

lim -
1

- f If - £1 dln = 0 
r -+ 0 w rn B(x,r) 

n 

fails or, what arrounts to the same, it can happen that at same x, there is no l such 

that 

lim - 1 - f If - £1 dln = 0 
r -+ 0 w rn B(x,r) 

n 

but for same l and v c > O, 

Then 

3. 2 .11. EXAMPLE In R2 , take a > 0 and consider 

f (x,y) = 

0 
2 

if y ~ 0 or y ~ x 

IY!-a,
1

other:wise. 

~ f 1£1 dxdy 
w

2
r B ( (0, 0) ,r) 

2 (x,y) E R 

tends to+ oo as r-+ O if 1/2 <a< 1 while choosing l = O, the sets {jf - OI ~ c} 
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have density 0 at (O,O). 

3.2.12. LEMMA Suppose that the sets 

E ={If - ll ~ £} 
£ 

have density 0 at x and f is bounded in a neighborhood of x, say lfl ::;; M -- then 

PROOF Write 

from which 

Now let £ -+ 0. 

lim - 1-J lf-ll dln=O. 
r + 0 w rn B(x,r) 

n 

::;; (M+ Ill) 

~1~ 1 If - ti dLn 
w rn B(x,r) 

n 

Ln(E n B(x,r)) Ln(B(x,r)\E) 
£ £ ------- + £ ------

n 
w r 
n 

n w r 
n 

lim sup - 1
- J If - ll dln ~ £ 

r + 0 w rn B(x,r) 
n 

3.2.13. DEFINITION f has an AFP approximate limit l at x if 

lim - 1-J jf-ll dln= 0. 
n r + 0 w r B(x,r) 

n 

3. 2 .14. NorATION Sf is the set of points x which do not possess an AFP 

approxima.te limit. 

3. 2 .15. N. B. If f has an AFP approximate limit l at x, then 

ap lim f (y) = l, 
y+x 

the converse being false in general (cf. supra). 
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3. 2 .16. I.EMMA AFP approximate limits are unique. 

3. 2 .17. NarATION Write f (x) in place of l. 

3.2.18. OBSERVATION If f(x) = f(x), then xis a Lebesgue point off. 

3.2.19. LEMMA The set of points where the AFP approximate limit exists 

does not depend on the representative in the equivalence class off, i.e., if f = g Ln 

alrrost everywhere inn, then x ¢sf iff x ¢ sg and f(x) = g(x). 

3. 2. 20. LEMMA Sf is a Borel set of Lebesgue measure 0. 

PROOF The cornpl'eille!lt of the Lebesgue set A (f) of f is a set of Lebesgue measure 

n 
0, hence L (Sf) = 0. As for Sf being Borel, write 

00 

Rn\Sf = n u {x: lim sup-1 - J If - qi dln < k}. 
k=l qEQ r-+ 0 w rn B(x,r) 

n 

[The inclusion c is trivial. On the other hand, if x belongs to the set on 

the RHS, then for any integer k ~ 1, there is a qk E Q such that 

lim sup ~ J If - qk I dl n < ~ • 
r -+ 0 w r B(x,r) 

n 

The sequence {qk} obtained in this way is Cauchy and its limit l has the property that 

lim J If - ti dLn = o, 
r -+ 0 B(x,r) 

i.e.' 

3. 2. 21. LEMMA f: Rn\S f -+ R is a Borel function which coincides L n alrrost 

everywhere with f I Rn\S f. 
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n PRCOF In fact, for any x E R \Sf' 

l ;TYI _l_ f n -
.J...LLL n f dl = l = f (x) I 

r -+ 0 w r B(x,r) 
n 

thus f is the pointwise limit as r -+ 0 of the continuous function 

x +-
1-J fdln. 

n w r B(x,r) 
n 

3. 2. 22. EXAMPLE Suppose that f = XE is a characteristic function (E a 

Iebesgue measurable set) -- then Sf is the measure theoretic boundary aW of E. 

On occasion, it will be necessary to consider a generalization of "ap lim". 

3.2.23. DEFINITION Let f:Rn -+ R be a Lebesgue measurable function: 

• An element l E R is the approximate lim sup of f as y -+ x, denoted 

ap lim sup f (y), 
y -+ x 

if l is the inf imum of the real numbers t such that 

lim Ln({f > t} n B(x,r)) = O. 
r -+ 0 n w r 

n 

• An element l E R is the approximate lim inf of f as y -+ x, denoted 

ap lim inf f (y), 
y -+ x 

if l is the supremum of the real numbers t such that 

lim 
r -+ 0 

Ln({f < t} n B(x,r)) 
~~~~~~~~~=· o. 

n w r 
n 
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Obviously 

ap liro inf f (y) ~ ap liro sup f (y) 
y-+x y-+x 

and if 

ap liro inf f (y) = ap lim sup f (y) 
y -+ x y -+ x 

and if their corrm:::>n value is l, then the approximate limit exists and 

ap liro f (y) = l. 
y -+ x 

* * * * * * * * * * * 

APPENVIX 

The preceding considerations have been fonnulated under the asst.nnption that 

f: Rn -+ R is Lebesgue measurable. Matters aan be generalized. Thus let S c Rn be 

Iebesgue measurable and suppose that f :S -+ R is Lebesgue measurable. Fix a point 

n x ER such that n8 (x) = 1. 

DEFINITION An element l E R is the approximate limit of f as y + x in S, 

denoted 

if for every s > 0, the set 

has density 0 at x. 

ap liro f (y) = R.., 
y -+ x 
yES 

{y ES: !f(y) - R..I ~ s} 

N.B. If S = Rn, then the demand that D (x) = 1 is automatic. Proof: 
Rn 
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n n 
D (x) = 

L ( R n B (x, r) ) 

Rn n 
w r n 

n 
n w r L (B (x,r)) n 

1. = =--= n n 
w r w r n n 

The ear lier developments carry over rrodulo minor changes here and there. In 

:p:l.rticular: Approximate limits are unique and the notion of approximate continuity 

is clear. 

THEOREM 

ap lim f (y) = l 
y -r x 
y ( s 

iff there exists a Lebesgue measurable set E c Rn with DE(x) = 1 such that 

lim f (y) = L 
y -r x 
y EE 
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§3.3. APPROXIMATE VERIVATIVES 

Let f:Rn -+ R be a Lebesgue measurable function. 

3.3.1. DEFINITION f is approximately differentiable at a point x E Rn 

if there exists a linear function T:Rn-+ R (depending on x) such that 

y -r x 

ap l.im If (y) - f (x) - T (y - x) I 
I IY - xi I = o. 

T is called the approximate dif f~§E!E!~! of f at x and is denoted by 

ap df (x). 

[Note: If f is differentiable at x in the ordinary sense, then f is approximately 

differentiable at x and 

df (x) = ap df (x) .] 

3. 3. 2. N. B. Existence is implied by demanding that 

If (y) - f (x) - T(y - x) I = 0 ap l.im sup 11 y - x I I • 
y -+ x 

3.3.3. Ifl.1MA An approxinate differential is unique (if it exists at all). 

PROOF Let T1 and T2 be two candidates for the approximate differential -- then 

v E: > ,Q, 

and 

n lf(y) - f(x) - T1 (y - x) I 
L ({y: I IY - xi I ~ d n B(x,r)) 

lim = 0 
r -+ 0 n wr 

n 



lim 
r -+ 0 

2. 

n lf(y) - f(x) - T2 (y - x) I 
L ( { Y: I I Y - x I I ~ E:} n B (x' r) ) 

n 
w r 

n 

= o. 

'lb get a contradiction, suppose that T1 t- T2 and takes = I IT1 - T2 1 l/6. Let 

S = {y: I (T1 - T2) (y - x) I 
I IT1 - T2 I I I IY - xi I 

~ 2 }. 

Then 

n 
L (S 0 B(x,r)) = C > O 

n w r 
n 

for all r > 0. On the other hand, 

s c 

=> 

y ES=> 3sj jy - xi I = 
I !T1 - T2 II llY - xi I 

2 

~ jf(y) - f(x) - T1 (y - x) I + jf (y) - f(x) - T2 (y - x) I 

jf(y) - f(x) - T1 (y - x) I 
{y: I IY - xi I 

lf(y) - f(x) - T2 (y - x) I 
~ s} u {y: 11 Y - x 11 ~ s} 

=> 

n 
lim L (S 0 B(x,r)) = O, 

n r -+ 0 w r 
n 

a contradiction .••• 

hence 

[Note: Here is a different proof. suppose that T1 t- T2 and put T = T1 - T2 , 

ap lim 
y-+ x 

IT(y - x) I = 0 
llY - xi 



or still, 

3. 

ap lim J11Jill = 0. 
v-+ 0 TIVlT 

So, if 0 < e: < 1, then there exists r > 0 such that 

L n (B (0 ,r) n { v: IT (v} I ~ s 11 v I !} ) 
n w r 

n 

< E 

and for every u E Rn with 11u11 = r - rs, there exists 

v E B(u,sr) c B(O,r) 

with 

IT (v) I ::; s 11 v II 
which implies that 

And 

=> 

=> 

IT(u)I= IT(u - v + v) I ~ jT(u - v) I+ IT(v) I 

::; I ITll llu - vi I + sllvl I 

::; llTll sr + s! lvl I 

::; I IT I I sr + sr = ( I IT I I + 1) sr. 

r = r (1 - s) = r - rs = 11u11 
1 - S 1 - € 1 ~ E 

sr = 1 = s I lul I 

IT (u) I ::; ( 11T11 + 1) sr 

::; ( 11T11 + 1) 1 : E: 11u11 
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=> 

11T11 $ ( 11T11 + 1) 1 ~ E: 

=> 

I IT I I = 0 => T 1 = T 2. ] 

3.3.4. REMARK If f is approximately differentiable at x, then f is approx-

irnately continuous at x. 

3.3.5. n THEOREM Let f ,g:R -+ R be L:iliesgue measurable functions. Assume: 

f is approximately differentiable alrrost everywhere and f = g alrrost everywhere --

then g is approximately differentiable alrrost everywhere and 

apdf=apdg 

aJ.Jrost everywhere in Rn. 

Therefore the notion of approximate differentiability does not depend on the 

i;:a.rticular choice of the representative in the equivalence class. 

3.3.6. THEOREM f is approximately differentiable at x iff there exists a 

Iebesgue measurable set E c Rn and a linear function T:Rn-+ R with DE(x) = 1 such that 

lim 
y -+ x 
yEE 

jf (y) - f (x) - T(y - x) I 
I IY - xii 0. 

3. 3. 7. DEFINITION For i = 1, ••• ,n, the approximate partial derivative 

ap D. f (x} of f at a point x E Rn is defined by the condition 
l 

= o. 
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3.3.8. THEOREM The following conditions are equivalent. 

(a) The function f has approximate partial derivatives al.rrost evecywhere 

. Rn ill • 

(b) The function f is approximately differentiable alrrost everywhere in 

[Note: 'W:>rk in Rn (n > 1) -- then it can happen that the partial derivatives 

of f exist alrrost evecywhere in Rn, yet f might be nowhere differentiable (but, of 

course, f will be approximately differentiable almost everywhere in Rn) • ] 

3. 3. 9. N. B. The equivalent conditions (a) and (b) are also EqUi valent to 

(_c) For every s > 0 there is a locally Lipschitz function g:Rn -+ R such that 

n L ({x:f(x) t g(x)}) < £ 

or even 

(d) For every s > 0 there is a C'-function g:Rn-+ R such that 

n L ({x:f(x) t g(x) }) < £. 

3. 3 .10. NOI'ATION ~ (f) is the domain of existence of ap df. 

3. 3 .11. LEMMA If f is approximately differentiable at L n al.rrost all points 

in Rn, i.e. , if L n (Rn\~ (f) ) = 0, then there exist Lebesgue measurable sets 

E
0

, Ek (k = 1, 2, ••• ) such that 

~(f) 

00 

= EO u U ~' 
k=l 

where Ln(E0) = 0 and for every k, the restriction fl~ is Lipschitz. 

3.3.12. N.B. 

ap df:~(f) -+ R 
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is Lebesgue measurable. 

awing to 2. 5 .1. , f is differentiable at alrnost all µ::>ints where 

1 . !f <x) - f (y) I 
llllSUp llx-yll y -+ x 

< + ~. 

3. 3 .13. LEMMA f is approximately differentiable at almost all µ:>in ts where 

ap lim sup 
y -+ x 

If (x) - f(y) I 
!Ix - YI I < + oo. 

* * * * * * * * * * 

APPENVTX 

Suppose that f has ordinary partial derivatives alrrost everywhere -- then 

f is approximately differentiable alrrost everywhere, thus f is approximately 

differentiable at x, there exists a Leh::sgue measurable set E c:! Rn with DE(x) = 1 

such that flE is differentiable at x in the ordinary sense. Moreover, 

d(fjE) (x) = ap df(x). 

Assume now that n = 2 -- then in this special case f admits a regular 

approxiroa.te differential at x. Here "regular" means that the ubiquitous set E is 

comprised of the boundaries of oriented squares centered at x. 

SUMMARY If f:R2 
-+ R has ordinary partial derivatives alrrost everywhere, 

then it has a regular approximate differential alrrost everywhere. 
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SECTION 4: WEAK PARTIAL VERIVATES 

n 
I.et n be a nonempty open subset of R • 

4.1. DEFINITION A Lebesgue measurable function f :n + R is locally integrable 

!K lfl dln < + oo 

for every compact K c n. 

Denote the spa.ce of such by 

1 -1 1 
4.2. EXAMPLE Take n = R -- then mix! E Lloc (R) but x ~ L,foc (R). 

4.3. DEFINITION Let 1 ::;;; p < + 00 - then a Lebesgue measurable function 

f:n + R is locally LP 

for every compact K c n. 

4.4. LEMMA Every locally LP function f is locally L
1 (i.e., is locally 

integrable}. 

PROOF Given a compa.ct K c_ n, by HOlder's inequality 

where p' = + oo if p = 1 and p' = p/ (p-1) if 1 < p < + oo. ~ 

4.5. N.B. The product of two functions in Lk(n) need not be locally 

integrable. 
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1 
Every f E Lloc (n) detennines a distribution via the arrow 

n w + f nw fdL • 

~reover UM:> locally integrable functions define the same distribution iff they 

are equal almost everywhere. 

[Note: A distribution T "is a function" if there exists an element f E Lice (n) 

n 
such that T = fdl . ] 

4.6. Nor.ATION Let T:C
00

(n) + R be a distribution -- then 
c 

8T (i' 1 ) -,.,, - ' ••. ,n ax. 
l 

00 

the distributional derivative of T:V cp E Cc (n), 

aT C)cp 
< ~' > = - <ax.' T >. 

l 

4.7. 1 DEFINITION Given an f E Lfuc (n), denote by 

3f 
~ (i = l, .•• ,n) ox. 

l 

its distributional derivative (per T fdln) -- then C)f is said to be a weak partial 

derivative of f 

or still, 

l!_ E Ll (n) thus V cp E C
00

c (n), ax. 'foe , 
l 

< qi, ~ > = - < ~~. , fdl n > 
1 1 
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4.8. EXAMPLE Take Q = R and consider the function 

0 x::; 0 

h(x) = 

x if x > o. 

Then h E L~(R) and its distributional derivative~ is t:he Heaviside function 

0 if x ::; 0 

H(x) 

1 if x > 0, 

which is therefore the weak derivative of h. Since H E L ioc (R) , one can fonn its 

distributional derivative :, so 

dH dc.p 1 
< <J), ax > = - < ax' HdL > 

d(p 1 = - JR ax H(x)dl 

= - Joo dc.p dll o ax 

= - [c,p(oo) - c.p(O)] c,p (0) • 

Consequently:= o, the Dirac measure concentrated at the origin. However there is 

1 no f E Lioc(R) such that 

1 
JR w fdL w ( O) 

00 

for all w E Cc(R), hence H does not have a weak derivative. 

4.9. DEFINITION Sup:pc>se that f E L; (Q) admits weak partial derivatives 
.{...0C 

af af · 1 axl , ••• , axn -- then the distributional gradient attached to f is the n-tup e 
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af af 
\lf = (-"I - , ••• , -,, -) • 

ox1 oXn 

4.10. EXAMPLE Working in Rn, take r6 B(0,1) 0 \{0} and define 

f(x) = I lxl ,-a (a> 0) Cl lxl I = cxf + ..• + x~> 112 ). 

Then f is unl::oundErl in every neighl:orhood of the origin ( 0 < 11 x I ! < 1) and 

Therefore 

=> 

where 

(i = 1, ..• ,n) • 

\7f (x) = - a __ x __ 

I Ix! la+ 2 

11 vf ex> 11 

n 
11 \lf (x) 11 = ( E 

i=l 
af (x) j 2) 1/2. 
ax. 

l 

4.11. RAPPEL Let Sn-l 8B(O,l)) be the unit sphere and let crn-l be its 

surface :rreasure, thus 

n-1 n-1 n 1Tn/2 
cr (S ) = nl (B(O,l)) n rXl + n/2 ) 

= nw • 
n 

4 .12. APPLICATION Given a > 0 subject to n > a, put f (x) = 11x11-a .and w.r:f..te 



1 Therefore f EL (B(O,l)). 

5. 

-a.+ n 
r 

-a. n 

1 
< + co. 

0 

4 .13. EXAMPLE Consider again f (x) = 11x11-a. (a. > 0) but replace 

n = B(0,1) 0 \{0} by n B(0,1) 0 
-- then 

1 
n >a.=> f EL (B(O,l)) 

Next 

n - a. - 1 1 
r < + oo 

n - a. - 1 0 

if n > a. + 1, so 
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00 

I.et T be the distribution corresponding to f, hence v <P E C (n) , 
c 

< ~' aT > = _ < ~ T > 
ax. ()x. ' 

l l 

Accordingly, as distributions, 

= - < ()cp f dln > 
ax. ' 

l 

= < <,p, ~ dl n > (dominated. convergence) • 
dX. 

l 

Therefore f admits weak partial derivatives in B(0,1)
0 

(and not just in B(O,l)\{0}). 

4.14. LEMMA If f E c1 (n), then the ordinary partial derivatives ~f of f ax. 
l 

are also the corresponding weak partial derivatives of f. 
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SECTION 5: MOLLIFIERS 

n Let n be a nonempty open subset of R • 

5 .1. NOI'ATION Given s > 0 iand a nonnegative even bounded function 

n spt ~ c B(O,l), f ~ dl = 1, 
Rn 

5.2. DEFINITION The ~ are called rrollifiers. 
E: 

5.3. N .B. r.bllifiers exist... . 

[The standard choice for w is 

c <n) exp c. ~ ) if I Ix I I < i 
I lxll - 1 

w(x) = 

o if 11x11 ;::: 1, 

where C(n) > 0 is so chosen that 

n 
J ~ dl = 1. 

Rn 

oo n 
Here w E C (R ) • Another possibility is 

c 

w(x) = ...!.._ x (x).] 
wn B(0,1) 0 

5.4. NOI'ATION Put 

S1 = {x E S1:dist (x, 3S1) > s}. 
s 



[Note: 

5.5. 

where x E Q • 
£ 

[Note: 

n n If Q = R , then Q = R .] 
£ 

2. 

DEFINITION Given a function f E Lk(m, write 

The function f£:n£ -+ R is said to be a rrollification of f, the standard 

ItDllif ication of f being the per the standard choice for cp per supra. 

[Note: Given x E rt, ft: (x) is well defined for all 0 < £ < dist (x, 3Q) , thus 

it makes sense to consider 

5.6. THEOREM If 

lim f£(x).] 
s > 0 

is the standard rrollification of f, then 
00 

E C (n ) 
£ 

(0 < £ < 1) and for every multi index a. and for every x E ns' 

a. 
{f * a w ) (x) 

£ 

a !al 
cps n 

f -- (x - y)f(y) dl • 
n axa. 

5. 7. LEMMA If the standard choice for cp is used and if f E Lk (n) admits 

a weak partial derivative {hence, by definition, ~f EL;_ (Q)), then the derivative 
oX. lUUC 

1. 

of the n:ollification coincides with the rrollification of the weak partial derivative, 

i.e., 



In fact, 

3. 

=Jn 3!. ws(x - y)f (y) dln 
l 

= (- 1) Jn -f- c.p (x - y)f (y) dln 
Yi s 

= (- 1) (- 1) Jn c.ps(x - y) ~~. (y) dln 
l 

= (~ * c.p ) (x). 
dX. E 

l 

5.8. APPLICATION V\brk with the standard choice for c.p, suppose that n is 

oonnected, let f E Lloc (Q), assume that the weak partial derivatives ~!. (i = 1, •.. ,n) 
l 

exist and are equal to 0 alnost everywhere -- then f coincides alrrost everywhere in 

n with a constant function. 

[To begin with, 

()f E ()f 
- = -- * c.p = 0 * c.p = 0, dX. dX. E E: 

l l 

thus f , being srrooth, must be constant in each connected corrponent of n (in general, 
E E 

n is not connected). Consider now a pair of points x,y En -- then there exists a 
E. 

p::>lygonal path y in n joining x and y and for small enough c., y is in ns, so 

f (x) = f (y). But fc--+ f (s + 0) alrrost everywhere (see below). Therefore 
E E. c... 

lim f (t: + O) is a constant function in n.] 
E 

5. 9. LEMMA Suppose gi v~ f E C (Q) ( c L ~c (n) ) -- then for every choice of c.p, 
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f -+ f (e + 0) 
E: 

unifonnly on compact subsets of n. 

5.10. LEMMA Suppose given f E L~(Q) -- then for every choice of <P and 

for every Lebesgue point x E n, 

hence f -+ f alm::>st everywhere. 
E: 

PROOF Write 

lfe:(x) - f(x) I = Ii~ <Pe:(x - y)f(y) dln - f(x) I 

= II <P (x - y)f (y) dln - f (x) JB( ) <P (x - y) dlnl B (x, s) e: x, s s 

= IJB(x,e:) <Ps(x - y) (f(y) - f(x)) dlnl 

w 
~ I I <P I I n 

1 f I f - f (x) I dl n 
oo wn sn B (x, c) 

= 11 <P 11 w 
1 f I f - f (x) I dl n 

· oo n -n B(x e:) 
w E: ' 

n 

-+ 0 (€ + 0) • 

5.11. LEMMA Suppose given f E L~0c(Q) (1 ~ p < + =) (=> f E L~oc(Q)) 

then for every choice of w, 

lim 11 f - f I I = o. 
s + 0 s LP(n) 



1. 

Let (X, E) be a measurable space and let µ be a measure on (X, E) • 

6 .1. NorATION Given a measurable function f: X -+ R, put 

I lfl lo:= inf{t ~ O:µ({x: If (x) I > t}) = O}, 

with the convention that inf Jj = oo. 

6. 2. DEFINITION 11 f 11 is the essential supremum of f and is written 
00 

6. 3 . NOI'ATION 

11 f I I oo. = ess sup I f (x) I • 

xEX 

00 00 

L (.X) = L (XI EI µ) 

is the set of measurable functions defined on X for which 11 f 11 a: < 00 • 

[Note: Such functions are said to be essentially rounded and if f is one 

such, then 

I f Cx) I ::; I I f 11 00 

aJ..rrost everywhere. J 

00 

6.4. LEMMA f E L (X) iff there is a rounded measurable function g such 

that f = g alnost e:v-erywhere. 

00 

6. 5. LEMMA L (X) is a Banach space. 

Henceforth the pair (X,E) will be the pair (Rn,M~), µbeing Ln. 

6. 6. N. B. The set of bounded continuous functions f: Rn -+ R carries the 



2. 

tmifonn nonn 

11 f 11 = sup I f (x) I 
u xEX 

and 

6.7. NOI'ATION w1 100 (Rn) is the space consisting of all essentially rounded 

functions f :Rn + R whose distributional derivatives 

~f (i = l, ... ,n) 
oX. 

1 

are also essentially bounded functions in Rn as well. 

In w1 100 (Rn) introduce the nonn 

6.8. 

6.9. NarATION Given f E L! (Rn) , the i th difference quotient is 
-l..OC 

h f (x + hei) - f (x) 
D.f(x) = (i = l, ..• ,n). 

1 h 

oo n 
6.10. LEMMA V' cp E Cc(R ), 

cp (x + he. ) - <P (x) 
1 f (x) dln 

h 

= - f cp(x) 
Rn 

f(x - he.) - f(x) 
1 

- h 
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Consequently 

6.11. THEOREM Sup:i;x:>se that f is a lxmnded Lipschitz continuous function, say 

lf(x) - f(y)I $ Lllx -yll 
n (x,y E R ) • 

Then 

Since by hypothesis f E L
00

(Rn), the problem is to show that its distributional 

derivatives 

(i = 1, ... ,n) 

are (.essentially) rounded functions as well. 

n To begin with, V x E R , 

I
f (x - he-ih) - f(x) 

1 

<_ L 

=> 

(i = 1, •.• ,n) 

I ln-:hfl I ~ L (i = l, ••• ,n), 
i oo n 

L (R ) 

so if n is open and rounded, 

Let ~ = l/k (k = 1,2, ... ) -- then 

{D~~f} 
l 
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is a rounded sequence in L2 (n), thus there is a subsequence 

-~ 
{D. f. _f} 

l 

that converges weakly in L
2 

(n) as l -+ oo to g. E L
2 

(Q). 
l 

To simplify, put h. = h , 
J -Kl 

hence h. -+ 0 (j -+ oo). 
J 

- < cp, ~ > = J ~ fdln 
dX. n dX. 

l l 

h. 
= f ( lim D. J <P) fdl n n i j -+ 00 

h. 
= l.irn In (D. J<P) fdln 

j~ -+ 00 
l 

-h. 
= lim f n <P (Di J f) dln 

j -+ 00 

= -

the last equality following from ·weak convergence. Therefore the weak partial 

d . . df . and . ed by er1vat1ve -"-exists is represent g .• ox. l 
l 

Because 

-h. 
f. ::D. Jf 

J l 
(i = 1, 2, ••• ) 

2 df converges weakly in L (n) to -"'-, there exists a subsequence {f. } such that the 
oxi Jn 

convex combinations 

N 
l: 

n=l 
a f. 

n J n 

df 
-+ ---

dX. 
l 



as N -+ 00 • Here 

N 

11 L: a f · 11 
n Jn Loo (n) 

Summary: 

5. 

N -h. 
s l: a I ID. Jf 11 

n=l n 1 Loo(Q) 

N 
s ( L: an)L = L. 

n=l 

I 
~f I s L (i = 1, ... ,n) ox. 

1 

for alrrost every x E Q, hence 

And then 

6.12. REMARK Let f E w1 100 
(Rn) -- then on the ba.sis of ":embedding theory", 

it can be shown that f has a rounded continuous representative f. Moreover, f can be 

taken Lipschitz oontinuous. 

[V\brking with the standard rrollification f and assuming that the support of 
E: 

f is compact, note that 

> 

(x) - f~(y) I = If~< VfE(tx + (1 - t)y, x - y > dtl 

s 11 Vf I I 00 I I x - y I I 
L (Rn) 



=> (c -t O) 

n for all x,y E R .] 

lt(x) - f (y) I 

6. 

~ 11 Vf 11 00 I Ix - y I I 
L (Rn) 
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SECTION 7: SOBOLOV SPACES 

B7.7. FORMALITIES 

n Let n be a nonempty open subset of R • 

7 .. 1.1. DEFINITION Let 1 ::; p < + oo -- then the Sobolov space 

w11P (n) 

consists of those f E L~c (n) such that f belongs to LP (n) and such that the 

distributional derivatives ~f are weak partial derivatives and also belong to 
ox. 

1 

LP (.n) (i = 1, ... , n) • 

[Note: There is a local version of this definition, namely call 

~'P(m lac 

the set comprised of all f E L; (n) with the property that the restriction 
-LOC 

fjQ' E w1 1 P(Q') for every nonempty open set n• c Q whose closure is a corrpact subset 

of n. J 

7.1.2. N.B. Spelled out, w1 1 P(n) consists of those f E LP(n) for which 

th . fun . (jf (jf . p ((")) h tha 00((")) ere exist ctions -"-, ... ,-" - in L ~6 sue t v cp E Cc ~G , 
ox1 oXn 

f n w ~f dl n = - Jn ~cp fdl n (i = 1, .•. ,n) • 
~6 oX· H ox . 

.1. 1 

[Note: Another point is this: w1 1 P (n) is closed under taking absolute values, 

i.e.' 
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Depending on the parameters, it can happen that there exists a function in 

J-1 P (Q) which is nowhere continuous. 

0 7.1.3. EXAMPLE Take n = B(O,l) I let {qk} be a countable dense subset 

of n, and consider 

Then 

00 

f (x) = 2: 
k=l 

1 -a 
00 

I Jx - qk 11 (a > 0) (x E Q\ U {qk}). 

f E w1 1 P(n) if a < n -
p 

k=l 

but f is unrounded in every nonempty open subset of n. 

7 .1.4. N.B. It will be seen later on that each function in w1 1 P (n) (p > n) 

coincides with a continuous function aln:ost everywhere. 

7.1.5. LEMMA Let f E w1 1 P(n) -- then there is a partition 

00 

n = ( u Ek) u z, 
k=l 

where the ~are Lebesgue measurable sets such that f I~ is Lipschitz and z has 

Iebesgue measure 0. 

7 .1. 6. THEOREM Let f E w1 1 P (rt) -- then f is approximately differentiable 

aln:ost everywhere. 

[Extend f I~ to all of Rn and use Raden:acher.] 

7 .1. 7. THEOREM The prescription 



3. 

endows w1'P(Q) with the structure of a Banach space. 

[Note: An equivalent nm:m is the prescription 

f + I I f I I + I I Vf I I ' 
LP LP 

where Vf is the weak gradient attached to f.] 

7 .1. 8. LEMMA w1 'p (n) is separable. 

7.1.9. THEOREM Let f E w1'P(Q) -- then there exists a sequence 

{fk} c w1'P(n) n C
00

(Q) such that 

fk +fin w1'P(n). 

and 

d (fg) = ~ g + f dg (. 1 ) 
"' "' " i = , ••• ,n ox. ox. ox. 

l l l 

Ln almost everywhere in n. 

7.1.12. CHAIN RULE Let f E J-'P(Q) and let g E c1 (R) subject tog' E L
00

(R), 

g(_O) = 0 -- then g o f E w1,p (n) and 

Ln almost everywhere in n. 

a(g 0 £) = 
ax. 

1. 

(g' 0 f) cif ax. 
l 

(i=l, •.. ,n) 

[Note: The assumption that g ( 0) = 0 is not needed if L n ( Q) < + 00 • ] 
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n To fo:anulate the next result, let ril' :be another nonempty open subset of R • 

7 .1.13. CHANGE OF VARIABLE SUpJ:?OSe that '¥: n' -+ n is invertible I where '¥ ana 

'l'' are Lipschitz continuous functions, and let f E w1 1P (n) -- then f o '¥ E w1 1P (ril') and 

3 (f o '¥) (x,) 

ax! 
J.. 

Ln aJrnost everywhere inn•. 

n <3'±' 
l: ~ ('¥ (x' ) ) k (x' ) 

a~ 3x! 
(i=l, ••• ,n) 

J.. 

7 .1.14. TERMINOI.J.XiY Given nonned spaces (X, I I. I Ix) and (Y, 11. I ly), one 

says that X is embedded in Y, denoted X 4 Y, if X is a subspace of Y and there exists 

a constant C > 0 such that for all x E X, 

7 .1.15. EXAMPLE SupJ:?Ose that L n (n) < + oo and 1 s p < q < + oo - then 

=> 

c = ( L n ( n) ) ( l/p) - ( 1/ q) • ] 

I.coking ahead: 



5. 

l 1 1 p < n (-:T ::::i - - -) 

p p n 
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§7.2. EMBEVDINGS: GNS 

7 .2.1. DEFINITION Let 1 ::; p < n -- then the conjugate eiqX)nent of p is 

[Note: p* > p and 

l =.!.-.!..] 
i/ p n 

7.2.2. THEOREl.VI Let 1 ~ p < n -- then there exists a constant C(n,p) > 0 

such that for all f E w1 1 P(Rn), 

7.2.3. SCHOLIUM When 1 ::; p < n, 

7.2.4. RAPPEL If 1 ~ p1, ••• ,pk < + 00 with 

p. 
and if f. EL J(Rn) (j = l, ••• ,k), then 

J 

The proof of the theoran can be divided into three parts. 
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[For each i E {l, .•• ,n} and each point x = (x1 , ..• ,x., •.. ,x) E Rn, write 
i n 

£ ,. ) = !xi of ( t ) dt \){1 , ... ,x., ... ,X -"'- x1 , ... , ., ... ,X ., 
l n -oo oX. 1 n l 

l 

rence 

jf(x) I ~JR l~f (x1 , ••• ,t., •.• ,x) I dt. (1 ~ i ~ n) ox. 1 n 1 
1 

=> 

n 

lf(x) In~ Tr L l~f (x1 , •.• ,t., ... ,x) I dt . 
. l ~R ox. 1 n 1 
i= 1 

=> 

If (x) In/ (n-1) 

=> 

n 
JR If In/ (n-1) dxl ~ (JR I ~I dt ) 1/ (n-1) JR Tr (JR I ~I dt.} 1/ (n-:q dx 

axl 1 i=2 axi c,l 'l 

n 
~ (JR l~I dt )l/(n-1) TI (JR JR I~ dti.dxl)l/(n-1) 

axl 1 i=2 axi 

=> ••• 

=> 

~ Tf.n (JR .... , •. J.R' l~I dxr .• dxn) 1/ (n-1) 
1=1 axi 

Jn If ln/(n-1) dln 
R 
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n 
l~I dLn)l/(n-1) ~ TI (! 

i=l Rn ax. 
l. 

~ (! l!Vf 11 
dl n)n/ (n-1) 

Rn 

=> 

[Note: 

l* = n => l/p* = n - 1 
n - 1 n 

and 

C (n,l) = 1.] 

Step 2: 1 < p < n, f E C~(Rn). 

[Put 

_ p(n - 1) 
y - n - p • 

Then y > 1 and 

yn = p* = np = Xy - l)p 
n-1 n-p p-1 
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And 

n - 1 _ p - 1 = p(n - 1) - n(p - 1) 

=> 

where C(n,p) = y.] 

So 

n p p 

_n-p_ 1 
- np -p* 

11 fk - f I I + o Ck + 00) 
LP 

and, upon passing to a subsequence if necessary, it can be assumed that fk + f almost 

everywhere in Rn. This said, we t:hen claim that {fJJ is a Cauchy sequence in rP* (Rn). 

For fk - fl E C~(Rn), thus it follows that 

+ 0 (k,l + 00). 



s. 

~ n ~ n Consequently there exists a g E L (R ) such that fk -+ g in L (R ) • Therefore 

f = g almost everywhere in Rn, which implies that fk -+ f in Lp* (Rn) • Finally 

I.e.: 

::;; 11 f - fk 11 Lp* + C (n, P) ( 11 Vfk - Vf 11 LP + 11Vf11 r.P) 

-+ 0 + C (n, p} (0 + 11Vf11 } • 
LP 

7.2.5. APPLICATION If f E w1 1P(Rn) with 1 $ p < n and if Vf = 0 almost 

everywhere in Rn, then f = 0 al.rrost everywhere in Rn. 

7.2.6. RAPPEL If 1 $ p < q < r < + oo, then 

and 

where 

.!. = ~ + l - A. (0 < A. < l} • 
q P r 

7.2.7. RAPPEL If a~ O, b ~ 0 and if 0 ~A.~ 1, then 

A. 1-A. a b $ A.a + (1-A)b. 
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Therefore 

< llfll + llfll. p r 

Specialize now and take r = p* (recall that p < p*) and let p < q < p* --

then it follows that 
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§7.3. EMBEVVINGS: BMO 

Having dealt with the case when 1 ::; p < n, the next item on the agenda is the 

case when p = n, which necessitates some preparation. 

7 • 3 .1. DEFINITION The set 

i2s a cube in Rn (if n = 1, a cube is a rounded closed interval in R, if n = 2, a cube 

is a square in R2 etc.). The side length .t (Q) of Q is the cormon value 

b. - a. (i = 1, •.. ,n). 
1. 1. 

7 .3. 2. NOI1ATION 

Q(x,.l) = {y E Rn:jy. - x. I::; !:.2 (i = l, ••• ,n)} 
1. 1. 

is a cube with center x and side len~ .t. Here 

Ln(Q(x,.t)) = ln and diam Q(x,l) =In l. 

7. 3. 3. DEFINITION Given f E L ~oc (Rn) , its integral average over the cube 

Q(x,l) is the entity 

f = _!__ J f dl n. 
Q(x,l) ln Q(x,l) 

7.3.4. LEMMA Let 1 ~ p < + 00 -- then there exists a constant C(n,p) > 0 
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1 n 
PROOF Take f E C (R ) , put Q = Q (x,l), let z,y E Q, and write 

c 

!t(z) - t<y> I 

=> 

lt<z> - t(y) IP 

n 
:s; ( l: (!bi 11 I IP l/p i-1/p P Vf(z

1
, ••• ,z. 1 ,t,y.+1 , ••• ,y) dt) (b. - a.) ) a. i- 1 n i i 

J. 

=> 

1 It - t JP dL n Q Q 

= J 
Q 

If (z) - fQIP dz 

= f 1 dyjP dz In IQ (f (z) - f (y)) 
Q t 

s JQ 
1 I t c z > - t <Y > I dy)P dz <11 JQ 
l 



if 

=> 

3. 

s J l:_ J jf (z) - f(y) Ip dzdy 
Q ,e,n Q 

P p-1 nl 
<-~ - ln 

n 
I: (bi -ai) JQJQ llV'f(z)ljPdzdy 

i=l 

7.3.5. SCHOLIUM If f E J- 1 n(Rn), then for every cube Q, 

s C (n) l (Q) ( 
1 IQ 11 Vf I ! n dl n) l/n 

Ln(Q) 

= C(n)l(Q) ( 1 f I IV'fj In dln)l/n 
l(Q)n Q 

C (n) (J Q 11 V'f I In dl n) l/n 



provided 

4. 

7. 3. 6. DEFINITION A function f E L ioc (Rn) is of rounded mean oscillation 

11f11 ~'IO = sup 
1 

JQ If - fQ I dl n < + oo, 
Q Ln(Q) 

where the supremum is taken over all cubes Q in Rn. 

7.3.7. NarATION BMO(Rn) is the set of functions of rounded mean oscillation. 

7. 3. 8. N. B. 11 • 11 BMO is a seminorm, not a norm (constant functions have 

vanishing roundoo mean oscillation). 

7. 3. 9. LEMMA BID (Rn) is a vector space over R. 

n 
[If f,g E BMO(R ), then 

and 11 ·I IBMO is scale invariant, i.e., V r E R, 

7.3.10. THEOREM 

is a Banach space. 

7. 3.11. LEMMA 
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oo n 
[If f E L (R ) , .. then 

[Note: Therefore 

7.3.13. N.B. The containment is strict. 

[The unl:ounded function 

£og I Ix! I 
n belongs to BMO (R ) • ] 

7. 3 .14. EXAMPLE Take n 1 -- then the function 

fug x (x > 0) 

f (x) = 

0 (x ::;; 0) 

is not of rounded mean oscillation. 

I.et f E w1 1 n(Rn) -- then, as res been seen al::x::>ve, for every cube Q, 

n 
1 

J Q I f - f QI dl n ~ C (n) 11 Vf 11 n n , 
L (Q) L (R ) 

so upon taking the supremum over Q, it follows that f E BMO (Rn) , where 

7.3.15. SCHOLIUM 

7.3.16. APPLICATION If f E w1 1 n(Rn) and if Vf = 0 alrrost everywhere in Rn, 

then f == some constant alrrost everywhere in Rn. 
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§7.4. EMBEVVINGS: MOR 

It rerra.ins to consider the situation 'When p > n. 

7. 4 .1. RAPPEL Let E be a nonempty subset of Rn -- then a function f :E + R 

is Holder continuous with exponent 0 < a ::; 1 if there is a constant C > 0 such that 

If (x) - f (y) I $ c 11 x - y 11 a 

for all x,y E E. 

[Note: Of course if a = 1, then it is a question of Lipschitz continuous.] 

A Holder continuous function is continuous but it can be nowhere differentiable. 

7 .4.2. NOTATION CO,a (E} is the set of all rounded functions that are 

lblder continuous with exponent a and nonn 

I !fl I 0 N c ,.....,,, sup If (x) I + sup 
xEE x,yEE 

X,, f:: y 

lf(x) - f (y) I 

I Ix - YI la 

[Note: When so equipped, CO,a.(E) is a Banach space.] 

7.4.3. LEMMA Let p > n -- then there is a constant C(n,p) > 0 such that 

PROOF 'lb begin with, 

f (z) - f (y) 

1 ~ 
= 10 at (f(tz + (1-t)y))dt 
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1 = J
0 

<Vf(tz + (1-t)y), z - y> dt. 

Assume now that z,y f:5: Q(x,l) - then 

lfa(x,t> - f(y) I 

= 

= 

$ 

$ 

2:_ f (f(z) - f(y)) dz I ln Q(x,l) 

2:... J 11
0 <Vf(tz + (1-t)y), z - y> dtdzl ln Q(x,l) 

n 
_!_ J l 1.£!_ (tz + (1-t)y) I l: lz. - Y· l ln Q(x,l) Q dX. 1. 1. 

l 

n 
1 1 I ~ (tz + (1-t)y) I L: ln-1 1o JQ(x,l) dzdt ax. 

1. 

n 

dtdz 

1 1 1 1~ cwJI = l: 1o tn JQ(tx + (1-t)y,tl) dw:it 
dX. I i=l l 

x (Ln(Q(tx + (1-t)y,tl))l-l/p dt 

Since the same estimate obtains if the roles of y and z are interchanged, write 

lf(z) - f (y) I :::; If (z) - tQ(x,l) I + lfQ(x,l) - f (y) I 
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::; 2 np ll -n/p I I Vf 11 1 

P - n LP (Q (x,l)) 

where z, y E Q (x, l) • Proceed finally to when z, y E Rn are arbitrary - then there 

exists a cul:e Q (x,l) such that z,y E Q (x,l) and l = 11 z - YI l (e.g., take x = z ~ y), 

hence 

where 

lf(z) - f(y) I s C(n,p) I lz - YI ll-n/pl IVfj I 

C(n,p) = 2 np 
p-n 

In the foregoing, replace z,y by x,y. 

LP (Q(x,£.)) 

7 .4.4. THEOREM Let f E w1 1P (Rn) (p > n) and let x,y E A (f) - then 

[Utilize the standard nollification fc of f and apply it to Lebesgue p:>ints 

x,y of f.] 

The restriction f jA(f) can be extended uniquely to Rn as a HOlder continuous 

function f of exponent 1 - n/p in such a way that 

n for all x,y E R • 

jf{x) - f(y) I ~ C(n,p) I Ix - YI ll-n/pl lVfj I 
LP 

[Bearing in mind that A(f) is dense, given an x E Rn, ch:x:>se a sequence 

{fk} c A(f) such that xk-+ x (k-+ 00). From what has been said above, {f(xk)} is 
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a Cauchy sequence, thus the prescription 

f (x) = lim f {~) 
k -+ 00 

rrakes sense and has the desired property.] 

7.4.5. THEOREM Let f E w1 1 P(Rn) (p > n) -- then in the equivalence class 

of f there is a unique function f which is Holder continuous with exponent 1 - n/p. 

!:n particular: Every element of w1,p (Rn) (p > n) coincides with a continuous 

function alrrost everywhere. 

7 .4. 6. LEMMA If f E w1 1 P (Rn) with p > n, then f is essentially b:mnded. 

If (z) I s If (z) - fQ(x,l) I + lfQ(x,l)] 

s np ll-n/pl IVfl I + fQ{x,l) lf(y) I dy 
P - n rJ'(Q{x,l)) 

I I p n + (! Q (x 1) I f (y) Ip dy) l/p 
L (R ) I 

But one choice for the norm off in w1 1P(Rn) is 

This said, there are then t~ possibilities. 

• np ~ 1 
p-n 



• 

5. 

=> 

I f (z) 1 < np I I Vf 11 + 11 f 11 p n 
- p - n Lp(Rn) L (R ) 

np < 1 
p-n 

=> 

If <z> I 

Ee 

~ P n_? n 11Vf11 p n + p n_? n 11 f 11 p n 
L (R ) L (R ) 

Therefore the L -nonn of f is lxmnde:l by a constant 

np (if ;::: 1) 
p-n 

C(n,p) = 

1 (if < 1) 

depending on n and p times the w1 1 P-nonn of f. 

7.4.7. SCHOLIUM When p > n, 

7.4.8. THEOREM 



PRCX)F 

= sup 
xERn 

jf (x) I + sup 
n x,yER 

xf y 

6. 

!f (x) - f(y) I 
I Ix - YI ll-n/p 

$ C(n,p) I lfl I 1 + C(n,p) I !fl l __ l · 
w-'P w-'P 

7.4.9. N.B. If p > n, then this state of affairs is sy.rnl:x::>lized by writing 

since 

11£11 0 1_ / ~ c 11f11_ 1 . 
C , n p w-'P 

7.4.10. TEEOREM (p ~ n) 

f (x) -+ 0 as 11x11 -+ + co. 

PROOF Given f E w1 1 P(Rn), choose a sequence {fk} in C~(Rn) that converges to 

fin w1 1 P(Rn) -- then 

Fix s > 0 and choose k such that 

I I f - fk I I co ~ s (k ~ k) . 
L 

Next choose R > 0 such that f_ (x) = 0 for all x: I lxl I ~ R • 
n So, for L alrrost 

k k k 

every x E Rn with I lxl I ~ R_, it follows that 
k 

lf(x) I = jf(x) - f_(x) I $ l If - fkl I co$ s 
k L 
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and since f is continuous, this ineg:uali ty holds for all x: 11x11 ~ R • 
k 

n 7.4.11. LEMMA (p > n) V x,y ER , 

7.4.12. T.HEDREM (p > n) f is differentiable alrrost everywhere. 

PROOF It suffices to show that f is differentiable at every LP-Lebesgue point 

x
0 

of Vf, where by definition, 

'lb this end, note that 

11 I 11-n/p I I I Ip n l/p ~ C(n,p) x - xo (!B(x, l lx-xol I) Vf - Vf(xo) dl ) • 

And 

=> 

lfCx> - f(x0) - <Vf(x0), x - x0>1 
I Ix - x0 1 I 

-->0 
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7.4.13. N.B. The weak derivatives off coincide with the ordinary partial 

derivatives of f alnost everywhere in Rn. 
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SECTION 8: ACL 

Working in Rn, let 

(k = 1, ••• ,n) 

re closed intervals and put 

a rectangular l:ox. 

8.1. DEFINITION A function f:Q-+ R is said to re ACL (absolutely continuous 

on lines) if for each k = l, ••• ,n, and alrrost every point 

n-1 with respect to L measure, the function 

is absolutely continuous. 

x ••• x I 
n 

E Rn-1 

8.2. N.B. In the literature, the foregoing situation is sometimes referred 

to as saying that f is absolutely continuous on alrrost every line segment in Q parallel 

to the coordinate axes. 

n Let n be a nonempty open subset of R • 

8. 3. DEFINITION A function f: n +--: R is ACL if the restriction f IQ is ACL 

ror every Q c n. 

8. 4. NOI'ATION ACL (n) is the set of ACL functions in Q. 
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8.5. EXAMPLE A quasiconformal map belongs to ACL(n). 

8.6. NarATION Let 1 ~ p < + 00 -- then L11P(n) consists of those f E Lioc(n) 

such that the distributional derivatives 

belong to LP(n) (i = l, ••• ,n). 

[Note: Evidently 

8. 7. N.B. Obviously 

are weak partial derivatives and also 

w1 1 P(n) c Ll,p(Q). 

8.8. THEOREM I.et 1 :::; p < + 00 -- then a function f E L1 'P(n) admits a 

representative f: n + R in ACL (Q) • 

[Note: The ordinary partial derivatives of f exist alrrost everywhere.] 

The proof in general is notationally involved so to simplify the lxx>kkeeping, 

take n = 2, assume that f is continuous, sup:pJse that 

Q = ro,1] x ro,1J c n = J- ~, i + E[ x J- £, 1 + £[, 

let (x1,x2) = (x,y), thus the distrirutional derivatives are~! and*' and .bhe cla±rh 

is that 

x + f (x,y) is absolutely continuous for alrrost every y E [O,l] 

y + f(x,y) is aboo.lutely continuous for alnost every x E [O,l]. 

':mle discussion in either case is conceptually the same, hence it will suffice to deal 

with the second of these. 
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For use below: 

1 00 

8.9. CRITERION If f E Lfuc]a,b[ and if V c.p E Cc]a,b[, 

then f = 0 al.rrost everywhere in ] a, b [ • 

8.10. APPLICATION If f E L1]a,b[ and if V c.p E C
00

]0,l[, c 

then there exists a constant C such that f = C alrrost everywhere in ] 0, 1 [. 

[Let ~,1/J be functions in C~] 0,1 [ with f~l/J = 1. Put 

Then '¥(0) = 0 and 

00 

Therefore'¥ EC ]O,l[ and c 

=> 

=> 

=> 

= o. 

0 = J1f'¥' (by asst:nrption) 
0 

1 
f - J 0fl}J = 0 alrrost everywhere in ]O,l[ 

f = J~fl}J alrrost everywhere in ] 0 11 [ . 
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By h¥PJthesis, 

from which it follows that 

1 af 
f o lay (x,y) I dy < + oo 

for alnost all x E [0,11 (Fubini). Therefore the function 

y af 
y + g(x,y) = f o at (x,t) dt 

is absolutely continuous on the segment [O,l] for alnost all x E [O,l] and its 

d • d • t • I ag ' • d •th th d • • b • 1 d , , af f Or inary er1va lVe g = ay COlnCl es Wl e lStrl ut1ona er1vative ag or 

alrrost all y E ] 0, 1 [. Consider now a test function ¢ of the form 

00 00 

~ = ~n (~ E c ]O,l[, n E c ]O,l[), 
c c 

i.e. I 

¢(x,y) = ~(x)n(y). 

Then 

JQ f(x,y)~(x)n' (y) dxdy 

af 
= - JQ ~(x)n(y) ay dxdy 

ag 
= - f Q ¢(x,y) ay dxdy. 

On the other hand, 

f~ g(x,y)n' (y) dy = - f~ n(y) t~ (x,y) dy 

=> 

t,:(xJ /~g(x,y)n'(y) dy= ~(x) (-·f~n(y) ~~ (x,y) dy) 
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=> 

J Q g(x, y) ~ (x) n' (y) dxdy 

= - J ~(x)n(y) ag ~Y 
Q ay 

ag = - JQ ¢(x,y) ay clxdy 

=> 

JQ f(x,y)~(x)n' (y) clxdy = JQ g(x,y)~(x)n' (y) clxdy 

=> 

JQ ~(x)f(x,y)n' (y) clxdy JQ ~(x)g(x,y)n' (y) clxdy 

=> 

1 J0 [f(x,y) - g(x,y)Jn' (y) dy = o 

for aJ..n:ost all x E [O,l]. Denote by E c [O,l] the set of x for which equality 

obtains -- then V x E E, 

y-+ f (x,y) 

is absolutely continuous. In fact, for any such x, 

J~ [f (x,y) - g(x,y)]n' (y) dy = o 

=> 

for alrrost all y E [O,l] 

=> 

f (x,y) - g(x,y) = Cx(E R) 

f (x,y) = g(x,y) + C x 

= !~ (x,t) dt + ex 
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for alrrost all y E [O,l]. The right hand side is an absolutely continuous function 

of y and the left hand side is a continuous function of y. Since equality holds for 

a subset of [O,l] of full neasure and such a set is dense in [O,l], the conclusion 

is that 

f (x,y) = Jy (jf (x,t) dt + C o at x 

for ally E [O,l]. 

Summary: 

y-+ f(x,y) is absolutely continuous for alrrost every x E [O,l] (viz., V x EE), 

thereby completing the proof. 

The preceding result also admits an easy converse (where, as a.l:xJve, 1 ~ p <+co). 

8.11. THEOREM If f:Q -+ R has an ACL representative f whose ordinary partial 

derivatives belong to LP (n), then these derivatives coincide al.Irost everyWhcre with 

the corresponding distributional derivatives of f, hence f E L l,p (Q). 

As for SolX>lev spaces, there is a characterization. 

8.12. THEOREM Let 1 $ p < + co -- then a function f E LP (n) belongs to 

J-iP (n) iff it has a representative f that is ACL and whose ordinary partial 

derivatives belong to LP (Q). 

8.13. CRITERION Supp:>se that f :rt -+ R is continuous and ACL -- then the 

ordinary partial derivatives of f exist alrrost everywhere in n and they are Eorel 

functions. 

PROOF Fix i E {l, ... ,n}, put 
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n n-1 
and let P. be the orthogonal projection of R onto R. (so P. (x) = x - x. e. ) • 

l l 1. l l 

I.et E. be the set of all x E n at which- ~f does not exist, the claim being that 
l oX. 

l 

L n (E n Q) = O for all Q c n. Since f is continuous, E is Borel and by Fubini, 

Ln(Ei n Q) =JP.st L1 (P~1 (x) n Ei n Q) dln-l(x). 
1. 

If f is absolutely continuous on the segment P~1 (x) n Q, then ~f exists alrrost 
l oX. 

l 

everywhere on this segment, hence L1
(P-:-

1 (x) n En Q) = 0, .irrplying thereby that 
l 

Ln(E n Q) = 0, f being ACL. 

8.14. REMARK Recall that without some assumption, the set of points in n 

where ~f exists need not be Lebesgue measurable (let alone Borel) • 
oX~ 

l 

8 .15. CRI'IERION Let 

be an open rectangle. Fix i E {l, ••• ,n} and let f:R-+ R be a Lebesgue measurable 

function that is rronotone on alnost every line in R parallel to the x. axis -- then 
l 

th d • • 1 Q • , df , 1~ ywh • ( d • T~l....~ e ori inary partia er1vat1ve -"\- exists a.1.llust ever ere in R an is .LJ;;;:JJt::sgue ox. 
l 

measurable} • 

8.16. REMARK The assumption "rronotone on alrrost every line in R" cannot be 

replaced by "rounded variation on al.rrost evecy line in R". 

[Note: But if f is of rounded variation on alrrost every line in R parallel to 

the xi axis, then there is an equivalent function f which does have an ordinary partial 

derivative ~f alnost everywhere in R (and is Lebesgue measurable).] ox. 
l 
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SECTION 9: BV SPACES 

§9.7. PROPERTIES 

n Let n be a nonerrpty open subset of R • 

9 .1.1. DEFINITION Let f E L l (n) -- then f is said to be a function of 

rounded variation if its partial derivatives in the sense of distributions are finite 

signed Radon measures in n of finite total variation. 

9 .1. 2. NorATION BV (n) is the set of functions of rounded variation in ~. 

[Note: There is a local version of this definition, namely call 

BVroc<m 

the set comprised of all f E L; (n) with the property that f In• E BV(n') for every 
-<...OC 

nonerrpty open set n' c n whose closure is a compact subset of n. ] 

9.1.3. N.B. Let f E BV(s-2) -- then there are finite signed Radon measures 

D.f (i = l, ... ,n) 
l 

00 

of finite total variation such that V cp EC (s-2), 
c 

(i = 1, ... ,n) • 

[Note: 

is an Rn-valued vector measure and on general grounds, I IDf 11 is a positive finite 

measure (hence 11Df11 (Q) < + 00) • ] 

9 .1. 4. LEMMA let f E BV (n) - then 11Df11 is absolutely continuous w. r. t. 

Lebesgue measure iff each of the Dif is, in which case the distributional partial 

derivatives can be represented by L1 functions. 
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9.1.5. LEMMA Let f E BV(Q) - then f E w1 11 (m iff 1 IDfl I is absolutely 

continuous w. r. t. Lebesgue measure, in which case 

11Df11 m> = f n 11 Vf 11 dl n. 

9.1.6. N.B. The containment 

J-,l (m c BV(m 

is strict and every f E C
00 Cm n BV(n) relongs to J-,l (n). 

oo n 
9.1. 7. NarATION Given qi E C {Q; R ) , put 

c 

the divergence of ¢. 

n aqi. 
1. div qi= l: - , 

. 1 ax. 
1.= 1. 

9 .1. 8. DEFINITION Let f E L l Cm -- then the variation of f in Q is the entity 

9.1. 9. THEOREM Let f E L
1 Cm -- then 

V(f;Q) < + 00 

iff f E BV (n). And when this is so, 

V(f;n) = I IDf 11 (n). 

9.1.10. I.SC PRINCIPLE Suppose that {fk} is a sequence in BVm) which 

converges in L1 
(n) to a function f -- then 

11 of I l cm ~ iirn inf 11 nfk 11 cm • 
k -+ 00 

PROOF Chx>se a qi E C~ (Q; Rn) with 11qi11
00 

s 1, thus 
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Jn f div 9 dln = lim In fk div qi dLn 
k + 00 

s lim inf V(fk;n) 
k + 00 

= lim inf I IDfkl I (n). 
k + 00 

Now take the supremurn over qi. 

9.1.11. REMARK IJ:b conclude that f E BV(n), it suffices to assume that the 

fk have equilx)Unded total variations, say V k, 

For then 

V(f;n) = I IDfj I (n) 

s lim inf 11I\11 {n) s M < + oo. 
k + 00 

9.1.12. NOI'ATION Given f ~ BV(n), put 

9.1.13. THEOREM Under the norm 11 ·I IBV' BV{n) is a Banach space. 

PROOF Carapleteness is the issue so suppose that {fk} is a cauchy sequence in 

BV ffi) -- then by the definition of 11 • 11 BV' it must also be a cauchy seq:uence in 

L
1 

(.n) / hence by the completeness of L1 (n) , there exists a function f E L 1 (Q) such 

that fk + f in L
1 

(n). On the other hand, since {fk} is a cauchy sequence in BV{Q), 

{I lfkl 18v} is rounded: 3 M > o such that v k: 
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=> 

=> 

1IDf11 (n) ~ M 

=> 

f E BV(n). 

The claim now is that fk + f in BV(n). Because we already have convergence in L1
(n), 

matters reduce to showing that 

I I o-tfk - f > I I m) + o Ck + 00 > • 

To this end, let s > 0 -- then there exists N: 

k, j ;::: N => 11 fk - f j 11 PN < E 

By construction, 

so 

thus 

I ID(fk - f) 11 (n) ~ l~ inf I !D(fk - f.) 11 (n) ~ E: 
J + 00 J 

from which the conclusion, c > 0 being arbitrary. 
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9.1.14. REMARK BV(Sl) is not separable. 

[To illustrate, work in R and consider the family F of characteristic functions 

x of the interval ] a,l [ (0 < a < 1) -- then F c BV] 0,1 [ and for a. I S, 
a 

11 \x - Xs 11 BV = 2 + I a - s I • ] 

9.1.15. N.B. The closure of BV(n) n c
00

(n) in BV(n) is w1 11 (n), hence is 

not dense in BV (n) • 

[Note: By way of comparison, recall that w1 11 cm n C
00 <m is dense in w111 cm.] 

9.1.16. THEOREM Let f E BV(r2) -- then there exists a sequence {fk} c BV(n) 

00 n C (n) such that 

and 

lim I IDfkl I (n) = I [of! I (n). 
k + 00 

[Note: It is not claimed. nor is it true in general that 

11 D (fk - f) 11 (n) + 0 (k + oo) • ] 

9.1.17. APPLICATION Take n = Rn and in GNS, take p = 1, hence 

l* = n (n ~ 2). 
n - 1 

• oo n 
ChJose the fk a.J::xJve rn Cc (R ) -- then 
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so, u:r;x:m pa.ssing to the limit, it follows that V f E BV (Q~ , 

11 f11 ::; C (n) I IDf 11 (Rn), n/ (n-1) 
L 

=> 

9 .. 1..18. HEURISTICS Let (X,E) be a measurable space, letµ be a a-finite 

:r;ositive measure on (X, E), and let f:X-+ [O,+ oo] be a µ-measurable function - then 

(Cavalieri) 

00 1 
fx fdµ = !

0 
µ({x E X:f(x) > t}) dl • 

[Let 

Then XE (x) 1 if f x E Et 
t 

=> 

=> 

Et= {x E X:f(x) > t} .. 

f (x) > t 

00 

f X f dµ = f X (JO XE (x) dt) dµ 
t 

= f~ (J X XE (x) dµ) dt (FUbini) 
t 

= f~ µ(Et) dt .. ] 

n I 1 9.1.19. LEMMA Let E c R be Lebesgue measurable -- then XE n E L (n) 

L n {E n n) < + 00 • 
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PROOF 

I 
n n 

Jn XE n dt. =Jn XE Xn dL 
R 

(by definition) 

[Note: For the record, 

n 
9 .1. 20. DEFINITION let E c R be a Lebesgue measurable set and supp-Jse that 

XE In E L 
1 (Q) -- then the perimeter of E in n, denoted p (E; m I is the variation of 

~In in n, i.e., 

[Note: The set E is said to have finite perimeter in n if P (E,n) < + oo.] 

9.1.21. NarATION Givm f E BV(n), put 

nt(f) = {x E Q:f(x) > t}. 

9 .1. 22. SUBI.EMMA The function 

(x, t) -+ Xn (f) (x) 
t 

n 1 00 n 
is (L x L )-measurable, thus for each <Ii E Cc(n;R ), the function 

t-+ Jn div¢ dln =Jn Xn (f) div¢ dln 
t t 

is L1-measurable. 

9 .1. 23. LEMMA The function 

t -+ I I oxn < f > I I < n > 
t 
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is I..ebesgue measurable. 

9.1.24. THEOREM (COAR.EA) Let f E BV(n) -- then the set f2t (f) has finite 

perimeter in n for alrrost all t and 

The proof proceeds in tvx:> steps. 

Step 1: Consider 

where 

and recall that 

• f ~ 0 => 

=> 

00 

f(x} = ! 0 Xn (£) (x) dt 
t 



• f ~ 0 => 

=> 

So, ufX>n writing f = 

9. 

f (x) = !~00 (Xn (f) (x) - 1) dt 
t 

= Jn (!~00 (Xn (f) (x) - 1) dt) div¢ dln 
t 

+ (-

(! n (f) div ¢ dl n) dt. 
t 

, it follows that 

or still, by the definition of the variation of the perimeter of nt(f) inn, 

or still, UfX>n taking the supremum over ¢, 

I I Df 11 cm ::; 'JR P cnt Cf> ; m dt 

= JR !!Dxn {f) 11 cm dL 1. 
t 

It remains to reverse this ine.quality and for that, as an intermediary, one 
co 

first shows tbat for f E BV(n) n c (n), 
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1 
I Inf 11 (n) ~ JR I lnxn (f) 11 <m aL , 

t 

a point of detail that will be admitted without proof. 

-=--2_: Choose a seg:uence {fk} c BV(Q) n C
00 

(n) such that 

f + f in L1 (n) (k +co) 
k 

and 

lim 11Dfk11 (n) = 11Df11 (n) • 
k + co 

Then V k, 

Next 

fk(x) - f(x) =JR <xn (f) (x) - Xn (f) (x)) dL
1 

t k t 

and rroreover 

lfk(x) - f(x) I =JR lxn (f) (x) - Xn (f) (x) I aL
1 

t k t 

since 

sign(fk(x) - f(x)) = sign(xn (f) (x) - Xn (£) (x)) 
t k t 

for all t. Therefore 

Jn jfk(x) - f(x) I dL1 

= J~ <Jn lxn (£) (x) - Xn (f) (x) I dln) dL
1

. 
t k t 

Bearing in mind that fk + f in L 
1 

(n) , there exists a subseq:uence 1 not relabeled, with 

the property that 
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for alnost every t. Finally 

and put 

~JR liro inf I lnxn (f) I I (n) dL
1 

(rsc) 
k-+oo t k 

1 
~ liro inf JR I lnxn (f ) I I (n) dL (Fatou) 

k-+oo t k 

= liro inf 11Dfk11 (n) (cf. Supra) 
k -+ 00 

= lim 11Dfk11 (Q) = 11 Df I I (Q) • 
k -+ 00 

9.1.15. EXAMPLE Given f E BV(&l), let 

f (x) = 
r 

r if f (x) > r 

f (x) if -r ~ f (x) ::; r 

- r if f (x) < - r 

H (x) = f (x) - f (x). 
r r 

Then H E BV (Q) and 
r 

and 

= 
1 

f I I nxn Cf) I I (n) dL • 
ltl>r t 

00 00 

9.1.26. PRODUCT RULE Let f ,g E BV(n) n L (n) -- then fg E BV(n) n L (n) 

I ID(fg) 11 {n) ::; I lfl 1
00 

I IDgl I (n) + I lgl 1
00 

I IDfl I (n) • 
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00 

9.1.27. REMARK BV(n) n L (n) is dense in BV(n). 

00 

9 .. 1.28. PRODUCT RULE If f E BV(n) and if cp E cc (n) I then cpf E BV(n) and 

11 D (¢£) l I (n) = • • • • 
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§9.2. VECOMPOSITION THEORY 

We shall first review matters in R, with n = ] a,b [. So fix an f E PN (n) • 

• Df = Daf + Dsf is the decomp:::>sition of Df into its absolutely continuous 

p:trt w.r.t. Lebesgue measure L1 and its singular part Dsf. 

Recall next that ATf is the set of atoms of the theory, i.e., the x E ]a,b[ 

such that D ( {x}) f. 0. 

where 

9. 2 .1. N. B. The measures Daf, Dj f, Dc f are mutual! y singular and 

9. 2. 2. DEFINITION f is a jurrp function if Df = Dj f. 

9. 2. 3. DEFINITION f is a Cantor function if Df = Dc f. 

9. 2. 4. THEOREM Each f E BV (n) can be represented as a sum 

where fa belongs to w1,J'. (]a,b[), fj is a jurrp function, and fs is a Cantor function. 
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9.2.5. N.B. These functions are uniquely determined up to additive constants 

and if f is an admissible representative of f, then 

and 

9.2.6. 

I I Dj f I I (n) = L: I f (x+) - f (x->1' • 
xEATf 

EXAMPLE Work inn= ]O,l[ and let {r} c JO,l[ be a sequence. 
n 

Define f E BV(n) by the prescription 

f (x) = L: 2-n, 
{n:r <x} 

n 

Then f is a ju:rrp function and its distributionaLrlerivative Df is 

L: 2-n cS 
r 

n n 

9. 2. 7. EXAMPLE Work in n = ] 0, l [ and take for f the cantor function --

then its distributional derivative has no absolutely continuous part and no ju:rrp part. 

[If C is the cantor set, then Df is (a constant multiple of) HYLc, where 

y = log 2/log 3.] 

Assume henceforth that n > 1, where as usual n c Rn is nonempty and open. 

9. 2. 8. NorA.TION Given an f E BV (n) , put 

n_(x) = ap lim inf f(y) 
y -r x 
y E r2 

n+ (x) = ap lim sup f (y) 
y -r x 
y E r2 

(x E n). 
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9. 2. 9. LEMMA The functions 

x -+ n (x) 

(x E rt) 

x -+ n+ (x) 

are Borel measurable functions in n. 

9. 2 .10. NDrATION 

[Accordingly, Jf is the set of points at which the approximate limit of f 

does not exist. ] 

9 •. 2.11. N.B. 

..n-1 
9.2.12. THEOREM Jf is H -rreasurable. 

9.2.13. THEOREM There exist countably many c1-hypersurfaces Sk such that 

9.2.14. THEOREM 

n-1 
I ID£ 11 LJf = (n+ - n_) H LJc 

Let 

be the decorrposition of Df into its absolutely continuous part w.r.t. Lebesgue 
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measure Ln and its singular part Dsf. So 

9.2.15. DEFINITION 

• The jump pa.rt of Df is 

• The Cantor part of Df is 

Therefore 

9.2.16. THEOREM: 

[Note: Here 

for I !Dfl I alnost every x in JC] 

Therefore 

a . .n-1 c 
Df = D f + (n+ - n_)vf M lJf + D f. 

9. 2 .17. REMARK Earlier, under the assumption that n = 1, we exhibited a 

decorrp:>sition of a PN function but a result of this type does not obtain for PN 

fiunctions of two or nore variables. 
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§9.3. VTFFERENTIATTON 

Let Sl be a nonempty qpen subset of R11. 

9. 3 .1. RAPPEL Let f E w1 'p (Q) -- then f is approximately differentiable 

almost everywhere (cf. 7.1.6). 

9.3.2. THEOREM Let f E BV(Q) -- then f is approximately differentiable 

a1most everywhere. 

[Note: Let 

Df = Daf + Dsf 

be the decan:p:>sition of Df into its absolutely continuous part Daf w.r.t. I.el:::lesgue 

measure Ln and its singular part Dsf - then 

Daf = faln, 

where fa:Q + Rn is the density of Daf, and 

almost everywhere. ] 

a ap df = f 

For the rroment, take n = 1 and let Q = ]a,b[. Supp::>se tbat f E BV(n) - then 

there is a g E BV (Q) such that g = f aJ..nost everywhere and g has an ordinary 

derivative aJ..nost everywhere. 

[To see this, choose g admissible, thus 

Tg]a,b[ = e - Tf]a,b[ < + oo, 

so g is of rounded variation in the traditional sense, thus has an ordinary derivative 

almost everywhere.] 

These considerations can be extended to arbitrary n > 1. 
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9.3.3. THIDREM Let f E BV(Q) -- then there is a g E BV(s-2) which is equiv-

alent to f with the property that its ordinary partial derivative ~g (i = 1, ... ,n) ox. 
l 

exists al.rrost everywhere. 

9. 3. 4. REMARK It follows that f ·has approximate partial derivatives al.rrost 

everywhere, hence has an approximate differential al.rrost everywhere. 

[Note: Neither f nor any equivalent function need have an ordinary differential 

at any point.] 

9. 3. 5. N. B. If in addition f is continuous, then f does have ordinary partial 

derivatives alrrost everywhere. 

where 

9.3.6. NarATION Generically, 

= (X! 1X•) I 
l l 

9. 3. 7. NOI'ATION An open rectangle 

R = Ja
1

,b1 [ x ••• ~]a ,b [ c Rn 
~ n n 

can be viewed as the product of a rectangle 

arid we write 

n-1 Rf c R (variable xj_) 

R. c R (variable x.) 
l l 

R = R! x R .• 
l l 
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let f E BV (r2) -- then 

where 

n Here it is a question of R -valued vector measures: 

and for every :eorel set E c n, 

9.3.8. THEOREM Let f E BV(Q), let 1 s i s n, and let g be any function 

equivalent to f for which the ordinary partial derivative ~g exists alrrost every-ox. 

where -- then 

alrrost everywhere. 

ag == tc:1' .. ax. l 
l 

J. 

The proof is on the lengthy side and will be broken up into 3 steps. Write 

for brevity a. in place of ~ • 
l ox. 

l 

Step 1: Consider a oonvex function q>:R -+ [O, + 00 [ and let R be an open 

rectangle wh:Jse closure R is oontainerl in n -- then the claim is that 

where 

JR ¢(3
1
.g) dln s lirn inf JR q>(().f ) dln, 

£ + 0 € l € 

== {x E R:dist(x,3R) > s}. 



4. 

To begin with, if ¢ is sufficiently .. srrooth and if h > 0 is sufficiently small, then 

¢ (x!, x. + h) - ¢ (x
1
!, x.) 

¢( l. l. l. ) 
h 

1 x. + h 
~ -h J 1 ¢(a.¢(x!, t)) dt x. l. l. 

(Jensen). 
l. 

Now integrate this along (Ri)h' hence 

¢ (x ! , x . + h) - ¢ (x ! , x . ) 
J ~c 1 1 1 1 

) ax 
{Ri)h'"' h i 

~ .!. J 
n ~R.) 

1h 

x. + h 
J 1 ¢(3.¢(x!, t)) dtdx. x. l. l. l. 

l. 

=JR ¢(8.¢{x!, t)) dt 
. l. l. 
l. 

=> 

¢ (x ! , x . + h) - ¢ (x ! , x . ) 
f I\i <I> ( 1 1 h i i ) dx s; f R <I> (di <P (x) ) dx. 

Specialize and take cp = f., the rrollification of f -- then alrrost everywhere 
~ 

f (x!, x. + h) - f (x!, x.)-+ f(x!, x. + h) - f(x!, x.) (s 1- 0), 
£ l. l. s l. l. l. l. l. l. 

thus by Fatou, 

f {x ! , x . + h) - f (x ! , x . ) 
J ¢( l. l. l. l. ) dx 
Rh h 



or still, 

5. 

$ lim inf JR ¢(3.f (x)) dx 
£ ~ 0 £ 1 £ 

g(x! ,x. + h) - g(x! ,x.) 
J ¢( 1 1 1 1 ) dx 
~ h 

(x)) dx. 

To finish, it remains only to send h to 0. 

Step 2: The next claim is that 

JR ¢(3.f) dLn $JR ¢(f~) dln + I ID~! I (R), 
1 £ 1 1 

E: 

where the convex function -41 is subject to the condition 

¢(s + t) ~ ¢(s) + ltl 

for all s,t E R. First, for every x E Q and any i E {l, ••• ,n}, 
£ 

=> 

()f 
a. f (x) £ (x) 

1 E: = ax. 
1 

d(fJE: 
= J - (x - y) f (y) dy 

Q ax. 
1 

d(.j) 
E: = - JQ ay. (x - y)f(y) dy 
1 

¢(3.f (x)) $¢(Jn cp (x - y) f~(y) dy) +!Jn 'P (x - y) dD~f(y) I· 
1 E ~' E:. 1 o~ € 1 
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Since 

Jn ~€(x - y) dy = 1, 

the first t.errn can be estimated by Jensen, so 

Therefore 

And 

Then 

JR ¢(3.f) dln ~JR <P(i:1) dLn +JR di ID~fl I· 
€ 1 € 1 1 

9.3. 9. N.B. Step 1 and Step 2 

=> 

~ JR <P (f~) dl n + 11 D~ f 11 (R) • 
1 1 

Step 3: Work with 

lim 
r -+ 0 

R( ) _ + ] r r[n xo,r = XO - 2' 2 . 

I ID~f 11 CR~0,r)) _______ __.;._ __ = 0 
n r 

for aln:ost all x 0 E Q (differentiation principle) • Fix such an x 0 and take it to 

be a Iebesgue p::>int for ¢(<1.g} and <P(i:1). Since 
1 1 

n n 
L (R(x

0
,r}) = r , 
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when r + O, 

+ o, 

=> 

Choose now for q> the function 

et (t < 0) 

'¥(f) = 

t + 1 (t ~ 0). 

Because 'f iS m::motone increasing I it follOWS that d , g (X) ;S f': (X) alnost everywhere 
1 l 

inn and consideration of '¥(-t) implies that 3.g(x) ;?; fC:(x) alnost everywhere inn. 
1 l 

9.3.10. SCHOLIUM Start with an f E BV(n), replace it by an equivalent 

g E BV(Q) with the property that the ordinary partial derivatives ~g (i = l, ••• ,n) ax. 
1 

exist alroc>st everywhere -- then 

\lg· = (ag ag ) v -3-, ••. , dx 
xl n 

(fa fa) __ 
= 1 1

•••
1 n 

alnost everywhere. 

[Note: 
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§9.4. BVL 

Let us first review the situation when n = 1. 

9. 4 Jl. RAPPEL If Q c R is open and nonempty and 

essential variation of f, denoted e - Tfn' is the set 

.Moreover f E BV(fil) iff 

And then 

inf {T fil:g f alrrost everywhere}. 
g 

[Note: Recall that n is the union of its connected components, these being 

intervals (finite or infinite).] 

Let n be a nonempty open subset of Rn. 

9.4.2. n-1 
I:\l'OrATION Per x ! E R , put 

1 

= { x. E R : (x ! Ix. ) E n} 
1 1 1 

and if n ':/- ~ and if f :n -+ R is Lebesgue measurable, denote by 
x! 

1 

e-T 

the essential variation of the function 

X • -+ f (X ! IX • ) • 
1 1 1 

n 
x! 

1 
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9.4.3. NOI'ATION If f E L
1 cm I write 

[Put 

J f dln = J J n n-1 0, 
f (X ! 1 X • ) dx • dx ! • 

1 1 1 l 
R 

f 0, 

x! 
1 

x! 
1 

f (X ! 1 X • ) dx • = Q 
1 1 1 

if 0, = /1.] 
x! 

1 

9.4.4. CRITERION I.et f E L1
(rt). Suppose that there exists an equivalent 

function g E L1 
(Q) and nonnegative functions v

1
, ... ,Vn in L1 (Rn-l) such that 

e-T 
g (xl_, -) 

0, 

x! 
1 

~ v 
i (x!) 

1 

for all xl_ E Rn-l such that n is nonempty (i = l, ..• ,n) -- then f E BV(n). 
x! 

l 

PROOF Fix i E {l, ••. ,n} and note that V. (x!) is finite al.rrost everywhere (being 
1 1 

1 n-1 
in L (R ). ) , hence 

e - T 0, 

g(x!, -) x! 
l 1 

is finite ahrost everywhere. But 

for alrrost all x! (Fubini), so the conclusion is that for alrrost all x!, 
1 1 

g (x ! , -) E BV (0. ) r 
1 x.' 

l 
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from which a finite signed Ra.don ireasure D in n of finite total variation such 

that 

with 

x! x! 
1 1 

3,g(x!, -) =D 
1 1 x! 

1 

I ID [ [ (n ) = e - T 
xi_ xi_ g(xj_, -) 

n 
xi 

1 

Proceeding, define a lin~...ar functional A on c
1 

(n) by the rule 
c 

Then A is continuous w.r. t. the top'.)logy of c
0 

(n). Proof: 

=> 

!A(¢)1 

A(¢) = J n-1 Jn 
R x! 

fC3.¢ dx.dx! 
1 1 1 

~max 

Q 

=max 
n 

s; max 
Q 

I <t> I 

I <t> I 

1 

J n-1 Jn cp dD 
R , x! 

J n-1 
R 

x. 1 
1 

I ID 11-W 
x! 

1 
..l{ ! 

1 

J e - T 

) 

ax. 
1 

dx. 
1 

n n-1 
R g(xj_, -) x! 

1 

I <P I J 1 v. ex! ) n- 1 1 R 
dx!. 

1 

Now extend it to a continuous linear functional on c0 (n) and use the "Co" version 

of the RRr to get a finite signed Radon ireasure Di such that for all <PE c 0 (n), 



or still, V ¢ E c1 (n), c 

Since 

4. 

I! D · II <m = 11A11 * ~ f 1 v. (x !) ax! < + 00
, 

1 Rn- 1 1 1 

it follows that f E BV (n) • 

9.4.5. REMARK Take n 1 and suppose that n = ]a,b[ -- then x! is just an 
1 

abstract point, call it *, and n* can be identified with Ia,b[. Starting with 

f E L1
(Ja,b[), the assumption ab::>ve anounts to saying that there exists a 

g E L 
1 

(] a,b [) and a constant C ~ 0 such that 

e - T (- ) ] a, b [ :$; c < + oo. 
g *1 -

But then 

g E BV(]a,b[) 

which implies that 

f E BV(] a,b]). 

Take 

Q = [O,l] x [O,l] 

and f:Q-+ R be a continuous function {hence f E L1 (Q)). 

9.4.6. Nor.ATION 

v (f ;y) =T [O, l] (0 s y s 1) 
x f (-, y) 

Vy (f ;x) =T 
[O,l] (O s x s 1). 

f (x, -) 
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[Note: Since f is continuous, 

,- Tf(-, y) [O,l] = Tf(-, y) ]O,l[ 

Tf (x, -) [O,l] = Tf (x, -) ] 0,1 [. 

9.4.7. LEMMA V (f;y) and V (f;x) are Lebesgue measurable. x y 

9.4.8. DEFINITION f is said to be of rounded. variation in the sense of 

'lbnelli if 

9. 4. 9. N. B. When dealing with essential variation on open subsets of the 

line, the function in question is continuous, one can Yl.Drk instead with the usual 

variation, reason being that the approximation via approximate points of con-

tinuity anounts to approxin:ation via points of continuity. 

9. 4 .10. SCHOLIUM If f is of rounded variation in the sense of 'lbnelli, then 

flQ0 E "BV(Q
0

) and the ordinary partial derivatives 

exist alrrost everywhere in Q0 (f!Q0 being continuous). 

Relax the assumption that f:Q-+ R is continuous to merely that f E L1 (Q
0
). 
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9. 4 .11. NOTATION 

e - Vx(f;y) = e - Tf(-, y) ]O,l[ (0 < y < 1) 

e - Vy(f;x) = e - Tf(x, -) ]O,l[ (0 < x < 1). 

[Note: The essential variations here are per ] 0, 1 [: 

f (-; y) is the function x + f(x,y) (0 < x < 1) 

f (x, -) is the function y + f (x,y) (O<y<l).] 

9.4.12. LEMMA e - V (f;y) and e - V (f;x) are I.ebesgue measurable. 
x y 

9.4.13. DEFINITION f is said to be of rounded variation in the sense of 

Cesari 

9.4.14. REMARK Under the preceding circumstances, it can be shown that there 

exists a function g equivalent to f such that 

1 10 vx(g;y) dy < + oo 

9.4.15. SCHOLitJ.M If f is of rounded variation in the sense of Cesari, then 

f E PN(Q
0

) and there is a g E PN(Q
0

) which is equivalent to f with the property that 



the ordinary partial derivatives 

exist alnost everywhere in Q
0

. 

3g dg 
dX / dy 

7. 
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SECTION 10: ABSOLUTE CONTINUITY 

10 .1. RAPPEL Let n be a nonempty open subset of R -- then a function 

f :rl + R is absolutely continuous if V e > 0, 3 o > 0 such that for every finite 

collection [al,bl], .•• , [~11\:l of pairwise disjoint closed intervals inn, 

k 1 k 
l: L ([a.,b.]) < o => l: lf(a.) - f(b.) I < s. 

j=l J J j=l J J 

Here is one extrapolation from R to Rn(n > 1), where now n is a nonernpty open 

n subset of R • 

10. 2. DEFINITION A function f:n + Rn is -'h.-absolutely continuous if 

V e~O, 3 o > 0 such that for every finite collection B(x1 ,r1), .•. ,B(~,rk) of 

pairwise disjoint closed balls in n, 

k 
l: 

j=l 

k n n L (B (x. , r . ) ) < o => l: osc (f, B (x . , r . ) ) < E:. 
J J j=l J J 

[Note: n If E is a subset of R , then 

osc(f,E) = diam(f(E)).] 

Obviously, 

n-absolute continuity => continuity. 

10.3. NarATION Put 

v (f ,rl) 
n 

k 
= sup{ l: 

j=l 

n (osc(f,B(x.,r.))) }. 
J J 

10.4. DEFINITION f is of bounded n-variation in n if 
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v (f,m < + oo. 
n 

10.5. NorATION Bv11(n) is the set of all functions f:n + Rn of bounded 

n-variation in n. 

10.6. Nar.ATION Acfl(n) is the set of all functions f E Bv1°1(n) that are 

n-absolutely continuous. 

10.7. REMARK The notion of n-absolutely continuous uses closed balls. 

One could also w:>rk with closed cubes. Here, however, one has to be careful: 

Examples have been constructed which show that working with closed balls is not the 

same as working with closed cubes, thus that these two concepts are incomparable. 

10.8. DEFINITION A function f:Q + Rn satsifies the condition RR if there 

is a nonnegative function c,p E L
1 

(Q), a so-called weight, such that 

( osc (f, B (x, r) ) ) n $ J B (x, r) cp dl n 

for every B(x,r) c Q. 

10. 9. NorATION Denote by RRn(Q) the set of all functions f:Q + Rn 

which satisfy condition RR. 

10.10. THEOREM 

10.11. THEOREM Let f E Bv11(n) -- then f is differentiable alrrost everywhere. 

Matters 1can be generalized, thus suppose that 0 < \ s 1. 

10.12. DEFINITION A function f:Q + Rn is A, n-absolutely continuous if 
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V £ > O, j o > 0 such that for any finite collection B(x1,r1), •.. ,B(~,rk) of 

pairwise disjoint closed balls in n, 

k k 
l: 

j=l 

n n L (B (x. , r . ) ) < o => l: osc (f, B (x. , A.r . ) ) < s. 
J J j=l J J 

10 .13. N. B. 1, n-absolute continuity coincides with n-absolute continuity. 

10.14. NOI1ATION Put 

v, (f,r2) 
l\1n 

k 
= sup{ l: 

j=l 

n ( osc (f, B (x . , A.r . ) ) ) } • 
J J 

10.15. DEFINITION f is of rounded A., n-variation in S"2 if 

v, (f ,n) < + oo. 
/\,n 

10.16. NOI1ATION BVA.,n(r2) is the set of all functions f:rt -+ Rn of rounded 

A., n-variation in S"2. 

10.17. NOI'ATION ACA.,n (n) is the set of all functions f E BVA.,n (n) which 

are A., n-absolutely continuous. 

10.18. N.B. 

(0 < A. < 1) 

and it can be shown that the containment is proper. 

10.19. LEMMA Let f:S"2 + Rn and suppose that 0 < A.
1 

< A.
2 

< 1 -- then f is 

A.1 , n-absolutely continuous iff f is A.
2

, n-absolutely continuous. 
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10.20. THEOREM Suppose that 0 < Al < \ 2 < 1 -- then 

\ 1,n A2,n 
BV ([l) = BV (Q). 

10. 21. SCHOLIUM There are but tv.Jo classes of A, n-absolutely continuous 

functions, viz. those corres:ponding to A = 1 and to 0 < A < 1. 

10.22. DEFINITION Let f:Q 7 Rn and suppose that 0 < \ < 1 -- then f satisfies 

the condition RR:\ if there is a nonnegative function cp E L1 (n), a so-callled weight, 

such that 

h n 
(osc(f,B(x,\r))) ~ JB(x,r) cp dl 

for every B(x,r) c Q. 

[Note: Fonna.lly, RR1 = RR. ] 

10.23. NOI'ATION Denote by RRA'n(Q) the set of all functions f:Q 7 Rn 

which satisfy condition RR\. 

10. 24. THEOREM 

10.25. THEOREM Let f E BA'n(Q) -- then f is differentiable alnost everywhere. 

Return now to the beginning. 

10.26. LEMMA Suppose that Q is bounded and f:Q 7 Rn is Lipschitz, say 

n for all x1,x2 E Q -- then f ERR (Q). 
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[Define cp:r2 -+ R by the rule 

'fl12n 1 
<P (x) = -- (=> <P E L (r2) ) • 

(Jj 
n 

Then for any B(x,r) c n, 

f dln = 1112n J 1 dln 
B(x,:rj <P w B(x,r) 

n 

=> 

n l/n 
(JB(x,r) <P dl ) = M(2r). 

But 

=> 

=> 

osc(f,B(x,r)) ~ M(2r) 

=> 

n n 
(osc(f,B(x,r))) ~ JB(x,r) <P dt .] 

10. 27. LEMMA Supp:>se that r2 is rounded and f E w1 1P (r2; Rn) (p > n) is 

oontinuous -- then f E RRn (n) • 
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[U:pon consideration of COffiFOnents, one can take n = 1. This said, for any 

B (x, r) c rl (cf. 7 . 4 .11) , 

osc (f ,B (x,r)) :::; Crl-n/p (J 11 Vf I Ip dL n) l/p 
B(x,r) 

=> 

So, for the weight, one can take 

[Note: The usual convention on the constant "C" is in force, i.e., it may 

change from line to line. ] 
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SECTION 11: MISCELLANEA 

9T1.1. PROPERTY (N) 

n Let n be a nonempty open subset of R • 

11.1.1. DEFINITION A continuous function f:Q + Rn is said to have property 

(N) if f sends sets of Lebesgue measure 0 to sets of Lebesgue n:easure 0: 

11.1.2. SUBLEi\1MA If E E M~, then there exists an F
0
-set F c E such that 

l?"(E\F) = 0. Choose next a countable collection of corrpact sets C. for which 
J 

j 
F = U C . and put K. 

. J J 
J 

= u ~, thus {K. } is an increasing sequence of· compact sets 
k=l J 

with u K. = u c. = F. Fina.lly, since E is the disjoint union of F and E\F, vve have 
j J j J 

n 11.1.3. 'LEMMA Suppose that f:n + R has property (N) -- then the irrplication 

E E Mn (E c n) => f (E) E Mn 
L L 

obtains. 

PROOF As ab::>ve, write 

E = F U (E\F) (F = U K.). 
. J 
J 
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Then 

f(E) = f (F) U f(E\F) 

= u f(K.) + f(EjF). 
. J 
J 

Since f is continuous, the f (Kj) are corrpact, hence measurable, so the union u f ~Kj) 
j 

is measurable. On the other hand, 

All told therefore, 

n 
=> f(E\F) E ML. 

11.l.4. EXAMPLE Take n = 1, Q = ]a,b[, and suppose that f:]a,b[ -+ R is 

absolutely continuous -- then f has property (N) • 

11.1.5. EXAMPLE If f:Q + Rn is locally Lipschitz, then f has property (N) 

(cf • 2. 3 • 23) • 

[Note: In particular: A C' -function f has prqperty (N) (being locally Lip­

schitz).] 

11.l. 6. N.B. The preceding consideration is false if f is merely continuous 

or even Holder continuous with exp::ment 0 < a < 1. 

[The Cantor function f sends the Cantor set C (L 1 (C) = 0) to f (C) (L 1 (f (C)) 1). 

And f is Ik>lder continuous with exponent a. ~ :; ; • ] 

11.l. 7. RAPPEL (VITALI) Let B be a system of closed. ba.lls in Rn such that 



3. 

sup {diam(B) :B E B} < + oo. 

Then th.ere exists a pairwise disjoint, at rrost countable subsystem {B (x. , r. ) } c B 
l l 

such that 

u c 

BEB 
u B (x . , Sr . ) • 
. l l 
l 

11.1.8. THEOREM Suppose that f:Q + Rn is n-absolutely continuous -- then 

f has property (N} • 

PROOF Fix an E c Q of Lebesgue measure 0. Given £ > 0, choose o > 0 per the 

definition of n-absolute conbinui ty, subject to o < £. Let G c Q be an open set 

containing E with L n (G) < o. Given an x E E, choose r (x) > 0 such that 

B(x,r(x)) c G, E(x) < {
0

, and p(x) = osc(f,B(x,r(x))) < {
0 

• 

Using Vitali, determine a disjoint system 

such that 

Since 

{B(f(x.),p(x.))} c {B(f(x),p(x)) :x EE} 
l l 

f (E) c u B(f(x.), 5p(x.)). 
. l l 
l 

f (B (x . , r (x. ) ) ) c B ( f (x. ) , o (x . ) ) , 
l l l l 

the B(x. ,r (x.)) aLe pairwise disjoint, hence 
l l 

H~(f(E)) s CL p(xi)n 
i 

n 
s CE osc(f,B(x.,r(x.)) 

. l l 
l 

::; c £. 
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Now let s + 0 to conclude that 

fil(f(E)) = 0 

or still, that 

11.1.9. APPLICATION Suppose that f E w1 1 P(r2;Rn) (p > n) is continuous --

then f has property (N) . 

[In fact, 

f E RRn (n) (cf. 10. 27) • 

But 

RRn (.Q) = Ac11 (Q) (cf. 10.10).] 

11.1.10. REMARK There are continuous functions in w1 1 n(n;Rn) (n > 1) that 

do not have property (N). 

[E.g., it is possible to construct a continuous f E w1 1 n(Rn;Rn) (n > 1) which 

n sends [O,l] onto [0,1] • Therefore f does not have property (N) .] 

11.1.11. THEOREM If f E w1 ,n (Q; Rn) is continuous and open, then f has 

property (N} • 

11.1.12. N. B. There exists a homeomorphism 

which does not have property (N) • 

11.1.13. THEOREM If f E w1 1 n(O;Rn) is Holder continuous, then f has 

property (N) . 
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* * * * * * * * * * * * 

APPENVIX 

k LEMMA Let 1 :::;; k ::;; n, let n be a nonempty open subset of R , and let 

T:n + Rn be continuous and one-to-one -- then 

PRCXlF n is a o-canpact subset of Rk, hence T(n} is a o-corrpact subset of Rn 

(T being continous), hence T(n) E B (Rn). Let now 

A {E c n:T(E) E B(Rn)}, 

a a-algebra of subsets of n (as regards complementation, note that T (n\E) = T (n) \ T (E} , 

T being one-to-one) • It is clear that A contains the open subsets of n, (per the 

initial observation) , so A contains the Borel a-algebra B (n) • But B (A) 
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§T1.2. THE MULTIPLICITY FUNCTION 

I.et n be a nonempty open subset of Rn and let f :Q -+ Rn be a continuous function. 

11. 2 .1. DEFINITION If E c n, then 

N(f,E,y) = #{x E E:f (x) = y} 

or still, 

N(f,E,y) = tt0 (E n (y)) 

is the multiplicity function of f at y E Rn w.r.t. E. 

[Note: N(f,E,y) is the cardinality of E n f-l (y) and if this set is infinite, 

then we put 

N(f,E,y) = + 00 .] 

11.2.2. LEMMA 

11. 2. 3. LEMMA If {~} is an increasing sequence of subsets of Q, then 

00 

where E = U ~· 
k=l 

N(f,E,y) = lim N(f,~1y), 
k -+ 00 

11. 2. 4. 
n THEOREM. SuppJse that f :n -+ R has property (N) -- then for any 

I.ebesgue measurable set E c n, the mu1 tiplici ty function 

y-+ N(f,E,y) 

is Lebesgue measurable in Rn. 
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PROOF Take E rounded and for every m E N construct a partition of E into 

pairwise nonintersecting :rreasurable sets 

such that 

diarn(Elm)) $ ~ (i = l, ••• ,k(m)). 

Put 

N(f ,m,-) = + •.• 

and note that each of the sets f (E~m)) is measurable (since f has property (N)), ·ir,..,1 
l 

hence N (f,m,-) is measurable. Accordingly it need only be shown that 

lim N(f,m,y) = N(f ,E,y) 
m -+ oo 

to establish the contention. Given y E Rn, there are t.voc> possibilities for 

-1 
En f (y}: It is either finite or it is infinite. 'lb treat the first of these, say 

-1 
E n f (y). = {xl I ••• ,xk}, 

take 

If m > m0, then none of the Elm) contain t~ distinct xr,xs' so it can be assumed that 

(m) (m) 
x1 E El , ••• ,~ E ~ • 

Next, V m > m0, 

N (f ,m,y) ~ N (f ,E, y) 
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=> 

lim inf N(f,m,y) ~ N(f,E,y). 
m -+ oo 

On the other hand, 

N(f ,m,y) s N(f,E,y) 

=> 

lim sup N(f,m,y) s N(f,E,y). 
m -+ oo 

Therefore 

lim N(f,m,y) = N(f,E,y). 
m -+ oo 

11.2.5. LEMMA If f:n -+ Rn is continuous and open, then for every open set 

G c n, the function y -+ N (f ,G, y) is lower semicontinuous in Rn. 
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§11.3. JACOBIANS 

let n be a nonenpty open subset of Rn. 

11. 3 .1. DEFINITION Let f = (f1 , ••• , fn) E J-,n (st; Rn) -- then the Jacobian 

of f, denoted Jf, is the determinant 

det(vf1, ••• ,vr). 

11.3.2. N.B. The coordinate functions fi (1 ~ i ~ n) of f and their first 

order distributional derivatives belong to Ln(n). 

[Note: Nevertheless, an element of w1 'n (n; Rn) may be nowhere continuous, hence 

nowhere differentiable.] 

11.3.3. THEOREM If f E w1 1 n(S1;Rn), then Jf E L1 (n). 

PR(X)F Jf is a sum of tenns, each of which is (plus or minus) the prcxluct of 

n weak partial derivatives of the corrponents of f and, as noted alx>ve, each of these 

. . n( ) lS in L st • The product of n L n (n) ~unations is in L 1 (n) (apply Holder) , hence 

11.3.4. FA.Cr If f:Rn + Rn is Lipschitz, then for any E E M~, 

[This will be established in §12.5.] 

11.3.5. RAPPEL Let f E w1 1 P(n) -- then there is a partition 

00 

st = ( U ~) U Z, 
k=l 
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where the~ are Lebesgue measurable sets such that f I~ is Lipschitz and Z has 

Lebesgue measure a (cf. 7.1.5). 

11.3.6. THEOREM Suppose that f E w1 1 n(rl;Rn) has property (N) -- then 

f 0. !Jf I dln = f Rn N(f,0.,y) dy. 

PROOF The foregoing decornposi tion prino±ple extends from w1 'n (n) to w1' n (n; Rn) 

and the Lipschitz function f j~ extends to a Lipschitz function fk:Rn -+ Rn, hence 

per supra 

00 

n Put Ea= u ~ -- then n =Eau z CL (Z) =a), so 
k=l 

Jn jJfl dln = JE IJf I dln 

00 

= E J jJf I dln 
k=l ~ 

00 

= ~ J N(fk,R ,y) dy 
k=l Rn -k 

= J N(f ,E,y) dy 
Rn 

~ f N(f,Q,y) dy 
Rn 

= J N(f,E,y) dy + J N(f ,Z,y) dy 
Rn Rn 



=> 

[Note: 

3. 

=!Rn N(f,E,y) dy + f f(Z) N(f,Z,y) dy 

= f N(f,E,y) dy (Ln(f(Z)) = 0) 
Rn 

f(Z) = {y:N(f,Z,y) ~ O}.] 

11.3. 7. N.B. The assumption that f has property (N) irrplies that the 

relevant ITUlltiplicity functions are Lebesgue measurable. 

11. 3. 8. THEOREM If f E w1 'n (s-2; Rn) is continuous and if J f > 0 alnost every­

where in n, then f has property (N). 

11.3.9. REMARK Exa.nples have been constructed of continuous functions 

f in w1 1 nUt;Rn) such that Jf = O alnost everywhere in n but such that f fails to 

have property (N) • 

On general grounds, an f E w1 1 P(n;Rn) (1 ~ p < + 00 ) is approxima.tely differ-

entiable al:rrost evs:ywhere in Q. More is true if p = n, namely 

ap - df 

is "regular" (i.e., "E" can be written as a union of concentric spheres centered at x). 
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SECTION 12: AREA FORMULAS 

a12.1. THE LINEAR CASE 

12.1.1. RAPPEL Let T:Rn -+ Rn be a nonsingular linear transfomation --

then 

E E ~ => T(E) E M~ 

and 

12.1.2. N.B. This is the s.:i.rrplest instance of what is knoYm as an "area 

formula". As will be shoYm below, it leads to a "change of variable formula". 

Retaining T and E, suppose given a function f :E -+ [- 00 , + oo]. 

12 .1. 3. LEMMA If f is Lebesgue measurable on E, then f o T is Lebesgue 

measurable on T - l (E) • 

12.1.4. THEOREM 

f f dL n = I det (M.:r) I f _ 1 f o T dL n 
E T (E) 

in the sense that if one of the tYD integrals exists then so does the other and 

the t\ll.D are ~JL.. 

PROOF Let S E M~ -- then 

=> 
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Take for f the characteristic function x8 of s, hence 

= ldetCM.r) I Ln(T-l(E) n T-l (S)) 

= !detCM.r> I J x -1 
dln 

T-l(E) T (S) 

= ldet(M.r> I J 
T-l(E) 

x8 o T dln 

= ldet<~> I / _1 f o T dln. 
T (E) 

One can then proceed from here to a nonnegative simple function on E and then 

to a nonnegative extended real valued Lebesgue m=a.surable function on E and finally 

+ - + -to the general case (write f = f - f and v..ork separately with f and f ). 

fNote: By way of a justification, rronotone convergence is used when coupled 

with the fact that there exists an increasing sequence {f.} of nonnegative simple 
J 

functions such that f. t f.J 
J 

12.1.5. REMARK .Matters can be restated,. viz. 
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the underlying supposition being that in this context, f:T(E) -+ [- 00 , + 00] is 

I.ebesgue measurable. 

Assume: k,n E N, 1 ~ k ~ n. 

12.1.6. DEFINITION Suppose that T:Rk-+ Rn is a linear transformation --

then the adjoint of T is the linear transformation T*:Rn -+ Rk characterized by the 

condition 

< x, T*y > = < Tx, y > 

for all x E Rk and for all y E Rn. 

[Note: In tenns of matrices, 

T 
M = !\i1 

T* 

the transpose of M.r. ] 

12.1. 7. NOI'ATION Given a linear transformation T:Rk-+ Rn, put 

J(T) = ~et(T*T). 

[:Note: J (T) is nonzero iff T is nonsingular.] 

12.1.8. N.B. If k = n, then 

det(T*T) = det(M ) 
T*T 

= det(M M.r) 
T* 

T = det(~) 
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=> 

J (T) = /det (T*T) 

= ket(Mrr) 
2 

= !det(~) I = ldet(T) I· 

12 .1. 9. DEFINITION 

• A linear map U:Rk -+ Rn is said to be orthogonal if < Ux,Uy > = <,,.x,y > 

k for all x,y E R • 

• A linear map S: Rk -+ Rk is said to be syrrmetric if < x, Sy > = < Sx, y > 

k for all x,y E R • 

12 1 lo Rk Rn be ' . . l' • • • POLAR DECOMPOSITION Let T: -+ an lllJective inear trans-

formation -- then there exists a symmetric map S:Rk -+ Rk and an orthogonal map 

k n U:R -+ R such that T =US. 

1 f Rk Rn · · . . l' f t. d 12 .1. 1. THEOREM I T: -+ is a inJ ecti ve inear trans orma ion an 

if EE M~, then T(E) E M(tf) and 

tf(T(E)) = J(T)Lk(E). 

PROOF 'Ib establish the purported equality, consider first the case when k = n, 

bhus 

rf(T(E)) = Ln(T(E}) 
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SupJ:X>sing now that k < n, write 

U being an isometry. But 

And 

=> 

=> 

Hk(T(E)) = ~(US(E)) 

= ~(S (E)) I 

rf(S(E)) = Lk(S(E)) 

T*T = S*U*US 

= S*S (U*U = id) 

2 = S (S* = S) 

det(T*T) = det(S) 2 

J(T) = v&et(T*T) = lciet(S) 2 = ldet(S) I· 

12.1.12. REMARK If T:Rk-+ Rn is Lipschitz, then (cf. 12.3.1) 

[Note: 

Proof: 

EE M~ => T(E) E M(Hk). 

T linear => T Lipschitz. 

I ITx - Tyl I ~ I !Tl I llx - Yll k (x,y E R ) • ] 
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12.1.13. SCHOLIUM 

'lb repeat: k,n E N, 1 ~ k ~ n. 

12 .1.14 • NOI'ATION 

The matrix M.ri associated with T is n x k. Given ).. E Nk, let~ be the k x k 

suhnatrix of M.ri made up of the rows ;..1 , .•• ,Ak of~-

12.1.15. CAUCHY-BINEI' FORMUIA 

J (T) 2 = l: 

aEAk . ,n 

(det(~)) 2 • 

Therefore J(T) is the square root of the sum of the squares of the k x k 

sul:rleterminants of det CMr:r) • 

12.1.16. EXAMPLE Suppose that k = 2, n = 3, and 

a b 

M.r = c d 

e f 

Put 

a b 

u= c ' v = d 

e f 



and set 

Then 

On the other hand, 

so 

and by Cauchy-Binet, 

7. 

I 
2 2 2 2 

E= lull =a +c +e 

F = < u,v > = ab + cd + ef 

2 2 2 2 
G = I !vi I = b + d + f • 

E 

det(~) = det 

F 

F 

G 

A
213 

= {(1,2), (2,3), (1,3)}, 

a b 

~1,2) = :: A 
c d 

c d 

~2,3) = :: B 

e f 

a b 
~1,3) ::: C, 

e f 

2 
= EG - F . 
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= (ad - l::x::!)
2 + (cf - ed)

2 + (af - be)
2• 

Consider now u x v, the vector cross product of u and v: 

cf - ed 

eb - af 

ad - cb 

=> 

2 
11 u x v 11 = det c~) 

=> 

11 u x v 11 = J (T) • 
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§12.2. THE C'CASE 

It was shown in the previous § that if T:Rk -+ Rn (k ~ n) is an injective 

linear transfonnation, then 

EE Mt=> T(E) E M(tf) 

tf (T (E) ) = J (T) L k (E) • 

This conclusion can be generalized: 

k k (1) Replace R by a nonenpty open subset r2 c R • 

(2) Replace T by a one-to-one function ~:n-+ Rn of class C'. 

After a fair aIIDunt of effort, ItE.tters then will read 

Setting aside the proof until later, we shall first deal with some preliminaries 

and consider some exarrples. 

12.2.1. LEMMA Let T:Rk-+ Rn (k ~ n) be a linear transfonnation -- then 

rank T ~ k, ker T = ker T*T, 

and the following are equivalent: 

(a) J(T) = ket(T*T) = 0, 

(b) ker T "I { 0} , 

(c) rank T < k. 

[Note: If T is injective, then V x E Rk, 
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=> 

llxll ~l $11Txll-J 
I IT 11 

12. 2. 2. NOTATION Given x
0 

E n, put 

from which a function J(~):Q + R. 

[Note: J (~) (x
0

) -1- 0 iff d~ (x
0

) is injective.] 

12.2.3. RAPPEL If ~:n + Rn is differentiable at a point x
0 

E Q, then the 

n x k matrix 

is the Jacobian matrix of ~ at x
0

• 

[Note: D<I> (x
0

) is the matrix that represents d~ (x
0
).] 

12.2.4. N.B. SupJ?Ose that k = n -- then 

'What follows are some particular cases of the relation 
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12.2.5. n EXAMPLE Take k = 1, n > 1, take n = ]a,b[, so ¢:]a,b[ -+ R 

is a curve: 

1 n 
¢ (x) = (¢ (x), ... , ¢ (x)) (a < x < b) • 

And 0¢ (x) is an n x 1 matrix or still, upon switching the column vector to a row 

vector, 0¢(;x) becomes a 1 x n matrix, viz. 

thus 

J(¢) = hd¢1) 2 + 
dx 

..• + 

If therefore ¢ is one-to-one, then 

E.g.: Let 

¢ (x) = (cos x, sin x, x) (0 < x < 1), 

hence . 
<p(x) = (- sin x, cos x, 1) => I l<r>l I = 12, 

hence 

H1 
( ¢ (] 0, 1 [) ) = J~ I I ~ 11 dt = /2. 

12. 2. 6. EXAMPLE The graph of a C' function f: Q -+ R (r2 c Rk) is the subset 

of Rk+l definErl by 

k 
Grf = {(x,f(x)) ER x R:x E Q}, 

k+l 
i.e. I Grf is the image of the injective map ¢ (x) = (x,f (x)) from n to R . Here 
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I' id I 
D<P (x} = 

Df (x) 

thus by Cauchy-Binet, 

.;{_ + ·(.df ) 2 + (~) 
2 

J (0¢ (x)) = ••• + 
dtl d~ 

or still, 

J (O<P (x)) = /i + 11 Of (x) 11
2 

=> 

k 
H (Grf) = Hk (<P (n)) 

= f n Ii + 11 Of I 1
2 dlk. 

12.2.7. EXAMPLE Let <P:n-+ Rk+l (n c Rk) be a one-to-one map of class C' 

... 1.then the Jacobian matrix of <P has k + 1 rows and k columns and its k x k suhnatrices 

can be indexed by the missing row. If 

a (x1 , ... ,~) 

denotes the determinant of the suhnatrix obtained by rerroving the ith row, it there-

fore follows that 

k 
ff (<P (Q) ) = f ( L: n i=l 

(d(<Pl, •.• ,<Pi-l'<Pi+l 1 ···<Pk)) 2) 1/ 2 dlk. 

a (x1 , ... ,xk) 

12.2.8. SCHOLIUM Take k = n and let <P:&l -+ Rn be a one-to-one function of 
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n 
class C' -- then V E E ML (E c n) , 

from which 

[The first point is a special case of the general theory and the second point 

follows from the first. To see this, assume to JJegin with that E is Borel, hence that 

~-l(E) = {x E n:~(x) EE} is Borel (~being continuous), so 

n n 
J ~(me xE dl = L (E n ~ (n)) 

~ Ln(~(~-l(E) n n)) 

To proceed in general, let E E M~ (E c n) and write E = F u N, where F n N = J1, 

F is an Fa-set, and N is a subset of a G0-set G with L n (G) = O. Since F and G are 

Borel, 

and 

From here, it remains only to incorporate N. • . • ] 
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12.2.9. THEORElX1 If w:n +Rn is one-to-one and if f:w(n) + [- 00 , + 00] is 

Lebesgue measurable, then 

[This is true when f = XE and the general case follows by a standard approx­

imation argument.] 

12.2.10. N.B. The relation 

is an instance of a so-called "area fonrrula". 

12.2.11. EXAMPIB 'W:>rk in R2, take 

n = ]0, + oo[ x ] - TI, TI[, 

2 
and for (r,8) E n, define w:n -+ R by the rule 

w1 (r,8) = r cos e = x 

2 ¢ (r,8) = r sin e = y. 

Then w is one-to-one, of class C', and its range ¢ (n) is R2\A, where 

A=] - 00 , O] x {O} c Rx R (=> L2 (A) = 0). 

The Jacobian matrix Dw{r,8) is given by 

C'OS 9 - r sin 9 

sin e r cos e 

and the Jacobian J ¢ (r I 8) I i. e • I det (OW (r I e) ) I equals r • So fonnally 



f 2 f (x,y) dln(x,y) 
R 

7. 

= f 2 f (x,y) dln(x,y) 
R \A 

= f <P(n) f dLn 

= J]0
1 

+ oo( x] - TI,TI[f(r cos 8, r sin 8)r dL
2

(r,8). 
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§12.3. PROOF 

12.3.1. SUBLEMMA If T:Rk + Rn (1 $ k $ n) is Lipschitz continuous and if 

E c Rk is Lebesgue measurable, then T(E) is ffc-measurable. 

PRCX)F It can be assmned that E is rounded. Accordingly let {K. } be a seq:uence 
J 

of compact sets such that Kj c E, Kj c Kj+l' and 

Since T is continuous, follows that 

T ( U K . ) = U T (K . ) 
j J j J 

is Borel (being a countable union of compact.a.), thus is Hk-rneasurable. Now write 

Then 

Therefore T(E) 

T(E). = T(~ KJ.) u T(E\U K.). 
J j J 

ffc(T(E\U K.)) . ] 
J 

$ Lip(T)k ffc(E\U K.) 
j J 

= Lip(T)k lk(E\U K.) 
j J 

= Lip(T)k • 0 0. 

the union of a Borel set and a set of zero ff-measure, so T(E) 

[Note: There are various easy variations on this theme. ] 
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k n 12.3.2. DATA 1 $ k $ n, n c R a nonempty open set, <P:n -+ R a one-to-one 

function of class C' , E c n a Lebesgue measurable set. 

12.3.3. THEOREM <P(E) is Hk-measurable and 

Hk(<P(E)) = JE J(<P) dlk (area formula). 

12.3.4. EXAMPLE Supp::>se that G c <P (n) is Borel, hence ff-measurable --

then 

so 

LEMMA A E n d h dif, ( ) E (Rk Rn) · · · · Let x
0 

~~ an assume t at '*' x
0 

Hom , is in]ective --

then V s > 0 (< 1) there exists a neighlx:>rhcxxi U c n of x0 such that for all 

x', x" EU, 

$ 11 <P ex' l - <P <x") I I 

PROOF Fix E )> 0 (< 1) and choose c > 0: 

Since o is class C', there exists o > 0 such that 

k 
(x E R ) • 
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So, for x', x" Eu= B(x
0

,o) 0
, 

11 <P (x') - ¢ (x") - d<P (x
0

) (x' - x") 11 

= I If~! (<P(x" + t(x' - x") - d<P(x0) (x" + t(x' - x"))) dtl I 

= I J!~ [d<P(x" + t(x' - x")) - d<P(x
0

)J (x' - x") dtl I 

~ Cs 11 x' - x" 11 ~ s 11 c~<P (x0) (x' - x") 11 . 

Therefore 

• 11 <P (x' ) - <P (x") I I 

~ I ld<P(x
0

) (x' - x") 11 + I l<P(x') - ¢(x") - d<P(x0) (x' - x") 11 

• I I <P (x ' ) - <P (x" ) I I 

~ 11 d¢ (x
0

) (x' - x") 11 - 11 <P (x') - ¢ (x") - d¢ (x
0

) (x' - x") 11 

k n 
LEMMA B Iet x 0 E n and assume that d<P (x0) E Hom(R ,R ) is injective - then 

v s·> O (< i) there·ex±sts a'neighlx:>rhood Uc n of x 0 such that for each Lebesgue 

measurable set E c U, ¢(E) is tf--measurable and 

(1 - sxk+l J J(cp) dlk 
E 
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k+l k 
~ (1 + s) f E J(<P) dl • 

PROJF Since the linear transformation d<P(x
0

) :Rk +Rn is injective, 

-1 k k d¢(x
0

) :d¢(x
0

)R + R . 

Given s > 0 (< 1), choose o > 0 so small that the conclusion of LEMMA A holds, where 

as there u = B(x0,o) 0 
and in addition 

-1 
(1 + s) J(<P) (x) ~ J(<P) (x

0
) ::; (1 + s) J(<P) (x), 

¢ being of class C' (I Ix - x 0 11 <t'o). In the relation 

take 

Then 

Therefore 

I l<P(x') - <P(x") 11 ::; (1 + E) I ld<P(x0)x' - d¢(x0)x" 11, 

-1 x' = d<P(x ) y' 
0 

-1 x" = d<P (x ) y" 
0 

= 11 ¢ (x') - ¢ (x") 11 

(y' , y" E d<P (x
0

) (U) • 

= (1 + E) 11 y' - y" 11 . 
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is Lipschitz continuous with 

-1 
Lip(¢ o d¢(x

0
) ) ~ 1 + £. 

consequently, 

~ (1 + E) k ff (d¢ (xQ) (E)) (cf. 2.3.10) 

= {l + s)k J(d¢(x
0
))Lk(E) (cf. 12.1.11) 

= (1 + s)k J(¢) (Xo)Lk(E) (cf. 12. 2. 2) 

k k 
= (1 + e:) J(¢) (x0) f E 1 dl 

(1 + t:)k f E J(¢) (x
0

) dlk 

the sought for estimate from alx>ve. To arrive at the estimate from below, in the 

relation 

(1 - £) 11 d~ (xo) x' - d¢ (xo) x" 11 s 11 <P (x') - ¢ (x") 11 

take 

- -1 x' ;:::: ¢ (y') 

(y'yn E ¢ (U)) 
I 

-1 x" = ¢ (y") 

to get 
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::; (1 - c)-UI l<P(x') - <P(x") 11 

= (1 - s) -1 I I y' - y" 11 · 

Therefore 

is Lipschitz continuous with 

Now manipulate as before: 

-1 k 
(1 + s) f E J(<P) (x) dl 

=> 

=> 

12.3.5. N.B. E c U is Lebesgue measurable and the claim is that <P(E) 

ts ff-measurable. 

-1 n 
[To see this, let T = <I> o d<P(x

0
) , thus by construction T:d<P(x

0
) (U) 7 R is 
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Lipschitz continuous. And 

¢ (E) = T (df (xo) (E)) • 

But df (x
0

) is Lipschitz continuous, so df (x0) (E) is Hk-rneasurable, thus the same is 

true of T (df (x
0

) (E).] 

LEMMA C Suppose that V x E Q, d¢(x) is injective -- then 

PROJF Fix E. > 0 {< 1) and cover S1 with countably many U. c S1 such that for 
l 

any E c U., LEMMA B is in force. Given now an E c st, define inductively 
l 

i-1 
El= En U11···1El. = (E n U.)\ u B .• 

l j=l J 

Then the E. are pairwise disjoint and 
l 

00 

E = U E .• 
. l l i= 

Proceeding, apply LEMMA B to each E. , thus 
l 

(1 - s}k+l JE. J(<P) dlk 
l 

k 
$ H (<P (E.)) 

l 

$ (1 + E)k+l JE. J(<P) dlk 
l 

or still, upon surrming over i and bearing in mind that <P is one-to-one, 

(1 - E.)k+l f J(<P) dtk 
E 
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Finish by sending t: to 0. 

12.3.6. N.B. vi, <I>(E.) is 0--rneasurable, thus the same is true of <I>(E). 
l 

LEMMA D Let l: c Q be the set of x E Q with the property that d<I>(x) is 

not injective, hence that J(<I>) (x) = 0 -- then 

0 (<I> (l:)) = o. 

PROOF Since the matter is local, it can be asSLTIUErl that Q is rounded and that 

d<I> is rounded in n, say I ld<I> (x) 11 ~ M for all x E n. Given E > 0, consider the function 

defined by the rule 

so 

where 

¢ :Q -+ Rn x Rk 
E: 

<I>=IIo<I>, 
E 

n k n II: R x R -+ R 

is the projection operator given by II(y,x) = y, a Lipschitz continuous function with 

Lipschitz constant 1 (i.e., Lip(II) = 1). Since V x En, d<I>e:(x) is injective, it 

foll&ws from LEMMA C that 

~ (Lip II)k rf(<I>E:(L:)) 

= Hk(<I> (L:)) E: 
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'lb estimate this integral, use Cauchy-Binet to produce a constant C > 0 such that 

"</ x Est, 

In particular, if x E E, then 

or still, 

Therefore 

Now let E: ~ 0 to get 

(J(¢s) (x))2 ~ c21ld¢(x)I12 s2 

~ c~2s2 

J ( ¢ ) (x) ~ CMS. 
€ 

k 
::;; CMcL (L:) • 

tf(¢(E)) = O. 

PROOF OF THEDREM Given a Iebesgue rneasurable set E c ~, write 

E = E\E U E n L:. 

Then 

¢(E) = ¢(E\t) U ¢(En I). 

Owing to LEMMA D, ¢(E n E) is a set of zero tf'-rneasure. On the other hand, E\E c Q\L: 

(M open set). , hence ¢ (E\ E.) is If-measurable (cf. LEMMA C and 12. 3. 6) • Therefore 

¢ (E)_ is tf-measurable, And finally 

tf (¢ (E).) == tf (<P (E\E)) 

k 
= f E\ z:: J ( <P) dl 

k 
= f E J(<P) dl . 
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The supposition that <P is one-to-one can be dropped. 

12.3.7. THEOREM (AREA FORMULA) If <P:n-+ Rn is a function of class C' 

and if E c n is a Lebesgue measurable set, then <P(E) is ff-measurable and 

[Note: If <P is one-to-one, then matters reduce to 

12.3.8. N.B. The arrow 

= #{x E E:<P(x) = y} 

:: N(<P,E,y) 

n is the multiplicity function of <Pat y E R w.r.t. E and the assignment 

y -+ N(<P,E,y) 

defines an ff-measurable function (cf. 11.2.4.) (recall that <P has property (N)). 

[Note: 

<P(E) = {y E Rn:N(¢,E,y) ~ O}, 

so the integral over Rn can be replaced by an integral over <P(E) .] 

12.3.9. CHANGE OF VARIABLES Suppose that <P:n-+ Rn is class C' and 

u:n -+ [O, + 00] is Lebesgue measurable - then the assignment 

Y -+ E -l u (x) 
xE<P (y) 



11. 

defines an rf-rneasurable function and 

Jn uJ(w) dlk =Jn ( E _1 u(x)) dtf(y). 
R x~¢ (y) 

[The proof is canonical, given what we know. Thus start with u = XE (E c n 

Iebesgue measurable) and note tbat 

'Iheref ore 

0 -1 . L -1 XE(x) = H (En¢ (y)). 
){E¢ (y) 

= f HO(E n w-1 (y)) dff.(y) (area fonnula) 
Rn 

=!Rn (x~~-l(y) XE(x)) d!f-(y). 

By linearity, this settles the contention for simple functions, thence •••• ] 

12.3.10. SCHOLIUM Suppose tbat w:n -+ Rn is class C' and v:Rn-+ [O, + 00] 

is Hk-measurable -- then for eve~ Lebesgue measurable set E c n, 

JE (v o W) J (W) dl k = f v (y)N (W ,E, y) dtfXy) • 
Rn 

Step 1: 
n Take E = n and v = Xv (V c R ) I v open -- then 

-1 .k = J N ( ¢, ¢ (V) , y) d1r (y) 
Rn 

(area formula). 
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And 

=> 

-1 .. k f N ( <P, <P (V) , y) dtr (y) 
Rn 

-1 .k = fv N(<P,<P (V),y) dff-(y) 

k 
= fv N(<P,n,y) dH (y) 

k = f n Xv(y)N(¢,n,y) dH (y). 
R 

[Note: 

Meanwhile 

function. 

=> f = fv. J 
Rn 

Step 2: Take E c n compact and v a simple function constant on open sets. 

Step 3: Take E c n compact and v an arbitrary simple function. 

Step 4: Take E c n compact and v ;;::: 0 an arbitrary measurable function. 

Step 5: Take E c n Lebesgue measurable and v ;;::: O an arbitrary measurable 
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§12.4. THE VIFFERENTIABLE CASE 

The central conclusion of the preceding§ is the fact thatq(E) is Hk-measurable 

and 

Here 1 ::;; k ::;; n, n c Rk is a nonerrpty open set, <P:n -+ Rn is a one-to-one function 

of class C' , and E c n is a Lel:esgue measurable set. 

It turns out that one can drop the assumption that¢ is class C', it being 

enough to suppose that¢ is merely differentiable (as well as one-to-one). 

12 .. 4 .1. WHITNEY APPROXIMATION PRINCIPLE There exists a S0:1llence of disjoint 

closed sets F. c n and a S0:1llence of C' functions ¢.:Rk-+ Rn such that in F., 
J J J 

.Moreover 

whereF= u F .• 
. J 
J 

12.4.2. LEMMA 

PROOF Write 

¢ = cpj and J(¢) = J(¢j) .. 

if:(G?(Q\F)) = 0. 

00 

Q\F = U El' 
l=l 

El being the set of all points x E Q\F such that 

J I ¢ (x} - ¢ (x' ) J I ~ l 

I Ix - x' 11 
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for all x' E Q with 

1 
0 < I Ix - x' 11 ~ l · 

Claim: The restriction of <fl to El is locally Lipschitz. For suppose that x, x' 

1 
belong to a compact K c El and I Jx - x' 11 ~ l - then 

I !<P(x) - <P(x') 11 ~ l I Ix - x' II 

by the very definition of Et• On the other hand, if 11 x - x' 11 > ~, then 

11 <fl (x} - <fl (x') 11 ~ 2 max II <fl 11 
K 

~ 2rrax ll<Plllllx-x'll· 
K 

Hence the claim. Consequently 

where 

But 

Therefore 

Lip(@JK;K) ~ £.(1+2maxI1@1 I>· 
K 

K c El c Q\F 

=> 

rf ( W (K)} = 0 • 
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Now let K t E,e. invade E,e. to get 

so in the end 
00 

rf(¢(Q\F)) ~ L ff(¢jE,e_)) 
l=l 

= o. 

12. 4. 3 • APPLICATION 

Q = F U Q\F 

=> 

¢ (Q,) = ¢ (F) U ¢ {Q\F) 

=> 

¢(E) = ¢(E) 0 ¢(Q) = ¢(E) n ¢(F) u ¢(E) n ¢(Q\F) 

=> 

And 

ff(¢ (E) n ¢ (Q\F)) ~ 0 (¢ (Q\F)) 

= 0. 

Now compute: 

rf (¢ (E)) = tf (¢ (E) n ¢ (F)) 

= L. tf (_~ (E) n ¢ (F . ) ) 
J j 

= L ff{_~ (E) n ¢ . (F . ) ) 
J J j 
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= 4 J k 
j ¢-1(¢(E)) n F. J(¢) dl 

J 

= JE n F u E n Q\F J(¢) dlk 
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§72.5. THE LIPSCHITZ CASE 

12.5.1. DATA 1 :::; k :::; n, q,:Rk -+ Rn a Lipschitz continuous function, E c Rk 

a I.ebesgue IIEasurable set. 

12. 5. 2. HAP.BEL CMing to Rademacher, J ( ¢) is defined L k ~al.most everywhere. 

12. 5. 3. THEOREM (AREA FORMUI.A) ¢ (E) is 0-measurable and 

12.5.4. N.B. There is an a priori estimate 

12.5.5. REMARK qi has property (N), thus the assignment 

y -+ N(¢,E,y) 

defines an ff-measurable function (cf. 11.2.4). 

12.5.6. LEMMA V E > 0, there exists a closed set F c Rk and a C' function 
E 

¢ :Rk ~ Rn such that in F , 
E E 

¢ = ¢ and 0¢ = 0¢ • 
E E 

fureover 

Granted this and bearing in mind the C' version of the area fo:rrnula, we have 

JE J(¢) dlk = JF n E J(¢) dLk + JE\F J(¢) dlk 
s £ 
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= f k 
J (<I>) dlk 

F n E J(<I>s) dl + 1E\Fs 
s 

= f HO (F n E n <I>-1 (y)) atf(y) + J E\F J(<I>) dlk 
Rn s s 

E 

= f HO (F n E n <I>-
1 (y) > atf (y) + J E\F J(<l>) dlk. 

Rn s . E: 

Now send s to 0, noting that L k (E\F s L + 0 (use rronotone convergence) • 

12. 5. 7. EXAMPLE Given a Lipschitz continuous function f: Rk + R, put 

<I> (x) = (x, f (x) ) 
k 

(x E R ) • 

Then If- Rk Rk+ 1 . . hi . d '*': + is Lipsc tz continuous, one-to-one, an 
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§12.6. THE SOBOLEV CASE 

:F..et n be a nonempty open subset of Rn. Given a continuous function 

f E w1' P (rt} (1 ~ p < + oo) and a Lebesgue measurable set E c n, put 

n+l Gr f (E) = { (x, f (x) ) : x E E} c R • 

12.6.1. THEOREM 

Per 7.1.5., write 

00 

n = ( u Ek) u z, 
k=l 

where the Ek are Lebesgue measurable sets such that f IEk is Lipschitz and Z has 

Lebesgue measure 0. Extend f I Ek to a Lipschitz function fk: Rn -r R -- then 11Vfk11 = 

11 Vf 11 almost everywhere in ~. Now apply 12. 5. 7. to get 

Put E = 
0 

00 

U ~ and sum over k, hence 

It remains to pass fran 
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and for this, it need only be shown that 

12. 6. 2. LEMMA Let f E w1 1 P (n) -- then Hn (Grf (S)) = 0 if S c rt is a set 

of Lebesgue measure 0. 

[It suffices to m3.ke the verification in 
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§12.7. THE APPROXIMATE CASE 

Suppose that ¢:$1 -+ Rn is approximately differentiable almost everywhere in 

n -- then using approximate partial derivatives, one can form Jap(Q?). 

12. 7 .1. LEMMA (cf. 12. 4 .1) There exists an increasing sequence 

K1 c K2 c ••• of Camp3.Ct subsets of ·stfc: Rk) for which 

Lk{S1\K) = 0 (K = U K.) 
j J 

and a sequence of C' functions Q? . : Rk -+ Rk such that in K. , 
J J 

Put 

12.7.2. 

¢ = Q?. and Ja (¢) = J(¢.). 
J p J 

NOI'ATION Given y E Rn, let mj (y) be the cardinality of ¢-l (y) n K .• 
J 

12. 7. 3. LEMMA mj (-) is Borel measurable and V y, 

1 2 m (y) s m (y) s • • • • 

rn (y) := lirn mj (y) • 
y -+ OQ 

Then m(:-) is Borel measurable. 

12.7.4. THEOREM 

It suffices to show that 

!Rn m(y) ctif<:(y) ~ f ~ Jap(~) dlk 
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and 

k k f m (y) dH (y) ::; f n J ( ¢) dl • Rn ~G ap 

The second point being the easier of the tv.D, note that 

f n J (<P) dl k 
~G ap 

k = JK J ( <P • ) dl 
. J 
J 

0 -1 .. k 
= f H (<P. (y) n K.) dff-(y) 

Rn J J 

. k 
= J mJ (y) dH (y) 

Rn 

-~ f m(y) dtf(y). 
(j -+ ro) Rn 

12. 7. 5. N. B. Under the supposition that 

In J (<P). dlk < + 00 , 

~G ap 

the "m" is independent of the choice of data, i.e., if 

m1 (-). <-> {K~} 

then m1 = m2 ff- almost everywhere. 
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Then 

But 

=> 

=> 

=> 

3. 

1 2 m
3

(:-) <~> {K. n K.}. 
J J 

n 
(y E R ) • 

Jn J (<P) dlk 
~G ap 

=Jn ~(y) cttf-(y) 
R 

= 

f n m1 (y) ctrf (y) 
R 

.J m,.. (y) arf (y) 
- Rn L 

f Rn(II\ - 1l3l d!f< = 0 

!Rn(m2 - 1l3l ct!f< = 0 

m - m = 0 2 3 

ff alnost everywhere 






