Analysis 101:

Functions of Several Variables



ABSTRACT

Apart from an account of classical preliminaries, these notes contain
a systematic introduction to Sobolev spaces and functions of bounded variation,

along with selected applications.
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SECTION 1: MEASURE THEORY

§1.1. FACTS

Iet X be a nonempty set and let E < P(X) be a collection of subsets of X.

1.1.1. DEFINITION The pair (X,E) is called a measurable space if E is

a o-algebra.

1.1.2 EXAMPLE If (X,1) is a topological space, then (X,B(X)) is a
measurable space, B(X) the o-algebra of Borel subsets of X, i.e., the o-algebra

generated by the open subsets of X.

1.1.3. DEFINITION Iet (X,E) be a measurable space.

e A function u:t »+ [0, + »] is a positive measure provided u(g) = 0 and

U is o-additive on E.

1.1.4. ILEMMA Iet (X,E) be a measurable space and suppose that
usE »> [0, + »©] (u(@) = 0) is o-subadditive and additive —— then y is o-additive,

hence u is a positive measure.

PROCF Let El’EZ"' . be a sequence of pairwise disjoint elements of E — then
o] o0
u(u E) < Z u(E)
=1 Y "=l n

N
1im z u(En)
N+ o n=1

[

N

= lim wu( U En)
N+ n=1
<u(u E).

n=1



1.1.5. DEFINITION Let (X,E) be a measurable space.

e A function u:E + R (m > 1) is a vector measure provided u(g) = 0

and p is o-additive.

[Note: If u is a wvector measure and if m = 1, then p is a real measure.

Since + « is admitted, a positive measure is not necessarily a real measure.]

1.1.6. REMARK If u is a vector measure and if El’EZ’“' is a sequence
of pairwise disjoint elements of E, then
[oe] o]

u(u E)= ¥ u(E).
n=1 n n=1 n

Here the series on the right is absolutely convergent since its sum does not depend

on the order of its terms (this being the case of the union on the left).

1.1.7. DEFINITION Suppose that u:E + R* (m > 1) is a vector measure —-—

then its total variation ||u]|| is the arrow E + [0, + =] defined by the prescription

|[lull@® =swp| I [luE)]||:{E} pairwise disjoint, E= U E | -
_n=1 n=1

1.1.8. THEOREM ||u|| is a positive finite measure (hence ||u||(X) < + «).

1.1.9. REMARK Denote by M(X;Rm) the set of R™-valued vector measures
w:X > R® (m > 1) - then ME;R™ is a real vector space and the total variation
is a norm on M(X;Rm) under which it is a Banach space.
1.1.10. NOTATION Given a real measure pu, let
- u+ = J-E-I—Q—-LE (positive part)

u- _ M-y (negative part).
2



1.1.11. N.B. Therefore u' and | are positive finite measmres and

the Jordan deccmposition of .

1.1.12. SCHOLTUM If u is an R™valued vector measure, say

u = (ulr'°’rum)l

put

fX fdu-= (IX £ dul,...,fX £ dum).

Then

[1g £aull < Sy IE] allu]

1.1.13. NOTATION Iet p be a positive measure on (X,E). Given an

1
£feL (x,wW", say
f= (flr---rfm)l
and an E € E, put

Jg £ du= Uy £ dupeean /g £, duw.

1.1.14. SUBLEMMA The assignment

E » fE £ dy
is an Rm--valued vector measure, call it fi.
1.1.15. LEMMA The total variation ||fu|| of fu is the assignment
B> fy |[£]] du.

PROCF First

[Eul] < [1£]

e



This said, fix a countable dense set fu } < gl ( cf™ and let E € E. Given

e >0, put
o(x) = mintk € N:<€(x) ,u > > (1-€) |[f(x) ||}
and write
B, = M) nE ek
Then

(1-e) [|£] [u® = (-e) fy ||E]lau= = (=) f |I£]au

k=1 By

< I < fuE),u >
- By

(o]

<z [E@Ep || < [Ifu]@.
k=1 &

1.1.16. DEFINITION ILet (X,E) be a measurable space.

® ILet VvV be a positive measure and let y be a vector measure —-- then pu is

absolutely continuous w.r.t. v, denoted u << v, if for every E € E, the implication

VE) =0 =>||u||E®) =0

obtains.
1.1.17. EXAMPLE If £ € LY (X,v)™, then fv <<<v.

1.1.18. CRITERION p is absolutely continuous w.r.t. v iff for every
€ > 0 there exists § > 0 such that for every E € E,
V(E) < § = ||u]|E®) < €.

1.1.19. DEFINITION Let (X,E) be a measurable space.

® ILet yy,u, be positive measures — then Uy s, are matually singular,




denoted Uy L My, if there exists E € E such that

ul(E) = (0 and uz(X - E) = 0.

1.1.20. N.B. Vector measures Hyrl, are mutually singular provided this
is the case of [[u [[, ||u,

[Note: If v,u are as above, write v 1L pwhen v + ||u

-]

1.1.21. RADON-NIKODYM Iet (X,E) be a measurable space.

e Iet v be a positive measure and let u be a vector measure, say

u:E - R™ (m > 1). Assume: V is o-finite —- then there is a unique pair ua,us

of Rm—valued vector measures such that

a S
P <<y, ww Ly

a s
LU= WU,

1.1.22. N.B. In addition, there is a wnique f € L>(X,v)™ such that

ua = fv, the so-called density of u w.r.t. v, denoted du

av’

[Note: Unigqueness is taken to mean in the sense of equivalence classes of

functions which agree v - a.e.]

1.1.23 ILEMMA Iet u be an R™-valued vector measure -—— then there is a

1

unique S™ -valued function f € Ll(X, [[u| )™ such that u = £ ||u]].

PROOF Trivially, u < < ||u|], sou=£ ||u]] (£ € Ll(X,||u| D™ . Therefore

| ul ]

HE[Tul ] T

Il

€] [lu]] (cf. 1.1.15.)



thus ||£]] =1 (]]ul] - a.e.).

1.1.24. DEFINITION Iet (X,E) be a measurable space.

® A function p:fE - [ - «, + «] is a signed measure provided u(g) = 0,

U takes at most one of the two values + « and - «, i.e., either y:g + ] — «, + «]

or u:E > [ = », + »[, and y is o-additive on E.
1.1.25. N.B. A positive measure is a signed measure.
1.1.26. N.B. A real measure is a signed measure.

1.1.27. DEFINITION Suppose that y is a signed measure on (X,E).

e A set E € E is a positive set for u if u(EO) > 0 for every E, € E

such that E0 c E.

e A set E € E is a negative set for y if u(E

A

0) 0 for every EO €E

such that EO c E.

1.1.28. DEFINITION Suppose that u is a signed measure on (X,E) -— then

€ E such that E. c E.

aset E€E is a null set for p if u(EO) = 0 for every E 0

0

1.1.29. DEFINITION Iet (X,E) be a measurable space.
@ Given a signed measure |, sets E +,E_ are said to constitute a Hahn

decomposition for p provided E NE_= g, E_UE_=X, and

E, is a positive set for u

E_ is a negative set for u.

1.1.30. THEOREM Hahn decampositions exist. Moreover, if (E+,E_) and



(E_;_,El) are two such, then ]E‘.+ A E‘L and E_ A E' are null sets for .

1.1.31. IEMMA If u,v are signed measures on (X,E), at least one of which

is finite, then the set function u - v is a signed measure on (X,E).

1.1.32. IEMMA Suppose that u is a signed measure on (X,E) and let

El’EZ € E with El c E2 -~ then u(EZ) € R => u(El) € R. And

u(El) =+ o => u(EZ) + oo

|
1
8
il
I
8

WE) = - ° = uE,) :

1.1.33. IEMMA Suppose that U is a signed measure —— then there exist

. . + - - + -
unique positive measures U ,U such that u = u+ -4 and B Ly .

[Let X =E_ U E_ be a Hahn decomposition for u and put

Il

+
u(E) = u(E N E,)

(E.€ E).]
W (E) =-uENE)

1.1.34. REMARK If u omits the value + = (- @), then u' (1) is a finite
positive measure. So if the range of p is contained in R, then u is bounded,

i.e., u is a real measure.

1.1.35. DEFINITION Iet (X,E) be a measurable space.

® A signed measure yu is finite if |u| is a finite positive measure.
1.1.36. IEMMA y is finite iff pu(X) € R.

1.1.37. RESTRICTION Let (X,E) be a measurable space and suppose that



u is a positive, real, signed, or vector measure in (X,E). Given E € E, put

(Wl E)Y)=uEnNS) (seE.
Then
ul E= XM
In fact,
(Xgh) (8) = Jg XgdH = u(E N 8).

1.1.38. EXAMPLE Per Radon-Nikodym, consider v and u —— then there exists

asetEEEsuchthat\)(E)=Oandus=pLE.



§1.2. BOREL MEASURES

Iet X be a locally compact Hausdorff space (IEH-spaee).

1.2.1. NCITATION
e 0(X) is the collection of open subsets of X.
® K(X) is the collection of compact subsets of X.

e B(X) is the collection of Borel subsets of X.

1.2.2. DEFINITION A positive measure on (X,B(X)) is referred to simply

as a Borel measure on X.

1.2.3. DEFINITION Let p be a Borel measure on X and let E € B(X).

e 1y is outer reqular on E if

p@E) = inf{u(U):U > E, U e 0(X)}.

® U is inner regular on E if

u(E) = sup{u(K):K < E, K € K(X)}.

1.2.4. DEFINITION Iet u be a Borel measure on X and let E € B(X) —— then

U is regular on E if y is both inner and outer regular on E.

1.2.5. DEFINITION Iet p be a Borel measure on X and let C be a subset
of B(X) — then u is outer regular for C, inner regular for C, or regular for C

according to whether u is outer regular, inner reqular, or reqular for every E € C.

1.2.6. TERMINOLOGY A Borel measure p on X is outer regular, inner regular,

or regular if y is outer regular, immer regular, or reqular for B(X).



1.2.7. LEMMA If every open subset of X is c-compact, then every Borel

measure on X is inner regular for 0(X) ( < B(X)).
1.2.8. EXAMPIE Every open subset of R is o~-campact.

1.2.9. REMARK If X is o-compact, then the c-algebra generated by K(X)
is B(X).
1.2.10. LEMMA Iet Wy and Wy be two Borel measures on X.

e If My and W, are outer regular for B(X) and U = U, On 0(X), then

ul = uz on B(X).

e If y and W, are inner regqular for B(X) and By =1, on K(X), then

Hy = W, on B(X).

[To establish the first point, let E € B(X) and write

ul(E) J'_nf{ul(U) :USE, Ue 00X}

J'_nf{u2 (W:U>E, UeE0X?}

]

uz(E).}
* ¥ % % k% k¥ k% % % %

APPENDIX

A locally compact Hausdorff space X is o—compact if X can be expressed as
the union of at most countably many compact subspaces.

[Note: Q= U {g} and V g, {g} is compact but Q is not locally compact.]
geQ



LEMMA Every open subset of a second countable ICH space X is o—caompact.
E.g.: This is the case of R™.

RAPPEL A second countable topological space is separable (but, in general,

not conversely) .
RAPPEL Every separable metric space is second countable.

S6, if X is a metrizable separable ICH space, then every open subset of X is

o—-compact.

N.B. Every caompact metric space is separable.



§1.3. RADON MEASURES

Iet X be a locally compact Hausdorff space (LCH space).

1.3.1. DEFINITION A Borel measure y on X is said to be locally finite if

VK € KX), u(R) <+ o,

1.3.2. DEFINITION A locally finite Borel measure p on X is a Radon measure

provided
® U is outer regular for B(X)

® | is inner regular for ((X).

1.3.3. N.B. A Radon measure is a positive measure.

1.3.4. REMARK A finite Borel measure u on a compact Hausdorff space X is

locally finite but it need not be Radon.

1.3.5. EXAMPLE Take X = R© -— then the restriction of Lebesgue measure

to B(X) is a Radon measure.

[Note: Counting measure on Rn is not locally finite, hence is not Radon.]

1.3.6. LEMMA Every o-finite Radon measure is inner regular for B(X),

hence is regular for B(X).

In particular: Every finite Radon measure is regular for B(X), thus every

Radon measure on a compact Hausdorff space is regular for B(X).

1.3.7. LEMMA Suppose that X is g-compact —-- then every Radon measure on X

is imnerr.regular for B(X), hence is reqular for B(X).



[A Radon measure is locally finite, so here

o-compact => o-finite.]

1.3.8. IEMMA Suppose that X is o-compact, let u be a Radon measure on X,
and let v be a locally finite Borel measure on X. Assume: Vv = y on 0(X) — then

Vv is regular for B(X).

1.3.9. RIESZ REPRESENTATION THEOREM (RRT) If I is a positive linear
functional on CC (X), then there exists a unique Radon measure y on X such that

I(f) = fX f du

for all £ € CC(X).

1.3.10. SUBLEMMA Iet U be an open o-compact subset of X —- then there is

an increasing sequence f.,f,,... on C _(X) such that lim £ = y_..
1r-27 c nowo B Xy

[Note: 2An open subset of a compact Hausdorff space need not be o-—compact. ]

1.3.11. THEOREM If.every open subset of X is o-compact, then every locally
finite Borel measure vV on X is a regular Radon measure.
PROOF The issue is outer and inner regqularity for B(X) per v. Define a

positive linear functional I in Co (X) by the prescription
I(f) =/ x £ dv.

Then by the RRT, there exists a unique Radon measure y on X such that v £ € Cc (x),

I(f) = fX £ du.

The claim now is that u = v on 0(X). So let U € 0(X) and choose as above
{£ o) lim £ = -- then by monotone convergence,

n &> <«

Xy



v(U) = fX Xy dv 1lim fX fn dv

n - ©
= lim J_ £ du
=fXdeu=u(U).

Therefore v = u on 0(X), thus v is regular for B(X).

[Note: Consequently, v = u (cf. 1.2.10).]

1.3.12. RAPPEL Let (X,E) be a measurable space —— then a simple function

is a finite linear combination with real coefficients of .characteristic "functions

of sets in E.

1.3.13. LEMMA For any positive measure u:E - [0, + <], the simple functions

are dense in LP(X,u) 1 <p<+x,

1.3.14. THEOREM If u is a Radon measure on X, then CC(X) is dense in
P, (L <p<+ o).

PROOF It is enough to show that for any Borel set E with u(E) < + «, Xg

can be approximated in the 1P-norm by elements of Cc (X). Given € > 0, choose a
compact K ¢ E and an open U > E such that u(U-K) < € and using Urysohn, choose

an £ € C_(X) such that x, < £ < x; - then

|l = €11, < @R VP < P,



§1.4. OUTER MEASURES

ILet X be a nonenpty set —— then the pair (X,P(X)) is a measurable space.

1.4.1. DEFINITION A monotone function *:P(X) » [0, + »] is an outer

measure provided p* (@) = 0 and p* is o-subadditive on P(X).

1.4.2. DEFINITION Let w* be an outer measure -- then a set E € P(X)

is p*-measurable if for every A € P(X),

@) = *(A N E) + %@ nES).

1.4.3. NOTATION M(u*) is the collection of all p*-measurable sets

E € P(X).
l.4.4. THEOREM M(u*) is a g-algebra.
1.4.5. NOTATION Let u be the restriction of p* to M(u*).
1.4.6. THEOREM | is a positive measure.
1.4.7. THEOREM | is a camplete measure.

1.4.8. DEFINITION An outer measure p* is said to be regular if every
E € P(X) is contained in a p*-measurable set F of equal outer measure.

[In symbols: VE € P(X) 3 F € M(u*): F > E & u*(F) = p*(E).]

1.4.9. DEFINITION An outer measure u* on a topological space (X,T) is

Borel if B(X) < M(u*) and is Borel regqular if in addition for every E € P(X)

there exists an F € B(X) such that F > E and u*(F) = p*(E).



1.4.10. DEFINITION An outer measure u* on a metric space (X,d) is a

metric outer measure if

u*(E U F) = p*(E) + p*(F)

for all sets E,F € P(X) such that dist(E,F) > 0.

1.4.11. THEOREM An outer measure on a metric space (X,d) is Borel iff

u* is a metric outer measure.



§1.5. LEBESGUE MEASURE
n* .
1.5.1. NOTATION L~ is outer ILebesgue measure on R™.

1.5.2. DEFINITION er_ (= M(Ln*)) is the g-algebra camprised of the

*
Ln -measurable subsets of Rn, the members of Mn being referred to as the Lebesqgue

L
measurable subsets of Rn.

*
1.5.3. THEOREM | is a metric outer measure, hence

n
B(R") < MIE.

*
1.5.4. NOTATION L' is the restriction of Ln to MIE, the Lebesgue measure

on R°.

1.5.5. THEOREM L" is a complete measure and is the completion of the

restriction of " to B(RY).

The restriction of L™ to B(Rn) is locally finite and Borel regular, thus is

Radon.

1.5.6. NOTATION Put
Trn/.?.

T TaT Fn/2) !

the Lebesgue measure of the unit ball in R™.

1.5.7. TISODIAMETRIC INEQUALITY For every bounded Borel set E ¢ 'Rn,

diam(E) )n

LME) < ) (55



If

B(x,xr) = {y eRn:Hy-xH <r}

L B,1) = g1 .

Thus the interpretation of the isodiametric inequality is that the Iebesgue
measure of E cannot exceed the Iebesgue measure of a ball with the same diameter

as that of E, i.e., among all E with a given diameter d, a ball B(x,r) with

diameter d has Iebesgue measure uh(_czi_)n and

@ < g G

1.5.8. NOTATION Given a nonsingular linear transformation T: R* & Rn,

let M‘I‘ be the matrix of T per the standard basis of R,

1.5.9. LEMMA

E e g(RY) =>T(E) € gD

and
LM @) = |det ) |L°®).
1.5.10 IEMMA
_ n
EEM = T@®E €M
and
LT (@) = |det i) | L7 E).

1.5.11. LEMMA V E c RT,

L @) = |deto) |V ®).



On general grounds, C_(R") is dense in IP(R") (1 < p < + =) (cf. 1.3.14).

But more is true:

1.5.12. THEOREM C(R") is dense in IP(R") (1 <p <+ ).



§1.6. HAUSDORFF MEASURES

In what follows, take X = Rn.

1.6.1. NOTATION Given s € [0, + «[, put

7Ts/ 2

) =I‘(1 + s/2) °

1.6.2. NOTATION Given 0 < § <+ = and a subset E c X, put

W, e oo
—= inf{ I (dam(8))°:E < U B dan®) < o).

iy @ =
2 k=1

1.6.3. SUBLEMMA

_ S
6l<6_>H

5 (E) > (E).

1 ]

1.6.4. IEMMA V E c X,

H3E) = lim #°

S+0

(E)

O

= sup Hz (E)
§>0

exists.

1.6.5. THEOREM

H2:P(X) > [0, +

is a metric outer measure, the s-dimensional Hausdorff outer measure on X, hence

H® is Borel, hence

B(X) < M(H).



1.6.6. LEMMA H° is Borel regular.

[In fact, if E € P(X), then there exists a G set G > E such that HS(G) =

8
HS(E) and, of course, G € B(X).]

1.6.7. WN.B. The restriction of Hs to M(HS) is a complete measure.

1.6.8. IEMMA V X € X,

H(x + E) = H> ()
and V t > 0,
H(tE) = t2H ().
1.6.9. LEMVA
H =0

if s > n.
Therefore matters reduce to the consideration of H® in the range 0 < s < n.
1.6.10. LEMMA H0 is counting measure. Moreover, M(HO) = P(X).
Therefore matters reduce to the consideration of #° in the range 0 < s < n.
Recall that Ln* is outer Lebesgue measure on R,

1.6.11. THEOREM

Therefore matters reduce to the consideration of H® in the range 0 < s < n.

1.6.12. LEMMA Let Ec R and let 0 < s < t < + o,



e If {F(E) <+ o then HT(E) = 0.

o If HT(E) > 0, then HS(E) = + o.

PROOF The second point is implied by the first point. To arrive at the

latter, choose sets Ek

s

©
S . L

k=1

N

HotE) <

IA

Noting that t -~ s > 0,

such that diam(E,) < 6, E « U E , and
k=1

@am(B))° < H(E) + 1 < (B + L.

We = . t

— ¥ (diam(E ))

2% k=1 B

We st W @ , s .. t-s
— 2 — 5 (diam(E ))" (diam(E, ))

Wg 2° k=1 g B

We

£S5t S m) + )5S,

send §40 to conclude that Ht(E) = Q.

1.6.13. I1LEMMA Let E c Rn -~ then there exists at most one point

*
s* € [0, + o[ such that H° (E) € 10, + w[.

PROOF Take two distinct points s,t & [0, + o[ with s < t. If H°(E) € ]0,

+ o[, then HC(E) = 0 while if HT(E) € 10, + o[, then HS(E) = + o

1.6.14. NOTATION Given E € P(X), denote by H®(E) the function

- [0,+oo{-)—{0, +°°1

s-e-{f(E).

1.6.15. IEMMA H. (E) is a decreasing function on [0, + «[ which vanishes

on In, + «[.



1.6.16. THEOREM There are three possibilities for the range of H® (E).
(i) H.(E) assumes one value, viz. 0.
(ii) H®(E) assumes two values, viz. + = and 0.

(iii) H® (E) assumes three values, viz. + «, 0 and one finite positive

value s*.

1.6.17. EXAMPLE

HS (R™)

Il

+ « (s € [0,n])

HS (R™)

0 (s €]1n, + ).

1.6.18. IEMMA If H® (E) assumes a finite positive value at some point

s*¥ € [0, + [, then

H® (E)

_ H®

+ o (s € [0, s*])

il

0 (s € ]s*, + «[).

1.6.19. N.B. H(E) is identically zero on [0, + «[ iff E = 4.

1.6.20. N.B. If E # @, then H.(E) has exactly one point of discontinuity

in [0, + «[ and it belongs to [0,n].

1.6.2I. DEFINITION The Hausdorff dimension of a nonempty subset E of Rn,

denoted dimH(E) , is the unique number s* € [0, 4+ [ at which H® is discontinuous.

1.6.22. N.B.

dimH(Q') = 0.



1.6.23. LEMMA

dimH(E) = supis € [0, + o[> (E) > 0}
= sup{s € [0, + ®[:}{ (E) = + =}
and
dim (E) = infls € [0, + =[:4 (E) = 0}

inf{s € [0, + *[:{°(E) <+ =}

Il

I

1.6.24. IEMVA If {(E) €]0, +~ [, then s

dimH (E) .

1.6.25. EXAMPLE

If
+
K

aim (R") = n but #"(R)

1.6.26. LEMMA If E € p(X) is countable, then dimH(E) = 0.
1.6.27. 1IEMMA If E €P(X) has a nonempty interior, then dimH(E) = n.

In particular: If U€ P(X) is open and nonempty, then dimH(U) = n, SO
H£@U) =+ (0 <s <n).
1.6.28. THEOREM For every s € ]0,n[, there exists a compact K < Rn such
that dJ'mH(K) = g,

1.6.29. EXAMPIE Take n = 1 and let C c Rl be the Cantor set — then

. _log 2
dm‘H(C)_log3‘

1.6.30. DEFINITION A metric outer measure y* on X is locally finite if

u*(K) < + « for every K € K(X).



1.6.31. THEOREM Suppose that p* is locally finite -- then for every Borel
set E €B(X),
p*(E) ={inf *(U):U > E, U € 0 (X)}
u*(B) = sup{1*(K):K < E, K €K L
If U < X is open and nonempty, then

HSU) =+» (0 €8s < dim (U) =m).

1.6.32. SCHOLIUM H® is not locally finite if 0< s< n.

[Pretend it was -- then for a generic K € k(X),

inf{gS W)U o K, U € ox)}

Il

H® (R)

= 4 ®© eee -1

1.6.33. N.B. Bearing in mind that B(X) « ME®), it follows that the

restriction of H° to B(X) is not Radon.
1.6.34. THEOREM Let ¢:R° - R be an isometry (a distance preserving bi-
jection) and suppose that E € P(X) —— then

6(E) € MHS) <= E€ MHZ) (s € [0, + «=[).

[Note: The assumption that ¢ is an isometry implies that

H(2(B)) = #°(B).]



SECTION 2: DIFFERENTIATION THEORY

§2.1. SCALAR FUNCTIONS
Let @ be a nonempty open subset of R™ and let £:Q + R be a function.

2.1.1. DEFINITION f is differentiable at a point Xy € Q if there exists

a linear function T:R™ + R (depending on xo) such that

£(x. +h) - £(x.) - T(h)
1im 0 0 = 0.
Lim 13

2.1.2. N.B. Consider the situation when n = 1, = R and suppose that

f:R + R is differentiable at x, in the traditional sense, i.e.,

0
f(x0 + h) - f(xo)
o .

£ (xo) = lim
h~->20

Then f is differentiable at X Thus view the number f' (xo) as the linear map

R +~ R that sends h to f'(xo) (), hence

f(xo + h) - f(xo) - £ (xo) (h)
h

f(x0 4+ h) - f(xo) _ f' (XO) (h)
h h

f(x0,+ h) - f(xo)

= N - £'(x)) 1)

> £1(xy) - £'{xy) (h~>0)

= 0.

T is called the differential of f at x

0 and is denoted by df(xo) .




[Note: The differential is unique, if it exists at all. Proof: Per the

definition, suppose that T =T, and T =T

1 , == then V h # 0,

| (T - Ty) )|

< |£(xy +h) - £(xy) - Ty ()| + |£x) + B~ £x)) - Ty |

=>

[(Tl—Tz)(h) 50 -

TRT] as h >0
=>

| (r; - T,) (th) |

Teal "% =70
=>

(Tl-Tz)(h)=O=>Tl=T2.]

2.1.3. N.B. f is differentiable in @ if f is differentiable at every

point of Q.

n

2.1.4. EXAMPLE Take Q = R

Il

—— then polynomials in several variables are

everywhere differentiable.

2.1.5. EXAMPLE Take {2

R™ and let T:R™ > R be linear —— then dr(x,) = T.

2.1.6. LEMMA If f is differentiable at x0 € Q, then f is continuous at Xge
[Given h # 0, write
|£(xy + h) - £(x;) - T(h) |

f(XO-'-i- h) - £ (XO) - T(h)
< nl 5

to conclude that

f(X0 +h) - f(xo) >0 (h~>0).]



[Note: Since T is linear, 1lim T¢h) = 0.]
h- 0

Given Xq € Q, suppose that B(xo,ro) is contained in @ -- then for each nonzero

Vef{n, X, + tVe Q for | t| < rO/HV -

2.1.7. DEFINITION The directional derivative of f at x. in the direction

0

v is

' f(x0 + tv) - f(xo)

lim T ’

t->0

denoted

of

3 (XO) .

[Note: The underlying assumption is that the limit exists and is finite.]

2.1.8. N.B. v A # 0,

of _ . of
SO Ko) T A 5y Kg)-
2.1.9. LEMMR If f is differentiable at x,, then %—f; (x,) exists for all
v # 0 and
of _
¥ (xy) = af (xy) ).
[Observe that

f(xo + tv) - £(x
t

0

- T(V)

f(xo + tv) - f(XO) - T(tv)
t




2.1.10. EXAMPLE The function

- 2
TX—Y—z if x # 0
x“ +y
f(xIY)=
0 ifx=0

is continuous at (0,0) and all its directional derivatives exist at (0,0). Still,
the differential df(0,0) does not exist.

[To see the last point, suppose instead that df(0,0) does exist, thus being
linear,
df(0,0) (1,1).

daf (0,0) (1,0) + 4df£(0,0) (0,1)
On the other hand,

" 8£(0,0) (1,0) = 5—(9115—0) (0,0) = 0

_ _of _
~ df (0,0) (0,1) = 570,17 (0,0) = 0.

Meanwhile

of _1

s, (00 =3
%
_1

df£(0,0) (1,1) = 5

I.e.:
_1

0+0—'§'o

Contradiction. ]

%.3.11 REMARK If Q is convex and if f:Q - R is convex, then £ is differ-

entiable at X iff f has ordinary partial derivatives at X



Suppose that < , > is the standard inner product in R". Since the differential

of £ at x, is a linear function from R™ to R, there is a unique vector Vf(xo) € R™

such that for all h € RY,

df (xo) (h) =< h,Vf(xO)>.

2.1.12, DEFINITION Vf(xo) is called the gradient of f at Xq

2.1.13. NOTATION Let (e;,€,,...,€ ) be the standard basis for R™ and let

2
(xl,xz, ceerX n) be the associated system of coordinates.

2.1.14., DEFINITION The derivative of f at X in the direction e; is

called the partial derivative of f w.r.t. Xi0 denoted

of

K. (x
i

o -

2.1.15. IEMMA

VE(x,) = (3—— (xg) s axz CRP gg () -

2.1.16. DEFINITION The Jacobian matrix of f at X is the 1 X n matrix

of

| i
DE(xy) = [ax (x5) 7,

()1 ~ens ax (01 -
2.1.17. LEMMA For all h € R%,
n

(h) = ¥ df(x
i=1l

af (x,) o) (e;)h;



6.

n
I %;E—l— ()b,
By
hy
=DE(Q | ;| = <h,VE(xy)>.
;ln

Consider two points Xgr Xq + h — then the line segment £ joining X and Xq + h

isthecurvexo-t-th(()_ftfl).

2,1.18. MEAN VALUE THEOREM Suppose that f is continuous at the points of
£ and differentiable at the points of £ except perhaps the endpoints —— then there

exists an s € ]0,1[ such that
f(x0 + h) - f(xo) = df(xo + sh) (h) .

PROCF Introduce

¢ (t) =f(X0+th) (0t ).
Then ¢ is continuocus in [0,1] and
$(0) = f(XO)' o(1) = f(XO + h),
o' (t) = df(xo +th)(h) (0<t<1l).

By the mean value theorem for functions of one variable, there exists an s € ]0,1[
such that

¢(L) - 9(0) = ¢'(s).

2.1.19. APPLICATION Suppose that () is not only open but is connected as
well. Assume: f is differentiable in () and that df(x) = 0 for every x € § — then

f is a constant function.



* % k% k% k * k% k% k %

APPENDIX

What has been said in 2.1.10 can be substantially generalized. Indeed,
there are continuous functions of 2 variables which have partial derivatives almost

everywhere but for which the differential fails to exist anywhere.



§2.2. VECTOR FUNCTIONS

Iet Q be a nonempty open subset of R™ and let £:2 » R™ be a function.

2.2.1. DEFINITION f is differentiable at a point X € Q if there exists

a linear function T:R™ + RT (depending on xo) such that

£(x, + h) - £(xy) = T(h)
lim = 0.
h >0 | Inl]

T is called the differential of f at Xy and is denoted by df (xo) .

[Note: As in the scalar case, the differential is unique, if it exists at all.]

2.2.2. N.B. f is differentiable in Q if f is differentiable at every point

of Q.

Iet fl(x), fz(x),..., fm(x) be the components of f and let Tl, T2,..., ™ be

the components of T — then the defining relation for the differential of f at X

amounts to the relations

£l (x + h) = £ (xy) - 7 (h)
Lim -0
h+0 | |nl|

£ (x +h) - £ (xy) - 7 (h)

lim 0 =0
h~+0 | |

) xy + 0) - (2 - T
Lim = 0.

h >0 | Ih]]



Therefore f is differentiable at x, iff all the components of f are differentiable

0

at X and when this is so, f is continucus at Xq-

2.2.3. SCHOLIUM For all h

(hy, hyeeny b)),

1 n 1
T (h) = df (x) () = 90— (x) = I o (x)h,
i=1 i
2 n ...2
2, _ o2 I TN
) = 8 (x)) () = - o) = I 3 o)y
i=1 i
n
P = afeg) () = 2 ey = I 3 (xh
1= 1

2.2.4. DEFINITION The Jacobian matrix of f at x. is the m X n matrix

0
I ) 1 1 -

of of of
T (x,) ==— (X5) « . « =/ (%)
Bxl 0 3x2 0 8xn 0

2 2 2
of f of
— (X,) = (Xn) « « o = (x,)
8xl 0 BXZ 0 axn 0
o™ oE™ He™
— (X.) =— (%) . . . = (x,) '
axl 0 8x2 0 an 0

denoted by Df(xo) .

[Note: The partial derivatives of f are the partial derivatives of its com—

penents, i.e., the



2.2.5. DEFINITION Suppose that n = m —- then the determinant of the

Jacobian matrix Df (xo) is called the Jacobian of f at x,, denoted by

OI

1.2
(T, E5, ..., B
B(Xl,Xz,...,Xn)

Jf (xo) or

2.2.6. OPEN MAPPING THEOREM Suppose that n = m and suppose that Jf(x) # 0

for all x € @ — then the image f£(U) of any open set U ¢ Q is open.

2.2.7. CHAIN RULE Iet Uc R™ and V < R® be nonenmpty open sets and let

£:U ~ R™ and g:v »> RP subject to £(U) ¢ V. Assume: £ is differentiable at Xq eEU

and g is differentiable at £ (xo) — then g U £ is differentiable at x, and

0
d(g o ) (x,) = ag(£(xy)) 0 Af (xp)

or, in terms of the Jacobian matrices,

D(g o £) (xg) = Dg(£(xy))DE(xy) .

2.2.8. RAPPEL The set Hom (Rn,Rm) of linear transformations from R" to R™

is a vector space of dimension nm. Moreover, it is a Banach space under the norm

[A]] = max{]|2x|

|x|| < 1}.
And ¥ x,

l2x]| < |1a]] |]x]

2.2.9. EXAMPLE Given f:0 - RY,

af (x) € fom (R%, RY) .

[Note: If f = A € Hom(R"™,R™), then df (x,) = A.]



2.2.10. DEFINITION A differentiable function £:Q + R™ is continuocusly

differentiable if

af:9 -+ Hom(R™,R™)
is continuous.
[Spelled out, given Xq € Qand € > 0, there is a 6§ > 0 such that

[laf(x) - af(xg)|] <€

if Hx—x0|[ < §8.]

2.2.11. NOTATION Cl ;R™ is the set of continucusly differentiable

functions from Q to Rm, often referred to as the C'-functions (a vector space over R).

2.2.12. THEOREM f:§ » R% is C' iff the partial derivatives of f exist
and are continuous through out .
PROOF That the differentiability of f implies the continuity of the partials

can be seen by noting that

0429 ) - 089 @] < |[aE - ageal ]

In the other direction, take m = 1, fixxoe Q, let € > 0, and choose

ry > O:B(XO,J:O)O c © and

| D5E1G0) = (D46) (xg)| < £ (X € Bxyrg) , 1S3 5 m).

Write

h= 3 hey, Il <>

!
J=1 0

and put

v0=0, Vk=hle1+"'+hkek (1 <k £n).



f(xo + h) - f(xo)

n
= jil [f(xo + Vj) - f(xo + vj_l)] .

Since HVkH < rys the line segments with endpoints x, + Vyq and X, + vy lie in

B(xﬂ,ro)o. Taking into account that

Vi T Vit ey

the MVT implies that

f(xo + Vj) - f(x0 + Vj-—l)

= h.(D.f + v. + 6.h.e.
5 By (g + vy + Ojhsey)

for some (-)j € 10,1 . Next

[hjle
+ ejhjej) - hj (Djf) (XO)I <

1hj (Dy£) (g + V5 =

1

Consequently
n
o ~ I hy(Df) Gy |

[f(xOl +h) - £f(x
j=1

n n
Ijzl [£(xg + v3) = £(x + vj,l)l-—jil h, (D;5) (xp) |

Il

n n
| T h (D.£) (xy + Vs_ +6shses) ~ I hi(Df) (x

j=1 J 3 j-1 ] =1 J 3

0|
n
jzl lhj (Djf) (g + V5 * ejhjej) - by (D4£) (%) |

A

lhjle

n

1A
™ 3

<

|[Jine =]

|h.])e
j=1

Sl

(
J=1



IA

L & |Inl]e

IA

| [B] [e.

Therefore £ is differentiable at x

0:
B

af (xo) (jil hjej)

af (x) ()

n

1l

Since m = 1, the Jacobian matrix is a row:

DE(xq) = [(DyE) (xg)s (DyE) (%) seeos (B F) () ]
or still,
_ of of of
Df(XO) = {g}'{*]j (XO)' 'a‘}g (Xo)ro--' g}g (XO)}'

Its entries are continuous functions of x., thus £ is a C'-function.

0’

2.2.13., DEFINITION Take m = n and suppose that f£:0Q - R is a C'-function —

then a point X € Q is a critical point for £ if the rank of Df (xo) is not maximal,
i.e., if the rank of D:E(xo) is < n or still, if Jf(xo) = (.

2.2.14. NOTATICON Write Z £ for the set of critical points of f.

2.2.15. SARD f(zf) is a set of Lebesgue measure 0.

There are.numerous variants on this theme which need not be.considered at

this juncture. However:

2.2.16. LEMMA Under the above assumptions, for any Lebesgue measurable

set E ¢ Q, the set f(E) is ILebesgue measurable and



LME®) < fp | e (ef. 12.3.3).

2.2.,17. N.B. SARD is an immediate consegence of this result.

The mean value theorem does not hold in general for a vector valued function
£:0 > R (m > 1) (but it does hold if the number of auxiliary points is increased

(details omitted)). However:

2.2.18. THEOREM Suppose that f:[a,b] - Rk is continuous and that its

restriction to la,b[ is differentiable — then there exists an x € ]a,b[ such that

[1£®) - £@@)]]| < ®-a)||f'®]].
PROCOF Iet
e(t) = <f(b) ~ £(@), £(t)> (a <t <Db).

Then ¢ satisfies the assumptions of the MVT, hence

o) - o(a) (b - a)o'(x)

Il

l

(b -a) <f(b) - £(a), £'(x)>

for same x € Ja,b[. On the other hand,

o) - ¢(a) = <£() - £(@), £(b)> ~ <£(b) - £(a), £(a)>

<f(b) - £(a), £(b) - £(a)>

lE£m) - £@ ]2

lE®) - £@) ||

It

(b -a) <£(b) - £(a), £'(x)>

IA

b-a) ||fb) - £f@]] ||f'®|],

hence
]]f(b) - f(a)[] < (b -a) llf' (%)

l.



§2.3. LIPSCHITZ FUNCTIONS

Iet E be a nonempty subset of R

2.3.1. DEFINITION A function f£:E -+ R" is said to be L-Lipschitz (L 2 0)
if for all x,y € E,

£ - £ ]| < Tl lx - yl].
2.3.2. EXAMPIE A constant function x =+ C(€ Rm) is O-Lipschitz.

2.3.3. EXAMPLE ||-||:R™ » R is 1-Lipschitz.

[In fact,

H=ll = Hyll | < [= -yl

2.3.4. LEMMA Iet {fi:i € I} be a collection of L-Lipschitz functions

fi:E -+ R = then the functions

X -+ sup fi(x) Z F(x)
i€l _
x € E)
£(x)

x =+ inf fi (x)
— iex

are L-Lipschitz if finite at one point.

PROCF To establish the first assertion, note that for all x,vy € E,

£.(y) £ ® +Ll|x -yl

.

Take now the supremum on the RHS and then on the LHS to get:

F(y) <F&x) +L||x - y||.

If F(x) < + @, then F(y) < + » for all y € E, hence F(y) - F(x) < L||x - y||,



hence F(x) - F(y) < L||x - y||, hence |F(x) - F(y)| < L|[x - y|].

2.3.5. APPLICATION The function from R to R defined by the rule

y +dist(y,E) = inf{||x - y||:x €E}

is 1l-Lipschitz.

2.3.6. THEOREM If f:E - R is L~Lipschitz, then there is an I~Lipschitz
function F:R™ » R such that F | E = f.

[Consider

1l

inf (£x) +L||x - y|]).]
xeE

F(y)

2.3.7. NOTATION Given f£:E -+ R, put

Lip(£;E) =  sup Hf,(}f}){ - f,ﬁ’m (= inf{L}).
X,Y€E
X#Y

[Note: Omit the "E" if it is RT:Lip(f).]

2.3.8. DEFINITION A function £:E - R™ is Lipschitz if it is L-Lipschitz

for some L > 0.

2.3.9. N.B. If f:E + R is Lipschitz, then f is uniformly continuous.
[Conversely, it can be shown that if f:E > R is bounded and uniformly con-
tinuous, then f is the uniform limit of a sequence of Lipschitz functions.]
[Note: The function f(x) = vx (0 < x < 1) is not Lipschitz but it is uniformly

continuous. ]

2.3.10. THEOREM Let £:R" > R™ be Lipschitz —— then for any nonempty E < Rn,

HS(E(E)) < (ip(F)® H3(®) (s € [0, + =)



PROOF Fix § > 0 and choose sets {E,} < R™ such that

Ec U diam(E ) < .
k=lEk' ki

diam(£(E,)) < Lip(f)diam(E,).

Since

£f(B) <« U £(g), diam(£(E)) < Lip(£)§,
k=1 . K

it therefore follows that

) oo
s s : s
HLip(f)6 (£(E)) < —é—g k—il (d;Lam(f(Ek))
wS S e s
< —= Lip(f)° £ (diam(E))".
2% k=1 &

Now take the infimum over this data to arrive at

S : S 48
Hip (55 (E@) < Lip(6)® H3(E),

from which the assertion upon sending § + O.

2.3.11. EXAMPIE If n > m and if P:R™ ~ R is the usual projection, then

for all E < RY,
He (P (E)) < Ho(®).

[In fact, Lip(P) = 1.]

2.3.12, SUBLEMMA let

— n
{xl,...,xk} < R

{Yll‘--lyk} < an



subject to the condition that
Hyi HYjH < HXl -XJH
for all i,j € {1,...,k}. Suppose that Tyree,X) are positive numbers such that

k

k
n B(xi,ri) # 4.
i=1

A B(yj,rj) # 0.

2.3.13. LEMMA Iet E < R" be a nonempty finite set and let f:E -+ R™ be

a l1-Lipschitz function —— then for any x € Rn, there is an extension of f to a

1-Lipschitz function on E u {x}.

PROCF let E = {x;,...,%} and assume that vV i, x # x;. Putr, = |[x - x| >0
and let y; = f(xi) -- then there exists a point y € R™ such that
ly - €611 < I1x = x|

for each i, so it remains only to let f(x) = y.

2.3.14 EXTENSION PRINCIPIE Let f£:E -+ R™ be an L-Lipschitz function ——
then there exists an I~Lipschitz function £:R° » R" such that F | E = f.
PROOF Upon dividing f by L, it can be assumed that f is 1-Lipschitz and it
will be enough to deal explicitly with the situation when E and R™NE are both infinite.
Accordingly, choose a countable dense set {xl,xz, ...} in E and a countable dense set
{yl,yz, ...} in RXE. This done, for each k = 1,2,..., use the previous lemma

repeatedly to obtain a l-Lipschitz function

fk: {Xll---rxkr yll--tlyk} > Rm



such that fk(xi) = f(xi) (i=1,...,k). Claim: The sequence {fk(yl)} c R is

bounded. Proof:

fk(yl) = fk(yl) - fk(xl) + fk(xl)

IA

HE D I 2 e ) = £ &) ]+ TTE &I

LA

Hyl"le + Hf(Xl)H
<+ ®

independently of k. Proceeding, extract a convergent subsequence, say {f 1 (yl) },
kK.
J
and then extract from it yet another convergent subsequence {f 5 (Yg) }. EIC. Pass

k.
J

to the diagonal sequence {gj}:gj =f 57 hence for every

kx
J

ceEC= {X]_:Xz:---} U {ylfyg""}'

there follows

g(c) = lim g.(c) € g,
j—)-oo j

In addition, g:C - R™ is 1-Lipschitz and glx;) = £(x;) (i=1,2,...). BAnd finally,

in view of the density of C in R™ and the density of {xl,xz,. ..} in E, g extends

to a 1-Lipschitz function F:R" > R™ such that F | E = f.

2.3.15. THEOREM Suppose that £:Q + R™ is differentiable (thus, by definition,
f0is open). Assume: { is convex and that there is an L > 0 such that
llage) [ < L

for all x € Q@ — then f is I~Lipschitz.



PROOF Given x,y € @, the convexity of Q implies that

tx+ (L-t)ly€Q (0<t<1l).
Iet

gt) =f(tx+ (1 -ty) (0<t<l).
Then

a@E glt) =daf(tx + (1 - 8)y) (x - y)

| o]l < llaftx + @ -] [1x -yl
< Lffx -yl
Take now in 2.2.13., [a,b] = [0,1] and apply it to g, thus for some tO €10,1[,
[lg@ - gO]] < @-0][g"ty]]
= |]g" (ty) ||
< Lllx - yll.

But
g(l) = £x), g(0) = £(y)
[£G) ~ £ || < L] ]x - y]].

2.3.16. EXAMPLE The sine function is l-Lipschitz (since its derivative

is the cosine which is bounded by 1).

2.3.17. DEFINITION A function £:Q ~ R" is said to be locally Lipschitz if

for each campact set K ¢ 2, there exists a constant CK > 0 such that for all x,y € K,

[1E£6) - £ [] < Gllx - vl].



[Note: 1If there exists L such that CK = L for all K, then f is said to be

locally I~Lipschitz.]

2.3.18. EXAMPIE In RZ, let

E={(r,0:0<r<+eo -71<80<gl

Then the function E - R2 given by

(r,8) » (r,0/2)

is locally 1-Lipschitz but not Lipschitz.

2.3.19. THEOREM If § c R™ is convex and if £f:Q » R is convex, then f

is locally Lipschitz.

2.3.20. RAPPEL Suppose that E ¢ R" is Iebesgue measurable —— then there

'exists an increasing sequence {Fk} of closed sets Fy contained in E and a set N

of ILebesgue measure 0 such that
E= (4 F.) uN.
K k
2.3.21. N.B. A closed set is the union of a countable family of compact
sets and a continuous function f£:R" + R" sends a countable union of compact sets

to a countable union of compact sets.

2.3.22. DEFINITION Let < R™ be nonenpty and open -—- then a continuous

function £:Q -+ R™ is said to have property (N) if f sends sets of ILebesgue measure

0 to sets of Lebesgue measure 0.

If £:R™ » R™ is continuous and if E ¢ R™ is closed, then f(E) is Lebesgue

measurable. Consequently, in the presence of property (N), it follows that f sends



8.

Iebesgue measurable sets to Lebesgue measurable sets.

2.3.23. THEOREM If f£:R" + R" is locally Lipschitz, then £ has property (N).

PROCOF The claim is that

o) =0 = L™ (E@m) = o.

To this end, fix a closed cube K in Rn, write

[|Ex) - £ ]| < Gy ||x - v|]l &,v € R,

and note that a cube I of side r in K has diameter of length r/n. Since f is Lipschitz,

f(I) has diameter at most rv/n CK, thus is contained in a cube of side rvn C,, and so

Ln*(f(:[)) < nnL/Z C;; rn - nn/2 C; Ln* ey

or still,

™ Emn k) < 0¥ Mg

= I™(ENnKR) = 0.

Choose now an increasing sequence {Kj} of closed cubes Kj such that R" =

fM) = U £(N N K.,
: J
J
and therefore

P <z (e n K,) = 0.
J

2.3.24. ILEMMA Suppose that £ is a C'-function, i.e., £ € Cl(Q;Rm) -

then £ is locally Lipschitz.

1

UKj, hence



§7.4. RADEMACHER

If @ is a nonempty open subset of R and if £:Q » R is L~Lipschitz, then f is

absolutely continuous, hence is differentiable almost everywhere (per Ll) .

2.4.1. THEOREM If ( is a nonempty open subset of RY and if £:0 - R™

is I-Lipschitz, then f is differentiable at L almost all points in Q.
The proof will be given in the lines below.

First Step: It can be assumed that m = 1,

[For f is Lipschitz (or differentiable) iff every component of f is Lipschitz

(or differentiable).]

Second Step: It can be assumed that Q = Rn, so f£:R™ + R.

[Invoke the Extension Principle.]

2.4.2. RAPPEL A Iebesgue measurable function £:RY 5 R is locally integrable

I £l af < +

for every compact K c R™.
Denote the space of such by
1 n
Ly o (R

1

n .
LEOC(R ) and if

2.4.3. IEMMA If f €

n_
fRnfcde =0

for all ¢ € C:(Rn) , then £ = 0 almost everywhere.



Third Step: Given x € Rn, v E Sn-l, form

fx’v(t) = f(x +tv) (teR).
Then fX v as a function of t is Lipschitz, hence is differentiable almost every-
r

where (per Ll) .

Fourth Step: Recall that by definition,

f(x + tv) - £(x)
t

%%(x)= lim
t->0

whenever the limit exists.

Fifth Step: Iet

_ n, of
EV—{XER P Ay

(%) exists}.

Then Ev is Borel and the function

EV -+ R
of
B X > YT (%)
is Lebesgue measurable.
Sixth Step: Write
RY = Rv @ v'.
Then
n,n n
L"RXE) =1 _ X dL
v R™ "R™XE
v
=/ [ X (tv + w) dtdw
v Rv R\E



1
flL(Sw)dw
v

= 0,
where

S ={teRitv+we Rn\Ev}.

Seventh Step: Therefore E, is of full measure in that g—‘ff(x) exists for almost

everyxERnpe.an.

Eighth Step: In particular, the partial derivatives —g?f{—(x) (i=1,2,...,n)
i

exist for almost all x per Ln, hence the same is so of the formal gradient

Y 3f of
VE(x) = (’é’%(x)l 'a‘}'zg(x)r--'-l s‘%(x))-

2.4.4. IFMMA For each v € Sn_l,

£
%G(x) = <v,VE(x)>

almost everywhere (per ™.

PROOF Both functions are in L}’,oc (Rn) . E.g.:

|f(x + tv) = £(x)]
]

A
-

l
£
w‘g
I
2
<

Bearing in mind 2.4.3, it suffices to show that

3f

n v 000 aL™ (=)

/

= [ <, VE®)>e(x) dLP(x)
Rn



for all ¢ € C:(Rn). Start with the left hand side and proceed:

I E e aw)
R

f(x + tv)

N 2@ a0

=fn lim
Rt -~>0

Il

Lim s EEFE) = £&) o0y Al

t+0 R® t
S _ px) - o(x - tv) n
= tl-J;mO S Rn f (%) T dL™ (x)

Il

— fRn f(X) 1]11’10 ¢ (x) ; p(x = tv) ) dLn(X)
t -

_ _ 9 n
= fRn £ (x) 5_%(}() A x)

n
- 90 n
iﬁl 4 S 0 f(x) axi (x) dL™ (%)

n of n

i=1 R

It

S, VE) e (x) dlM(x).
Rl’l

1l

[Note: The justification of the formalities is left to the reader.]

Ninth Step: Iet D c Sn_l be a countable dense set — then there is a

Iebesgue measurable set E c Rn such that Ln(Rn\E') =0and ¥ v € D,

“G(X) = <v,Vf(x)> (x € E).

Tenth Step: Fix X, € E —— then the claim is that f is differentiable at Xpt



f(x, +h) - £fx,) - <h, VE(x,)>
. 0 0 0
lim = 0,
. TTAT]

the ambient linear function T:R™ - R being the arrow

h » <h,V£f (XO)>.

2.4.5. IEMMA f is differentiable at X ifvwe>0, 368 >0 such that

If(xo +tv) - f(xy) - t<v,Vf(xO)>| < e|t]

provided |t| < § and v € S

To verify that this condition is satisfied, fix € > 0 and choose a finite set

Dy < D with the property that for every v € Sn-l there is a v, € D, such that

0 0

| |v = vo| | < €. Since the directional derivatives indexed by the v, € D, are finite

0 0

in number, there is a § > 0 such that Vv v, € D

0 0’

[£(xy + tvg) = £(x5) - t<v,VE(x)>] < eft]

0

1

if |t| < §. Given now v € S™~, determine v, € D, for which ||v - VOII < g — then

0 € Po
[£Gxy + tv) = £(xy) = £<V,VE (xg)>]
<celt] + [£0xy + tv) = £(xq + tv) |
+t] [<v - v VE(xy) >

< (L +Lip(f) + ||VEGxy) [ Delt]

for all [t| < 6.



§2.5. STEPANOFF

Iet Q@ be a nonempty open subset of R™ and let £:0 > R be a Iebesgue measurable

function.
2.5.1. DEFINITION The pointwise Lipschitz constant of f is
Lipf (x) = lim sup Hfﬁ; - fﬁ’) | «eaq.
v+ X,¥y €Q y
2.5.2. THEOREM f£f is differentiable almost everywhere in the set
Le = {x € Q:Lipf (x) < + «}.
2.5.3. REMARK
L_= U ’
£ e Bt
where

x) - £ ]
[Tx = yT]

B, = lxe L] |£6 || < k ana LUE <k if [|x - v|] <7}

Moreover f[Ek ¢ 1is Lipschitz:
’

o ||x -yl <%=> £ - £@) || < k| ]x - y[]
F= £ - £ ] < 2k < 26 |]x - v]],

and it turns out that f is differentiable almost everywhere in each Ek 2 (details
4
amitted) .

[Note: The Ek 2 are Lebesgue measurable, hence the same is true of Lf.]
7

2.5.4. SUBLEMMA Iet g,f,h be functions from Q to R. Suppose that g < £ < h,

g(xo) = f(xo) = h(xo) , and g,h are differentiable at Xg then f is differentiable

at XO'



2.

PROCF Since h - g >0 and (h - g) (XO) = 0, it follows that d(h - g) (XO) =0,

hence dh(xo) = dg (xo), call it T - then

glx) - g(xo) dg(xo) (x - XO)
% - %4 ]

fx) - f(xo) - T(x - Xo)

= [1x =%y ]
h(x) - h(XO) - dh(XO) (x - XO)
= [1x = %45 |] )

The first and third terms converge to 0 when x - X thus so does the second texm.

Passing to the proof of the theorem, take m = 1 and assume that Lf is nonempty.
,r+++} Of all open balls B(x,r) contained in

Q with x € Qn and re Q n 10, + [ such that f|B(x,r)O is bounded — then Lfc U Bn‘
n=1

Consider the countable collection {Bl /B

Given x € Bn’ introduce

It

IA

u (x) = suplu(x):u < f on B, Lip(u;B) < n

n}.

v, (x) = inf{v(x):v > fon B, Lip (viB)

IA

Here the "sup" ("inf") is over all the u(v) with the stated properties, thus

u < £f|B_ < v
n - n-= 'n

A
)

Lip (un;Bn) <

Lip(vn;Bn) < n.

Let E_ stand for the set of x € B at which both u and v, are differentiable at x,

hence by Rademacher, the set



[ee]
Z= U BN\E
n n

n=1

has ILebesgue measure 0. The claim now is that f is differentiable at all points of

L.\Z. So let x

. € Lf\Z — then it need only be shown that there is an index n such

0

that XO € En and un(xo) = Vn(XO) . This said, choose an r0 >0 and an M > 0 such that

|f(x) - f(xo)l <Mlx - x (x € B(xo,ro)o) .

ol
Next, choose n > M:

o
X, € Bn c B(xo,ro) .

Thenxo,éz=>x EEn (foer,EEn=>x EBn\Enc 7). Proceech.ng,\fxEBn

0 0

f(x) < £(xp) +M||x-x0]| < £(xg) +n[|x—x0[|

£x) v, &)

IA

£(xq) + n||x - x0||

f(x

I

Vi (XO) < £ (xo)

f(xo) = vn(xo) .

Therefore u, (XO) =V, (XO) , completing the proof.

2.5.5. APPLICATION Suppose that Lipf (x) < + « almost everywhere —— then f

is differentiable almost everywhere.
2.5.6. EXAMPLE Quasiconformal maps are differentiable almost everywhere.

2.5.7. REMARK It can be shown that the subset E ¢ Q consisting of those x



at which f is differentiable is Lebesque measurable, as are the partial derivatives

of :
&;:E_)R (:L::l'-.-,n)a

2.5.8. N.B. The set of points where a given first order partial derivative

f exists need not be ILebesgue measurable.

2.5.9. EXAMPIE Iet S < R be a non Lebesgue measurable set and let

£0y) = XWX ®)  (6x,y) € R,

o exists is not

Then £ is Lebesgue measurable but the set of points (x,y) at which-- N

Lebesgue measurable.

2.5.10. REMARK It can be shown that if £:Q - R is continucus and if Ei is

of of

the set of all x € Q such that = exists, then Ei is a Borel set and T is a Borel
i i
function in Ei‘
[Note: If ihstead f:Q - R is merely Borel measurable, then the %3;32’" are
i

Lebesgue measurable. ]



§2.6. LUSIN

Convention: Be it a set or a function, measurable means Lebesgue measurable.
2.6.1. THEOREM Suppose given a function £:R% > R — then the following
conditions are equivalent: £ is measurable or

® For every ¢ > 0 and any compact K ¢ Rn, there is an open set G c R" such

that Ln(G) < ¢ and £|K\G is continuous.

® For every £ > 0 and any compact K c Rn, there exists a continuous function

(p:Rn + R such that
LM ({x € Kf(x) # o)) < e.
® For every campact K « Rn, there exists a sequence {(pn} of continuous

functions (pn:Rn +~ R such that oy f almost everywhere on K.

2.6.2. THEOREM Suppose given a function £:R™ > R — then the following

conditions are equivalent: f is measurable or

® TFor every g > 0, there exists an open set G ¢ R™ such that L@ < ¢
and f {Rn\G is continuous.

@ For every € > 0, there exists a continuous function @:Rn + R and an open

set G ¢ R" such that Ln(G) <gand ¢ = f on Rn\G.
® There exists a sequence {(pn} of continuous functions (pn:Rn + R such

that op f almost everywhere on R™.

2.6.3. CHARACIERIZATION Iet f:E -+ R be a function defined on a measurable

set E ¢ R® — then f is measurable iff for every £ > 0 there exists a closed set



F < E such that Ln (E\F) < £ and the restriction of £ to F is continuous.

2.6.4. SCHOLIUM Suppose that £:R™ > R is measurable — then for any

measurable set E and any € > 0, there exists a continuous function g:Rn + R such that

L% ({x € B:f(x) #g(x)}) < ¢

gl < L .
a1l o ¥l
In particular: Take E = R™ — then the conclusion is that a measurable function
coincides with a continuous function outside a set of arbitrarily small measure.
There is also a C' version of this result, the proof of which depends on an

extension theorem due to Whitney.
2.6.5. THEOREM Iet K ¢ R™ be a compact set and let f:K > R, T:K ~ R
be continuous functions. Assume: For every € > 0, there is a § > 0 such that

[E@) - £6) TG = %]
ly - || )

whenever x,y € K, x #y, and ||y - x|| < § — then there exists a C' function

g:Rn + R such that

g|lkK = £ and ¥g|K = T.
2.6.6. NOTATION As usual, Q is a nonempty open subset of R™.

2.6.7. APPLICATION Suppose that £:Q »~ R is measurable and differentiable

almost everywhere —— then for any € > 0, there is a function g € Cl(Q;R) such that

LM({x € :f(x) #g(®)]}) < €.
2.6.8. N.B. Thanks to Rademacher, this applies in the special case when

f is Lipschitz.



SECTION 3: DENSITY THEORY

§3.1. LEBESGUE POINTS

1 n
Iet £ € L,EOC(R ).

3.1.1. DEFINITION A point x € R such that

1

lim —=— f |f - £(x)] a® =0
0 w,.urn B(x,r)
n
is called a Lebesgue point of f.
[Note: Recall that
L"Bx,r)) = w .
n
In particular, if n = 1, then
o 172 _ 172 _ 172 _ 172 s
1 T+ 1/2) T'(3/2) %1..(1/2) _]2;ﬂ1/2

3.1.2. DEFINITION The Iebesgue set of f is the set of its ILebesgue points,

denoted A(f).

3.1.3. THEOREM

n

A(E) € ML

LER™A(£)) = 0.

3.1.4. N.B. Every continuity point of f is a Lebesgue point of f.
[Supposing that f is continuous at x, given € > 0, there exists § > 0 such

that |[f(y) - £(x)| < € if y € B(x,6), so



re 10,8 = B(x,r) ¢ B(%,8)

n

3.1.5. DEFINITION If E c Rn is Lebesgue measurable, then the density

of E at a point x € R" (not necessarily in E) is

n
D (x) = lim L E0B&T)) ¢ 10,1])

Y > r
0 W

provided the limit exists.

3.1.6. EXAMPIE Work in R and let

=0 X'
where
T = ) 2kl+1' > |
hence
Ly =;Q—ki+—l ,

but DE (0) does not exist. In fact,

LY@ n B(0,27%))
Lt ®(0,27%)




and
L'enBo,27% ) 1
1 —-2k-1 6 °
Lt @(0,27% )
Therefore
LY & n B(0,1))

L1 (e(0,1))
assumes the value % for r = 2-2k and the value %— for r = 2—2]{—1, I=le) DE(O) does
not exist.

3.1.7. N.B.
n _ 1 n

EEM = xg €L R).

3.1.8. IEMMA Iet E € MIL1 — then
U RAE) ¢ Alxg) -

PROCF If x € E° (or if x € (Rn\E)O) » then yp is continuous at x, thus x € A(XE) .

3.1.9. EXAMPIE It can happen that DE(x) exists for some x ¢ A(XE) .

fWork in R and let E = [0, + «[ = then

R\{0} = E° U (R\E)° < Alyg)-

On the other hand,

. 1 1
lim ———— [¥m = X (0)] 4L
r>0Lr®(0,r) BOX VE CE

1 1

= lim 5=/l (1= () dt
r 20

o qs 1 _xr o1

= lim 5= (2r - Syd)
r-+ 0

T£0=0g Ay



Nevertheless

1
1im L™ (E 9 B(0,r))
r—+20 L~(B(0,x))

D (0)

. r-_ 1
= lim +==3.]
r+02r 2

3.1.10. IEMMA If E c R" is a set of Iebesgue measure 0, then E c Rn\A(XE) .

PROCF The assertion is trivial if E = @, so take an x € E — then XE(X) =1,

while Xg = 0 almost everywhere in Rn, hence

1 n
1lim n fB(x,r) IXE B ()| a
r->0uwr
1 n
= lim ~-——-— 1ak
r->20 wnrn B(x,r)

=1#0=>xE€ Rn\A(XE).

3.1.11. EXAMPIE Take for E the Cantor set in R —- then A(XE) = R\E.
Moreover, V x € R, DE (x) exists and is equal to zero.
[Recall that E is a closed subset of R, thus R\E is an open subset of R, thus

R\E = (R\E)Q c A(XE) . But E is also a set of Iebesgue measure 0, hence

E c R\A(E)

R\E o A(E) => A(E) o R\E > A(E)

=> A(XE) = R\E.
As for the other contention, simply note that

1

1@ = 0= t1EnBx,1) = 0.]



3.1.12. ILEMMA Iet E € MIL1 — then

1 foerEﬂA(XE)
D_(x) =

0 for x € (R™M\E) n A(XE)-

3.1.13. SCHOLIUM
1 for almost all x € E
DE (x) =

0 for almost all x € Rn\E.

[Tt is a question of establishing that

o LME\E N Alxg))) =0

and
o L(RMNE)\(R™NE) N Alxz))) = 0.
E.g.:
E\(E N A(xg))

= R\E N (B N Alxg)
= EN_(RNE) U RNA(xg))
=E N RA\Axg).

But

L" (R™\A (xg)) = 0.]

3.1.14. NOTATION Given E € MIL‘, let

— n. 2
DE = {x €R .DE(x) exists}.



3.1.15. N.B.
DE > A(XE) .
3.1.16. LEMMA
n
O € ML‘

3.1.17. IEMMA The function
x » Do (x) (x € Dp)
is ILebesgue measurable.
3.1.18. THEOREM
n_ ,n
fRnDE dL™ = L' (E).
PROOF Write
n _ n n
R"=1IEnDN A(XE)) U (R\E) N A(XE) U R \A(XE).
Then this is a disjoint union of Lebesgue measurable sets, the third of which, viz.

Rn\A(XE) , being of Iebesgue measure 0. Therefore

S D, d"™
0 E
= D4l + s p_ g
E 0 Mxg) "E (R™NE) N A (x) E
= f 1da+ s 0 a.®

n
LB N Alxg)) -

Write

E N Alxg) = B\(RMNA())



=mmnWM%H,

from which

LME N Alxg)) = L7E) - LPE n RN ()

L @®),

thereby completing the proof.

3.1.19. DEFINITION If E c R is Lebesgue measurable, then a point x € R"

(not necessarily in E) is a point of density 1 for E, denoted x € El, if DE x) =1

and a point of density 0 for E, denoted x € EO, if DE (x) = 0.

3.1.20. DEFINITION

® El is the measure theoretic interior of E.

® EO is the measure theoretic exterior of E.

3.1.21. DEFINITION The measure theoretic boundary of E, denoted E)ME, is

the set of points where the density is neither 0 nor 1.

3.1.22, DEFINITION A ILebesgue measurable set E c R™ is d-open if each

point of E is a point of density 1, i.e., if V x € E, DE(x) = 1.
3.1.23. EXAMPLIE Take n = 1 — then the set of irrational numbers is d-open.
3.1.24. IEMMA Every open subset of R% is d—open.

3.1.25. THEOREM The collection of all d-open sets forms a topology, the

density topology.

3.1.26. N.B. The density topology is strictly finer than the euclidean

topology.



Iet E ¢ R™ be Iebesgue measurable —— then

L"(E 0 B(x,r)) , L"((R™E) n B(x,1))
n n

w. r W r
n n

_ L"®" n Bx,x))

n
wxr
n
n
_LBExn) M
- (] n W n )
nr nr
Thus it follows that
T D.(x) =1iff D x) = 0
E (RM\E)
D_(x) = 0 iff D (x) = 1.
E (R™\E)




§3.2. APPROXIMATE LIMITS

Let f:Rr1 + R be a Lebesgue measurable function.

3.2.1. DEFINITION An element £ € R is the approximate limit of f as y » x,

denoted
ap lim f£(y) =2,
Yy-» X
if for every ¢ > 0, the set
{y:]|£@) - ¢] > €}
has density 0 at x, i.e.,
L £ - 2] 2 e} n Bx,x))
lim = £ 122 = 0.
r- 0 u)nr

3.2.2. ILEMMA Approximate limits are unique (thereby justifying the use of
"the" in the definition).

PROCF Let 1{1 and 1{2 be two candidates for the approximate limit per the defin-

ition. Assume that Kl # 1{2 and take ¢ = |£l - 1{2]/3 —— then for each y € Rn,

3= 4y - &, < [EW - 4] + £ - 2

B(x,r) c {|f = 2| > e} u {[f - £,] > e}.

Proof: If there were a y € B(x,r) which was not in the union, then

£ - £] <e

[E() - £,] < e



|£ () -Kll + |£(y) - £2| < 2

=> 3t < 2e =>3<2 ... .
Therefore

L™ (B (x,1))

e
)
I

IA

L (L]£ - £;] = €} n Bx,x)) + L"({|£ - £, > e} n B(x,1)).

Now divide through by wnrn and send r to zero to get 1 < 0.

3.2.3. THEOREM

ap lim f(y) = £
y > X

iff there exists a ILebesgue measurable set E < R™ with DE (x) = 1 such that

lim f£(y) = £.
y>X
y €EE

[The discussion infra supplies the proof.]

3.2.4. N.B. In view of established principles, x may or may not belong to
E. As for the symbol
lim £(y) = £,
y»>Xx
y €E
it means: V € > 0, 3 r > 0 such that

|[£(y) - £| < ¢

if y € EN (B(x,r)\{x}).

Start matters by assuming that the limit above is in force —— then the claim is

that for every ¢ > 0, the set



{y:

£(y) - £] = €}

has density 0 at x or, equivalently, that the set

{y:|f@y) - £] < ¢}

has density 1 at x. This set, however, contains E N (B(x,r)\{x}) for small r.

Therefore
L®({|£ - £] < €} n B(x,x))
W I_:n
, LYE 0 B&n)\xh)
W rn
n
But

L™E n Bx,x)) = L2E n B,)\{x})) + IE n )

Il

L"E N Bx,r)\{x}))

L"({]£ - £| < €} n B(x,1))

w, I’n
s

L"(E n B(x,r))

n
W r
n

[\

-1 (r~>0).

In the other direction, assume that

ap lim f(x) = £,
y > X

n

the objective being to construct an E € ML

with the stated property. To this end,

choose a strictly decreasing sequence {rk} such that



L (B(x,x,))
k

P £ - & = %} N B(x,x)) < -

and put

E=RN\ U (BGa)\BGxx, ) n{|f - L] = 5
k=1

Then E is Iebesgue measurable and

lim f(y) = L.
yrXx
y € E

There remains the contention that DE (x) = 1 or still, that

By definition,

o]

RA\E = U (B, ) \B(x,1y 1)) N {y:

1
fly) - 2| = ).
k=1 k

<r <r,6 -— then

Given r > 0, denote by K the integer for which el K

L (R™ME) n B(x,r))

IA

5 LM(Bx,r)\Bx,x, ) 0 {f- 2] =LH
k=K k k+1 k

A

r "@®&r) n{|f-2 = -l—})
k=K k k

" (B(x, r))

A

X
k=K 2

LM (B(x,r)) I ik+ 0 (r~ 0).
k=K 2

N

3.2.5. DEFINITION A Lebesgue measurable function £:R™ > R is approximately




continuous at x € R™ if f is defined at x and

ap lim f(y) = £(x).
y > x

3.2.6. SCHOLIUM f is approximately continuous at x iff there exists a

Iebesgue measurable set E ¢ R with Dp (x) = 1 such that f|E is continuous at x.

3.2.7. REMARK In terms of the density topology, £ is approximately continuous
at x iff £ is d-continuous at x.
3.2.8. THEOREM A Lebesgue measurable function £:R" > R is approximately

continuous " almost everywhere.

PROCF Given € > 0, there is a continuous function g:Rn + R and an open set
G < R” such that Ln(G) <egand £ =g in RN\G. on general grounds, almost every point

of RN\G is a point of density 1, thus f is approximately continuous at almost all

points of R™G. The arbitrariness of the data then implies that £ is approximately

continuous at almost all points of R™.
3.2.9. IEMWA Iet £ € L (R") and let £ € R”. Assure:

lim -1 s £ - 2] a® = o.
el
r-+20 W ¥ B(x,r)

Then

ap lim f(y) = £.
Yy - x

PROCF Thanks to Chebyshev, V € > 0,

n
<L ({|£ - ] = e} n B(x,1)) _ lnf £ - | a™
w x" wr Bl




3.2.10. APPLICATION The approximate limit exists at each Lebesgue point

x of £ and coincides with the value f(x).

The literal converse to 3.2.9. is false in general, i.e., it can happen that

ve>0o,
L"({|f - £] > €} n B(x,x))
1lim — ! = (0,
n
r->0 w.r
n
yet the relation
. 1 n
1lim S If - KI dl” =0

r—+0 wnrn B(x,r)

fails or, what amounts to the same, it can happen that at some x, there is no £ such

that

Lim L s £ -] a® =0
r—>0wnr B(x,r)

but for same £ and V € > 0,

Lim L€ - 2] > e}n B(x,x)) _
r->20 wnrn

0.

2

3.2.11. EXAMPIE In R®, take o > 0 and consider

0 ifysOoryZX2

fx,y) = (x,y) € R2
ly| ™" otherwise.

Then

Lot |£] dxdy

r B((0,0),xr)

Wa

tends to + ®» as r » 0 if 1/2 < a < 1 while choosing £ = 0, the sets {|f - 0] > €}



have density 0 at (0,0).
3.2.12. IEMMA Suppose that the sets
E. = {|[f - 2] 2 ¢}
have density 0 at x and £ is bounded in a neighborhood of x, say |f| < M —— then

lim —*_ s £ - 2| a® = o.
n
r->0 w.r B(x,r)

PROCF Write
g |£ - 2] a®
n
wTr B(x,r)
n
L®(E_ n B(x,1)) L™ (B(x,r)\E_)
5 €
< M+ |2 = + € =
w._r w.r
n n
from which
lim sup i |£ - 2] d® =< ¢

Now let € 0.

3.2.13. DEFINITION f has an AFP approximate limit £ at x if

lim —t— f I£ - £] a® = o.

r->0 wnrn B(x,r)

3.2.14. NOTATION S_ is the set of points x which do not possess an AFP

£

approximate limit.

3.2.15. N.B. If f has an AFP approximate limit £ at x, then

ap lim £(y) = £,
y *X

the converse being false in general (cf. supra).



3.2.16. IEMMA AFP approximate limits are unique.
3.2.17. NOTATION Write f(x) in place of £.
3.2.18. OBSERVATION If f(x) = f(x), then x is a Iebesgue point of f.

3.2.19. LEMMA The set of points where the AFP approximate limit exists
does not depend on the representative in the equivalence class of £, i.e., if £ =g L?

almost everywhere in @, then x £ S; iff x ¢ 85 and f(x) = g(x).

3.2.20. IEMMA Sf is a Borel set of ILebesgue measure 0.
PROOF The complement of the Lebesgue set A(f) of £ is a set of Lebesgue measure

0, hence Ln(sf) = 0. As for S_ being Borel, write

RAS. = n U {x: lim sup s £ - ql a® < .

£ k=1 g&Q r-20 wnrn B(x,r)

[The inclusion c is trivial. On the other hand, if x belongs to the set on

the RHS, then for any integer k = 1, there is a G € Q such that

Lin sup —— £ -qla”<i.
r>0 wr B(x,r)

The sequence {qk} obtained in this way is Cauchy and its limit £ has the property that

lim f £ - 2] a™ = o,
r >0 B(x,x)

o x £ S, i.e., x € Rn\Sf.]

3.2.21. LEMMA f:Rn\S £ R is a Borel function which coincides L™ almost

gverywhere with f| Rn\Sf.



PROCF In fact, for any x € Rn\sf,

1im —1_ s Fa =2 = F),
r—>0wnr B(x,r)

thus f is the pointwise limit as r -~ 0 of the continuous function

I £ al.

X ->
w B(x,r)
n 14

3.2.22, EXAMPLE Suppose that f = Xg is a characteristic function (E a

Iebesgue measurable set) -- then Sf is the measure theoretic boundary E)ME of E.

On occasion, it will be necessary to consider a generalization of "ap lim".

3.2.23. DEFINITION Let £:R" + R be a Lebesque measurable function?

@ An element £ € R is the approximate lim sup of £ as y -+ x, denoted

ap lim sup f(y),
y*>X

if £ is the infimum of the real numbers t such that

Lim Lo(E >t} nBxx) _

n
r->20 w.x
n

O.

e An element £ € R is the approximate lim inf of f as y + x, denoted

ap lim inf f(y),
y>Xx

if £ is the supremum of the real numbers t such that

I L"({£ < t} N B(x,x)) _
r >0 wnrn

0.




lo.

Obviocusly

ap lim inf f£(y) < ap lim sup £ (y)
Yy * X y > X

and if

ap lim inf f(y) = ap lim sup f(y)
y > x y > x

and if their common value is £, then the approximate limit exists and

ap lim f£(y) = £.
y>X

* % % % % % % % % % %

APPENDIX

The preceding considerations have been formulated under the assumption that
£:R™ + R is Iebesgue measurable. Matters can be generalized. Thus let S c R™ be
Iebesgue measurable and suppose that f£:S + R is Lebesque measurable. Fix a point

X € Rn such that Ds(x) = 1.

DEFINITION An element £ € R is the approximate limit of f as y » x in S,

denoted
ap lim f(y) = &,
Yy >X
Yy €S
if for every € > 0, the set
{y e s:|f(y) - £| = €}

has density 0 at x.

N.B. If S = R®, then the demand that D , (&) =1 is automatic. Proof:
- R



11.

L™ (R™ n B(x,r))

D (x) =
Rn W rn
n
w rn
_LE&rn) o nt
n n ‘
w r w.r
n n

The earlier developments carry over modulo minor changes here and there. In
particular: Approximate limits are unique and the notion of approximate continuity

is clear.

THEOREM

ap lim f(y) = £
y +x
y €8

iff there exists a ILebesgue measurable set E c R™ with DE (x) = 1 such that

lim f(y) = L.
y*Xx
vy €E



§3.3. APPROXIMATE DERIVATIVES

Iet f:Rn + R be a Iebesgue measurable function.

3.3.1. DEFINITION f is approximately differentiable at a point x € R™

if there exists a linear function T:R" - R (depending on x) such that

[f@) = £&x) - Ty = x| _ .

1lim
g Ty = I

y*x

T is called the approximate differential of £ at x and is denoted by

ap df (x).
[Note: If f is differentiable at x in the ordinary sense, then f is approximately
differentiable at x and

df (x) = ap df (x).]

3.3.2. N.B. Existence is implied by demanding that

£ -~ £x) - Ty -x)] _ 4
Ty = %[

ap lim sup
Yy > Xx

3.3.3. IEMMA 2An approximate differential is unique (if it exists at all).

PROCF Let Tl and T2 be two candidates for the approximate differential —— then

Y € >.0,
0 [£(y) - f&®) - Ty - )|
L ({Y= ||y — Xll > e} N B(x,r))
r—-+0 wnrn

and



£ - £(x) - T,y = %) |

n
L ({y: Ty == 2 €} N B(x,x))
ljm = O.
r-+0 wnrn
To get a contradiction, suppose that T; # T, and take € = I |Tl - T, /6. ILet

||T1_T2I|||Y—XH
s={y:|(Ty - T) vy - x| 2 5 1.
Then

L™ (s n B(x,xr))

n
W r
n

=C>0

for all r > 0. On the other hand,

JLASE RN

yes = 3elly - x| - ;

< [T - T) (¥ - x|

< ) - £ - Ty -]+ £ - £&) - T, - x|
=>

[£(¥) - £&) - Ty = x| £ - £&) = Ty(y = %) |

S b Ty = =] ey FEEl

> e}

n
1im L (SO i(x,r)) _
r->0 wnr

0,

a contradiction... .

[Note: Here is a different proof. Suppose that Tl # T, and put T = T - T2,

ap lim Ty = %) =0
Yy = X
Yy X

hence



or still,

T(v)| _
-~ =

ap lim 0.

v >0

So, if 0 < ¢ < 1, then there exists r > 0 such that

L"@®(0,r) n {v:|T®)]| = ¢ |v][]|D < e

n
w I
n

and for every u € R" with ||u|| = r - re, there exists

v € B(u,er) < B(0,x)
with
lTv)| < el |v]]

which implies that

IT)|= [T -v+v)| < |T@-v)| + |TW)]
< [T [la =[] +ellv]]
< |IT|| ex + el|v]|
< ||T]| er + ex = (||T|| + 1)er.
And
r=rd-¢ _ r - re _ ||u[]
T 1-¢ 0 I-¢ 1=~¢
=>
er = 25— |[ul]
=>
lT@ | < (||T|] + Der

IA

(Il + 1) = []u]l



e
l1-¢

]
IA

(iTH + 1

[IT|| = 0=, =T,.]

3.3.4. REMARK If f is approximately differentiable at x, then f is approx-

imately continuous at x.

3.3.5. THEOREM Let f,g:Rn + R be Iebesgue measurable functions. Assume:
f is approximately differentiable almost everywhere and £ = g almost everywhere —-—
then g is approximately differentiable almost everywhere and
ap df = ap dg

almost everywhere in R™.

Therefore the notion of approximate differentiability does not depend on the

particular choice of the representative in the equivalence class.

3.3.6. THEOREM f is approximately differentiable at x iff there exists a

Iebesgue measurable set E c R™ and a linear function T:R" + R with DE (x) = 1 such that

tim LEW - £ Ty -x] _
g > x My = =]
Yy €EE

3.3.7. DEFINITION For i = 1,...,n, the approximate partial derivative

ap Dif (x) of £ at a point x € R? is defined by the condition

|£(x + te;) - £(x) - ap D, f(x)t]
ap lim : = 0.




3.3.8. THEOREM The following conditions are equivalent.

(a) The function f has approximate partial derivatives almost everywhere
(b) The function f is approximately differentiable almost everywhere in

[Note: Work in R™ (n > 1) = then it can happen that the partial derivatives
of f exist almost everywhere in R, yvet f might be nowhere differentiable (but, of

ocourse, f will be approximately differentiable almost everywhere in R™) .1

3.3.9. N.B. The equivalent conditions (a) and (b) are also equivalent to

(c) For every € > 0 there is a locally Lipschitz function g:Rn + R such that

L"Ux:f(x) # gx)}) <€
or even

(d) For every € > 0 there is a C'-function g:Rn + R such that

L"({x:£(x) # gx)}) < e.
3.3.10. NOTATION AD(f) is the domain of existence of ap df.

3.3.11. IEMMA If f is approximately differentiable at L™ almost all points
inR", i.e., if Ln(Rn\AD (f)) = 0, then there exist Lebesque measurable sets
EO’ Ek(k =1,2,...) such that
(£) =E, u U ’
Ap oV Y
where L" (Ey)) = 0 and for every k, the restriction f[E‘.k is Lipschitz.

3.3.12. N.B.

ap df:AD(f) + R



is Lebesgue measurable.

Owing to 2.5.1., f is differentiable at almost all points where

[fx) - £(y)]
Iz =yl

lim sup < + w,

y +x

3.3.13. IEMMA f is approximately differentiable at almost all points where

[£G) = £ ] . 4 o,
[Tx = y11

ap lim sup
y*X

¥ % k k % % % k% % %

APPENDIX

Suppose that f has ordinary partial derivatives almost everywhere —— then
f is approximately differentiable almost everywhere, thus if f is approximately
differentiable at x, there exists a Lebesgue measurable set E @ R™ with Dr (x) = 1

such that f|E is differentiable at x in the ordinary sense. Moreover,

d(£|E) (x) = ap df (x).
Assume now that n = 2 —~ then in this special case f admits a regular
approximate differential at x. Here "regular" means that the ubiquitous set E is

comprised of the boundaries of oriented squares centered at x.

SUMMARY If 3‘:‘:R2 + R has ordinary partial derivatives almost everywhere,

then it has a regular approximate differential almost everywhere.



SECTION 4: WEAK PARTIAL DERIVATES

Tet @ be a nonempty open subset of R™.

4.,1. DEFINITION A Lebesgue measurable function f£:9 + R is locally integrable

if

S £ at < +
for every compact K ¢ Q.

Dencte the space of such by
1
Lpoe ()«
- 1 -1 1
4.2, EXAMPLE Take Q = R — then £n|x| € Lyoc(R) but x = £ L, (R).
4.3. DEFINITION ILet 1 < p < + » — then a Lebesgue measurable function
f:Q > R is locally P if
Ix 1£]F al™ < + «
for every compact K < Q.

4.4, IEMMA Every locally IP function f is locally Ll (i.e., is locally
integrable).

PROOF Given a compact K < §, by Holder's inequality

Fo 1L a™ < Il I | s

K k pl Xl p

where p' =+ o if p=1 and p' = p/(p-1) if 1 < p < + =,.

4.5. N.B. The product of two functions in L}Zoc () need not be locally

integrable.



Every f € L%oc (R) determines a distribution via the arrow
n
o> f o faL™.
Moreover two locally integrable functions define the same distribution iff they

are equal almost everywhere.

[Note: A distribution T "is a function" if there exists an element f € Li’:oc ()

such that T = den.]

4.6. NOTATION Iet T:c::(sz) + R be a distribution —— then

oT

'&"— (i = l,...,n)
1

is the distributional derivative of T:V ¢ € C: (),

oT  _ _ . 99

< O oa X,
i i

"T>.

4.7. DEFINITION Given an f € L%oc (), denote by

£ .
BX. i=1,...,n)
1
its distributional derivative (per T = £faL™) -- then %}f{— is said to be a weak partial
i
derivative of £ if 9 € Lt (Q), thus ¥V ¢ € C(Q)
—_— Sxi Loc ! eV
< cp,-a;f—>=—<wa@, fae >
Exi Bxi

or still,

of n_ _ 3 n
ng)@}?jde = fQ aXi fdL™.



4.8. EXAMPIE Take {§ = R and consider the function

0 if x

A
o

hix) =

x if x > 0.

Then h € L%Zoc (R) and its distributional derivative %XE is the Heaviside function

0 if x

IA

0
Hx) =
1if x> 0,

which is therefore the weak derivative of h. Since H € L,:éoc(R) , one can form its

distributional derivative SX—E' SO

<@,%>=~<—— HdLl>

H(x)dLT

o de o, 1
S 0 & dL
== [o(*) = 0(0)] = ¢(0).
Consequently % = §, the Dirac measure concentrated at the origin. However there is
1
no £ € Lf,oc("R) such that
s 1o
for all ¢ € C: (R), hence H does not have a weak derivative.

4.9. DEFINITION Suppose that f € L%oc () admits weak partial derivatives

of of

T e then the distributional gradient attached to f is the n—tuple
1 n




Bf).

_of
Vf — ("a;'{—' 7oy 'azi—n

1

4.10. EXAMPIE Working in R", take © = B(0,1)°\{0} and define
£ € c7(8(0,1)°\{0}) by the rule
£6) = x| @ > 0) ([fx]] = 6Z+ -on +x 3.

Then f is unbounded in every neighborhood of the origin (0 < ||x|| < 1) and

of %y .
.552; %) = - o T Ha+2 (i=1,...,n).
Therefore
VE@) = - Xa + 2
]|
=>
V€ @) || -—-———~—i—IH |:§+ .
X
where
n
el = (x| 2o |2
i=1 i

4.11. RAPPEL Tet S™1 (= 3B(0,1)) be the unit sphere and let o™ T be its

surface measure, thus

n-1,.n-1 ,”n/ 2
o]

n
(S ) = nlL (B(0,1)) '-'nm‘)-

4.12. APPLICATION Given a > 0 subject to n > a, put £(x) = ||x|| " and write



n
fB(O,l) |£] 4L

_ -3 . n
= Jnon 1=l a
1 -0 n-1 . n-1
=15 fsn_l[|rx|] r T do T (x)dr
_ cyn—-l (Sn~l) flé o + n-1 ar
-0 +n | 1
=P | <o,
- +n
0
1
Therefore £ € L™ (B(0,1)).
4.13. EXAMPIE Consider again f(x) = ||x|]™ (a > 0) but replace

Q = B(0,1)°\{0} by 2 = B(0,1)° —- then
n>o=f¢€ Ll(B(O,l))
= ferl@ = fe I%OC(Q).

Next

of n
g lgggw daL

A

n
g | [VE]] 4L

I

1 n
o] IQ ——Hx{[a — d

- [oc[on_l(sn”l) -*_n——rn—a—l l<+oo
n-o-1 0
ifn>a+1, so
of 1 __ of 1
Mo E L) = = €L, Q).

1 1



Iet T be the distribution corresponding to £, hence V ¢ € C: (Q),

oT A1)
> = =< —=—,
axi axi

T >

< o,

=< @ %;%— a > (dominated convergence).
i

Accordingly, as distributions,

oT _ 3f n
0X.  OX. dL™.
i i

Therefore £ admits weak partial derivatives in B(O,l)o (and not just in B(0,1)\{0}).

4,14, IFMMA If f € Cl (), then the ordinary partial derivatives %f{— of £
i

are also the corresponding weak partial derivatives of f.



SECTION 5: MOLLIFIERS
Iet Q be a nonempty open subset of R™.

5.1. NOTATION Given £ > 0and a nonnegative even bounded function
o € L' ®R™ with

spt © < B(O,1), / e d” =1,
R

put

o, (=) = in @(Xé) x € RY.
e

5.2. DEFINITION The ¢ e are called mollifiers.

5.3. N.B. Mollifiers exist... .

[The standard choice for ¢ is

cm) exp(—————lé—) if [|x]] <1
X

e(x) =

0if ||x|] = 1,

where C(n) > 0 is so chosen that

S oo d™= 1.
Rn

Here ¢ € C: (Rn) . Another possibility is

1
px) = — X (x).]
“y "B(0,1)°

5.4. NOTATION Put

Qg = {x €Q:dist (x,930) > }.



Rn

[Note: If Q = R, then 0 =R

5.5. DEFINITION Given a function f € L%OC(Q), write
_ _ 3 n
£ = (£ % o)X = fQ mg(x y)f(y) dL™,
where x € Qg.
[Note:

fo o x = YEW) A" =S - V£l a’.]

B(x,c) Cc (x

The function f 8:3’28 -+ R is said to be a mollification of f, the standard

mollification of £ being the fe per the standard choice for ¢ per supra.

[Note: Given x € Q, fs(x) is well defined for all 0 < € < dist(x,90), thus
it makes sense to consider

1lim fe(X)‘]
e >0

5.6. THEOREM If f_ is the standard mollification of f, then f_ € C (2)
(0 < € < 1) and for every multi index o and for every x € QE,

sl
€ x - y)f(y) a®.

oY (k) = (£ % 3% () = Sy —

ox

5.7. LEMVA If the standard choice for ¢ is used and if f € I%OC(Q) admits

a weak partial derivative %§~‘(hence, by definition, %é—
i i

1 . \
€ L%oc(ﬂ))' then the derivative

of the mollification coincides with the mollification of the weak partial derivative,
i.e.,

e o,
oxX. OxX. Og -
1 1



In fact,

afe 3 n
%, (9 = g Up 0cx - WEW AL

= —3~<.,o (x - y)E(y) a

0 ox,
i
— 0 _ n
= (- 1) IQWIQE(X y)E(y) db
= CDED fyo -y 5 y (v) a”
= % o) ().
1

5.8. APPLICATION Work with the standard choice for ¢, suppose that @ is

oonnected, let f € Ll (), assume that the weak partial derivatives g% i=1,...,n)
i

exist and are equal to 0 almost everywhere — then f coincides almost everywhere in

Q with a constant function.

[To begin with,

thus fe , being smooth, must be constant in each connected component of Qe (in general,
Qe is not connected). Consider now a pair of points x,y € Q — then there exists a
polygonal path y in © joining x and y and for small enough €, vy is in Qe’ SO

f€ (x) = fg {(y). But f€ > £ (e ¥+ 0) almost everywhere (see below). Therefore

lim f€ (e ¥ 0) is a constant function in .]

5.9. LEMMA Suppose given f € C(Q) (c L%,oc (R)) — then for every choice of o,



f€ +~f (g + 0)
uniformly on compact subsets of Q.
5.10. LEMMA Suppose given f € L}ioc () — then for every choice of ¢ and

for every lebesque point x € (,

fox) > £(x) (e ¥ 0),

hence f€ + f almost everywhere.

PROCF Write
£.60 - £ = [/ o (x = MEl) A" - £) |
n n
= IIB(X'E) 0 (x = YE(Y) A" = £(x) Sp o) o x - y) dl |
= Vo) @ =¥ EE - £6) dL”|
1 X -y _ n
S e ) [£@) - £x)] daL

g

n 1 n
< — = £f-f d
||(~O||oo wn gn fB(X,E) | (X)] L
= [lo|]]. v —i= 7 £ - £(x)] aL”
© N n "B(x,c)
w_€
n
>0 (¢ ¥+ 0).
5.11. LEMMA Suppose given f € L%oc Q) (Lsp<+x) (= fc¢€ L%oc (Q)) —

then for every choice of o,

Il
o
.

lim ||£_ - £||
e+o °© P ()



SECTION 6: W™ (RY)
Iet (X,E) be a measurable space and let u be a measure on (X,E).

6.1l. NOTATION Given a measurable function f:X + R, put

P[], = inf{t > 0:u({x:

f(X)l > t}) = 0}1

with the convention that inf @ = .

6.2. DEFINITION ||f]|_is the essential supremm of f and is written

[|£]], = ess sup |£(x)].
XeX

6.3. NOTATION

L7(X) = L(X,E,p)
is the set of measurable functions defined on X for which ||£][|_ < .

[Note: Such functions are said to be essentially bounded and if f is one

such, then
£ | < [[£]],

almost everywhere. ]

6.4. IEMVA f € L”(X) iff there is a bounded measurable function g such

that £ = g almost éverywhere.
6.5. LEMMA L°°(X) is a Banach space.

Henceforth the pair (X,E) will be the pair (Rn,MrLl) , W being L™.

6.6. N.B. The set of bounded continuous functions f:Rr1 -+ R carries the



uniform norm

|1£]], = sup |£69) |
xeX
and
HEN, = TE] o

6.7. NOTATION Wl’oo(Rn) is the space consisting of all essentially bounded
functions f£:R™ + R whose distributional derivatives

of
X,
i

i=1,...,n)

are also essentially bounded functions in R™ as well.
In Wl' 00(Rn) introduce the norm

n

z

el 3 0= Hella+ 2

6.8. THEOREM Wl,oo(Rn) is a Banach space.

6.9. NOTATION Given f € Lilioc(Rn) , the ith difference quotient is

fix + hei) - f(x)

h _
Dif (x) = h

i=1,...,n).

6.10. IEMMA V ¢ € c:(Rn),

ox + hei) - o(x)

fRn h

£(x) a™

fx - hei) - f(x) n

==/ o — daL .
2 h




Consequently

Il

SO fd ==/ oo a® G=1,...,0.
Rn 1 Rn 1

6.11. THEOREM Suppose that f is a bounded Lipschitz continuous function, say

|fx) - £(v)| =Lllx -y|| &xye€RY.
Then

£ ewCRY.

Since by hypothesis f € Loo(Rn) , the problem is to show that its distributional

derivatives

of

'c)xi

(i = l' coe ,I’l)
are (essentially) bounded functions as well.
To begin with, V x € Rn,

fx - hei) - £(x)

IA
=

i1=1,...,n)

iall
IA
H

1=1,...,n),

so if @ is open and bounded,

1/2 1/2

h ~h n n
< ||D.E L@) < L(LT(Q) .
1] n

Pyl o

Lethk= 1/k (k=1,2,...) — then

{D.-hk

lf}



is a bounded sequence in L2 (), thus there is a subsequence

-hkz

{D; f}
that converges weakly in L2 (Q) as £ » « to g; € L2 (Q). To simplify, put hj = hk

hence hj >0 (J > ).

Accordingly, ¥ ¢ € C,, (),

_ °f _ _ , e n
<o > = g g fdL
1 1
h, N
= Jo (lim DJe) fal

j—)-oo

h.
. j n
1lim IQ (Di @) fdlL

3>

-h.
_ , 5 n
1lim fQ cp(Di f) d.

j+oo

n
- = f Q @gi dL ’
the last equality following from weak convergence. Therefore the weak partial

derivative o exists and is represented by gy-

0X.
i
Because
-h.
£, 2D; g G=1,2,...)
converges weakly in L2 (Q) to g%, there exists a subsequence {fj } such that the
i n
convex combinations
N
T £+ inh 12
n j ox
n=1 n



as N + «, Here

N N -h.
12 sy €5 I, = = allp gl
=1 n L Q) n=1 L ()
N
< (z an)L = L.
n:

of .
lg}—{: <L (i=1,...,n)

for almost every x € {2, hence

of ® N

And then
£ew ™ r®RY.

6.12, REMARK let f € Wl,oo(Rn) —— then on the basis of "embedding theory",
it can be shown that f has a bounded continuous representative f. Moreover, f can be
taken Lipschitz continuous.

[Working with the standard mollification Ee and assuming that the support of

f is compact, note that

Ve | < ||VEl] (e > 0)
H EIEL & | -

I

— - 1 —
[E.00 - E,w) | = |/ < VE (tx + (1 - t)y, x -y > dt]

A
<
Hh
o
L

8

o]
2

|

=<,

IA

VE L o == vl
L (RY)



=> (¢ + 0)
E) - £ | < |IVE[| , , llx =¥l
L (R

for all x,y € R°.]



SECTION 7: SOBOLOV SPACES

8§7.1. FORMALITIES

Iet Q be a nonempty open subset of R,

7.1.1. DEFINITION Iet 1 < p < + » —— then the Sobolov space

consists of those f € L%OC(Q) such that f belongs to ﬁp(Q) and such that the

distributional derivatives %§-are weak partial derivatives and also belong to
i
P@ @=1,...,n.

[Note: There is a local version of this definition, namely call
Wpeb @

the set comprised of all f € I%OC(Q) with the property that the restriction

£|Q' € Wl'p(Q') for every nonempty open set Q' < Q whose closure is a compact subset

of Q.]

7.1.2. N.B. Spelled out, W-'P(Q) consists of those £ € IP(Q) for which
3 3F

there exist functions ——,...,—— in Lp(Q) such that V ¢ € Cw(Q),
Bxl axn o]
of n_ _ d9 n . _
fQ@rdL = fQ_aXi fdL (l l,...,n)‘

[Note: Another point is this: Wl’p(Q) is closed under taking absolute values,

i.e.,

£ewP@ = |£] e wP@.]



Depending on the parameters, it can happen that there exists a function in

W]" p(@) which is nowhere continuous.

7.1.3. EXAMPIE Take 9 = B(0,1)°, let {q,} be a countable dense subset

of @, and consider
_ oo 1 - o0
fx) = = T lix-qll” @>0&en u {gl.
k=1 2 k=1

Then

£ e wrP@) ifoc<n;p

but £ is unbounded in every nonempty open subset of Q.

7.1.4. N.B. It will be seen later on that each function in Wl’p(Q) (p > n)

coincides with a continuous function almost everywhere.

7.1.5. IEMMA Iet £ € Wl’P(Q) —— then there is a partition

Q= (U ) u Z,
k’—"lEk

where the E, are Iebesgue measurable sets such that f lEk is Lipschitz and Z has
Iebesgue measure 0.

7.1.6. THEOREM ILet f € Wl’p(Q) —-- then f is approximately differentiable

almost everywhere.

[Extend f|E, to all of R" and use Rademacher.]

7.1.7. THEOREM The prescription



endows Wl'p(Q) with the structure of a Banach space.

[Note: An equivalent norm is the prescription
£ [IE]] 5+ [IVE[]
P P
where Vf is the weak gradient attached to f.]

7.1.8. IEMMA Wl'p(Q) is separable.

7.1.9. THEOREM ILet f € Wl’p(Q) — then there exists a sequence
(£}« WP o (@) such that

£ > fin WP,

7.1.10. REMARK It can be shown that C;(R") is dense in WP RY.

7.1.11. PRODUCT RUIE Iet £, € W'P(@) n L°(Q) — then £fg € W'P(Q) n (@)

and

i=1,...,n)

L™ almost everywhere in .

7.1.12. CHAIN RUIE Tet £ € W-'P(Q) and let g € CT(R) subject to g' € I (R),
g(0) = 0 — then g o £ € W) and

(g o f) _

. of .
. (g o f) &— (l = l,...,n)
1 1

" almost everywhere in Q.

[Note: The assumption that g(0) = 0 is not needed if Ln(Q) < + o,.]



To formulate the next result, let Q' be another nonempty open subset of R™.

7.1.13. CHANGE OF VARIABLE Suppose that ¥:Q' + Q is invertible, where Y and

¥' are Lipschitz continuous functions, and let f € wl'P(sz) -~ then f o ¥ € wl'p(sz') and

n oV

BEe ) wny= 1 E wx) L) G=1...0
ax! k=1 %k ax!
i i
L™ almost everywhere in Q'.
7.1.14. TERMINOLOGY Given normed spaces (X,|].[[y) and (¥,|]. )+ one

says that X is embedded in Y, denoted X <+ ¥, if X is a subspace of Y and there exists

a constant C > 0 such that for all x € X,

%11y = ¢l 1xl |y

7.1.15. EXAMPIE Suppose that L™(Q) < + ®and 1 < p < q < + © — then

v £ e 19(),

|21 < (P WP - (A g

IP () (@)

3@ — 1P@).
[Note: Here X = Lq(Q), Y = LP(Q), and

Iooking ahead:



WPRY o 1P /Y if i _1_1
R @) ifp<ng=2-3

WPRY & 9@ ifp=n (g€ [p, + =0

WPRY o 1°RY if p > n.




§7.2. EMBEDDINGS: GNS

7.2.1., DEFINITION Let 1 < p < n — then the conjugate exponent of p is

2
LR P
P =g TPt iop
[Note: p* > p and
i _1_1,
§ B 0

7.2.2. THEOREM Iet 1 < p < n —— then there exists a constant C(n,p) > 0

such that for all f € Wl'p(Rn) '

v |EPT et

A

coup) U, 9] P )P < + o,

7.2.3. SCHOLIUM When 1 < p < n,
WP RY es PTRD).
7.2.4. RAPPEL If 1 < pl,...,pk < 4+ o with

L'*- s e e +—];.=l

Py Pr
Pj n
and if ijL (R G =1,...,k), then

k
SoolEy o £l Al STT TIE]] .
Rn 1 k 5=1 J ij

The proof of the theorem can be divided into three parts.

Step1: p=1, £€C-RY.



[For each i € {1,...,n} and each point x = (xl,...,xi,...,xn) € Rn, write

f(xl,...,xi,...,x ) =S Lot

N — axl (x ..,ti,...,xn) dti,

hence

IA
-
A

of
!f(x)l < fR |"a?{‘j_-' (Xl,...,ti,...,Xn)I dti (l = n)

|£x) |* _|_|_ '[Rl (xl,...,t.,...,xn)| dat;

i=1 1

£6o | 07D < 1:[ (Uq |—_ (prenerty el ae) /7D

n/ (n-1) of 1/ (n-1) 2 of 1/ (n-1)
Tp I£] dxy = (p l“agl dt,) Ir EZ Up l'a}g' dt;) 7 axy

of 1/ (n-1) — of 1/ (n-1)
< (g IEI dt,) I:Tz (U Tp [KJ dt,dx, )

. -1
S Lo BRAES. ceedx,

R °°° 1

n
< TIT (S e [3f | dx...dx )l/(n—l)
i

=>



I of n
TT ¢ ] a
i=1 R 1

1/ (n-1)

IN

IA

U, el e e
Rn

o £ (1) g ny-)/n L lvE] | a™
R R
[Note:

l*:nl;ll=>l/p*=

n-1
n
and

Cn,l1l) =1.]

Step 2: 1 <p<n, f¢€ C(]:'(Rn).

[Put
_pn~-1)
Y n-p °
Then v > 1 and
Yn _ _ 4 __np _ Iy-1)p
n-1 P n-p p-1
Y| — Y.
Now apply Step 1 to |£']| = |£]":

p* ., n, (n-1)/n
S [£[F aL™)

Il

(f n Ilen/(n—'l) dLn) (n_l)/n
R

A

o el 1] a®
Rn

v £ Y7 | ve] | @
Rn



IA

YU H (yv-L)p/ (p-1) a™ (1) /p (fRn val]p ciL]_n)l/p

R

And
n-1 _ p-1_ph-1)-n-1)
n p p
np p*

* *
s N |f|p dLn)l/p < .Y(fRn Ilvf] |p dLn)l/pI
where C(n,p) = v.]

Step3: l<p<n, £fecw'PRY.
[Given an f € Wl'p(Rn) , there exists a sequence {fk} c Cc];(Rn) such that
- 3 ),
16 = 21l 5,20 (3

llfk—fIILp+0 (k + «)

and, upon passing to a subsequence if necessary, it can be assumed that fk + £ almost
*
everywhere in R™. This said, we then claim that {fk} is a Cauchy sequence in P (R™).

For fk - £ ? € Cé (Rn) , thus it follows that

15y = 211 e = Coup |78 - 71

IA

IA

C(n,p) (IIka - Vfl ILp + IIVf - szl ILp)

> 0 (k,£ » ),



* *
Consequently there exists a g € P (Rn) such that fk + g in P (Rn) . Therefore

*
f = g almost everywhere in R®, which implies that £, - £ in P RY. Finally
k

1 g = 112 = 511_e+ 1111 e
< ||f - fkl ILp* + C(n,p) | |v£kl le
< £ = £ ] lLP* + Cln,p) (| [VE - VE| |Lp + |vE] ILP)
+ 0

+ C(n,p) (0 + ||VE]] p).
I

£l g = cp 78] )

7.2.5. APPLICATION If f € W'P(R®) with 1 < p < n and if VF = 0 almost

everywhere in Rn, then £ = 0 almost everywhere in R™.

7.2.6. RAPPEL If 1 < p <qg <r < + o, then

P ntfcid
and

A 1-x
[1£]1q CHEHD T IE ™
where

1-2
x

Q=

=£+ (0 < A< l).
b

7.2.7. RAPPEL If a 2 0, b

[\

0 and if 0 < A < 1, then

a}\bl—}\

IA

Aa + (1-A)b.



Therefore

£l = MgH, + a0 ],
< HElG + Tl

Specialize now and take r = p* (recall that p < p*) and let p < q < p* —

then it follows that

W PRY e 1I®Y.



§7.3. EMBEDDINGS: BMO

Having dealt with the case when 1 < p < n, the next item on the agenda is the

case when p = n, which necessitates some preparation.

7.3.1. DEFINITION The set

= [al’b_l.] X oe. X [an,bn], bl —a; = e = bn— an

is a cube in Rn (if n= 1, a cube is a bounded closed interval in R, if n = 2, a cube

is a square in R2 etc.). The side length £(Q) of Q is the common value

bi—ai (i=l,o-.,n).

7.3.2. NOTATION

Qx,L) = {y € anlyi - x

il =

N oS

i=1,...,m)}

is a cube with center x and side length £. Here

1?0, 2)) = £ and diam Q(x,£) = va £.

7.3.3. DEFINITION Given f € L%oc (Rn) , its integral average over the cube

Q(x,£) is the entity

_ 1 n
fQ(x,K) - M fQ(x,K) £dl.

7.3.4. IEMMA Iet 1 < p < + = — then there exists a constant C(n,p) > 0

such that for all £ € W'PRY,

Upeoty |E = fopey P AP s copt ¢ vl [P P < 4 o

Q(x,2)



PROCF Take f € Ci(Rn), put Q = Q(x,2), let z,y € Q, and write

|£(z) - £(y)]

< If(Z) - f(er---rzn_lfyn)l

+ eee + ]f(zl,yz,...,yh) - £y |

n b,
i
< iil fai ]]Vf(zl,...,zi_l,t,yi+l,...,yn)I[ dt

1£(z) - £(y) |P

n b.
S (2 LT VE@ ez gt gy || @0

i = l 1
P P 1.,1/P
< (151 (fai VE 2y s eeerzy_qotayy ooy ) [IF @) 7P, -

n b
1 i
<P 3 fai ]IVf(zl,...,zi_l,t,yi+l,...,yh)]{p d

i=1

- P4
fo 18- £51Pa

- _ ¢ |P
Iq 1£() - £,|P az

= L - P
o 'zn [o (£(2) = £(y)) ay|® dz
s Iy B iy £G) - £ ] apP dz

Q 'pn

1-1/p\p
ai) )

t



<

L - P
< o o [£@) = £ % dzdy

Pt D b, 5
zn iil fQ,fQ fai l;vf(zltunnlzi_llt’ i+l[.-.fyn) Il dtdydz

Pt 2 £ P 4za
—éﬁ—— j_zl (bi-ai) foQHV (z) || y

IA

npﬁp-l
o0

N

cng™ g | (ve] [P et

nPtieP sy HvEl [P a®

4

|f - lep MV o Cn,p) (S, | |VE] P qhyl/n

C(n,p) = (np+l)l/p'

7.3.5. SCHOLIUM If £ € W'™(R"Y), then for every cube Q,

1 n
— S £ -£.| dL
" Q
1 n ., nl/n
< JOlE-£.]7 A
M @ 0

IA

C(n)£(Q) (—-ﬁ;— fQ ||ve] 1™ dLn)l/n
L Q)

1/n

C(n)2(Q) (——l-—ﬁ- fQ |[vel 1™ a™
£2(Q)

1/n

I

cm) (g ||| |®a™



< C(n) | |VE] ] <+ o,
' R

7.3.6. DEFINITION A function £ € L}COC(Rn) is of bounded mean oscillation

provided

Esupml——-—-f ]f~fQ| aL” < + w,

HE
BO - o Mg @

where the supremum is taken over all cubes Q in R™.

7.3.7. NOTATION BMO(Rn) is the set of functions of bounded mean oscillation.

7.3.8. N.B. | is a seminorm, not a norm (constant functions have

.HBMO

vanishing bounded mean oscillation).

7.3.9. IEMMA BMO(Rn) is a vector space over R.

[If f,g € BMO(R"), then

1+ 9l g = HEN g *+ 1191 e

and | is scale invariant, i.e., ¥V r € R,

e
HEG) g = €] o]
7.3.10. THEOREM

RO (R™) /R

is a Banach space.

7.3.11. IEMMA

£ e mORY => |£f]| € BOR™).

7.3.12. THEOREM L (R™) is contained in BMO(R®).



[1f £ € L°R™),.then

[Note: Therefore

L?R™Y < Mo (R™).]

7.3.13. N.B. The contaimment is strict.
[The unbounded function

Log ||x]|
belongs to BMO (R™) . ]

7.3.14. EXAMPIE Take n = 1 — then the function

fogx (x> 0)
fx) =
0 (x = 0)

is not of bounded mean oscillation.

Iet £ € Wl’n(Rn) -— then, as has been seen above, for every cube Q,

1 n
Sl - £.] ALY < cm) | |VE] /
") © | }Ln( n

Q R™)

so upon taking the supremum over Q, it follows that f € H&O(Rn) , where

[1£]] < C(n) | |VE .
BMO | an(Rn)
7.3.15. SCHOLIUM

W RY s mo (RD).

7.3.16. APPLICATION If £ € W-'P(R™) and if Vf = 0 almost everywhere in RZ,

then f = some constant almost everywhere in R™.



§7.4. EMBEDDINGS: MOR

It remains to consider the situation when p > n.

7.4.1. RAPPEL lLet E be a nonempty subset of R? — then a function £:E - R

is Holder continuous with exponent 0 < o < 1 if there is a constant C > 0 such that

[£) - £ | < ] |x - y||*
for all %,y € E.

[Note: Of course if o = 1, then it is a question of Lipschitz continuous.]
A Holder continuous function is continuous but it can be nowhere differentiable.

0,

7.4.2. NOTATION C '*(E) is the set of all bounded functions that are

Holder continuous with exponent o and norm

£l o = swp l£G] + sop LS = E0)]
C pet X€EER X,VEE HX - YH
X FY

[Note: When so equipped, CO'G(E) is a Banach space.]

7.4.3. I1LFMMA Iet p > n — then there is a constant C(n,p) > 0 such that

for all £ € Wl'p(Rn) n ¢ (R™ and for all z,y € Rn,
1~ ,
1£2) - £@ | < cop |z - v P vl .
1P (R™)

PROOF To begin with,

f(z) - £(y)

= [T = (f(tz + (1-t)y))dt

1l 9
0 ot



= [ <VE(tz + (I-t)y), z - y> dt.

1
0
Assume now that z,y & Q(x,£) — then

£k, 0) = £

f

- ‘ 1
Qx,

&

1
fQ(x,!_) fo <Vi(tz + (1-t)y), z - y> dtdz

I

'L
ﬁn

n

z

1 1 iaf
i=1

A fom,ty 1o —a-;{: (tz + (l—t)y)l lz; - yi! dtdz

IA

n

1 1 of

N

N
n-1

i=1 &

11
0 £

J J W) { awdt

i
Q(tx + (1-t)y,tl) axi

lp aw) /P

s =
o(tx + (1-)y,t8) |ox; |

1-1/n

x (LM Qtx + (1-t)y,t8)) 7P at

nA-1/p) ; n(-1/p)
Pox,e) £ 0 o

dt

A

n| |vE]]
= B /P ||
P P, L) .
Since the same estimate obtains if the roles of y and z are interchanged, write

|[f(z) - £(¥)] < |f(=2) - tQ(X’K)[ + [fQ(X'z) - £(y) |



3‘

s 2 BB ¢V Jug | :
p P Qx,£))

where z,y € Q(x,£). Proceed finally to when z,y € R™ are arbitrary — then there

exists a cube Q(x,£) such that z,y € Q(x,8) and £ = ||z - y|| (e.q., take x = 21 Y),

2
hence
l._
£@ - £ s cop |z - y| [TV vl |
LT (Q(x,£))
l_
< cmp ||z -y ITVPuEl]
¥ (R)
where
Cn,p) =2 pripn .
In the foregoing, replace z,v by x,Y.
7.4.4. THEOREM Iet £ € W'P(RY) (p > n) and let x,y € A(f) — then
£60 = £@)| = Conp) | |x -yl [FTVP ol
P R™)
[Utilize the standard mollification £ c of f and apply it to Lebesgue points
x,y of £.]

The restriction f [A(f) can be extended uniquely to Rn as a Holder continuous
function £ of exponent 1 - n/p in such a way that
Ee - Ew| = cmp | |x - vl 7P |9E||
L
for all x,vy € Rn.

[Bearing in mind that A(f) is dense, given an x € Rn, choose a sequence

{fk} c A(f) such that X > X (k + ©). From what has been said above, {f(xk)} is



a Cauchy sequence, thus the prescription

f(x) = lim f(x,)
k > o

makes sense and has the desired property.]

7.4.5. THEOREM Let f € wl,p(Rn) (p > n) — then in the equivalence class

of f there is a unique function f which is Holder continuocus with exponent 1 - n/p.

In particular: Every element of Wl'p(Rn) (p > n) coincides with a continuous
function almost everywhere.
7.4.6. IEMMA If £ € W'P(R™) with p > n, then f is essentially bounded.
PROOF Let vy € Q(x,1), take £ € W-'PR® n ¢ (RY), and write

[E@ ] = 8@ = fh oyl + 1,1

S YV e

A

*ow,1) 1EW | dy

p-n Pox,1)

o P 1/p
< 5—m HVfIILp(Rn) + Ug,1y [EDT an
< B ||vE|| + | |£]] .

p-n P’ IPRY

But one choice for the norm of f in Wl’p (Rn) is

R L L [Fp

This said, there are then two possibilities.

P>
pP-n




|[£(z)| < —=— ||VE]|] + ||
5-n | P &Y || Ile(Rn)
np np
= 1P
P <1
p-n
=>
|£(z)| <

| |[VE]] + ||£
| {Lp(Rn) ]le(Rn)

= ||£]] .
| whP (R

Therefore the L -norm of f is bounded by a constant

P (if > 1)
p—'l’l

C(n,p) =

1 (if < 1)

depending on n and p times the Wl' -norm of £f.

7.4.7. SCHOLIUM When p > n,

WPRY — 1°RY).

7.4.8. THEOREM

Fe i vPRY (b sy,



PROCF
B 010070
=sup |fx)| + sup |f(x) - f]f}—’r)l/l
xERr1 x,yERn l |x 4l P

X#Y

IA

C(n,p) | |£] ]wl'P + C(n,p) | |£] le,p-

7.4.9. N.B. If p > n, then this state of affairs is symbolized by writing
Wl'p(Rn) PN Corl"n/p(Rn)

since

1E1 o, 10np = C1E1 2,

7.4.10. THEOREM (p > n)
f(x) > 0as ||x|] »+ .
PROCF Given f € Wl’ PR%y, choose a sequence {fk} in C:(Rn) that converges to

£ in Ww'P(R®) — then

- < f-f 0 (k- «.
e - gl L= clls-gll 4 >0 6>
Fix € > 0 and choose k such that
<e (k=K.

= £l .

k L

Next choose R_ > 0 such that f_(x) = 0 for all x:||x|| 2 R_. So, for L" almost
k k k

every x € R" with ||x|| = R, it follows that
k

E&)| = 1T - £ @[ < [|E-£]] <€
i L



and since f is continuous, this inequality holds for all x:||x|| > R .
k

7.4.11. IEMMA (p > n) V x,y € Rn,

60 - Ew)| < cup) |]x - v11PPy IR P e e,

B(X,I |Y"Xl

7.4.12. THEOREM (p > n) f is differentiable almost everywhere.
PROOF It suffices to show that F is differentiable at every IP-ILebesgue point

x, of V£, where by definition,

0

. 1
Lim —=—= fp oy HVE -

VE (xo) | [P aL” = o.
r>20 w.r

To this end, note that

1T x) - f(xo) = <VE(xg) s x = x4>|

< C,p) | |x - %, [l-n/p(fB(x,Hx—Xo| ! 17E = vE G | P a/P,
And
ctmp) | |x - x| 1P = conp) | - x| (2B
| x| |
1 1 1
= C(n,p) (mn) /pl |x - XOI [ (W) /P
wn X XO
=>
[Ee) - £xg) = <VE(x), x = x>
HX - Xol |
/p 1 / |VE - VE ) | [P AP
< Clp) ()77 (———7% B(x, | |x-x,| ) 0
w | [0l 0
> 0

as X + Xne
0



7.4.13. N.B. The weak derivatives of f coincide with the ordinary partial

derivatives of f almost everywhere in R™.



SECTION §: ACL

Working in R, let

Ik = [aklbk] k=1,...,n)

be closed intervals and put

a rectangular box.

8.1. DEFINITION A function f:Q - R is said to be ACL (absolutely continuous

on lines) if for each k = 1,...,n, and almost every point

(Xll s '}ﬁ{“l'}ﬁ{'l‘l' e oo ,Xn)

€I, X ... x1I x I 1

n—
1 -1 k+lx'°'XInER

with respect to Ln—:L measure, the function

X 7 E0 e g ) (B S S B

is absolutely continuous.

8.2. N.B. In the literature, the foregoing situation is sometimes referred
to as saying that f is absolutely contimuous on almost every line segment in Q parallel

to the coordinate axes.
Iet @ be a nonempty open subset of R™.

8.3. DEFINITION A function f:Q +R is ACL if the restriction £|Q is ACL

for every Q < Q.

8.4. NOTATION ACL(Q) is the set of ACL functions in Q.



8.5. EXAMPLE A quasiconformal map belongs to ACL(Q).

8.6. NOTATION Iet 1 < p < + o — then Ll’p(ﬂ) consists of those £ € L}’,oc(m

such that the distributional derivatives %—-}—i—- are weak partial derivatives and also
i

belong to Lp(,Q) (i=1,...,n).

[Note: Evidently

Ll'p(Q,) c leoc Q) < L}Zoc(m']

8.7. N.B. Obviously

WP @ < tiP).

8.8. THEOREM Iet 1 < p < + © — then a function £ € Ll'p(ﬂ) admits a
representative E:Q + R in ACL(Q).

[Note: The ordinary partial derivatives of f exist almost everywhere.]

The proof in general is notationally involved so to simplify the bookkeeping,

take n = 2, assume that f is continuous, suppose that

Q=100,1] x [0,1] c Q=]-g, 1+l x]-¢, 1+ ¢,

let (Xl’XZ)' = (x,y), thus the distributional derivatives are g—i and %}g]«, and the claim

is that

x + f(x,y) is absolutely continuous for almost every v € [0,1]

y » £(x,y) is absalutely continuous for almost every x € [0,1].

The discussion in either case is conceptually the same, hence it will suffice to deal

with the second of these.



For use below:
8.9. CRITERION If f € L}ioc]a,b[ and if V ¢ € C:]a,b[,

1
S b[(pf dL™ = 0,

la,
then £ = 0 almost everywhere in ]a,bl.
8.10. APPLICATION If £ € L'la,b[ and if V o € c10,1[,
fé fo' dLl =0,
then there exists a constant C such that £ = C almost everywhere in ]10,1[.

[Let @,y be functions in C10,1[ with félp - 1. put
Cox 1
¥(x) = Sod = (J®) Sv-
Then ¥Y(0) = 0 and

Y (1)

1 1.,.1
Jo? - (IOCP)fOlP

Therefore ¥ € Coco] 0,1[ and

e &
Yt =9 (f0<1>)1,b

0=17s (l)f‘{” (by assumption)

1

=f0

1
(f - fofw)cb

f - f%’ftp = 0 almost everywhere in ]10,1[

f= f](ifl},l almost everywhere in ]0,1[.



By hypothesis,
£e1tP@) = %g- lo € P,

from which it follows that

f%, I%f; )| dy < +
for almost all x € [0,1] (Fubini). Therefore the function

y > g(x,y) = ] %E (x,t) dat
is absolutely continuous on the segment [0,1] for almost all x € [0,1] and its
ordinary derivative g' = -g% coincides with the distributional derivative % for
almost all y € ]0,1[. Consider now a test function ¢ of the form

¢ =¢&n (£ € cc]oll[l n € Cclorl[)r

i.e.,
d(x,y) = EXIn(y).
Then

fQ fx,y)E@E)N' (y) dxdy

- Jo EGIN) g—g dsxdy

- 99
fo 0y) 52 axdy.

On the other hand,
1 ' — 39
Jo 9xyIn' () dy = = [y n(y) 5y (x,y) dy

E6d Sy gl yIn' () dy = £ (- Sp ny) 52 x,y) dy)



fQ glx,y)Ex)n' (y) dxdy

- 3g
fQ E(x)n(y) T dxdy

1l

- 39
fQ $ (%x,v) 5y dxdy

=

fo £x,¥)Ex)n' (y) dxdy = fQ gx,y)Ex)n' (y) dxdy

Jo EXEEYIN'(Y) dxdy = Jq E&)gx,yIn’! (y) dxdy

I5 Gy - gGy)In' () dy = 0

for almost all x € [0,1]. Denote by E ¢ [0,1] the set of x for which equality

obtains — then V x € E,

y > £(x,y)

is absolutely continuous. In fact, for any such x,

fé [fx,y) —glxy)In'(y) dy =0

fx,y) - glx,y) = C (€ R)
for almost all y € [0,1]
=>

f(x,y) = gx,y) + CX

y of



for almost all y € [0,1]. The right hand side is an absolutely continuous function
of y and the left hand side is a continuous function of y. Since equality holds for
a subset of [0,1] of full measure and such a set is dense in [0,1], the conclusion
is that

fx,y) = fg % (x,t) dt + cX

for all y € [0,1].
Summary:
y + £(x,y) is absolutely continuous for almost every x € [0,1] (viz., V X € E),
thereby campleting the proof.

The preceding result also admits an easy converse (where, as above, 1 < p < + =),
8.11. THEOREM If f:Q -+ R has an ACL representative f whose ordinary partial
derivatives belong to Lp(Q) , then these derivatives coincide almost everywhere with

the corresponding distributional derivatives of f, hence f € Ll’p(Q) .

As for Sobolev spaces, there is a characterization.
8.12. THEOREM Let 1 < p < + ® — then a function f € I¥(Q) belongs to
Wl’ P (Q) iff it has a representative f that is ACL and whose ordinary partial
derivatives belong to P Q).
8.13. CRITERION Suppose that f:Q + R is continuous and ACL —— then the
ordinary partial derivatives of f exist almost everywhere in Q and they are Borel

functions.

PROOF Fix i € {1,...,n}, put

-1
R;‘ = {x € Rn:xi = 0},



and let Pi be the orthogonal projection of R™ onto R?—l (so Pi (%) =x - Xiei) .

Iet Ei be the set of all x € @ at which% does not exist, the claim being that
i

Ln(E NQ =0 for all Q ¢ Q. Since f is continuous, E is Borel and by Fubini,

e 0 Q) =4 Lt (P;l (x) N E; 00 a L

1

(%) .

If £ is absolutely continuous on the segment P;l (x) N Q, then %}f‘:— exists almost
i

everywhere on this segment, hence Ll(P]T_l (x) NE N Q) = 0, implying thereby that

L"@® n Q) = 0, £ being ACL.

8.14. REMARK Recall that without some assumption, the set of points in @

where %}%— exists need not be ILebesgue measurable (let alone Borel).
i

8.15. CRITERION Iet
_ n
R = ]al,bl[ X se. X ]an,bn[ c R

be an open rectangle. Fix i € {1,...,n} and let £:R -+ R be a Lebesgue measurable

function that is monotone on almost every line in R parallel to the X4 axis —— then

the ordinary partial derivative g% exists almost everywhere in R (and is Iebesgue
i

measurable) .

8.16. REMARK The assumption "monotone on almost every line in R" cannot be
replaced by "bounded variation on almost every line in R".
[Note: But if f is of bounded variation on almost every line in R parallel to

the x; axis, then there is an equivalent function f which does have an ordinary partial

derivative —S—E—— almost everywhere in R (and is Lebesgue measurable).]
i



SECTION 9: BV SPACES

§9.1. PROPERTIES

Iet Q@ be a nonempty open subset of R™.

9.1.1. DEFINITION Iet f € Ll(Q) —— then f is said to be a function of

bounded variation if its partial derivatives in the sense of distributions are finite

signed Radon measures in Q of finite total variation.

9.1.2. NOTATION BV(f2) is the set of functions of bounded variation in Q.
[Note: There is a local version of this definition, namely call

BVKoc ()

the set comprised of all f € Ll]’:oc () with the property that £|Q' € BV(Q') for every

nonempty open set Q' ¢ @ whose closure is a compact subset of Q.]

9.1.3. N.B. Let f € BV(R) — then there are finite signed Radon measures
Dif (i=l,oooln)

of finite total variation such that V ¢ € cz(sz) ,

o o dDf == f % £ 1=1,...,n).

0 Q axi
[Note:
Df = (D_Lf, .. .,an)

is an R™valued vector measure and on general grounds, ||Df|| is a positive finite

measure (hence ||Df[|(Q) < + ©).]

9.1.4. ILEMMA let f € BV(Q) — then ||Df|| is absolutely continuous w.r.t.
Lebesgue measure iff each of the Dif is, in which case the distributional partial

derivatives can be represented by Ll functions.



9.1.5. LEMMA Let £ € BV(Q) — then f € Wl'l(Q) iff ||Df|| is absolutely

continuous w.r.t. Lebesgue measure, in which case

|Ipg| @ = s ||ve]] a”.

9.1.6. N.B. The containment
el
() < BV(Q)

is strict and every f € C°°($2) N BV(Q) belongs to Wl’l(Q) .

9.1.7. NOTATION Given ¢ € C:(Q;Rn), put

n 09,

. _ i
div ¢ = .E ox. !
i=1 i

the divergence of o.
9.1.8. DEFINITION Let f € L'(Q) —— then the variation of f in Q is the entity

V(£:9) = sup{/, £ div @ dL™:0 € C(@R™), |]o]], < 13.

9.1.9. THEOREM Iet f € L' (Q) — then

V(E; Q) < + =
iff £ € BV(). And when this is so,

V(E;Q) = ||DE|] ().

9.1.10. ISC PRINCIPIE Suppose that {fk} is a sequence in BV(Q) which

converges in Ll () to a function £ —— then

|[DE] | (@) < lim inf ||DE, || (©).
k-)-oo

PROOF Choose a @ € C_(@;R") with ||e|]_ < 1, thus



£ giv ¢ al

. n_ ..
fﬂfdlv@dl_ = lim fQ K

k+ o

In

lim inf V(fk;Q)
k +

lim inf | [Df, || ().

K +

Now take the supremum over ©.

9.1.11. REMARK To conclude that £ € BV(Q), it suffices to assume that the

f. have equibounded total variations, say Vv k,

k
Hka! (@) =< M.

For then

V(E;Q) = |[DE|] (@)

Il

IA

Lim inf [[D |[(Q) = M < + «,

k > e

9.1.12. NOTATION Given £ & BV(Q), put

1€l lgy = 11E1]_y + |Ioel 1@,

9.1.13. THEOREM Under the norm ||-]| lBV’ BV(Q) is a Banach space.
PROOF Completeness is the issue so suppose that {fk} is a Cauchy sequence in

BV(Q) —— then by the definition of |

. IBV’ it must also be a Cauchy sequence in
Ll (@), hence by the completeness of Ll (Q), there exists a function f € Ll () such

that fl«: + f in L:L (Q). On the other hand, since {fk} is a Cauchy sequence in BV(Q),

{||£ } is bounded: 3 M > 0 such that V k:

kl lBV



= ||£

AN

IA

M

In
=

| 1o || @)

| IDE] | (Q) < M

f € BV(Q).

The claim now is that fk + £ in BV(Q). Because we already have convergence in Ll(m '

matters reduce to showing that
HD’{fk~f)H(Q)+O (k » »),
To this end, let € > 0 — then there exists N:

k,j 2 N=> ka—fjlle<a

= [ID(f - £) ] (@) < e.

By construction,

£, > £ in @,

£

, 1
k—fj—>f - f in L7 (),

k
thus

|ID(f - £) (@) < lim inf [[D(f, - fj)]](ﬂ) <€

j > o

fram which the conclusion, € > 0 being arbitrary.



9.1.14. REMARK BV(Q2) is not separable.
[To illustrate, work in R and consider the family F of characteristic functions

Xy, of the interval Jo,1[ (0 < o < 1) - then F < BV]0,1[ and for a # B,

Hxg = Xgllgy = 2 + o = 8[.]

9.1.15. N.B. The closure of BV(Q) N C () in BV(Q) is Wl'l(Q) , hence is
not dense in BV (Q).

[Note: By way of comparison, recall that Wl'l(Q) N C (Q) is dense in Wl'l(m .1

9.1.16, THEOREM Let f € BV(Q) —— then there exists a sequence {fk} c BV(Q)
n COO(Q) such that

£+ £ in LT(Q) (k> %)

k

and

klim 1]ka||(sz) = | [DE|| ().

[Note: It is not claimed nor is it true in general that

[ID(E, = D)@ 0 (k>w).]

9.1.17. APPLICATION Take © = R" and in GNS, take p = 1, hence

I

l*zn—l (n = 2).

Choose the fk above in C: (Rn) -— then

iN

180y gy = Ty

= C(n) fRn |[VE || a®

cm) | |pg, || R™),



so, upon passing to the limit, it follows that v £ € BV(Q),

HfHLn/(n..l) < cm) | o] R™,

BV (RY) <o 1Y 1) pny

9.1.18. HEURISTICS Iet (X,E) be a measurable space, let u be a o-finite
positive measure on (X,E), and let £:X » [0,+ «] be a p-measurable function — then
(Cavalieri)

Sy Fdu = ST ul{x € X:f @) > t}) act.

[Let

E, = {x € X:f(x) > t}.

Thean x)=1 iffxEEt iff £(x) > t
t

o0 _ ) _
Iy XEt(x) dt = [, 1dt = £(x)
=>
Sy £au =Ty (f‘g Xg () dt) du

t

f°5 (/¢ XEt (x) du) at (Fubini)
= f°5 n(E,) dt.]

9.1.19. LEMYA Let E c R be Lebesgue measurable — then x|Q € th) iff

I"E N Q) < + .



PROOF
n n e
J”g2 XE|Q at” = fRn Xg Xg dL (by definition)

— n_,n
[Note: For the record,

L"E@na) = LB @) = (L) @.]

9.1.20. DEFINITION Iet E ¢ R” be a Iebesgue measurable set and suppose that
XEIQ € Ll () =~ then the perimeter of E in , denoted P(E;Q), is the variation of
XE]Q in Q, i.e.,
P(E;Q) = V(XEIQ;Q).

[Note: The set E is said to have finite perimeter in @ if P(E,Q) < + «,]

9.1.21. NOTATION Given f € BV(Q), put

Qt(f) = {x € Q:f(x) > t}.

9.1.22. SURLEMMA The function

) > ¥ (5) (0

is (Ln X Ll)—rreasurable, thus for each ¢ € C:(Q;Rn), the function

SR div@dLn:-fQ div © aL®

X
t Qt(f)

is Ll~measurable.
9.1.23. ILEMMA The function

£ 1oy 511 @



is Lebesgue measurable.
9.1.24. THEOREM (CCAREA) Iet f € BV(R) — then the set Qt(f) has finite
perimeter in @ for almost all t and

1
£l 1@ = s 1Dy gy 110 aL™

The proof proceeds in two steps.

Step 1: Consider
fo £ div ¢ al?,
where
2 € C (RY, |lo]], <1,

and recall that

[o div ® a” = o.

fx) =7/ (x) dt

o X
0 Xo, (£)

I £div @ a™

Co

=/,

. n
o Yo Xﬂt(f) (x) dt)div ¢ dL

e . n
= IO (fQ Xﬂt(f) (x) div & dL™) dt

o . n
= fO (fgt(f) div ¢ dL™7) dt.



fx) =/ x) - 1) dat

0y
~ g_(g)

[q £ div 0 a”

0 . n
= fQ _, (Xﬂt(f) (x) = 1) dt) div ¢ dL

2o - 1) aiv e da") at

(x N (x)
2 s (t)

0

. n
e (th(f) div ¢ dL") dt.

=7
So, upon writing £ = £1 + (- £), it follows that
Jo £ div e ac®

_ . n 1

or still, by the definition of the variation of the perimeter of Qt(f) in 9,
Sofdiv e d™ s £ P (£);0) dt
9] - "R Tt !

or still, upon taking the supremum over 9,

| [DE] ] (@)

IA

’fR P(Qt(f) 7Q) dt

= 1.
= I 1oy gy l1@) aL

It remains to reverse this inequality and for that, as an intermediary, one

first shows that for £ € BV(Q) N Cm(Q) ’



10.

1
]lDfl[(Q) 2 fR ||DXQt(f)II(Q) ak—,

a point of detail that will be admitted without proof.

Step 2: Choose a sequence {fk} < BV(R) N Cm(Q) such that

£ > finIT@Q) (k -+

k
and
klim |ID£, [] (@) = [|DE[] ().
Then V k,
_ 1
15 1@ = S oy ¢ 11 aL™
Next

_ _ 1

and moreover

1£,.x) - £&)| = Jy |x %) = Xo e G0 ] ALt
K R o (£,) 9, (£)

since

t t

for all t. Therefore

I 16,60 - £60 | at

1
= [y (S |x %) - ¥ x) | a™ ar*.
R Q Qt(fk) Qt(f)

Bearing in mind that fk -+ £ in Ll (Q), there exists a subsequence, not relabeled, with

the property that

. 1
XQt(fk) > th(f) in I () (k )



11.

for almost every t. Finally

1
IR I |DXQt(f) l | (@) daL

IA

o 1
fp lim inf |[D><Qt (£,) || (@) dL™ (1sC)

k > o

IA

.. 1
lim inf fR | IDXQt(fk) [|(Q) dL™ (Fatou)

k > o«

lim inf ||Df

L 1@ (cf. supra)

1l

lim ][kall(gz) = | |DE| | (Q).

k >
9.1.15. EXAMPIE Given f € BV(R), let

r if f(x) > r
fr(x) = f(x) if r < f(x) < r

- rif f(x) <-r

and put

Hr(x) = f(x) - fr(x) .
Then Hr € BV(Q) and

L 1
196,119 = Sy 11Dy L

= 1
= |tjl'>r||DXQt(f)||(Q) daL—.

9.1.26. PRODUCT RULE Let f,g € BV(Q) N L (Q) —- then fg € BV(Q) N L7()

[IpED 1@ < [[£]], [Ipgll@ + [lgll, |IDE}] (@ .



12.

9.1.27. REMARK BV(Q) N I (Q) is dense in BV(Q).

9.1.28. PRODUCT RULE If £ € BV(Q) and if ¢ € c:(sz), then ¢f € BV(Q) and

[ID@E)Y ]| Q) = ... .



§9.2. DECOMPOSITION THEORY

We shall first review matters in R, with Q = ]a,b[. So fix an £ € BV(Q).

e Df = D°f + D°f is the decomposition of Df into its absolutely continuous

part w.r.t. Lebesgue measure Ll and its singular part D°f.

Recall next that AT, is the set of atoms of the theory, i.e., the x € la,bl

f
such that D({x}) # 0.

e D°f = DIf + D°f,

o
(S

My

|

_ S
D fl_ATf

w)
Hh
Il

Dst(Q\ATf).

9.2.1. N.B. The measures D°f, D’f, D°f are mutually singular and

[Ipe| | @ = [P @ + |[Dg]] @ + |[o%] | @.

9.2.2. DEFINITION f is a jump function if Df = DIf.

9.2.3. DEFINITION f is a Cantor function if Df = D f .

9.2.4. THEOREM Each f € BV(Q) can be represented as a sum
2+ £+ £S5,

where £ belongs to Wl’y(]a,b[), £ is a jump function, and £° is a Cantor function.



9.2.5. N.B. These functions are uniquely determined up to additive constants

and if f is an admissible representative of f, then

|I0%¢] | @

b =, 1
Sy 1E] A

| [DY£] | ()

L |Exb) - Ex) 1.
XEAT
f
9.2.6. EXAMPIE Work in © = ]0,1[ and let {rn} c ]10,1[ be a sequence.
Define f € BV(Q2) by the prescription

f(x) = I 2

{n:rn<x}
Then £ is a jump function and its distributional derivative Df is
2 s .

r
n n

9.2.7. EXAMPLE Work in = ]10,1[ and take for f the Cantor function —

then its distributional derivative has no absolutely continuous part and no jump part.

[If C is the Cantor set, then Df is (a constant multiple of) HYLC, where

Y = 1og 2/log 3.]
Assume henceforth that n > 1, where as usual Q < R™ is nonempty and open.

9.2.8. NOTATION Given an f € BV(Q), put

n_(x) ap lim inf £(y)
y*X
vy € Q

(x € Q).

Il

ap lim sup f£(y)
y X%
y €Q

n, (%)




9.2.9. ILEMMA The functions

x > n_(x)
(x € Q)

X >n, (x)

are Borel measurable functions in Q.

9.2.10. NOTATION

Je = {x € Q:n_(x) < n+(x)}.

[Accordingly, J £ is the set of points at which the approximate limit of f

does not exist.]

9.2.11. N.B.

Ln(Jf) = 0.

9.2.12. THEOREM J_ is L easurable.

9.2.13. THEOREM There exist countably many Cl—hypersurfaces S, such that

k

9.2.14. THEOREM

Df = D°f + D°F

be the decomposition of Df into its absolutely continuous part w.r.t. Lebesgue



measure Ln and its singular part D°f . So
pPr = £2.7,
a n . . a
where £ :Q + R is the density of D £ and
D%+ LM
9.2.15. DEFINITION
e The jump part of Df is
DIf = DSfLJf.
e The Cantor part of Df is

D°F = DSfL(Qfo).

Therefore
Df = DPf + DOf + D°F.
9.2.16. THEOREM
Djf= (n, = n)v Hn"lLJ .
+ -'f f
[Note: Here

an’ £

Vo (x) = ————— (%)
7 ) ple||

for ||DE|| almost every x in Je-]

Therefore
_ A _ ~1 C
Df = D°f + (n, = n_)v, H L3, + D°f.

9.2.17. REMARK Earlier, under the assumption that n = 1, we exhibited a
decomposition of a BV function but a result of this type does not obtain for BV

functions of two or more variables.



§9.3. DIFFERENTIATION

Iet & be a nonenpty open subset of R,

9.3.1. RAPPEL Let f € W'P(Q) — then f is approximately differentiable

almost everywhere (cf. 7.1.6).

9.3.2. THEOREM Let £ € BV(Q) — then f is approximately differentiable
almost everywhere.
[Note: Iet
Df = D°f + D°f
be the decamposition of Df into its absolutely continuous part Df w.r.t. Iebesque
measure L and its singular part D°f — then
Daf = faLn;
a n . . a
where f :{0 - R is the density of D'f, and
ap df = £

almost everywhere. ]

For the moment, take n = 1 and let @ = Ja,b[. Suppose that £ € BV(Q) — then
there is a g € BV(Q) such that g = £ almost everywhere and g has an ordinary
derivative almost everywhere.

[To see this, choose g admissible, thus
Tg]a,b[ =e - 'I‘f]a,b{ < + o,
so g is of bounded variation in the traditional sense, thus has an ordinary derivative

almost everywhere. ]

These considerations can be extended to arbitrary n > 1.



9.3.3. THEOREM let f € BV(Q) —— then there is a g € BV(Q) which is equiv-

alent to f with the property that its ordinary partial derivative %g— (i=1,...,n)

exists almost everywhere.

9.3.4. REMARK It follows that f has approximate partial derivatives almost

everywhere, hence has an approximate differential almost everywhere.

[Note: Neither f nor any equivalent function need have an ordinary differential

at any point.]

9.3.5. N.B. If in addition f is continuous, then f does have ordinary partial

derivatives almost everywhere.

9.3.6. NOTATION Generically,

(Xl,..-,xn) = (XJ!.'Xi)'
where
| 17 - I—
X = (Xl""’xi—l’ Xi+l""’xn) i=1,...,n).
9.3.7. NOTATION An open rectangle
n

R = ]al,bl[ X ... % ]an,bn[ c R

can be viewed as the product of a rectangle

' n-1 .
Ri < R (variable xi)

Ri < R (variable xi)

atld we write

R=R! x R;.
i i



Iet £ € BV(R) —— then

Df = D°f + D°F,
where
pPf = £

Here it is a question of RP-valued vector measures:

2 e .t q:RY

and for every Borel set E ¢ {,

DE(E) = /g £2a® + 0% m).

9.3.8. THEOREM Iet f € BV(R), let 1 < i £ n, and let g be any function
equivalent to £ for which the ordinary partial derivative gg exists almost every-
i
where —— then

g - £2

8xi i

almost everywhere.

The proof is on the lengthy side and will be broken up into 3 steps. Write

. . 0
for brevity ai in place of E .
Step 1: Consider a convex function ®:R + [0, + [ and let R be an open
rectangle whose closure R is contained in © —- then the claim is that
n o n
fR @(aig) dL” < lim inf fR @(Bife) daL,
e+ 0 €
where

RE = {x € Ridist(x,9R) > €}.



To begin with, if ¢ is sufficiently--smooth and if h > 0 is sufficiently small, then

¢(Xir Xl + h) - ¢(Xir Xl)

o . )
xX. +h
= ¢(%;fxf 3;0(x} , ) ar)
1
1 Xi + h
< fxi 2(3,¢(x}, t)) dt  (Jensen).

Now integrate this along (Ri)h, hence

dx!, x. +h) - ¢x!, x.)
i’ i i’ i ) dx

4 n 1

Xt

(R, )y

X, +h

®,) Lo o0k, £) dtdx;

h 1

1

IA
sl

i)

1A

1 t .

It
‘\’

R, 2(3,9(x!, 1)) dt

¢(X;L’ Xl + h) - QJ(X;_I Xl)

/ h

o

) dx < fR @(Biq)(x)) dx.

Fh

Specialize and take ¢ = fe, the mollification of £ -— then almost everywhere

1) — ] ] — 1
fg(xi, Xi + h) fe (xi, xi) > f(xi, X4 + h) f(xi, xi) (e ¥+ 0),

thus by Fatou,

f(x!, x. + h) - £x!, x.)
& ( i’ i - i’ i ) d
h

i

R



< lim inf f_ ®(3.f (x)) dx
e+ 0 Re: 1€
or still,
gx!,x; + h) - gx!,x;)
th 5 1771 . 1794 ) dx

< lim inf fR @(aifg(x)) dx.
e+ 0 €

To finish, it remains only to send h to 0.

Step 2: The next claim is that

fp 0(F) A < oo A + ||| ®),

R
[

where the convex function ¢ is subject to the condition

(s +t) < 0(s) + |t]

for all s,t € R. First, for every x € Qs and any i € {1,...,n},

Bfg
0fe®) =5 &
i
8<pE
= IQ ‘E x -y dy
8@8
= - fQ 'é"i;'; x -y Ey) dy

IQ @E(x -v) dDif

= Sy o (x = VE Y dy + [ o (x - y) L)

B(3,F, (%)) = 8 o, (x = ¥) £5(y) ay) + [fg o (x = y) dDE(Y)

.



Since

fQ <,P€(x -vy) dy = 1,
the first term can be estimated by Jensen, so
(3, £, () < Jg o (x = VIO (v) dy + fg o (x ~y) a||DE]] ().

Therefore

n a n S
fRe: 0(8;£) dL” < fp o(f)) AL + /o d| |Dif| .

g al ISl = 1105 .

9.3.9. N.B. Step 1 and Step 2

n o n
fR @(aig) dL” < lim inf fR @(Bife) dL
e+ 0 €

< fp o) d” + [|DfE]| ).

Step 3: Work with
. _L rpm
R(xy/r) = x5 + ] 51 5l -

Then

La LIPEEN R G
im = (
r >0 rn

for almost all X € Q (differentiation principle). Fix such an Xq and take it to

be a Iebesgue point for @(aig) and @(f?) . Since

Ln (R(Xolr) ) = rnl



7.

when r + 0,
. 2(3,9) A" > 8(3,9) (xp)
A R(xo,r) i9 i9’ ¥
-+ 0,
1 a n a
——-rn fR(xo,r) <I>(fi) aL™ - <I>(fi) (XO)

a
®(3,9) (xg) = @(£; (xy)).

Choose now for & the function

Y(t) =

Because Y is monotone increasing, it follows that Big x) < fi (x) almost everywhere

in Q@ and consideration of ¥ (~t) implies that Big (x) 2 fi (x) almost everywhere in Q.

9.3.10. SCHOLIUM Start with an £ € BV(Q), replace it by an equivalent

g € BV(Q) with the property that the ordinary partial derivatives %";— i=1,...,n)
i
exist almost everywhere —- then

= 9 39_
Vg axll"'l axn)
lg LI 2 4
almost everywhere.

[Note:

2 e th@R™ = vg € LT @R . ]



§9.4. BVL

Iet us first review the situation when n = 1.

9.4]1. RAPPEL If Q ¢ R is open and nonempty and if £ € Ll(Q) , then the

essential variation of f, denoted e - TfQ, is the set
inf {TgQ:g = f almost everywhere}.

Moreover £ € BV(Q) iff

e - T.0 < + o,

And then

e -~ T2 = |[DE[[ ().

[Note: Recall that Q is the union of its connected components, these being

intervals (finite or infinite).]
Iet Q be a nonempty open subset of R,

9.4.2. NOTATION Per x} € RYL, put

Q = {Xi € R:(xi,xi) € Q}

%!
1

and if @ # @ and if f:Q -+ R is Lebesgue measurable, denote by
b
i

e -T Q

v '
f(xi, ) x;

the essential variation of the function

x., » f(x!,x.).
i (Xl' 1)



9.4.3. NOTATION If f € L (Q), write

n _ .
IQ fdalt = s =1 J'Q f(xi,xi) dxldxi
R 1
x!
i
[Put
1 —
,I'Q f(xi,xi) dxi =0
x!
i
ifQ =g.]
x!
i

9.4.4. CRITERION Iet f € Ll (). Suppose that there exists an equivalent

function g € il (2) and nonnegative functions Vy,...,V_ in ! (Rn—l) such that

e-T Q <V

gxi, =) x§ ix])

for all x_{ € Rn—l such that @ is nonempty (i = 1,...,n) — then £ € BV(Q).

Xl

i
PROCF Fix i € {1,...,n} and note that Vi (xi) is finite almost everywhere (being

in Ll (Rn_l),), hence

e-T Q
1 — 1

is finite almost everywhere. But
g, ) €17 @ )
x{
for almost all xi (Fubini), so the conclusion is that for almost all xi,

gz}, -) € BV(Q l)r

X
1



from which a finite signed Radon measure D in @ of finite total variation such

¥ 1
X Xi
that
1 — p—_
Big(xi, ) Dx'
i
with
IID [|(@ )=e-T 521.
] 4 P
Xi % glxi, ) %

Proceeding, define a linear functional A on Cé (2) by the rule

M) = fo £3,0 a™.

Then A is continuous w.r.t. the topology of CO(Q) . Proof:

MO) =1 g fo £0.0 ax,ax!
R

x!

IXONE maix 6] -1 o e ) ax,

X! X 1
i i

=max |[¢| S . e-T Q
Q RA1 g(xt, 2 x}

] 1
smax o] S 4V, (x}) dxi.
Q R
Now extend it to a continuous linear functional on CO(Q) and use the "CO" version

of the RRT to get a finite signed Radon measure Di such that for all ¢ € CO ),

M) = - Ig ¢ dD;,



or still, V ¢ € Ci(Q),
n—‘ —
fQ faiqb daL— = fﬂcpdDi.
Since
i = o
|,Di]}(sz) [[A]]* < f v, (xf) dx} <+,

Rn—l i

it follows that f € BV(Q).

9.4.5. REMARK Take n = 1 and suppose that @ = la,b[ — then xi is just an
abstract point, call it *, and Q, can be identified with Ja,b[. Starting with
fe Ll (la,b[), the assumption above amounts to saying that there exists a
g e Ll(]a,b[) and a constant C > 0 such that

e ~-T

g (%, =) lJa,b[ £ C < + oo,

But then
g € BV(Ja,bl)
which implies that

f € BV(]a,b]).

Take

Il

Q= [0,1] x [0,1]

and let f:Q - R be a continuous function (hence £ € Ll Q).

9.4.6. NOTATION

V (Eiy) = Te (—, ) [0,1] (0 sy <1)

[0,1] (0 < x

A

ey} = 1).
Yy ) = T,



[Note: Since f is continuous,

| Te oy O =T,y 10

[0,11 =T 10,1[.

Tt x, ) £(x, -)
9.4.7. IEMMA Vx(f;y) and Vy(f;x) are Lebesqgue measurable.

9.4.8. DEFINITION f is said to be of bounded variation in the sense of

Tonelli if

1
IO VX(f,y) dy < +

1
fO Vy(f,x) dx < + oo,

9.4.9. N.B. When dealing with essential variation on open subsets of the
line, if the function in question is continuous, one can work instead with the usual
variation, the reason being that the approximation via approximate points of con-
tinuity amounts to approximation via points of continuity.

9.4.10. SCHOLIUM Iff is of bounded variation in the sense of Tonelli, then

£ [QO € BV(Q°) and the ordinary partial derivatives

of af
ox ' By

exist almost everywhere in o° (£ IQO being continuous) .

o
Relax the assumption that f£:Q - R is continuous to merely that f € Ll Q7).



9.4.11. NOTATION

e -V (£fiy) =e—-Tf( 10,1 (0 <y<1)

- Y)

e-—Vy(f;X) =e—-Tf(X' 3 10,1[ (0 < x<1).

[Note: The essential variations here are per 10,1[:
f(—; y) is the function x » f£(x,y) (0 <x < 1)

f(x, =) is the function y » f(x,y) (0 <y < 1).]
9.4.12. IEMVMA e - VX(f;y) and e - Vy(f;x) are ILebesgue measurable.

9.4.13. DEFINITION f is said to be of bounded variation in the sense of

Cesari if

1
fo e - Vx(f,y) dy < +

1
fO e Vy(f,x) dx < + o,

9.4.14. REMARK Under the preceding circumstances, it can be shown that there

exists a function g equivalent to £ such that

1

1
fO Vy(g,x) dx < + «,

9.4.15, SCHOLIUM If f is of bounded variation in the sense of Cesari, then

f e BV (QO) and there is a g € BV(QO) which is equivalent to f with the property that



the ordinary partial derivatives

exist almost everywhere in Qo.



SECTION 10: ABSOLUTE CONTINUITY

10.1. RAPPEL Let  be a nonempty open subset of R —— then a function
f:Q > R is absolutely continuous if V € > 0, 3 § > 0 such that for every finite

collection [al’bl] seeor [ak’bk] of pairwise disjoint closed intervals in {,

ko k
L L (la,,b.]) <8=> I |f(a.) - £(b.)]| < €.
3=1 J 3 j=1 J J

Here is one extrapolation from R to R® (n > 1), where now Q is a nonempty open

subset of Rn.

10.2. DEFINITION A function f:Q + R" is -h-absolutely continuous if

v €>»0, 3 6§ > 0 such that for every finite collection B(Xl’rl) ’e- ..,B(xk,rk) of

pairwise disjoint closed balls in ,

k k
z Ln(B(x.,r.)) <§=> I osc(f,B(x.,r.))n < e,
521 33 521 373

[Note: If E is a subset of Rn, then
osc(f,E) = diam(£(E)).]

Cbviously,

n-absolute continuity => continuity.

10.3. NOTATION Put
k

_ n
v_(£,Q) = sup{jil (OSC(f,B(xj,rj))) }.

10.4. DEFINITION f is of bounded n—variation in Q if




Vn(f,Q) < 4+ o,

10.5. NOTATION BV''(Q) is the set of all functions £:Q - R of bounded

n-variation in Q.

10.6. NOTATION Acn(Q) is the set of all functions f € an(Q) that are

n—absolutely continuous.

10.7. REMARK The notion of n—absolutely continuous uses closed balls.
One could also work with closed cubes. Here, however, one has to be careful:
Examples have been constructed which show that working with closed balls is not the

same as working with closed cubes, thus that these two concepts are incomparable.

10.8. DEFINITION A function f:Q ~ Rr1 satsifies the condition RR if there

is a nonnegative function ¢ € L1 (Q), a so—called weight, such that

(osc(f,B(x,r)))r1 < ) [0) a™

fB (x,r

for every B(x,r) < Q.

10.9. NOTATION Denote by RR™ () the set of all functions £:0 + R™

which satisfy condition RR.

10.10. THEOREM

RRO(Q) = ACT () .
10.11. THEOREM Iet f € BV (Q) —— then f is differentiable almost everywhere.

Matters ‘can be generalized, thus suppose that 0 < A < 1.,

10.12. DEFINITION A function f£:Q -+ R" is A, n—-absolutely continuous if




vV e>0, 38 >0 such that for any finite collection B(xl,rl),...,B(xk,rk) of

pairwise disjoint closed balls in {,

k k
5 Ln(B(Xj,rj)) <8 => I

osc(f,B(x.,Ar.))n < g.

10.13. N.B. 1, n-absolute continuity coincides with n—-absolute continuity.
10.14. NOTATION Put
k

Vyp(E2) = sup{jz1 (osc(f,B(xj,xrj)))n}.

10.15. DEFINITION f is of bounded A, n-variation in Q if

V}\,n(f’m < + oo,

10.16. NOTATION BVA’n(Q) is the set of all functions f:Q -+ R of bbunded

\
A, n-variation in Q.

A,n

10.17. NOTATION AC''™(Q) is the set of all functions f € BV''™(Q) which

are A, n—absolutely continuous.

10.18. N.B.

1,n

act @) = ac't @)

e

c AC () (0 <A<

and it can be shown that the contaimment is proper.

10.19. LEMMA Let £:Q + R™ and suppose that 0 < Al < A2 < 1 - then f is

Al, n-absolutely continuous iff f is AZ’ n-absolutely continuous.



10.20. THEOREM Suppose that 0 < A, < >\2 < 1 -- then

1
AL, Aq,)
BV L (@) =BV 2 (Q).

10.21. SCHOLIUM There are but two classes of A, n—absolutely continuous

functions, viz. those corresponding to A =1 and to 0 < A < 1,

10.22. DEFINITION Iet f£:Q - R and suppose that 0 < A < 1 — then f satisfies

the condition RRA if there is a nonnegative function ¢ € Ll (Q), a so—callled weight,

such that

(osc (£,B(x, xr) )< S o dL?

B(x,r)

for every B(x,r) < Q.

[Note: Formally, RRl = RR.]

10.23. NOTATION Denote by RRk'n(Q) the set of all functions f£:Q + R™

which satisfy condition RR}\'

10.24. THEOREM

A,

R0 = acM ).

10.25. THEOREM Iet f € Bx'n(Q) —— then f is differentiable almost everywhere.
Return now to the beginning.
10.26. IEMMA Suppose that @ is bounded and f:Q ~ R" is Lipschitz, say
£6) = £6ey) ] = M)y = x|

for all Xy rX € Q — then f € RRn(Q) .

2



[Define ¢:Q + R by the rule

I

o) = 5L (= g e Lt @).
n
Then for any B(x,r) < ,
n _ M n
fB(X,r)(p dl= = W IB(X,r) 1dl
n
= MZZ wnrn
n
= M2
=>
Upry © D™ =uen).
But
< 2r

X, 1%, € B(x,r) = |[x1 - x2]|

||f(xl) - f(x2)|| < M[[x; - lel < M(2r)

IA

osc(f,B(x,r)) M(2r)

_ n,1/n
- (fB(x,r) o dLm)

(osc (£,B(x,1)))" ) © at™.

= fB(x,r

10.27. IEMMA Suppose that  is bounded and £ € W'P(@;R™) (o > n) is

continuous —— then f € RR" Q).



[Upon consideration of components, one can take n = 1. This said, for any

Bx,r) < @ (cf. 7.4.11),

osc (£,B(x,1)) < Crl"n/p(fB ) vE] [P a®) P

(x,xr

osc(£,B(x, )™ < (VP (¢ | |ve] [P ayvP

IA

B(x,r)

A

ce + /g o 1VE 1P a™

(x

C

A

Inee,ry L+ VE] 1Py aL®.

So, for the weight, one can take
o=cC+ ||vE]|P).]

[Note: The usual convention on the constant "C" is in force, i.e., it may

change from line to line.]



SECTION 11: MISCELLANEA
§71.1. PRAPERTY (N)

Iet Q be a nonempty open subset of R™.

11.1.1. DEFINITION A contimous function £:0 + RT is said to have property

(N) if f sends sets of Lebesgue measure 0 to sets of Lebesgue measure 0:

I"@E) =0 Ec Q) = L™(E)) = 0.

11.1.2. SUBLEMMA If E € Mn, then there exists an Fg—set F ¢ E such that

Lt (E\F) = 0. Choose next a countable collection of compact sets Cj for which

J
F=uy Cj and put Kj = U Ck' thus {Kj} is an increasing sequence of. compact sets
J =1
with U Kj =U Cj = F. Finally, since E is the disjoint union of F and E\F, we have
3 3
M@ =L@ + L"EF)
=1"® = 1lim L".).
j - J
11.1.3. Z1EMMA Suppose that £:Q - R™ has property (N) —— then the implication
EEM Ecq) = £@ €M
obtains.

PROOF As above, write

E=F U (E\F) (F=URK.).
3 J



Then

f(E) = £(F) U £(E\F)

i

U £(K.) + £E/F).
3 J

Since f is continuous, the f (Kj) are compact, hence measurable, so the union U £(K.)
j A
is measurable. On the other hand,

LP@\F) = 0= L(EEF) = 0

=> £(E\F) € Mf.

All told therefore,

£(E) € MIL’.

11.1.4. EXAMPIE Take n = 1, © = la,b[, and suppose that f:]a,b[ - R is

absolutely continuous —— then f has property (N).

11.1.5. EXAMPIE If £:0 » R is locally Lipschitz, then f has property (N)
(cf. 2.3.23).
[Note: In particular: A C'-function f has property (N) (being locally Lip-

schitz).]

11.1.6. N.B. The preceding consideration is false if f is merely continuous

or even Holder continuous with exponent 0 < a < 1.
[The Cantor function f sends the Cantor set C (L1(C) = 0) to £(C) (LI(£(C)) = 1).

And f is Holder continuous with exponent o = %—%— .1

11.1.7. RAPPEL (VITALI) ILet B be a system of closed balls in R™ such that



sup {diam(B):B € B} < + =,

Then there exists a pairwise disjoint, at most countable subsystem {B(xi,ri)} c B
such that
U < U B(x,,5r.).
BB i *t *
11.1.8. THEOREM Suppose that f£:Q - R is n-absolutely continuous —— then
f has property (N).
PROCF Fix an E ¢ Q of Lebesgue measure 0. Given € > 0, choose § > 0 per the

definition of n—-absolute continuity, subject to § < €. ILet G c Q be an open set
containing E with Ln(G) < 8. Given an x € E, choose r(x) > 0 such that

€
osc(f,B(x,r(x))) < 10 °

5 and P (x)

B(x,r(x)) ¢ G, v(x) <
Using Vitali, determine a disjoint system

(B(E(x;),0(x)) ) € (BIEGD),0(x)):x € E)

such that

f(E) < UB(E(x;), 50(x;)).
i

Since

f(B(Xirr(Xi) )) < B(f (Xl) 0 (Xl) )+
the B(xi,r (xi)) are pairwise disjoint, hence

I
HY (£ ()

A

n
ciI p(xi)
1

A

n
C ]Z- oscC (f,B(Xi,r(Xi) )

IA

C e.



Now let € - 0 to conclude that

H (£(E))

Il
o

or still, that

L (£ (B))

0.

11.1.9. APPLICATION Suppose that £ € W-'P(@:R®) (p > n) is continuous ——
then f has property (N).
[In fact,
£ €RR(Q) (cf. 10.27).

But

RRY(Q) = AC*(Q) (cf. 10.10).]

11.1.10. REMARK There are continuous functions in Wl’n(Q;Rn) (n > 1) that
do not have property (N).

[E.g., it is possible to construct a continuous f € Wl’ TR™R™ (n > 1) which

sends [0,1] onto [0,1]1™. Therefore f does not have property (N).]

11.1.11. THEOREM If f € Wl'n(Q;Rn) is continuous and open, then f has

~

property (N).

11.1.12. N.B. There exists a homeomorphism
few(d -1, 1D% 0 -1,1D" @®@<n
which does not have property (N).

11.1.13. THEOREM If f € Wl’n(Q;Rn) is Holder continuous, then f has

property (N).
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APPENDIX

IEMMA Iet 1 < k < n, let Q be a nonempty open subset of Rk, and let

T:Q Rn be continuous and one—to-one —— then

EcBRY) Ecq = TE € BRM.
PROOF ) is a o-compact subset of Rk, hence T(Q) is a o-compact subset of R
(T being continous), hence T(Q) € B(Rn) . ILet now
A={Ec QT@® € BRMI,

a o-algebra of subsets of (@ (as regards complementation, note that T(Q\E) = T(Q)\T(E),

T being one-to-one). It is clear that A contains the open subsets of Q, (per the
initial observation), so A contains the Borel o-algebra B(2). But B(A) = B(RY) n Q,

tms vE € BRY n g, TE) € BRY.



§11.2. THE MULTIPLICITY FUNCTION

Iet @ be a nonempty open subset of R and let f£:0 - Rn be a continuous function.

11.2.1. DEFINITION If E < @, then

N(f,E,y) = #{x € E:f(x) = y}

or still,

N(£,E,y) = HOE n £ ()

is the multiplicity function of f at y € R™ w.r.t. E.

[Note: N(£,E,y) is the cardinality of E N f_l () and if this set is infinite,
then we put

N(£,E,y) = + «.]

11.2.2. IEMMA

1 2
11.2.3. IEMMA If {Ek} is an increasing sequence of subsets of Q, then

N(f,E,y) = lim N(£,E_,y),
27 K o e Ek’

where E = U .
]<;=lEk

11.2.4. THEOREM Suppose that £:0 - R™ has property (N) —— then for any

Iebesgue measurable set E ¢ @, the multiplicity function

y N(flEly)

is lebesgue measurable in R™.



PROCF Take E bounded and for every m € N construct a partition of E into

pairwise nonintersecting measurable sets

(m) (m)
El PR ,Ek

m
such that
diam(Ei(m)) < r%f i=1,...,km).
put
N(f,m,—) = ¥ + eee + ¥
£E™) £ ™)

and note that each of the sets f(E jfm)) is measurable (since f has property (N)), v

hence N(f,m,—) is measurable. Accordingly it need only be shown that

lim N(f,m,y) = N(£,E,y)

m >

to establish the contention. Given y € Rn, there are two possibilities for

Enft (y): It is either finite or it is infinite. To treat the first of these, say

-1
ENEf (y) = {Xll---rxk}l
take
. 1
m, > min .
0 i xi xj
If m > m,, then none of the E(m)

0’ N contain two distinct X 1Xg s SO it can be assumed that

(m) (m)

Xl S El ,...,xk € Ek .
Next, Vm>m0,

N(f,m,y) =z N(£,E,y)



lim inf N(f,m,y) = N(f,E,y).

m >
On the other hand,

N(flmly) s N(.flEly)

lim sup N{(f,m,y) < N(£,E,y).

m-=> «
Therefore

lim N(£,m,y) = N(£,E,y).

m > «

11.2.5. LEMMA If f:Q > R is continuous and open, then for every open set

G c Q, the function y + N(f,G,y) is lower semicontinuous in R,



§11.3. JACOBIANS

Iet Q be a nonempty open subset of Rn.

11.3.1. DEFINITION Let £ = (£7,...,f% € Ww-'®(;RY) — then the Jacobian

of £, denoted J

£ is the determinant

det (VEL, ..., vEDY.

11.3.2. N.B. The coordinate functions £t (1 £ i <n) of £ and their first
order distributional derivatives belong to Ln(Q) .

[Note: Nevertheless, an element of Wl’n(Q;Rn) may be nowhere continuocus, hence

nowhere differentiable.]

11.3.3. THEOREM If £ € W-'™(q:R™), then J,. € L1 ().

f
PROOF J. is a sum of temms, each of which is (plus or minus) the product of

f
n weak partial derivatives of the components of £ and, as noted above, each of these
is in 1(Q). The product of n L™(Q) functions is in it () (apply Holder), hence

£fenl@).

11.3.4. FACT If £:R" + R" is Lipschitz, then for any E € M7,

n
I 19 a = fRn N(f,E,y) dy.
[This will be established in §12.5.]

11.3.5. RAPPEL let f € Wl’p(Q) —— then there is a partition

(o]

Q= (U E) U Z,
L X



where the E,_are Lebesgue measurable sets such that f]Ek is Lipschitz and Z has

Iebesgue measure 0 (cf. 7.1.5).

11.3.6. THEOREM Suppose that f € wl’n(Q;Rn) has property (N) —- then

f g lat =/ \N(EQy) dy.

PROCF The foregoing decomposition principle extends fram Wl’n(Q) to Wl'n(Q;Rn)

and the Lipschitz function £ lEk extends to a Lipschitz function fk:Rn > Rn, hence

per supra

n —
fEk |Jfk[ dL = fRn N(fk'Ek’y) dy.
Put E. = U Ek——thenQ=E

0 uz L™z = 0), so
k=1

0

n n
Jo 13gl dl™ = Jp 3] dL

L S |ac] a®
k=1 %k T

s lo. | at
=1 T Tk

r J _N(f ,E_,y) dy
k=1 Rn kEk

I, N(,Ey) dy
R

IA

S N(E,Qy) dy
R

S N(f,E,y) dy + J _ N(f,Z,y) dy
R™ R™



= fRn N(fIErY) dy + f N(fIZIY) dy

£(2)

=/ ) N(EE,y) dy L7 (£(2) = 0)
R

n
/g ]Jfl aL” = fRn N(f,Q,y) dy.

[Note:

£(2) = {y:N(f,2,y) # 0}.]

11.3.7. N.B. The assumption that f has property (N) implies that the

relevant multiplicity functions are Iebesgue measurable.

11.3.8. THEOREM If f € Wl'n(Q;Rn) is continuous and if J_. > 0 almost every-

f
where in @, then f has property (N).

11.3.9. REMARK Examples have been constructed of continuous functions

£ in WP (@R such that J. = 0 almost everywhere in @ but such that f fails to

f
have property (N).

On general grounds, an f € Wl’p(Q;Rn) (1 < p <+ «) is approximately differ-
entiable almost everywhere in Q. More is true if p = n, namely
ap — df

is "regular" (i.e., "E" can be written as a union of concentric spheres centered at x).



SECTION 12: AREA FORMULAS

§12.1. THE LINEAR CASE

12.1.1. RAPPEL Let T:R” + R be a nonsingular linear transformation —-

then

n

Ee M = T(E) e M’

L

and

LT @) = |detqy) LM @®).

12.1.2. N.B. This is the simplest instance of what is known as an "area

formula". As will be shown below, it leads to a "change of variable formula".
Retaining T and E, suppose given a function f:E » [~ o, + =],

12.1.3. IEMVMA If f is ILebesgue measurable on E, then £ 0 T is ILebesgue

measurable on 'I'-':L (E).
12.1.4. THEOREM
Sofa= |det™M)]| S _ foTd®
E Ml L gy
in the sense that if one of the two integrals exists then so does the other and

the two are egual.

PROOFIetSEMILl--then

1

T@E n TS

& n g

P(ToTT) EnS))

L& n s)



Pt E n )

Il

Pt @ n T he))

Il

ldet 0 | LM @ n T (e)).
Take for £ the characteristic function Xg of S, hence
a®

n~—-r
fEde ———fExS

L™E n s)

|det 04,) | @@ nThe)

n

|det ™) | / _ X _ dL
r ri@m ‘T ls)

ldet M) | S _ X © T dL™
Mol a1 s

(E)

)

l[det M) |/ _ £ o T dL".
My Ly

One can then proceed from here to a nonnegative simple function on E and then
to a nonnegative extended real valued Lebesgue measurable function on E and finally
to the general case (write f = f+ - f and work separately with £7 and £).

[Note: By way of a justification, monotone convergence is used when coupled
with the fact that there exists an increasing sequence {fj} of nonnegative simple

functions such that fj + £.]

12.1.5. REMARK Matters can be restated, viz.

n _ n
Jpg T = |det ) | /o £oTdl,



the underlying supposition being that in this context, f£:T(E) » [~ «, + «] is

ILebesgue measurable.

Assume: k,n €N, 1 <k < n.

k

12.1.6. DEFINITION Suppose that T:R™ - R™ is a linear transformation --

then the adjoint of T is the linear transformation TR > Rk characterized by the
condition

<x, Ty > =< Tx, y >
for all x € Rk and for all y € Rn.

[Note: In terms of matrices,

M =M,},,

T*

the transpose of M’I"]

12.1.7. NOTATION Given a linear transformation T:Rk - R%, put
J(T) = /det (T*T) .

[Note: J(T) is nonzero iff T is nonsingular.]

12.1.8. N.B. If k = n, then

det (T*T) = det(M )

T*T

det (MT*MT)

det (M,}M.I.)

det (_M]Tj) det (M)

det (MT) det (MI.)



det 01) 2

I

J/det (T*T)

J(T)

= ,/det(MT)z = [det(MT)] = |det(T)

12.1.9. DEFINITION

® A linear map U:Rk > R™ is said to be orthogonal if < Ux,Uy > = <"x,y >

for all x,y € Rk.

e A linear map S:Rk - Rk is said to be symmetric if < x,Sy > =<8x,y >

for all x,y € Rk.

12.1.10. POIAR DECOMPOSITION Let T:RS » R™ be an injective linear trans-

formation —— then there exists a symmetric map S:Rk - Rk and an orthogonal map
U:RS » R® such that T = US.

k

12.1.11. THEOREM If T:R™ » R" is a injective linear transformation and

if E e M5, then T(E) € M(H) and

@) = amEm.
PROCF To establish the purported equality, consider first the case when k = n,

thus

HYT(@E) = LT E)

|det (4. L% (®)

Il

|det (1) [L™(E)



= J(@L®).

Supposing now that k < n, write

@) = HUsE))

= #s@®),
U being an isometry. But
K ok
(S(E)) = L7 (S(E))
= ldet(s) |LKm®).
And
T*T = S*U*US
= S*S (U*U = id)
= 5% (s* = 9)
>
det (T*T) = det (S) 2
=>
J(T) = Aet(T*T) = /iet(S)2 = |det(S)].
12.1.12. REMARK If T:R® + R is Lipschitz, then (cf. 12.3.1)
E € M]E“ = T(E®) € MH).
[Note:
T linear => T Lipschitz.
Proof:

[t - zy|| < [IT]] ||x - ¥|| &y €R.]



12.1.13. SCHOLIUM

Jg T(@) alk HEntly) afy).

= fT(E)

To repeat: k,n €N, 1 <k < n.

12.1.14. NOTATION

Akn={>\ENk:ls>\1<~-<>\ksn}.

14

k

ThematrixMTassociatedwithTisnXk. Given A € N7, letMé‘.betheka

submatrix of MT made up of the rows )\l""’kk of MT

12.1.15. CAUCHY-BINET FORMULA

Jme= =z (det(M,;))z.

aEAk, "

Therefore J(T) is the square root of the sum of the squares of the k x k

subdeterminants of det (MI‘) .

12.1.16. EXAMPIE Suppose that k = 2, n = 3, and

a b
MT= c d
_ e £ 1.
Put
-, o
u = c ; V= d



and set
E = |]u[|2=a2+02 + &2
F=<u,v>=ab+cd + ef
c=||v]|®=1p%+a + £
Then
- .
det(M’fMT) = det =
On the other hand,
A2'3 = {(112)1 (213)1 (113)}1
[Sle)
- —
w2 -
- P
w23 -
T a b
up? - = C,
and by Cauchy-Binet,
_ 2 2 2
det(M’I‘MT) = det(A)” + det(B)” + det((C)

G- F



= (ad - bc)2 + (cf - ed)2 + (af - be)2.

Consider now u X v, the vector cross product of u and v:

cf - ed
eb - af
ad - cb

[ x v]1? = et ous)

[Ju x v|| = 3.



§12.2. THE C'CASE

It was shown in the previous § that if T:Rk +R® (k < n) is an injective

linear transformation, then

E € M][‘ => T(E) € M(Hk)

_ Hee) =smFme.
This conclusion can be generalized:

k

(1) Replace Rk by a nonempty open subset < R

(2) Replace T by a one—to-one function ¢:0 ~ R™ of class C'.

After a fair amount of effort, matters then will read

E e M]f Ec Q) = o@® €M

#Fem) = 1 g ak

Setting aside the proof until later, we shall first deal with some preliminaries
and consider some examples.
12.2.1. IEMMA Let T:Rk - R (k < n) be a linear transformation —— then

rank T < k, ker T = ker T*T,

and the following are equivalent:
(@) J(T) = ydet(T*T) = 0,
(b) ker T # {0},

(c) rank T < k.

[Note: If T is injective, then V x € RX

x| ] = |77 x| |

14



< [T |l |

1
%] | ——=—=|[Tx]

.]
—l|
T ||

12.2.2. NOTATION Given x, € 2, put

0

J(9) (xy) = T(d2(xy))

ydet (3 (XO)* d@(XO)) ’

fram which a function J(®):0 » R.

[Note: J(9) (xO) # 0 iff do (xo) is injective.]

12.2.3. RAPPEL If ¢:Q » R" is differentiable at a point x. € £, then the

0
n x k matrix
V@l (xo)

DO (x,) = VO (XO) = .

0

is the Jacobian matrix of ¢ at Xy

[Note: DO (xo) is the matrix that represents dé (xO) .]

12.2.4. N.B. Suppose that k = n — then

det (Df(xo) = Jcb (XO) .

What follows are some particular cases of the relation

H@m) = 1y 3@ a.



12.2.5. EXAMPIE Take k = 1, n > 1, take Q = la,b[, so ®:1a,b[ + R"
is a curve:
1 n
%) = (I x),..., " (x)) (a<x<Db).

And DO(x) is an n X 1 matrix or still, upon switching the column vector to a row

vector, D®(x) becomes a 1 X n matrix, viz.

det et
dX 7 ooy dx 14

thus

12 n 2 .
5@) = /& + e+ & = ]9

If therefore ¢ is one-to—-one, then

# (@ (Ja,bl)) = fg ||é]| dt.

E.g.: ILet

®(x) = (cos %, sin x, x) (0 <x < 1),
hence

o(x) = (- sin x, cos x, 1) => ||é[[ = V2,
hence

#t@ao,10) = f3 |le]| at = /2.

12.2.6. EXAMPLE The graph of a C' function £:Q + R (2 ¢ RY) is the subset

of Rk+l

defined by
Grp = {0, () & RE « Rix € 9,

+
i.e., Gre is the image of the injective map ¢(x) = (x,£(x)) from O to Rk 1. Here



D@(X) = ’

Df (x)

thus by Cauchy-Binet,

2 2
J(Dd(x)) = A+ -(gi) Foeee 4 (?5_
*1 %k
or still,
J0ox) = /A + ||DEx) ||
=>
HGr,) = #H@@)

g A+ g7 alk

ktl (2 < Rk) be a one-to-one map of class C' —

12.2.7. EXAMPIE Iet 0:Q = R
.tthen the Jacobianmatrix of ® has k + 1 rows and k colums and its k x k submatrices

can be indexed by the missing row. If

0(%;,0..,0

11704 re oY)
a(xl,...,xk)

denotes the determinant of the submatrix obtained by removing the ith row, it there-

1

fore follows that

Kk 3(®y,eeer®, 1,0, 1/...9) 2 1/2
Wow) =, (53— 5T gk

i=1 B(XJ_,...,xk)

12.2.8. SCHOLIUM Take k = n and let 9:Q > Rn be a one—-to-one function of



class C' — then V E € Mf Ec Q,

L™ (@ (E))

Il

n
fE J(9) dL

n
S Q XEJ (9) dL
from which

a=rs o )J(a) dL™.

To ) *m q (g
[The first point is a special case of the general theory and the second point
follows from the first. To see this, assume to bégin with that E is Borel, hence that

Q—l (B) = {x € Q:9(x) € E} is Borel (¢ being continuous), so

a = 1"&n o)

To(a). Xm

Mo @) n )

N

J©@) a®
(E)

=Jq X _
Q %1

= o ®)J (o) dL™.

o (g
To proceed in general, let E € Mil (Ec Q) and write E=F U N, where F N N = g,

F is an Fo—set, and N is a subset of a Gs—set G with Ln (G) = 0. Since F and G are

Borel,

Ie dL = ¥, (¢ © 93 daL”

Q) *F Q

and

— n _ n
0= f®(9) deL = fQ (xGo ®)J (%) dL.

From here, it remains only to incorporate N... .]



12.2.9. THEQREM If ©:Q - R™ is one-to-one and if £:0(Q) + [~ ©, + ©] is

Lebesgue measurable, then

I £a = $o, (£ 0 2)3(0) ac”™.

o (§2)

[This is true when f = X and the general case follows by a standard approx-
imation argument. ]
12.2.10. N.B. The relation
LM @) = Ig T(@) at

is an instance of a so-called "area formula".

12.2.11. EXAMPLE Work in R2, take
Q=10, + o[ x] -m, m[,

and for (r,8) € Q, define %:Q - R2 by the rule

@l(r,e) rcos b =x

<I>2(r,e) =r sin 6 = y.

Then ¢ is one-to-one, of class C', and its range ¢() is R2\A, where

A=1 -w, 0] x {0} c R xR (= L2(1) = 0).

The Jacobian matrix D®{r,0) is given by

cos 0O - r sin ©

sin ® r cos 6

and the Jacobian J<I> (r,8), i.e., det(D®(xr,0)), equals r. So formally



[, £ly) Al x,y)
R

S £(x,y) AL (x,y)

li

RA\A

= n
= f@(ﬂ) fdlL

n
=Jq (f o @) |det Jq)[ dL

. 2
= f]0: + ol x ] - ﬂ’ﬂ[f(r cos 9, r sin O0)r dL" (x,0).



§12.3. PROOF

12.3.1. SUBLEMMA If T:RX + R® (1 < k < n) is Lipschitz continuous and if

E c Rk is ILebesgue measurable, then T(E) is Hk ~measurable.

PROOF It can be assumed that E is bounded. Accordingly let {Kj} be a sequence

of compact sets such that Kj < E, K.

3 c Kj+l' and

X@E) = XU K) & 5EWK)) = 0.
j j J

Since T is continuous, it follows that

T(U K.) = U T(K.)
s RIS B
is Borel (being a countable union of compacta), thus is Hk -measurable. Now write

T(E) = T(U K.) u T(E\U K.).
3 3 33

H (T EWU K.))
j J

A

Lip mk Hk(E\L_J Kj)
J

i

Lip(m¥ ¥ EW K,)
J

= Lipm® . 0 = o.

Therefore T(E) is the union of a Borel set and a set of zero Hk -measure, so T(E)

is Hk—measurable.

[Note: There are various easy variations on this theme.]



12.3.2. DATA l=<k<n, Qc Rk a nonempty open set, 9:Q -+ R™ a one-to-one

function of class C', E c¢ Q a Iebesgue measurable set.

12.3.3. THEOREM ¢ (E) is Hk-measurable and

k

K@ m) = Iy 3@ A (area formula).

12.3.4. EXAMPIE Suppose that G < &(Q2) is Borel, hence Hk -measurable —
then

30 1@) =60 owQ =G,

e = 1 eeteE) E=9d10) <9

o ae ak
s~ (G)

IFMMA A Iet X € Q and assume that 4 (xo) € Hom(Rk,Rn) is injective --

then V € > 0 (< 1) there exists a neighborhood U < @ of x, such that for all

0

X', X" E U'

(1 - ¢) ||d<I>(x0)x' - do (XO)X"H

A

[eGe') = o™ [

IA

(1 + €) [|d<1>(x0)x' - d@(xo)x"|
PROCF Fix € > 0 (< 1) and choose C > 0:
|lae x| | = cflx|| & € RS,
Since ¢ is class C', there exists § > 0 such that

][x*xO]] < § = [[|do(x) - d2(xy || = Ce.



So, for x', x" € U = B(X0,5)O,

o) - o(x") - do(x,) (x' - x")|]|

1

= 11

2 (o + ' - x") - Ad(xy) (" + t(x' - x")) at|]

|]fé [0 (x" + t(x' - x")) - Ablxy)] (&' - x") at|]

A

Ce||x' - x"|| = ¢ |c’,ﬂ©(x0) ' -x"|].
Therefore

o ||o(x') - o(x") ]|

IA

||d<I>(x0) ' -x"|| + [|ox") - ox") - de (x4) (x' - x") [

IA

| |a® (xy)x' - d@(xo)x"H + €] |d®(x0)x' - d@(xo)x"H
< (1 +e)||aetxy)x" - de(xy)x"|].

e ||o(x') - ox")]|]

v

80 (xg) (x' = x") || = [[o(x") = o(x") - do(x,) (x' - x") ]

v

1|d<1>(x0)x' dcp(xo)x"[l - ¢ |d<1>(x0)x' - d_cb(xo)x"ll

v

(1 -¢) ]d@(xo)x' - a0 (xp)x"| .

k n
IFMMA B Iet Xq € ) and assume that do (xo) € Hom(R ,R ) is injective — then
Vv £ >0 (< I) thete exists a neighborhood U c¢ Q of X such that for each Lebesgue

measurable set E ¢ U, ®(E) is Hk —measurable and

(1 - ex¥t Sy T(0) ack



H o @®)

IA

1+ e)<t Sy 3(@) ak,

IA

PROCF Since the linear transformation dé (xo) :Rk > R" is injective,
a0 (x.) "F:ds (x )RS - RE.
0 0
Given € > 0 (< 1), choose § > 0 so small that the conclusion of ILEMMA A holds, where
as there U = B(xo,é)O and in addition
L+ 3@ <T@ &) < @L+e) IO &),

¢ being of class C' (||x - X, || <8). 1In the relation

l[lex") - o™ || = (1 + e)|]delxyx" - d@(xo)x"||,

take
x' = do (xO)—ly'
(y',y" € dd(xy) (U).
x" = do (XO)—lyn
Then
-1 ' -1 n
[[(@0doxy) ) y') = (@ odeixy) )y
= [lox") - ox" ||
< (1 +¢€)l] de (x,)x' - ae (xy)x"| |
= @1 +e)|ly" -y"ll-
Therefore

¢ o do (xo)“l:dcb (zy) (U) ~ R



is Lipschitz continuous with

Lip(6 0 do(xy) 1) < 1+ e.

Consequently,

H (0 (B))

(0 0 avley) ™) (@0 (xy) (E))))

N

@+ o) o (x) ()  (cf. 2.3.10)

1+ &) J(ae (xo))Lk(E) (cf. 12.1.11)

=+ o0fs@eli®  (ef. 12.2.2)

@+ X3y /1 ak

=+ ek Sy T(0) () alk

s @+ g af (lx - xll <6,

the sought for estimate from above. To arrive at the estimate from below, in the

relation
(- e)lldq»(xo)x' - d@(,xo)x"u < o' - o™ ||
take
T oxt =0ty
(yly" € o))
_ x"= 37y
to get

@iy o ¢ (r") - @6y o 870 ™" ||



L - o) o) - o™ ]|

IA

-y -yl

Il

Therefore

dé (x,) © s Lo > R
is Lipschitz continuous with

Lip (d9 (x,) © oy < a-eot.
Now manipulate as before:

1+et g T(®) (%) ak

A

k
fE J(d@(xo)) dL

H# (@2 () ()

H (@) o ¢ (@(®))

1-a* Fem)

IA

1-ak a1+t Jg T(@) (x) a® < e &)

1 - )kt Iy 3@ () ak < ey @+ tz1-¢).

12.3.5. N.B. E c U is lebesgue measurable and the claim is that ¢(E)

s Hk -measurable.

[To see this, let T = ¢ o dd (xo)—l, thus by construction T:dd (xO) ) -» R" is



Lipschitz continuous. And

d(E) = T(df (xo) (E)).
But df (xo) is Lipschitz continuous, so df (xo) (E) is Hk-measurable, thus the same is

true of T(df (xo) (E).]

IFMMA C Suppose that V x € Q, dd(x) is injective -— then

K om) = Iy T(®) ack.

PROCF Fix € > 0 (< 1) and cover Q with countably many Ui < Q such that for

any E ¢ Ui' IEMMA B is in force. Given now an E c §, define inductively

i-1
El =EnN Ul,...,Ei = (E N Ui)\.U B..
3=l
Then the E, are pairwise disjoint and
E= U Ei.
i=1
Proceeding, apply LEMMA B to each Ei’ thus
-t g ak
i
k
< H (@(Ei))
< @+ et ge ak

E.
1

or still, upon suming over i and bearing in mind that ¢ is one-to-one,

1 - okt Jg T(®) ak

< #H(o ()



<@+ ekt [y T(®) ak.

Finish by sending € to O.

12.3.6. N.B. V i, CD(Ei) is Hk-measurable, thus the same is true of ¢ (E).

IEMMA D Iet I c¢ Q be the set of x € Q with the property that do(x) is

not injective, hence that J(¢) (x) = 0 —— then

H @) = o.
PROCOF Since the matter is local, it can be assumed that @ is bounded and that
d? is bounded in 9, say ||d®(x)|| < M for all x € Q. Given € > 0, consider the function

512+ R” x RE

defined by the rule

. (%) (P(x),ex) (x€Q),

d=1 0 @8,
where
m:RY x R > RD

is the projection operator given by I (y,x) = y, a Lipschitz continuous function with
Lipschitz constant 1 (i.e., Lip(Il) = 1). Since V x € Q, <i{<I>€ (x) is injective, it

follows from LEMMA C that

# (0 (x))

HE (I (2_(2)))

A

wip ™ H (o, (2))

He(o_(2))

- k
= fZ J((I)e) a.



To estimate this integral, use Cauchy-Binet to produce a constant C > 0 such that
VXERS,

(@0 @)% s @@ N2+ Pllaee [[* €%
In particular, if x € X, then

(e, )2 < cllave) || €

< CZM‘?‘E2
or still,

J(tbe) (x) < QMe.
Therefore

Kem) < Iy 3(@,) ak

< (Ms:Lk(Z) .
Now let € » 0 to get

@ @) = o.

PROOF OF THEOREM Given a Lebesgue measurable set E < (I, write

E=E\I UEnNZL.
Then

O(E) = ¢(E\LZ) U ®(E N I).
Owing to IEMMA D, ¢(E N Z) is a set of zero Hkmeasure. On the other hand, E\Z < Q\X

(an open set), hence ¢ (E\y) is Hk~neasurable (cf. ILEMMA C and 12.3.6). Therefore

o (E) is (;{_k-measurable, And finally

i

@) = H5©0ED)

I

k
fE\X J(®) dL

_ k
= fE J(®) aL.
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The supposition that ¢ is one-to—-one can be dropped.

12.3.7. THEOREM (AREA FORMUIA) If ¢:0 + R™ is a function of class C'

and if E ¢ Q is a Lebesgue measurable set, then ¢ (E) is Hk—measurable and

I HEn o) e = 1y T ak
R

[Note: If & is one—-to-one, then matters reduce to

1@ ®) = Iy 3(®) ark.

12.3.8. N.B. The arrow

v~ #0@ n o7 (y))

#{x € BE:0(x) = v}

N(¢,E,y)
is the multiplicity function of ¢ at y € R” w.r.t. E and the assignment
y > N(%,E,y)

defines an Hk—measurable function (cf. 11.2.4.) (recall that ¢ has property (N)).

[Note:
o(E) = {y € R:N(S,E,y) # 0},
so the integral over R™ can be replaced by an integral over ¢(E).]
12.3.9. CHANGE OF VARIABLES Suppose that $:0 - R™ is class C' and
u:@ » [0, + «] is Iebesgue measurable — then the assignment

y> I 4 u (%)
X€d ~ (y)
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defines an Hk -measurable function and
fqur@ alf=s (I u) aH (y) .
R™ x€0 ~(y)
[The proof is canonical, given what we know. Thus start with u = Xg (Ec@
Iebesgue measurable) and note that

5 X = HE 0 ).

€87 (y)
Therefore
k
S o Xg J(®) dL
_ k
= fE J(®) dL

S n HO E N <I>_l ¥)) de (y) (area formula)
R

Il

Il

k
S (zZ _ Xo (X)) dH™ (y) .
RY xeo L(y)

By linearity, this settles the contention for simple functions, thence... .]

12.3.10. SCHOLIUM Suppose that $:Q - R® is class C' and v:R™ -+ [0, + =]

is Hk—measurable —— then for every Lebesgue measurable set E ¢ Q,

Iy (v 0 9)3(0) ak = s L VEIN(,E,Y) aH\y) .
R

Step 1: TakeE=§2andv=xv (V c Rn),Vopen—— then

s o 8)J(e) ak

o %

=7, @ a®
st w)

f a N(<I>,<I>_l V) ,y) de(y) (area formula).
R



12.

=/

S n=/1 VN3 ()

RE @t w))

[ N@,8TW),y) aH(y)
R

Iy N, 0N W), y) aHE ()

Sy N(@,0,y) aHE ()

i

=/ | % WIN(, Q) de(y)-

R

[Note:

J oy = fvn@(sz)'

Meanwhile

S = fv > fVﬂ@(Q)

=> [ 20 =[]
Step 2: Take E ¢ Q compact and v a simple function constant on open sets.
Step 3: Take E ¢ Q compact and v an arbitrary simple function.

Step 4: Take E ¢ Q compact and v 2 0 an arbitrary measurable function.

Step 5: Take E ¢ Q Lebesgue measurable and v 2 0 an arbitrary measurable

function.



§12.4. THE DIFFERENTIABLE CASE

The central conclusion of the preceding § is the fact that ¥E) is Hk—measurable
and
Hk _ k
(0E) = IE J(¢e) dL .
Here 1 <k <sn, Qc Rk is a nonempty open set, 9:0 - R™ is a one~to-one function
of class C', and E ¢ Q is a Lebesgue measurable set.

It turns out that one can drop the assumption that ¢ is class C', it being

enough to suppose that ¢ is merely differentiable (as well as one-to-one).

12.4.1. WHITNEY APPROXIMATION PRINCIPIE There exists a sequence of disjoint

closed sets Fj c @ and a sequence of C' functions <I>j:Rk + R" such that in Fj’
¢ = <I>j and J(9) = J(<I>j).
Moreover
X@wm = o,
where F = U F..
. J
J
12.4.2. IEMMA
H e @\F) = o.
PROCF Write
O\F = U E,,
=1 %

E!i being the set of all points x € Q\F such that

ot = oG] ,
e



for all x' € Q with
1
0<[lx=-x"[| =7.
Claim: The restriction of ¢ to E, is locally Lipschitz. For suppose that x, x'
belong to a compact K < E, and llx - x| S%——then
[JeGx) - e(x") || < & ||x - x'|]

by the very definition of E,. On the other hand, if lx - x"|] > zl,:—, then

[|ox) — o) || = 2 max |]|o]]
K
< 2max ||o]] -1
K

IA

2max ||o]]e||x - x"]].
K
Hence the claim. Consequently

H(9(K)) < Lip (3 |K;K)HE (R)

= Lip (3|K;K) LY (R),

where
Lip(®|K:K) < £(1 + 2 max ||o]]).
K
But
K c Eli < Q\F
=>
Fw < 5@y < Faw = o.
Therefore

@ ®) = 0.



Now let K + E, invade E, to get

so in the end
12.4.3.
And
Now compute:

H< (3 (\F))

H 0 (E,) = 0,

IA

5 Hk(cblEK))
£=1

= 0.

APPLICATION

(2 (®))

Il

Q=F UQ\F

o (2}

O(F) U O(Q\F)

PE) = ¢(E) 0 Q) = O(E) N OF) U O(E) N O(Q\F)

Il

Hom) = HKe® noE) + HO@E) N 6(@Q\F)).

A

HKom no@F) < H@EOF)

= 0.

Hk(cb(E) n o(F))

r H@®E noE.))
3 J

§#@m)n%m9)

TS T6.) ALk

. o -1
J CPj (2(E)) ﬂFj



Il

S 3@ a®
j 2 “(e(E)) ﬂFj

k
- Jgap, J(0) Ab
j j

k
fE r‘]FJ(@) dL

i T(@) ak

ENFUENQ\F

k
fE J(®) dL—.



§12.5. THE LIPSCHITZ CASE

12.5.1. DATA 1 <k £ n, <I>:Rk +~R% a Lipschitz continuous function, E c Rk

a lLebesgue measurable set.
12.5.2. RAPPEL Owing to Rademacher, J(®) is defined Lk—almost everywhere.

12.5.3. THEOREM (AREA FORMULA) ©O(E) is Hk—measurable and

. & n et e = Iy T(®) ack.

R

12.5.4. N.B. There is an a priori estimate

s HEn e e) ey < mipe) 1 m.
R
12.5.5. REMARK ¢ has property (N), thus the assignment
y ~ N(¢,E,y)

defines an Hk -measurable function (cf. 11.2.4).

12.5.6. ILEMMA V £ > 0, there exists a closed set Fe c Rk and a C' function
@E:Rk > R” such that in F_,
=% and D® = DO .
€ €

Moreover

Lk (Rk\FE) < e.

Granted this and bearing in mind the C' version of the area formula, we have

k : k
E J(®) dL™ + fE\F J(®) dL

k _
fE J(e) dL™ = /g _

n
€



B k k
= fF8 N g @) dt + fE\F8 J(0) dL

0 -1
fRn HE_ nEN @) A (y) + fE\F8 3(9) dl,

J(e) ak.

; HE nEn s w) e + o

R \Fs

Now send € to 0, noting that Lk(E\Fg)* + 0 (use monotone convergence).

12.5.7. EXAMPLE Given a ILipschitz continuous function f:Rk + R, put

8(x) = (x,fx)) (x € R9.

Then <I>:Rk > Rk+l is Lipschitz continuocus, one—to-one, and

Hem) = rpa@ a=r, A+ |jog]? ak



§12.6. THE SOBOLEV CASE

Iet Q be a nonempty open subset of R®. Given a continuous function

fEWl'p(Q) (1 < p <+ «) and a Lebesgue measurable set E ¢ @, put
&fm)={micqyer}cwH{

12.6.1. THEOREM

K G @) = sy A+ ||ve][?

Per 7.1.5., write

Q= (U ) v Z,
k‘—”lEk

where the Ek are lebesque measurable sets such that f IEk is Lipschitz and Z has

Lebesgue measure 0. Extend £|E, to a Lipschitz function fk:Rn ~ R — then ||V || =

| |VE]| almost everywhere in E . Now apply 12.5.7. to get

A+ ||vel|? al.

n -
H (Grf(E n Ek)) = '[E n

By
Put EO = U Ek and sum over k, hence
k=1
H(Gr (B N EY) = J A+ |ve] ]2 a®

EﬂEO

I A+ |vE] P At

Il

It remains to pass from

Hn(Grf(E N Ey)) to Hn(Grf(E))



and for this, it need only be shown that

n =
H (Grf(E\EO)) = 0.

12.6.2. IEWA Let £ € W'P(2) - then H*(Gr (5)) = 0 if S < Q is a set
of Lebesque measure 0.

[Tt suffices to make the verification in

Wl'

1 /P
@ (e WP@).]



§12.7. THE APPROXIMATE CASE

Suppose that ¢:0 - R is approximately differentiable almost everywhere in

Q@ —— then using approximate partial derivatives, one can form J ap(<1>) .

12.7.1. IEMMA (cf. 12.4.1) There exists an increasing sequence

Kl c K2 ¢ ... of compact subsets of {(c Rk) for which

KoK =0 ®=uUK.)
3 J

k such that in Kj’

and a sequence of C' functions ®j:Rk + R

= 0, d) = $.).
oy 5 andJap() J( j)

12.7.2. NOTATION Given y € R®, let m (y) be the cardinality of ¢ *(y) n K,

12.7.3. IEMMA mJ (—=) is Borel measurable and V y,
ﬁ@sﬁ@s““

Put

m(y) = lim mj (y).
y >«®

Then m{—) is Borel measurable.

12.7.4. THEOREM

;om(y) ay)

k
. IQ JapM)) dL™.

It suffices to show that
k

\%

_mly) a(y)

. fQ Jap(CI)) dL



/_m() aH ) < f @) a.

J
R Q Tap

The second point being the easier of the two, note that
k
S Q Jap () dL

k

v

ij Jap (¢) dL

Il
-

k
Kj J(<I>j) dL

Il

I o N5 y) )

_ 0,.-1
= QT 0y aH* (y)

=/ nmj ¥) de(y)
R

—s 1 _ () am).
(J >« R
12.7.5. N.B. Under the supposition that

k
fQ Jap(<1>) dL™ < + o,

the "m" is independent of the choice of data, i.e., if

1

my () <—> {K?},

then m = m, Hk almost everywhere.



[Tet

But

=>

my () <—> {K:jL N KJ?}.

S om )

my (y) < (y € RM.

k
IQ Jap (¢) db

m, (y)

fRn m, (y) de v}

@) a* (y)

@) aH* (y)

fRn(ml - m3) de =0
S (my - my) @ =0
R
m -my =0
Hkalmost everywhere
m, -—m, =0
2 3

1

=m, Hk almost everywhere.








