Analysis 101:

Functions of a Single Varniable



ABSTRACT

These notes are a chapter in Real Analysis, While primarily standard,
the reader will find a discussion of certain topics that are ordinarily not
covered in the standard accounts.
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§0. RADON MEASURES

Iet X be a locally compact Hausdorff space.

l: NOTATION C(X) is the set of real valued continuous functions on X

and BC(X) is the set of bounded real valued continuous functions on X.

2: DEFINITION Given f € C(X), its support, denoted spt(f), is the smallest
closed subset of X outside of which f vanishes, i.e., the closure of {x:f(x) # 0},

and f is said to be compactly supported provided spt(f) is compact.

3: NOTATION Cc (X) is the subset of C(X) whose elements are compactly

supported.

4: DEFINITION A function £ € C(X) is said to vanish at infinity if

vV € > 0, the set
{x:|£®) | > €}

is compact.

5: NOTATION C0 (X) is the subset of C(X) whose elements vanish at infinity.

@_ Q.li Cc(X) < CO(X) < BC(X).

7: LEMMA CO (X) is the closure of Cc (X) in the uniform metric:
at€,q) = ||1£ - qll_.

8: DEFINITION A linear functional I:Cc (X) > R is positive if

f>20=>1I(f) > 0.



9: LEMMA If I is a positive linear functional on CC (X), then for each

compact set K © X there is a constant CK > 0 such that

1@ | s cllell.,

for all £ € Cc (X) such that spt(f) <K.

10: DEFINITION A Radon measure on X is a Borel measure p that is finite

on compact sets, outer regular on Borel sets, and inner regular on open sets.

1l: EXAMPIE Take X = R" ~- then the restriction of Lebesque measure A

to the Borel sets in X is a Radon measure.

Every Radon measure U on X gives rise to a positive linear functional on
Cc (X), viz. the assignment

f—>fodu.

And all such arise in this fashion:

12: RIESZ REPRESENTATION THEOREM If I is a positive linear functional

on Cc (X), then there exists a unique Radon measure u on X such that

I(f) = fX f du

for all £ € CC x).

13: EXAMPLE Take X = R and define I by the rule

I(f) = fR f dx (Riemann integral).

Then the Radon measure in this setup per the RRT is the restriction of ILebesgue

measure A on the line to the Borel sets.



14: RAPPEL C, (X) is a complete topological vector space when equipped

with the inductive topology, i.e., the topology of uniform convergence on compact

sets.

15: DEFINITION A distribution of order 0 is a continuous linear functional

T:CC(X) -+ R.

16: IEMMA A linear functional T:Cc (X) + R is a distribution of order 0

iff for each compact set K c X there is a constant CK > 0 such that

) | < cllfll,

for all £ € Cc (X) such that spt(f) c K.

Therefore a positive linear function,.I:Cc (X) - R is a distribution of order 0,

hence is continuous in the inductive topology.
Denote the set of distributions of order 0 by the symbol DO.

17: LEMMA PO is a wvector lattice.

If T € DO, then its Jordan decomposition is given by

T=T -7,
where
o
T (f) = sup T(g)
Oﬁg:f
T (f) = - inf T(g).
0<g<t




Here T', T™ ¢ ?° are positive linear functionals and

T=T - T ,
Therefore
'I‘+ > u+
(Radon) ,
T <> U

sonECC(X),
T(f) = [ fau - S £au
x - aH x - o

and

Tl (6) = f £ A’ + ).

18: N.B. Both y' and u” might have infinite measure, thus in general

their difference is not defined.

19: REMARK As we have seen, the positive linear functionals on CC (X)
can be identified with the Radon measures. Bearing in mind that CO (X) is the
uniform closure of CC (X), the positive linear functionals on C0 (X) can be identified
with the finite Radon measures.

* % % ¥ % % % % % %

Iet X be a compact Hausdorff space.
20: N.B. It is clear that in this situation Cc X) = C(X).

Equip C(X) with the uniform norm:

[1£]],, = sup [£].
X



Then the pair (C(X), |.) is a Banach space. ILet C(X)* be the dual space of

C(X), i.e., the linear space of all continuous linear functionals A on C(X) -~

then the prescription
* .
[|A]| = inf{M > 0: |A(£) | 5M||f||°C> (f eCX)}

is a norm on C(X)* under which the pair (C(X)*,|]-| ]*) is a Banach space.

21: N.B. vEfecCiX), vVAeCX?H*,

*
A@ [ < [Al TIE]]

22: TRAPPEL A sigried Radon measure is a signed Borel measure p whose

——

positive variation p+ is Radon and whose negative variation u is Radon.
[Note: As usual, p = p+ - 1 is the Jordan decomposition of 1 and its total

variation, denoted |u|, is by definition |u| = u" 4+ 47, In addition, u is finite

if |p| is finite, i.e., if |p|(X) < + «=.]

23: RIESZ REPRESENTATION THEOREM Given a A € C(X)*, there exists a

unique finite signed Radon measure u such that V £ € C(X),

A(£)

Il

fX £ du.
And

AL = ] ®.

24: NOTATION M(X) is the set of finite signed Radon measures on X.

25: ILEMMA M(X) is a vector space of R.

|

NOTATION Given U € M(X), put

N
()}
'

llu] IM(X) = |1-1| (X).



27: LEMMA | |-] IM(X) is a norm on M(X) under which the pair (M(X),

is a Banach space.

28: THEOREM Define an arrow

AMX) >~ C(X)*
by the rule

A (£) = J; £ du.

Then A is an isometric isomorphism.

[E.g.:
|[AGw) (£) | = [fX f du|
< Sy 18D alul < [E] ] lul &)
= el 1 g -
Therefore

A(n) € C(X)*]

* % % % ¥ % % % % %

If X is not compact, then the story for C0 (X) is the same as that for C(X)

when X is compact.

Without stopping to spell it all out, once again the bounded

itz

linear functionals are in a one-to-one correspondence with the finite signed Radon

measures and

AL = [l .



§1. VARTATION OF A FUNCTION

ILet [a,b] ©R be a closed interval (a <b, -~ ®<a <b <+ «),

1l: DEFINITION A partition of [a,b] is a finite set P = {xO,...,xn} < [a,b],

N

NOTATION The set of all partitions of [a,b] is denoted by Pla,b].

EXAMPLE

lw

{a,b} € Pla,b].

let (X,d) be a metric space and let f:[a,b] » X be a function.

4: DEFINITION Given a partition P € Pla,b], put

b n
VER) = TalE) £ ),

the variation of £ in P.

5: NOTATION Put

b
Tf[a,b] = sup v (£;P),
PePla,b] a

the total variation of f in [a,b].

6: N.B. Here, (X,d) is implicit... .

One can then develop the basics at this level of generality but we shall



instead specialize immediately and take

X =R, dx,y) = |x - y|,
thus now f:[a,b] = R. Iater on, we shall deal with the situation when the domain
[a,b] .is replaced by the open interval ]a,b[ (or in principle, by any nonempty
open set 2 ¢ R (recall that such an 2 can be written as an at most countable
union of pairwise disjoint open intervals), e.g. £ = R). BAs for the range, we

shall stick with R for the time being but will eventually consider matters when

R is replaced by RM ™M=1,2,...) (curve theory).



§2. LIMIT AND OSCILLATION

et f:[a,b] ~ R.

1l: DEFINITION Given a closed subinterval I = [x,y] < [a,b], put

v(E;T) = |[£@y) - £®) ],

the variation of £ in I.

2: DEFINITION Given a partition P € Pla,b], put

b n
X (£;P) izl lf(xi) - f(xi_l)l

n
= li V(f;Ii) (Ii = [Xl_lrxi])l
the variation of £ in P.
3: NOTATION Put
b
Tf[a,b] = sup v (£;P),
PEPla,b] a

the total variation of f in [a,Db].

4: DEFINITION A function f:[a,b] > R is of bounded variation in [a,b]

provided

Tf[a,b] <+ o,

5: NOTATION BV[a,b] is the set of functions of bounded variation in [a,b].



6: EXAMPLE Take [a,b]

[0,1] and define £:[0,1] -+ R by the rule
0 if x is irrational

fx) =

1 if x is rational.

Then £ ¢ BV[0,1].

7: NOTATION Given P € Pla,b], put

[le]] = max(x; = x; ;) (1=1,...,n).

8: THEOREM lLet f € BV[a,b]. Assume: f is continuous -~ then

b
T la,b] = lim V (£;P).
e[} »0a

[Note: The continuity assumption is essential. E.g., take [a,b] = [~ 1, + 1]

and consider f£(0) =1, £(x) = 0 (x # 0).]
Iet f:[a,b] + R.

9: DEFINITION Given a closed subinterval I = [x,y] < [a,b], denote by M
and m the supremm and infimum of £ in I and put
osc(f;I) =M —-m,
the oscillation of £ in I.
[Note: Since the diameter of £(I) is the supremum of the distances between
pairs of points of f£(I), it follows that
M - m = diam £(I)

or still,

osc(f;I) = diam £(I).



And, of course,
v(£;I) < diam £(I).]

Let
n
v(f;[a;b]) = sup Y osc(f;I.).
P€EP[a,b] i=l *

T [a,b] = v(£;[a,b]).

PROOF It is obvious that
Tf [a,b] < v(f;[a,bl).

To go the other way, fix € > 0. Choose a partition P of [a,b] such that if

Ai = osc (f;Ii) , then )

is greater than v(f;[a,b]) - € or S"l according to whether v(£f;[a,b])< + « or

v(f; [a,b]) = + ®». To deal with the first possibility, note that in each interval
',&_}i with

I, = [x;_;,%,] there are two points &/

[£ED) - £ED] > 8, - =
The points SJ!_,E,;.‘_ divide I, into one or two or three subintervals. Call
Q= {yo,...,ym} (n <m < 3n)
the partition of [a,b] thereby determined -- then the sum (i)Zlf(yj)-.sf (yj_,‘_'l) | (Iy 1’Yj]

Therefore

Slm

contained in [x; ;,x;Dis > A; -

m



n

= ¥ (1)I|f(y.) - £ly,_ ) |
i=1 J -1
n €
l=
n n

= 3 Ai-i T 1
i=1 =1

=0 - €

v

v(Ef; [alb]) ~£ —-€,
from which

T, [a,b]

iVv

v(£f; [a,b]).



§3. FACTS AND EXAMPLES

1l: FACT Suppose that f € BV[a,b] —- then f is bounded on [a,b].

[Given a < x < b, write

£6o |

Il

|[f(x) - £(a) + £(a) |

IA

[f(x) - £(a)] + |[£(a)|

A

[f£x) = f@)] + [f) - £&x) | + |£(a) |

IN

Tela,b] + |[£@@)] < + «.]

2: FACT A function f:[a,b] + R is constant iff Tf[a,b] = 0.

[A constant function certainly has the stated property. Conversely, if f is
not constant on [a,b], then the claim is that Tf [a,b] # 0. Thus choose

X # X, € [a,b] such that f(xl) # f(xz),, say X; < X, — then
Tela,bl > [£x)) - £@)] + |£(x,) - £6x)| + [£(00) - £(x,) |

=>

Tf[a,b] > |f(x2) - f(xl)[ > 0.]

3: FACT If f:[a,b] » R is increasing, then f ¢ BV[a,b] and

Tf[a,b] = f(b) - £(a).

[If P = {xo,...,xn} is a partition of [a,b], then

b n
a i=1
n



4: FACT Tf f:[a,b] + Rsatisfies a Lipschitz condition, then f € BV[a,b].
[To say that f satisfies a Lipschitz condition means that there exists a

constant K > 0 such that for all x,y € [a,bl,

fx) - £@v) | <K|x - y][.]

5: FACT If f:[a,b] + R is differentiable on [a,b] and if its derivative
f':[a,b] > R is bounded on [a,b]l, then £ € BV[a,b].

[The mean value theorem implies that f satisfies a Lipschitz condition on
[a,b].]

[Note: Therefore polynomials on [a,b] are in BV[a,b].]

6: FACT If f:[a,b] -~ R has finitely many relative maxima and minima, say

at the points
a<gl<n-- <gn<b,
then
Telab] = [£(2) = £(5) | + -+ + |[£(E) - £(0) |

< + =,

so £ € BV[a,b].

7: EXAMPLE Take f£(x) = sin x (0 £ x £ 2m) - then Tf[0,21T] = 4,

Neither continuity and/or boundedness on [a,b] suffices to force bounded

variation.

8: EXAMPLE Take [a,b]

fl

[0,1] and let

X sin(1/x) (0 < x<1)
fx) =

0 x=0),



Then f(x) is continuous and bounded but £ ¢ BV[0,1].

[Note: On the other hand,

x2 sin (1/x) (0 <x <1)

f(x) =

is continuous and of bounded variation in [0,1].]

The composition of two functions of bounded variation need not be of bounded

variation.

9: EXAMPLE Work on [0,1] and take £(x) = /%,

x2 sin2 (1/x) (0 <x <1

gx) =
0 (x = 0).

Then £:[0,1] = R, g:[0,1] + [0,1] are of bounded variation but £ ° g:[0,1] = R is

not of bounded variation.

10: FACT suppose that f:[a,b] - [a,b] -- then the composition
f o g € BVi[a,b] for all g:[a,b] + [a,b] of bounded variation iff f satisfies a
Lipschitz condition.
[In one direction, suppose that
[£&) - £ ] < K]x ~y| v € [a,b]).
Let P € Pla,b]:
b n

V(£ o giP) = 5 [(f°q)(x) ~ (£°9)(x5_7)]
a i=1



1A

in

n
L Klg(x) - gz ;)]
i=1

b
KV (g:;P) < KT [a,b] < + «.]
. g



§4. PROPERTIES

l-—J

THEOREM If £,g9 € BV|[a,b], then £ + g € BV[a,b] and

Teglambl < Telab] + T fa,bl.

[\)
0

THEOREM If f € BV|[a,b] and c¢ € R, then cf € BV[a,b] and

T ¢la,b] = |c|T¢[a,b].

3: SCHOLIUM BV[a,b] is a linear space.

4: THEOREM If f,g € BV[a,b], then fg € Bvia,b] and
Teglarll < (sup [gP)Tela,b] + (sup |E))T [a,b].
[a,b] [a,b] g
5: SCHOLIUM BV[a,b] is an algebra.
Ei. THEOREM Iet f € BVia,b] and let a < ¢ < b + then
f € BV[a,c]
f € BV[c,b]

and
Tf[a,b] = Tf [a,c] + Tf[c,b] .
7: CRITERION Suppose given a function f:[a,b] -+ R with the property that

[a,b] can be divided into a finite number of subintervals on each of which f is

monotonic — then f € BV{a,b].

8: EXAMPLE A function of bounded variation need not be monotonic in any

subinterval of its domain.



[Take [a,b] = [0,1] and let TyrToress be an ordering of the rational numbers

in ]10,1[. Fix 0 < ¢ < 1 and define £:[0,1] - R by

-

ck (x = rk)

flx) =
0 otherwise.
Then £ is nowhere monotonic but it is of bounded variation in [0,1]:

2c
l-—c']

Tf[O,l] =

9: THEOREM

f € BV[a,b] => |f| € BV[a,b].

Therefore BV[a,b] is closed under the formation of the combinations

(£ + |£])

D]

5> (£ - |f]).



§5. REGULATED FUNCTIONS

Given a function f:[a,b] -+ R and a point ¢ € ]a,b],

f(c+) = limit from the right = Tim f£(x)
xiC

f(c~) = limit from the left = lim f(x).
xtc

[Note: Define f(a+) and f(b-) in the obvious way.]

1l: DEFINITION f is said to be regulated if

® f(ct+) exists for all a < ¢ < b.

® f(c-) exists for all a < c £ b.

2: NOTATION REG[a,b] is the set of regulated functions in [a,b].

3: THEOREM REG[a,b] is a linear space.

[Suns and scalar multiples of regulated functions are regulated.]

[1-N
.

N.B. Continuous functions f:[a,b] » R are regulated, i.e.,

Cla,b] < REG[a,b].

5: THEOREM let f € REG[a,b] - then the discontinuity set of f is at

most countable.

6: DEFINITION A function f:[a,b] -~ R is

right continuous if for all a < ¢ < b,

f(c) = f(c+).

7: DEFINITION Let f € REG[a,b] — then the right continuous modification




fr of £ is defined by

fr(x) = f(x+) (a <x <Db).

8: LEMMA Up to an gt most countable set, fr = f,

[The set of points at which f is not right continuous is a subset of the

set of points at which f is not continuous.]

9: LEMMA fr is right continuocus.
[For
f (ct) = 1lim £ (x) = 1lim £(x) = f(c+) = £_(c}.]
r r r
xyc xyc
10: DEFINITION Let f:[a,b] - R.

e If f(x) = XI(X), where I = [a,b], or ]a,b[, or [a,b[, or ]a,b], then

f is said to be a single step function.

e If f is a finite linear combination of single step functions, then f is

said to be a step function.

11: LEMMA A function f:[a,b] -+ R is a step function iff there are points

a=3x,<x

0 l<...<xn=b

such that f is constant on each open interval ]xi__l,xi[ (i=1,...,n).

2: THEOREM Let f:[a,b] = R - then f is regulated iff f is a uniform

limit of a sequence of step functions.

13: N.B. Regulated functions are bounded.

[Take an f € REG[a,b] and choose a step function g such that ||f - g||_ < 1,



hence vV x € [a,b],

£ | < [I£=gll,+ |lgll <1+ ||g]],-]

14: THEOREM Let £ € BV[a,b] = then f is regulated.

PROCF' Suppose that a < ¢ £ b and f(c¢c~) does not exist — then there is a

positive number € and a sequence of real numbers c, increasing to ¢ such that

k
for all k,

flog) = Flogy) < -e<e<floy,) - floy).
It therefore follows that for all n,
n

+ o3 Telab] 2 I |f(ck) - f(c
k=1

1) | > D€

an impossibility. In the same vein, f(c+) must exist for all a < ¢ < b.

15: SCHOLIUM

BV[a,b] < REG[a,b].
In particular: The discontinuity set of an £ € BV[a,b] is at most countable.

16: THEOREM REG[a,b] is a Banach space in the uniform norm and BV[a,b]

is a dense linear subspace of REG[a,b], thus

m]— = REG[arb]

per ||-]]_-



§6. POSITIVE AND NEGATIVE

1l: NOTATION Given a real number X, put

b
Il
N

max (x,0) = = (|x] + %)

1l
|

max (- x,0) = 3 (|x| - x).

x
i

Given a function f:[a,b] =+ R, let

— n

T;{a,b] = sup pX (f(xi) - f(xi_l))Jr
PePla,b] i=1

—— n ——

T [a,b] = sup I (f(x;) - £(x,_4)) ,
_ PePla,b] i=l  © il

the
positive
total variation

__ negative

of £ in [a,b].

Obviously

A
+
8

0 < Tfla,bl < T.lab] <

1A

0< T;{a,bl Tela,b]l < + =,

[ A

so T';;[a,b], Tola,b], Tgla,b] are all finite if £ € BV[a,b].

2: N.B. Abbreviate

n

2 6 - £k ) o L,



n

I () - £ )7 to 1,
i=1
n - —
DoO(EG) - £Ge; 1)) to 2.
i=1

Then

st =5, 5T -1 = £b) - £(a)

=>

21 = T+ £() - (@), 25 =1 - £(b) + £(a).

3: THEOREM If f € BV[a,b], then

+ -—
Tf[a,b] + Tf[a,b] = Tf[a,b]

T;[a,b] - Tola,bl = £(b) - £(a).

Replace "b" by "x" and assume that f € BV[a,b].

o Tilax = 2”1(Tf[a,x] + £(x) - £(a))

=>

T (Tlax) + £(x) = Tola,x] + 27 ()

o Tla,x] = 2_1(Tf[a,b] - £(x) + £(a))

=>

2 (Tola,x] = £x)) = Tla,x] - 27 £(@).

4: TIFEMMA The functions

x> 3 (Telax] + £0)
' Tf[a,a] =0

x > 2 (Tela,x] - £(x)



are increasing.

PROOF Iet a <x <y < Dh.

o T (Tlayl + £iy) - 3 (Tolax] + £(x))

= %. (Tf[a,y] Tf[a,x] + £(y) - £(x))

f(y) - £(x)]) > 0.

v
D] b=

(Tf [x,y]

o I (Tilayl - £x) - 5 (Telax] - £(0)

= % (Tela,yl - Tgla,x] - £@y) + £(x))
> % (T lxy] - [£y) - £@]) 2 0.

5: DEFINITION The representation
F®) =L (T la,x] + £(x)) - = (T_[a,x] ~ £(x))
2 £ 2 £

is the Jordan decomposition of £f.

6: REMARK To arrive at a representation of f as the difference of two

strictly increasing functions, write

£a) = (G (Telax] + £() +x - (& (Tla,x] - £()) + ).

7: THEOREM Suppose that £ € BV[a,b] — then f is Borel measurable.

[For this is the case of an increasing function.]



§7. CONTINUITY

1l: THEOREM Let f € BV[a,b]. Suppose that f is continuous at ¢ € [a,b] -~

then Tf[a,-] is continuous at c € [a,b].
PROOF The function x -+ Tf [a,x] is increasing, hence both one sided limits

exist at all points ¢ € [a,b], the claim being that

lim Tf{a,x] = Tf[a,c].
X +C

To this end, it will be shown that the right hand limit of Tf [a,x] as x + Cc is
equal to Te [a,c]l, where a < ¢ < b, the discussion for the left hand limit being

analogous. So let.e > 0 and choose § » 0 such that

0<x=-c<§=> |flx) - £ <5 .
Partition [c,b] by the scheme
n e
‘I‘f[c,b] < j_zl [f(xi) - f(xi-al)i + s (xO =c, x = b).
If X - c < §, then

n
Tele,b]l - 5 <|£(x)) - £(c)] + i-EZ [£(x;) - £(x; 3) |

i3

<3

+ Tf [x, ,bl]

Tf[c,b] - Tf[x bl < e.

On the other hand, if X - C > §, add a point x to the partition subject to



X - ¢ < §, thus

n

Tele,b] - 5 < |£(x)) - £(xy) | + i=22 |E(x;) - £(x;_ ) |

< JEx) - £@) | + [£6) - £(x)) |

n
+ T JEx) - £(x ) |
i=2

n
< JEx) - f@ |+ 2£+ LRk = £l ) e
i=2
Since
{x,xl,..,,xn}

is a partition of [x,b], it follows that

€
Tf[c,b] -5 < =+ Tf[x,b]

£
2
Tf[Crb] - Tf[xrb] < &

Finally

Tf [a,b] - Tf [Xrb]

Il

Tf[c,x] = Tf[a,x] - Tf[a,c]

< €
if x - ¢ < 8. Therefore

Tf[a,c+] = Tf[a,c] r

SO ’I‘f [a,x] is right continuous at c.

2: SCHOLIUM If £ € BV[a,b] n Cla,b], then

T.la,~ € Cla,b].



3: REMARK It is also true that

Tila,] € Cla,bl

B T;[a,-] € Cla,b].
Proof:
- T;[a,x] = 2"1(Tf[a,'x] + f(x) - £(a))
Tola,x] = z‘l('rf{a,x] - f(x) + £(a).

4: THEOREM If f € BV[a,b] is continuous, then f can be written as the

difference of two increasing continuous functions.

[In view of what has been said above, this is obvious.]

5: LEMVA lLet f € BV[a,b]. Assume: Tfia,~] is continuous at c € [a,b] -
then £ is continuous at ¢ € [a,b].

PROOF For

c<x=> [fx) - £f(o)]

IA

Tf[c,x] = Tf[a,X} - Tf[a,c]

x <c= |flc) - £(x)]

IN

"I‘f[x,c] = Tf{a,c] - Tf[a,x].

6: RAPPEL let f:[a,b] > R be increasing and let X1 Xgpene be an enumeration

of the interior points of discontinuity of f —- then the saltus function s £t [a,b] = R
attached to f is defined by

sf(a) = {

and if a < x < b, by



sg(x) = (f(at) - £(a)) + 2 (£ +) - £ )
xk<.‘x

+ (£(x) - £(x)).

: FACT The difference f - s £ is an increasing continuous function.

Assume again that £ € BV[a,b] and put

V(x) = Tf[a,x], F(x) =V(x) - f(x) (a <x <b).

N.B. V(x) and F(x) are increasing functions of x.

Iet
{Xl,XZ,...} (a < X, < b)

be the set comprised of the discontinuity points of V.

9: REMARK The discontinuity set of V coincides with the discontinuity

set of f and the discontinuity set of F is contained in the discontinuity set of f.

Introduce
sv(X) = (Vat) -Vv() + 2 (Vig+ -Vx))
xk<x
+ (V(x) - V()

and

1

sp®) = (Flah) - F(a) + T (FxH) - Flx)

Xk<x
+ FE) - F(x9)),
where a < X < b and take

sv(a) = 0, sF(a) = 0.



10: ILEMVA Sy is the saltus function of V and Sp is the saltus function
of F.
[Per V, this is true by its very construction. As for F, if Xy is not a
discontinuity point, then
F(xk+) - F(xk—) =0,

thus such a term does not participate.]

11: DEFINITICN The saltus function s £ [a,b] = R attached to f is the

difference
Sg = 8, ~ Spe

Spelled out,
sf a) =0
and

sg(x) = (fat) - £(a)) + I (E(g+) - £(x)
5

+ (£(x) - £(x))

subject to a < x < b.

12: SCHOLIUM The functions

T V(R) —-sv(x)

F{x) - Sp (x)

-

are increasing and continuous. Therefore

fF(x) - s, (x) =V - F(x) - (SV(X) — Sp(x))

(V(x) - SV(X)) - (F(x) - SF(X))

is a continuous function of bounded variation.



§8. ABSOLUTE CONTINUITY 1

: DEFINITION A function f:[a,b] - R is absolutely continuous if v ¢ > 0,

3 § > 0 such that

n
T |E) - f(a) ] <€
= by K
whenever
a <ay <bl <a, <b2 $een 2@ <bn <b
for which
n
r (b _~-a) <38,
k=1 bk %k
2: NOTATION AC[a,b] is the set of absolutely continuous functions in [a,b].
3: THEOREM An absolutely continuous function is uniformly continuous.
4: THEOREM
f € AC[a,b] => |f| € AC[a,b].
5: THEOREM If f,g € AC[a,b], then so do their sum, difference, and product.
6: THEOREM
Ac[arb] < BV[a,b] .
7: SCHOLIUM If f € Cla,b] but £ ¢ BV[a,b], then f ¢ AC[a,b].

8: CRITERION If f is continuous in [a,b] and if f' exists and is bounded
in Ja,b[, then f is absolutely continuous in [a,b].

[Define M > 0 by |£'(x)| < M for all x in ]a,b[. Take ¢ > 0 and consider



n

2 |fy) - f(a) |,
k—llbk |

where
n €
oy map) <

k=1

Owing to the Mean Value Theorem, 3 X € ]ak,bk[ such that

Fo - fla)
B =3y i
Therefore
n
X flb,) - £(a,)
1<;=1l k |
n f(bk) - f(ak)
= n b._.
k=1 b =3y B = ol
n

)| By - oy

n
< I Mb,_ -a]
k=1 bk K

z | |
=M I |b a

o1 kT %

E—
<MM~€.]

9: EXAMPLE It can happen that a continuous function with an unbounded

derivative is absolutely continuous.

[Consider f(x) = vx (0 < x < 1) — then £ € AC[0,1] but



1 (%) -1 (0 <x <1).]
2K

10: EXAMPLE Consider

x2 sin(l/x) (0 <x <1)
fx) =
0 (x=0).

Then £ ¢ BV[0,1]. But more is true, viz. £ € AC[0,1]. In fact, in ]10,1[,

f'(x) = 2x sin(1/x) - cos(l/x)

£ 6o |

i

2|x| |sin(1/%)] + |cos (1/x) |

3.

11: THEOREM Iet f € BV[a,b] — then f € AC[a,b] iff Tf[a,—] € ACla,b].

PROOF Suppose first that f is absolutely continuous. Given ¢ > 0, introduce

the pairs
{(al,bl) r (a5,05) 5eens (@, /b)) }
subject to
n
kzl (b = ¢ <4,
thus
n

Lo |fly) - fla) ]| < e.
1

k=

For each k, let

PP T ko CF < S M T by



be a partition of [ak’bk] — then

n nk n

el i (in ) xki,.l') ) kEl B ™) <0
=>

n nk

k—El i-—-z-:1 lf(xki) ) f(}%‘i;;f” o

Vary now the Pk through P( [a’k’bk]) and take the supremum, hence

kl__%l Telayg Dyl < e
or still,
n
kzl Tf[a,bk] - Tf{a,ak] < €.
So Tf [a,—] € AC[a,b]. In the other direction, simply note that

[£() - £la) | < Telaby ] - Tela,al.

Recall that the Jordan decomposition of £ is-the representation

Fa) =5 (Tlaxl + £(0) - 5 (Tla,x] - £60).

12: SCHOLIWM If f € AC[a,b], then £ can be represented as the difference

——

of two increasing absolutely continuous functions.
Here is a useful technicality.

13: IEMMA Suppose that f:[a,b] + R is absolutely continuous - then

Y e>0, 368 >0 such that for an arbitrary finite or countable system of pairwise



disjoint open intervals {(ak,bk)} with

z (bk w--a.k) < 6,
k
the inequality

T osc(f; [ak’bk]) < g
k

obtains.

14: DEFINITION A function f:[a,b] + R is said to have property (N) if

f sends sets of Lebesque measure 0 to sets of Iebesqgue measure 0:

E < [a,b] & A(E) = 0 => A£(E)) = 0.

15: THEOREM If f:[a,b] + R is absolutely continuous, then f has property (N).
PROOF Suppose that A(E) = 0 and assume that a ¢ E, b ¢ E (this omission has
no bearing on the final outcome). WNotationally €, §, and {(ak'bk)} are per #13,

thus

b (bk - ak) < §d=>1 Osc(f7[ak’bk]) < €.
k k
To fix the data and thereby pin matters down, start by putting

= min £, = £,
T b g fay by ]

hence

osc(f;lay b 1) =M - m.
Since A(E) = 0, there exists an open set S < [a,b] such that

E cS, A(S) < 6.

Decompose S into its connected components ]ak ,bk[ ; SO

L (b =a) <4d.
Iy - e



Next
£f(¥) < f(8) = ¢ f(]ak,bk[)
k
. ek
or still
M(E(E)) < I A (E([a,b1).
k
But
f([ak'bk]) = [mker]-
Therefore

MEE) ST 04 -m) < e
k

Since € is arbitrary, it follows that

AE(E))

]
o

16: THEOREM If f:[a,b] - R is continuous, then f has property (N) iff
for every Lebesgue measurable set E < [a,b], f(E) is Lebesgue measurable.

PROOF Assuming that f has property (N), take an E and write

(o]

B = (jgl Kj) u S (Kl CK2 S eed)y,

where each Kj is compact and S has Iebesqgue measure 0. Since f is continuous,

f (Kj) is compact, hence

(o0}

u f(X.)
=1

is Iebesgue measurable. But f has property (N), hence f£(S) has ILebesgue measure 0.

Therefore

[ee)

fE) = (U £(K.)) Y £(5)
=1



is Iebesgue measurable. In the other direction, suppose that f does not possess
property (N), thus that there exists a set E < [a,b] of Lebesgue measure 0 such
that £(E) is not a set of Lebesgue measure 0.

e If f(E) is Lebesgue measurable, then it contains a nonmeasurable subset.

e If f£f(E) is not Iebesgue measurable, then it contains (is...) a non-
measurable set.

So there exists a nonmeasurable set A < £(E). Put S = fm:L () NE: S8 is

Lebesgue measurable (being a subset of E, a set of Lebesgue measure 0), yet £(S) = A

is not Lebesgue measurable.

17: SCHOLIUM An absolutely continuous function sends Lebesgue measurable

sets to ILebesgue measurable sets.

18: REMARK ILet E < [a,b] be ILebesgue measurable —- then its image f(E)

under a continuous function f:[a,b] + R need not be Iebesque measurable.

19: RAPPEL If E < R is a set of Iebesgue measure 0, then its complement

Ec is a dense subset of R.

[In fact, E NI # @ for every open interval I.]

20: LEMMA Suppose that f,g:[a,b] -+ R are continuous and f = g almost
everywhere —— then f = g.
[The set
E={x € [a,b]l:f(x) # gx)}

is a set of ILebesgue measure 0.]

21: APPLICATION Two absolutely continuous functions which are equal almost

everywhere are equal.



§9.

DINT DERIVATIVES

l. DEFINITION Iet £:[a,b] - R.

® Given x € [a,b],

is the upper right derivative of f at x and

—~

(D'f) (x) = lim sup
h40

(D+f) (x) = lim in
h0

f(xth) - £(x)

£(x)

is the lIower right derivative of £ at x.

e Given x € ]a,b],

is the upper left derivative of f at x and

(D f) (x) = lim sup
ht0

(D_f) (x) = lim inf
ht0

£ f (x+h)

f (x+h)

f (x)

£ (x+h)

£ (x)

is the lower left derivative of f at x.

2: N.B.

3: EXAMPLE Suppose that

f(x) =

CcX

sin =

sin =

a

Collectively, these are the Dini derivatives.

< band ¢ < d.

2

+ bx

+ dx

Iet
2
(x
— -
72
(x

Il

0)

0)

0).



Then

Il

(D £)(0) =b >a (D,£) (0)

MD£) 0 =4 >c

i

(D_£) (0).

If (D+f) x) = (D +f) (x), then the common value is called the right derivative

of £ at x, denoted (Drf) (x) , and f is said to be right differentiable at x if

this common value is finite.

If D f) (x) = (D_f) (x), then the common value is called the left derivative

of £ at x, denoted (D Kf) (x), and £ is said to be left differentiable at x if this

common value is finite.

4: EXAMPLE Take f(x) = |x| — then

Il
i_.l

(D) (0)

=> (Drf) (0) =1

O£ (0) =1
and
(D£)() =-1
=> (sz) (0) = - 1.
DO =-1

If (Drf) (x) and (Df_f) (x) exist and are equal, then their common value is

denoted by f'(x) and is called the derivative of f at x, f being differentiable at

x if f'(x)} is finite.



[So the relations
to# (DE) & = (D6 = 0 & = 05K #
are tantamount to the differentiability of f at x.]
5: EXAMPLE Take £(x) =% (x # 0), £(0) = 0 — then

(D,£) (0)

I
+
8

I
+
8

D
( Zf) (0)
Therefore £'(0) = + « but £ is not differentiable at 0.

There is much that can be said about Dini derivatives but we shall limit

ourselves to a few points that are relevant for the sequel.
6: THEOREM Let f:[a,b] » R — then for any real number r, each of the
following sets is at most countable;
{x:(D,f) (x) >r and (D'£) () < r},
{x:(D f) x) > r and (D+f) (x) < r},
(x:(D'£) (x) < rand (D f)(x) >r},

{x: (D f) (%) < rand (Df) (x) > r}.

7: APPLICATION Let f:[a,b] - R — then up to an at most countable set,

(D'f) (x)

iV

(D_f) (x)

(D f) (x)

v

(D, ().

8: THEOREM ILet f:il[a,b] » R be a Lebesgue measurable function — then its



Dini derivatives are Lebesgue measurable functions.

To fix the ideas, let us consider a special case. So suppose that f:[a,b] - R
is a Iebesgue measurable function and E < [a,b[ is a Lebesgue measurable subset
of [a,b]. Assume: Drf exists on E — then Drf is a Lebesgue measurable function
on E.

To establish this, extend the definition of £ to R by setting £ = 0 in
R - [a,b]. Define a sequence gyr9pre-- of Lebesqgue measurable functions via the

prescription

g, () =n(EGx+3) = £&)).

Iet De be the subset of R comprised of those xsuch that 1im 9, (x) exists in
n - o

[~ o, + o] — then De is a lebesgue measurable set and

lim g‘n:De »> [w o, + ]
n =+ o«

is a Lebesgue measurable function. Take now an x € E and write

(D,£) (x) = lim EEEH) = £
hy0
£(x + 5) - £(x)
. . n .
= 1lim T = lim g_(x).
n
n > _— n - ©
n
Consequently E < De and

Df= lim g
r n - o n

in E, hence Drf is a Iebesgue measurable function on E.

9: N.B. - Analogous considerations apply to Dﬂf and f*',



§10. DIFFERENTIATION

We shall first review same fundamental points.

l: FACT Iet f:[a,b] - R be an increasing function —— then f is differ-

entiable in Ja,b[ — E, where E is a set of ILebesgue measure 0 contained in la,bl.
[Note: Bear in mind that "differentiable® means that at x € la,b[ - E, £*{x)

exists and is finite. Moreover f'(x) = + » is possible only on a set of Lebesgue

measure 0. ]

£':(a,b] - E > Ry,

is a Lebesgue measurable function.

3: REMARK If E c ]a,b[ is a set of Lebesgue measure 0, then it can be

shown that there exists a continuous increasing function f which is not differentiable

at any point of E.

4: RAPPEL If ¢ is a Lebesgue measurable function and if y = ¢ almost

everywhere, then ¥ is a Lebesgue measurable function.

5: FACT Let f:[a,b] ~R be an increasing function --—- then f' is integrable

on [a,b] and
PE s Em) - fl@.
[Note: This estimate can be sharpened to

2 £r < £(om) - £(ah) ]



6: EXAMPLE One can construct a function f:[a,b] -+ R that is continuous

and strictly increasing in [a,b] such that f' = 0 almost everywhere, hence

0= f;’f' < E@b) - £(a).

7: FACT Given an f € Ll[a,b}, put

Fix) = 2 f (a<x<h).

Then F € AC[a,b] and F' = £ almost everywhere.

8: FACT Suppose that f:[a,b] + R is absolutely continuous --- then

£(x) = £(@) + /S £' (@ <x <b).

: FUBINI'S LEMMA Iet {fn} (n=1,2,...) be a sequence of increasing

functions in [a,b]. Assume that the series
T £ (x)

n=1 n
converges pointwise in [a,b] to a function F -~ then F is differentiable almost
everywhere in [a,b] and

F'(x) = L f'{x)
n
n=1

off of a set of ILebesgue measure 0.

PROOF Without loss of generality, take fk (a) = 0 for all k and observing

that F is increasing, let E be the set of points x € ]a,b[such that the derivatives

F'(x, fi(x) , fé (x),... all exist and are finite -< then [a,b] -~ E has ILebesque

measure 0. Iet
n
Fx)= & £ (x).
n =1 k



Suppose that x € E and h is chosen small enough to ensure that x + h € [a,b] — then

F(x+h) - FEx _ ozo fk(x+h) - fk(x)

h =1 h

Flx +h) - F(x) | rzl fk(x-f-h) - fk(x)
h = k=1 h
=>
n
F'(x) > 7 £ (x) =F' x).
" k=1 k n

The f]; are nonnegative and the sequence

(F,x)} b=1,2,...)
is bounded above by F'(x), hence is convergent. It remains to establish that

lim F' =F*
n

n - oo
almost everywhere in [a,b]. Since

lim Fn(b) = F(b),

n -+ o

there exists a subsequence {Fn (b) } such that
5|

Fla) ~F (a) =0 < F(b) - F, (b) <27,
3 J
But F - Fn is an increasing function, thus
j »
0 <F(x) ~F (%) g2
3
for all x € [a,bland so the series



is a pointwise convergent series of increasing functions. Reasoning as above,
we conclude that the series

r (F* -F')
. n.
j=1 J

is convergent almost everywhere in [a,b] and from this it follows that
F'(x) - Fr‘—l(x) +0

as n + « for almost all x € [a,b].

10: APPLICATION Suppose that fr[a,b] » R is increasing and let Sg1 [a,b] =R

be the saltus function attached to f — then s 1'3 = 0 almost everywhere.

[In general, s £ is not continuous. Still, a continuous singular function is

a continuous function whose derivative exists and is zero almost everywhere. To
illustrate, write

f=(f-sf)+s =r_+ s

f £ £/

where by construction r_. is increasing and continuous. And almost everywhere

£

| g 1 | - 1

f' = Te + s Te-
Introduce F by the rule

— X ey
F(x)—faf

and set

Then almost everywhere

] = N | J— L. T =
fCS re F £ f 0.

Therefore fcS is a continuous singular increasing function and

f=r +sf=F+f + s
cs

£ f"]



The fact that an £ € BV[a,b] can be represented as the difference of two
increasing functions implies that f is differentiable almost everywhere.
[Note: Therefore a continuous nowhere differentiable function is not of
bounded variation. ]
11: THEOREM Suppose that f € BV[a,b] = then for almost all x € [a,b],
f'(x) | = TJ,':.[a,x].

PROOF Given n € N, choose a partition Pn € Pla,b] such that
-n
]E |f(xk) - f(xk._l)l > Tf[a,b] -2 7.

In the segment x , < x <x Oof P, let

+ .
fn(x) = f(x) + c, if f(xk) - f(Xk—-l) >0

or
L) = - E0) 4 o, if £(x) - £(q_;) 20,
where the constants are chosen so that fn (a) = 0 and the values of fn at X agree —
then
£.00) - £ 1) = |[fx) - £ 1) [,
so

Telab) = £,0) = Telabl = I (5,05) — £,(5. )

Il

T la,b] -]E £ - £(x 19|

< 2™,

On the other hand, the function

X > Tf[a,x] - fn(x)



is increasing, hence

Tf [a,x] - fn (x)

IN

T¢ [a,b] - fn (b)

2—1’1

A

E(Telax] - £(x) ¢ % 27 <+ e
n=g. n=1

The series

E (Tf[a,X] - fn(X))

n=1

is therefore pointwise convergent, thus by Fubini's lemma, the derived series

converges almost everywhere, thus
T%[a,x] - fr'l(x) >0
almost everywhere. But
fr‘l(x) =+ f'(x).
Since T% [a,x] >0 (Tf [a,x] being increasing), the upshot is that

|£' (=) | = T{la,x]

almost everywhere.

12: APPLICATION
£ € BV[a,b] => £' € L'[a,b].

[For

2 g

o T

4N

Tf[a,b] - T¢ [a,a]

Tf[a,b] <+ @]



13: THEOREM Given an f € Ll [a.b], put

F(x) = /ﬁ; £,
Then

Tplabl = |[£] ]Ll.

PROOF Given a P € Pla,b],

n

I F(x) - F(x__,)
Nt} X %) |

n
-5 |k

£l < P IE] <+ o
k=1 k-1 R

Tolab] < |I€]] ;-
L
To reverse this, recall that F € AC[a,b]; that F' = f almost everywhere, and that

almost everywhere. Therefore

Hﬂ£l=£|w|

P orria,—

a’ F

IA

TF[a,b] - TF[a,a]

TF [a,b].

14: LEMMA Suppose that f:[a,b] - R is increasing -- then f € AC[a,b] iff

,/‘Z f' = £(b) - £(a).



PROCF If £ € AC[a,b], then

£(x) = f@ + /L £ (agx<h)
=>

£(b) - £la) = /2 £

Conversely, write
-

f(x) = fa f' + fcs(x) + sf(x).
Then

£(x) = £(a) + /2 £ +g(x),
where

Il

fcs(x) + sf(x) f(a) + g(x),

fs(@) +sc(a) = £(a) + g(a)
r§m~—ﬂm-+%w)=f®)+g®)

rf(a) + sf(a) = f(a) + g(a)

(f - sf) (a) + sf(a) = f(a) + g(a)

f(a) = £(a) + g(a)
=>
g(a) = 0.
In addition, the assumption that
fz £' = £(b) - £(a)



implies that
gb) = £(b) - £(a) - /2 £
= 0.
Since g is increasing, it follows that g(x) = 0 for all x € [a,b], hence

f(x) = f(a) + é £,

15: THEOREM Suppose that f € BV[a,b] — then f € AC[a,b] iff

T la,b] = /2 |£°].

PROOF On the one hand,

£ € ACla,b] => £' € L'[a,b]

-

- N R
=> Tgla,b] = /] |£

On the other hand, assume the stated relation. Since for almost all x in [a,b],

[£' () | = TLla,x],

we have
T .[a,b] = fb Tlla,—]
£ a £’
or still,
T la,b] - T la,al = fg TLla,—].

But Tf [a,—] is increasing, thus in view of the lemma, Tf [a,—] is absolutely

continuous, which in turn implies that f is absolutely continuous.



§11. ESTIMATE OF THE IMAGE

1: RAPPEL

A Lebesgue measure

>\*

outer Iebesgue measure.

2: ILEMMA Let f:[a,b] -+ R. Suppose that E c [a,b] is a subset in which

f' exists, subject to |£'| < K —— then

M(E(E)) < RK*(E).
The proof will be carried out in seven steps.

Step 1: Given x € E, f*(x) exists and

€76 | = | 1im E ZEE | g
y-x YTE |

So, Vx€E, 36§ >0:

[£(¥) - £X)| <Ky - x| (yelx=-36, x+ §[ n [abl).
If now for n = 1,2,...,

E = {x €E:|£(y) - £(x)| < K|y ~ x| (ye]x—%, x+%[)},

then each x € E belongs to En (n > > 0), hence

[e.0]
E & U En'
n=1

On the other hand, V n, En c E and {En} is increasing. Therefore

B o= = i
i U En lim En.
=] n >



Step 2: Consequently
lim )\*(En) = \*(E).
n - o

But

0 o]

fE) =£f(u E) = u £fE) = lim £(E)

n=1 n=1 n > «

lim )\*(f(En)) = A (£(E)).

n > o«

Step 3: Iet ¢ > 0 be given and let In X k =
T 14
open intervals such that
" ) <L E < vt
n,k n’ "n =1 n k!
and
T OMI_ ) < A*(E) + e
=1 n,k’ - n
Step 4:
E = U (E NI )
noo,- 0 n,k
and

fE)= u f(E_NTI
n k=1 n n

Step 5: If X11%, € En niI then

2 n,k’

[f(xl) - f(xz)i < K]xl - 2[ < KMIn,k

A¥(E(E N In,k)) < K (In,k) .

KT

1,2,...) be a sequence of

)



Step 6:
* = )%
MEE)) = X (k;Jl £E, 0 In,.k))
*
< k—il AN (EE N In,k))
< kil RAMI, ) < ROFE) + o).
Step 7:
A(EE)) = lim A (£(E))
n -«

{A

K( lim }\*(En) + g)

n - o

RK(\*(E) + ¢)

A*(£(B)) < RA*(E) (¢ + 0),

the assertion of the lemma.

is a ILebesgue measurable subset in which f is differentiable --— then

AEE)) ¢ [ [T' ()

PROOF Note that f':E -+ R is a Lebesgue measurable function. This said, to

begin with, assume that in E, |[f'| < M (a positive integer). Let

EE={XEE;

kK -1 : k
— < [f'(®) | <§5}'

where

k=1,2,..., %, n=1,2,... .

: THEOREM Let f:[a,b] - R be Lebesgue measurable. Suppose that E c [a,b]



Then for each n,

A*(E(E))

X*(£(U B))
k

I

(U £(E)))
k

A
™
>
*
~~
h
P
Nonee

LA

Therefore

A*(£(E))

1A

. k-1 1
lim S Za@E) + = I AED)
n-+o k 2% E; N x EE

E If' l‘

To treat the case of an unbounded f', let

A =xeBk-1<|f'®| <k} k=12...).

Then

I

A¥(E(E)) = A*(£(U A)))
k

WA

A*(U £(A))
QB

1A

I A (E£(B))
e AT

§ AN

LS |fY

k Pk

Iy £



[Note: In point of fact, f(E) is Lebesgue measurable, so

A (EE)) = ME(E)).]
4: N.B. It follows that
AX(£E(E)) =0
if £' = 0.
[Tt can be shown conversely that
A*X(E®)) =0

implies that f* = 0 almost everywhere in E.]

5: SCHOLIUM Suppose that f has a finite derivative on a set E - then

A*(£(E)) = 0 iff f* = Q0 almost everywhere on E.



§12. ABSOLUTE CONTINUITY 11

1l: THEOREM If f:[a,b] - R is absolutely continuous and if f'(x) = 0
almost everywhere, then f is a constant function.
[Iet
E={x € [a,bl:f'(x) = 0}
and let
E' = [a,b] - E.
The assumption that f € AC[a,b] implies that f has property (N) which in turn
implies that f sends Lebesque measurable sets to Lebesgue measurable sets. In

particular: £(E), £(E') are Lebesgue measurable and

A(E[a,bl) < MEE)) + MEEYD).
So first
AME(E)) <0 A(E) =0 ("K" = 0).
And second, E' is a set of Lebesgue measure 0, hence the same is true of f(E').
All told then
A(fla,b]) = 0.
Owing now to the continuity of £, the image f([a,b]) is a point or a closed interval.

But the latter is a non-sequitur, thus f([a,b]) is a singleton.]

2: MAIN THEOREM ILet f:[a,b] =+ R — then f is absolutely continuous iff

the following four conditions are satisfied;
(1) £ is continuous.
(2) f' exists almost everywhere.
(3) f£' € Liab].

(4) £ has property ().



PROOF An absolutely continuous function has these properties. Conversely,
assume that f satisfies the stated conditions. Owing to (3), given € > 0, there

exists § > 0 such that

E c[ab] & ME) < §=>/, [f'] <&,

Fix
aga <bj<a, <b, <...<a <b <b
with
n
Z b ~a) <d
R
Then
n
TS I£7] < e.
k=1 [a /bl
Let

Ak = {x e [ak,bk} 1f' (x) exists].
Thanks to (2), [ak,bk] - Ak is a set of Lebesgue measure 0, hence thanks to (4),

f([ak,bk] - Ak) is a set of Iebesgue measure 0. Therefore

n

Lo [Eby) ~ £ |
1

n
z AE(la b 1)) (by (1))
k=1 akbk

$A

n
= ME@®))
k=1 Ak

n

T s
=1 %
n

S
k=1 PPyl

< €.

| XA

£

[£']



3: SCHOLIWM If f € BV[a,b] is continuous and possesses property (N), then
f € ACla,b].

[One has only to note that if f is of bounded variation, then f' exists almost
. 1
everywhere and £¥ € L' [a,b].]
4: IEMMA If f£:[a,b] » R has a finite derivative at every point x € [a,b],

then f has property (N).

PROOF Suppose that A(E) = 0 (E < [a,b]). For each positive integer n, let

En={x€E:

£'(x) | <nkh
Then A(E,) = 0 and

M (£(E)) < nh*(E)

n)\(En) = 0
=>
AE (En)) = 0.
Since
E= U En
n=1
and
fE) =f(U E)= U £(E),
n=1 n n=1 n
the conclusion is that
A¥(E(E)) < T A*(£(ED))
- n
n=1
= T AME®E®E)))
n=1 n

0.



I.e.: X(E(E)) = 0.

5: EXAMPIE One can construct a continuous function f:[a,b] - R with a

finite derivative almost everywhere which fails to have property (N).

6: THEOREM Let f:[a,b] - R. Assume: f'(x) exists and is finite for all

x € [a,b] and that f' is integrable there -- then f is absolutely continuous.
PROOF Condition (1) of the Main Theorem is satisfied ("differentiability" =>
"continuity"), conditions (2) and (3) are given, and (4) is satisfied in view of

the previous lemma.

The composition of two absolutely continuous functions need not be absolutely

continuous. However:

7: FACT Suppose that f:[a,b] =~ [c,d] and g:[c,d] + R are absolutely
continuous ——- then g ° £ € AC[a,b] iff (g' ¢ £f)f' is integrable.

[Note: Interpret g'(f(x))f'(x) to be zero whenever f'(x) = 0.]



§13. MULTIPLICITIES

Iet f:[a,b] =+ R be a continuous function. Put

m= min £, M= max f.
[a,b] [a,b]

1l: NOTATION Define a function N(f;—):]- «, + «[ > R by stipulating that
N(f;y) is the number of times that f assumes the value vy in [a,b], i.e., the number
of solutions of the equation

fx) =y (@ <x <Db).

[Note: N(f;y) is either 0, or a positive integer, or + «.]

2: DEFINITION N(f;—) is the multiplicity function attached to f.

3: THEOREM N(f;—) is a Borel measurable function and

£NE—) = Tela,bl.
PROOF Subdivide [a,b] into 2" equal parts, let

1,=la, a+ - a)y/2™, i=1,
and let

I,=la+ E-D0- a)/2%, a+ i -a)y/2™M, i=2,3,...,2%

Then £ maps each I - to a segment (closed or not), viz. the segment from m, to Mi’

where
m, = inf £, Mi = sup f.
I. T.
ni ni

The characteristic function Xni of the set f(Ini) is zero for vy > Mi &y< m,,

one for m, £y < M., while it may be zero or one at the two endpoints. Therefore



Xni is Borel measurable, thus so is the function

2n

X ) = iEl Xpi V) (5@ <y <+ o).

And

2n

+oo
E f—co Xni

f""oo *n

"

21'1

i ™ = my)

21’1

iil osc (f;Ini) .

Moreover
Xn 2 0' Xn ::. Xn+l’
which implies that

X = lim Xn

n >

is Borel measurable. Pass then to the limit:

+oo . o
f.ooX‘:- dim f—oo Xn=Tf[a?b]’

n -

f being continuous. Matters thereby reduce to establishing that
X = N(f;—).
First

v o, x, s NE—) = x < N(E;—) .

Iet now g be a natural number not greater than N(£;y), giving rise to g distinct



roots

X, <X, < e++ <X
1

of the equation
f(x) =y (@ <x <Db).
Upon choosing n > > 0:

b-a
on

Cmin(x; g ")y
it follows that all g roots will fall into distinct intervals Ini’ hence
% 295> X 2 qg.

If N(f;y) = + «, g can be chosen arbitrarily large, thus y(y) = + «. On the other

hand, if N(f;y) is finite, take g = N(f;y) to get

x(y) > N(f;y) =>x 2 N(f;—).

4: SCHOLIUM A continuous function f:[a,b] -+ R is of bounded variation iff

its multiplicity function N(f;—) is integrable.

5: N.B. If £ € BV[a,b] n Cla,b], then

{y:N(f5y) = + o}
is a set of Lebesgue measure 0.

[In fact, N(f;—) is integrable, thus is finite almost everywhere.]

Maintain the assumption that f:[a,b] -+ R is continuous.

: NOTATION Given J = [c,d] < [a,b], write

+14if f(c) <y < £(Q)
o(£;J,y) = -1if £(c) >y > £(Q)

0 otherwise,

where - o < ¥ < + oo,



7: LEMMA If
c::yo <yl < eee <ymzd
is a partition of J = [c,d] into the m intervals Jj = {yjﬁl' yj] and f(yj) £y
for j = 0,1,...,m, then

m
o(£;T,y) = L q)(f}Jj;Y)—_

j=1

8: NOTATION Given a finite system S of nonoverlapping intervals J = [eg,d]

in [a,b], put

CN(f;y) =sup I |9(£;3,¥)
S JES

9: DEFINITION cN(f;y) is the corrected multiplicity function attached to f.

Cbviously

0 < CN(f;—) < + .

10: THEOREM V y, = ® <y < + o,
0 £ cN(f;y) £ N(£:;y)
and

cN(f;y) = N(£;v)

for all but countably many y.

Therefore

cN({(f;—) .

Tela,b] = ST N(E—) = ST

CO



§14. LOWER SEMICONTINUITY

1l: EXAMPLE (Fatou's lLemma) Suppose given a measure space (X,u) and a
sequence {fn} of nonnegative integrable functions such that fn + £ almost every-
where -— then

fX f dp < lim inf fX fn du.

n-»>x

2: THEOREM Suppose that fn: [a,b] R (n=1,2,...) is a sequence of
functions that converges pointwise to f:[a,b] > R —= then

Tela,b] < lim inf T, [a,b].
n > c n

PROOF Given ¢ > 0, there exists a partition P = {xo,... ,Xm} of [a,b] such

that
b m
V (£;P) = & |f(x,) - £(x; ;)]
a j=1 J J-1
1

> Tela,b] - 2 ¢

if T [a,b] < + @ or > et if Tgla,bl = + . Since £ (x;) > £(x;) at each of the

m + 1 points Kyreeo X, there is an n_ such that

1 -1
m

;f(xj) - fn(xj)1 < 4" £

for all n > n_ and j = 0,...,m, hence if n > n_,

|£Ge5) - £ ) |

= |£06e) - £ ) + £ 0xp) = £ 0y ) - Fle ) + Gy ) |



< JEGe) = £ Ge) |+ TGy ) - £ Gy )|

+ lfn(xj) - fn(xj__l)[

=>
m. -1 -1 m
z |f(xj) ~ f(xj_l) | <47¢ +4 ¢+ z lfn(xj) - fn(xj—l)l
j=1 =1
or still,
m ~1
Tofxy) - £x: )| -2 7€
=1 ] J-1
m
< @ |E (%) - £ (x. )}
= 51 n n*j-1
< Tf [a,b].
n

Case 1: Tf[a,b] < + o == then

m
Ty - £(x )|
5=1 3 J-1
> Tf [a,b] -~ 2“15 - 2—18
= Tf[a,b] - €
=>
Tf{a,b] -g < Tfn[a,b] (n > ne)
=>

Tf[a,b] ~ € < lim inf ‘I’f [a,b]
n-—+ n

=> (¢ + Q)



Tcla,b] < Llim inf T; [a,b].
n -> o« n

Case 2: Tf[a,b] = 4+ o —~-~ then

-1
fx.) - £(x. -2
> e‘l - 2—15
=>
et - o7le < Tfn[a,b] (n >n)

+ =7 _[a,b] = lim inf 7. {[a,b].
f £
n -+ n
3: REMARK One cannot in general replace pointwise convergence by convergence

almost everywhere, i.e., it can happen that under such circumstances

lim inf Tf [a,b] < Tf[a,b].
n

n-> oo

4: EXAMPLE Work on [0,27] and take

sin (nx) ,

Bl

fn(x) =
so f(x) = 0 -~ then fn -+ £ uniformly,

T [0,21] = 0, T, [0,21] = 4.
n

5: EXAMPLE Work on [0,21] and take
1 . 2
fnCX) =5 sin(n"x),

so £(x) = 0 —~ then fn + £ uniformly,



TL[0,271] = 0, Tg [0,21] =+ .
n

6: THEOREM Iet f:[a,b] + R be a continuous function -- then cN(f;—)

is lower semicontinuous in ]- «, + «[, i.e., V Yor

cN(f;yO) < lim inf oN(£;y).
Yy
0

: THEOREM Suppose that fn: [a,b] - R is a sequence of continuous functions

that converges pointwise to f:[a,b] ~ R — then V vy,

cN(f;y) £ lim inf cN(fn;y).

n > o«

8: REMARK These statements ensure that cN is lower semicontinuous w.r.t.
to £ and w.r.t. y separately. More is true: cN is lower semicontinuous w.r.t.

the pair (f,y), i.e., if fn > £, vy~ Yo then
CN(f;yO) < lim inf cN(fn;y)

asfn+f,y+y0.

N.B. In the foregoing, one cannot in general replace cN by N.




§15. FUNCTIONAL ANALYSIS

1l: THEOREM BV[a,b] is a Banach space under the norm
€] {BV = |f(a)]| + Tf[a,b].
[Note: T £ [a,b] is not a norm since a constant function f has zero total

variation, hence the introduction of |f(a)

. Recall, however, that
Tf+g[a,b] < Tf[a,b] + 'I‘g(a,b]
and

T_c[a,b] = |c|T la,b].]

As a preliminary to the proof, consider a Cauchy sequence {fk} in BVla,b].

Given ¢ > 0, there exists CE € N such that
ka - fﬂl [BV = |fk(a) - fﬁ(a)l + Tfk"fg[a'b] <€
for all k,£ > CE. Therefore

ka - fﬂllm &
thus the sequence {fk} converges uniformly to a bounded function f:[a,b] + R, the

claim being that £ € BV][a,b].
This said, take a partition P € pla,b] and note that
n
ii:l [ (F = £5) (x9) = (f = £,) (x5 )| < Tfk _ f£[aub] < e
for all k,2 > C.. From here, send £ to + « to get
n

o - B (k) - (£, - D) )] €
i=1 |



for all k

v

C ., hence
€

A
™

T [a,b] <
£,~f

for all k > Ce- And

£, - fp@ |~ |f (@) - f@]|<e (£ >+,

Therefore

£

k""fH

1A

8V 2¢€

for all k

v

C€ . Moreover

Tf[a,b] < Tf—fk[a’b] + Tfk[a,b]

<+ o,

So £ € BV[a,b] and £, - f in BV][a,b].

k

: REMARK BV[a,b], equipped with the norm ||| |gy+ is not separable.

[Take [a,b] = [0,1] and for f € BV[0,1], r > 0, let

s(f,r) = {g € BV[0,1]:|]|g - £]] }.

gv ° %
Call X, (0 < £ < 1) the characteristic function of {t} == then for t) # ty,

I, =% llww= (G =X )@ +T [0,11
Y, 7%, ey th X, % ™ X, '

=0+ T _ [0,1]
)Qtl th

But this implies that

S(xtl,l) n S(th’l) = g.



In fact

[, = % Il = 1lx. =h+h-= ||

th th BV th th BV
< Hth-hHBV-l- thz_hlIBv
<1+1=2.

Accordingly there exists a continuum.of disjoint spheres S(Xt,l) < 8(0,3), hence an

arbitrary sphere S(f,r) contains a continuum of disjoint spheres S(rxt/3 + f,r/3).]

3: THEOREM BVia,b] .isa complete metric space under the distance function

ay(E,9) = /5 I€ = g| + [Tglab] - T la,b]].

The issue is completeness and for this, it suffices to establish that the

balls By of radins:M centered at 0 are compact, the claim being that every sequence

{fn} < By has a subsequence converging to a limit in By

| [

N.B. Spelled out, BM is the set of functions f € BV[a,b] satisfying

the condition

dy (£,0) = 2 |£] + Telab] < M.

: HELIY'S SELECTION THEOREM Iet F be an infinite family of functions

in BV[a,b]. Assume that there exists a point x, € [a,b] and a constant K > 0

0



such that v £ € F,

If(xo) | + Tf[a,b] < K.
Then there exists a sequence {fn} < F and a function g € BV[a,b] such that
f,79 (a >

pointwise in [a,b].

6: LEMRA V£ €B,

1
b—a)'

|f@) | < M@ +

PROOF Write

f(a) = f(@) - £(x) + £(x)

£@ |

iN

f(@) - f(x)| + |[£&x) |

TA

Tf[a,b] + |£(x) |

f@] 2 1< 2 ran + Lt

< Mb -a) + M

£) | < M@+ 2.

In the HST, take F = {fn}, Xq = a, and

1

K=MQ1+ =

a) + M.
Then there exists a subsequence {fnk} and a function g € BV[a,b] such that

f +>g (k » «)

Tk

pointwise in [a,b].



: IEMMA Vn

7: v ¥ X € [a,b],

f x)) < |f. @] +T [a,b] < + o,
|nk I_lnk |

£
Pk

The £  are therefore bounded, hence by dominated convergence,
f >g (k » )
Oy
in L' a,b).
Consider now the numbers

Tf [a,b] (k=1,2,...).

e

They constitute a bounded set, hence there exists a subsequence {Tf [a,b]} (not
Oy
relabeled) which converges to a limit t. Since fnk tends to g pointwise, on the

basis of lower semicontinuity, it follows that

Tg[a,b] < lim Tf

k » o nk

[a,b],

which implies that

Tg[a,b] < T.

Adjusting g at a if necessary, matters can be arranged so as to ensure that

I a,bl = T.
g[

oy (B 19) = T £y =gl + [T 125 - Tyl ],
P
¥ (k > =) v (k » )

0 IT_TI



I.e.:

lim dBV(fnk,g) = 0.

k + o
The final detail is the verification that g € BM To this end, fix € > 0 —

then for k > > 0,
(9,0) < (g,f ) + (£ ,0)
dBV - dBV n dBV n,

€ + M.

N

8: LEMMA In the dBV metric, BV[a,b] is separable.

9: LEMA V a € R,v £,g € BV[a,b],
dBV(af,ag) = |a]| dBv(f,g).

10: THEOREM let o € Ll [a,b] — then the assignment
£ 02 £ = A (D)
is a continuous linear functional on BV[a,b] when equipped with the dBV metric.

PROCF To establish the continuity, take an £ € BV[a,b] and suppose that {fn}

is a sequence in BV[a,b] such that

dBv(fn,f) -0 (-,
the objective being to show that if € > 0 be given, then
[Aq(fn) - Au(f)l <€
provided n > > 0.

So fix a constant C > 0: V n,

1

/o

E £l + ITfn[a,b] - Tela,b] | < C.



For each n choose a point ;{n such that

£ &) - fx)|<cC

and note that for all x € [a,b],
l£,60 - £ x| < T¢ [a:b)

l£G) - £(x) | < Tela,b]

and

Tfn[a,b] < Tf[a,b] + C

£, () - £(x) |

A

£, = £.(x) + £.0¢) - £(x) + £(x) ~ £(x) |

In

|£, ()

]

£.6) ]+ 186 - £6) |+ £ &) - £x)|

< T [abl + Tolab] + [£(X) - £(x )]
n

1A

Tf[a,b] + C + Tf[a,b] + C

2Tf [a,b] + 2C

= K.
On general grounds (absolute continuity of the integral), given € > 0 there
exists § > 0 such that
/g Kla| < e/2
if A(E) < §. Take now N > > O:

MEY <6 By = {xilax) ]| >ND.



Then
|A(E) = A (D) ]
= |f§ £fo - fg fo|
b
< S 1E - £ e
= IEN £, = £ ol + /7 _ |£, - £] |o]
< fEN Kla] + 7 |£ = £] |o]
<e/2+ [ |E - £| |of.
C n
By

And

XEE§=> lo(x) | <N

= [ If - £] lo] <N/ - £

|£
¢ '™n

<P g - £l <e2 @m>> 0.

Therefore in the end

|Aa(fn) - Aa(f)l <eg/f2+¢e/2=c¢

for all n sufficiently large.

iff 0 = 0, almost everywhere.

[Suppose that Aoc = Aoc . Define ft € BV[a,b] by the prescription

1 2



Then

almost everywhere. ]



§16. DUALITY

In the abstract theory, take X = [a,b] —- then there is an isometric iso-
morphism
A:M([a,b]) +Cla,bl*,
viz. the rule that sends a finite signed measure p to the bounded linear functional

f > f[a,b]f du.

On the other hand, it is a point of some importance that there is another descrip-

tion of Cla,b]* which does not involve any measure theory at all.

1l: RAPPEL If f is continuous on [a,b] and if g € BV[a,b], then the

Stieltjes integral
2 £(x) dg()

exists.

2: NOTATION Cla,b] is the set of continuous functions on [a,b] equipped

with the supremum norm:

[I£]],= sw |£],
[a,b]

and Cla,bl* is its dual.

3: LEMMA Iet g € BV[a,b] ~ then the assignment

£+ /2 £(x) dg()
defines a bounded linear functional /\.g € Cla,b]l*.

[Note:

v £, lAg(f)I < Tg[a,blllfllwr



hence

4: RIESZ REPRESENTATION THEOREM If A is a bounded linear functional

on Cla,b], then there exists a g € BV[a,b] such that
ME) = 12 £60) dglx) (= A (£)

for all £ € Cl[a,b]. And:

[IA]] = Ty @bl

PROOF Extend A to Lw[a,b] >Cla,b] without increasing its norm (Hahn-Banach).

Given x ¢ [a,b], let

1 (a<t<x)

ux(t) =
0 (x<t

I A

b)
and put

gx) = A(ux).
Claim: g € BV[a,b] and in fact

T D] < Al

glabl < (18]

Thus take a partition P € Pla,b] and let

e, =son(g(x;) - gx; ;) G =1,...,n).

Then
n n
i=1 i=1
n

il

I oeg(Mu, ) - A, ))
i=1 t %i-1



n
= A( L Ei(ux - U, ))
i= i i~1
n
< |IA L oe.{u. -1 )
SIS ey —u O]
< Al

Therefore

A

Tg[a,b] < ||A]] <+ 2= g €eBV[a,bl.

Suppose next that £ € C[a,b] and let

x. =a+1®@ g .
i n
Define
n
£E&=I fx)u, ¥ -u ).
i=1 i i-1
Then
[E=-£ ]|, = swp |£-£ |
n [a,b] n
< max sup{|f(x) - £(x;) |:x, 5 <x <xh
l<i<n
Invoking uniform continoity, it follows that
Hf—anoo—>O (n—)-+oo),
i.e.,
fn > f=> A(f) = lim A(fn)
n - o
n
= lim ¢ f(x)AW. ) - Alu ))
n+owi=l T % %1
n

il

lim  z £(x;) (glx;) - g(x%;_4))
n - o i=l



= /l; f(x) dg(x) = Ag(f)-

From the above,

Tylasgl < [[Af]
and
[A[] < % /bl
So
[IA1] = Tyla,b],

as contended.

The "g" that figures in this theorem is definitely not unique. To remedy

this, proceed as follows.

5: DEFINITION g € BV[a,b] is normalized if g(a) = 0 and g(x+) = g(x)
when a < X < b.
[Note: Since g(a) = 0,

191 lgy = Tyla.b]-

Observe too that by definition, the right continuous modification I, of g in ]a;bl|
is given by the formula

9, (x) = g(xt),

so the assumption is that 9. =9, i.e., in ]a,b[, g is right continuous.]

6: NOTATION Write NBV[a,b] for the linear subspace of BV[a,b] whose

elements are normalized.

7: THEOREM The arrow
NBV[a,b] - C[a,b]*

that sends g to Ag is an isometric isomorphism:



19l lgy = Tglaml = [ ]1.
Here is a sketch of the proof.

Step 1: Define an equivalence relation in BV[a,b] by writing =
ifFfE A=A .
9 9
Step 2: Note that
g~0=>0=/dgkx) =g - g
=>g(a) = g(d).
Step 3: Establish that

g~20

g(a) = gl(ct) = g(c-) = g(b)
if a < ¢ < b.
[Suppose that
a<c<b,0<h<b-c
and define
1 (@a<x<c)
f(x) = l—xgc (c<x<c+h)
0 (c+h<x<Db).
Then
g~0

=>

0= /2 £6) dg(x) = g(0) - g@ + /S £) dgx).



Integrate
L™ £ dge

by parts to get

h

p g(x) dx

i
[(e}
a

+
pmall o

0 =gl(c) - g(@a - glc) - glct)

g(a) = g(ct).

Analogously

a<c<b=>gd) =glc).]

Step 4: Establish that if g € BV[a,b] and if

I

g(a) = glct) = glc-) = g(b)
when a < ¢ < b, then g ~ 0.
[In fact, g(x) = g(a) at x = a, x = b, and at all interior points of [a,b]

at which g is continuous, thus v £ € Cl[a,b],
P £6) dgt = 2 £ e = o,

where h(x) = g(a).]

Step 5: Every equivalence class contains at most one normalized function.

[If 91:9, € NBV[a,b] and if 91 ~ Yor then g = 9y "9y ~ 0. By hypothesis,

gl(a) = 0, 9‘2(8.) = 0, sO

(g = gy) @ =0=> (g - g,)(b) =0

=> gl(b) - gz(b) =0 = gl(b) = gz(b)-



Moreover

g(ct) =gla) =0
=> gl(C+) - gz(c'!") =0
=> gl(0+) =9, (ct).

On the other hand,

gl € NBV [a,b] => gl(C+) gl(c)

=> 91(0) =g, (c).

9, € NBV[a,b] => g, (ct) = g, (c)
I.e.: 9, = gz.]
Step 6: Every equivalence class contains at least one normalized function.
[Given g € BV[a,b], define g* € BV[a,b] as follows:
g*(a) = 0, g*(b) = g(b) - g(a)
g*(x) = g(xt) -~gla) (a<x<b).

Then g* € NBV[a,b] and g* ~ g. The verification that g* € NBV[a,b] is immediate.

There remains the claim that g* - g ~ 0.

e (g* ~g)(a) =g*(a) - g(a) =~ g(a).

J

gb) —g@ -gb) =~ g(a).

I

e (g% - g)(b) =g*(b) - g(b)

i

When a < x < b,

it

g*(x) =g .(x) - ga.

And for c € la,bl,

Il

lim g (x) = lim g(x)
XyC x4C

lim 9 (x) = 1lim g(x).
XAC x4C



® (g* - g)(ch

]

g*(ct) - g(ct)

g (e - g(a) - glch)

Il

lim g,.(x) - g(a) ~ g(cH)
b-Qte

Il

lim g(x) - g(a) - g(ct)
xic

= g(ct+) - g(a) - g(ct)
= - g(a).
e (g* - g)(c-)

= g*¥(c-) - glc-)

gr(0-) - g(a) - glc=)

I

lim gr(x) - g(a) - g(c-)
xtc

lim g(x) - g(a) - g(c-)
XM

g(c-) - g(a) - g(c-)

= - g(a).

Therefore

g*-g~0=g*~g.]

Step 7:

Tglasb] < T [a,b].

[let P € Pla,b]:



Given ¢ > 0, choose points Yyreeor¥y g at which g is continuous with y; 0 close

to X, (on the right) that
g (x4 ~glyy) | <= -

Taking Yg=2ar ¥y, = b, there follows

n
Ioofgr(xy) - g*x; ) |
i=1
n
= _Zl g+ - g@ ~ g, 1+ + g@ |
n
2.h lg et - gly;) |
n
+ 2 g(x P - 9ly; )|
i=1
n
+ I glyy) -9ty )|
i=1
n
i Z |g(yl) - g(Y_l) I + €
i=1
=>
T «lab] < T [ab] + ¢
=> (g€ + Q)

T [a/b] < T_[a,b].

Consider now the arrow
NBV[a,b] > Cla,b]l*

that sends g to Ag. To see that it is surjective, let A € Cla,b]l* and choose

a g € BV[a,b] such that



10.

The equivalence class to which g belongs contains a unique normalized element g*,

sog* ~g

Finally, as regards the norms,

ATl

g1 = 1Al

N

Txlabl < T fab] = ||A]].

Meanwhile

Tgelabl = [lo*| |y =>1IA]] = [lo*] |gy-



§17. INTEGRAL MEANS

To simplify the notation, work in [0,1] (the generalization to [a,b] being

straightforward) .

1: NOIATIN I = [0,1], 0 <§<1, I, =[0,1=8] (=>1=23>0),

0<h<g§(E=>1-h>1-239.

2: DEFINITION Let f € BV[0,1] and suppose that f is continuous —— then

its integral mean is the function fh on [0,1 - &] defined by the prescription

o= D rx+roa 0ix<l-g.

3: LEMA fheC[Is] and

£ 5 £ (h > 0)

uniformly in IG'

4: LEMMA The derivative of fh exists in ]0,1 - §[ and is given there

by the formula

(fh)l(x) — f(x + g) - £(x)

[Note: Therefore fh has a continuous first derivative in the interior of I 5

5: LEMA
1 ¢ aclo, 1 - s].
PROOF Let

M= sup |[£].
[0,1]

]



Then for fixed h,

1ED) () | = {f(x*'ﬁ) ~Ef® ) 0cx<1- g

2M
S®HC

Choose a < b such that
0O<a<b<l-~-_.

Then

) - (@) = 2 () wax

Ifh(b)—fh(a)lgﬁ(ﬁ—i—a—)— (0<a<b<1l-2¢)

or still, by continuity,
lfh(b)—fh(a)lf——z—bg%)l——_—ﬁ) 0<a<b<l-28.

And this implies that fh is absolutely continuous.
[In the usual notation,
n

3 120 - ) |

k=

M
<= X (b -4a).]
> k=lbk e
6: IEMA Let
[a,b]CIéo

Tfh[a,b] < Tf[a, b + {] (0 <h<3§9).



PROOF Take a finite system of intervals [a,,b;] (1 <1 <n) without common
interior points in [a,b] — then
n

iil [E, +t) - £(a; +t) | < Tela,b + 6]

E £ b,) - £a,) |

i=1
1
<E fg T lab + 8ldt

= Tf[a,b + §]
T plabl S Telab+ 6l (0 <h<o).

7: THEOREM let

[a,bl < I(g-
Then
Tfh[a,b] - TfIa,b] (0 <h-+0).
PROOF
Tfh{a,b] S Telab + 61 (0 <h <)
=2
lim sup T h[a,b] < Tf[a,b + §8].
h-0 £
Since

Tf[a,b + 8] ~» 'I'f[a,b] (s - 0),

it follows that

lim sup T , [a,b] < T [a,b].
h->0 fh ' = f



By hypothesis, [a,b] < I, and in I

J 8’
£ (b0
uniformly, hence pointwise. Therefore

lim inf T , [a,b] > Tf[a,b] .

h+o0 £

8: SCHOLIUM Owing to the absolute continuity of fh in T 5 for any

[a,b] <« IS’ we have
b .
Tfh[a’b] = fa l(fh) ! (X) IZdX

dx

_sb lf(x +h) - £(x)
a h

and

{b f(x+h
a h

) ‘f(x)‘ dx » T.lab] (0 <h=~0).



§18. ESSENTIAL VARIATION

1l: DEFINITION BVLl]a,b[ is the subset of Ll]a,b[ consisting of those
f whose distributional derivative Df is represented by a finite signed Radon

measure in Ja,b[ of finite total variation, i.e., if
v [oe)
f]a,b[ fo' = f]a,b[ ¢ dDE (V ¢ € Cc]a,b[)

for some finite signed Radon measure Df with
|DE{la,bl < + .
[Note: Two Ll—functions which are equal almost everywhere define the same

distribution (and so have the same distributional derivatiwve).]

2: N.B. A smoothing argument shows that the integration by parts

formula is still true for all ¢ € Ci]a,b[.

Of course it may happen that Df is a function, say Df = gdx, hence

Ve C(];]a,b[,

NHapr 8" =~ J1a,01 ¢ 95

3: EXAMPIE Work in ]0,2[ and let

X (0<x5l)
f(x) =
_1 (1 <x< 2).
Put
1 (0 <x<1)
gx) =

0 (1 <x<2).



Then Df = gdx. In fact, vq;ec(l:]o,Z[,
2 ' -l ' 2
[oEO ax = Iy xe' Gx + 2 9" dx

~IT ek + o) - 6

1 2
—f0q>dx——fo¢>gdx.

4: EXAMPIE lLet i be a finite signed Radon measure in Ja,b[. Put f(x) =

v(la,x[) —— then the distributional derivative of £ is y.

[v ¢ € Cola,bl,

fx)¢' (x) dx = (x) du(y)dx

Na,br Haot Naxr

= f]a,b[ f]y,b[ ' (x) dxdu(y)

== f]a,b[ q)(Y) d].l(Y).]

5: NOTATION Iet f:la,b[ »~ R —— then the total variation Tf]a,b[ of £ in
]Ja,b[ is the supremum of the total variations of f in the closed subintervals of
la,bl[.
6: FACT If f:[a,b] -+ R, then
Tf[a,b] = Tf]a,b[
+ |f(at) - £(@) | + [E(b-) - £(b) |.

7: N.B. Therefore

Tf [a,b] = Tf] a,b[

whenever £ is continuous.



8: DEFINITION A function f:]a,b[ - R is of bounded variation in Ja,b|[

provided

Tf]a,b[ < + oo,

9: NOTATION BV]a,b[ is the set of functions of bounded variation in Ja,bl.

10: N.B. Elements of BV]a,b[ are bounded, hence are integrable:

BVla,bl < Lila,bl.
Moreover, v £ € BVl]a,b],

f{a+)
exist.

£ (b-)

11: EXAMPLE Take ]a,b[ = ]0,1[ — then

1

E@ = 1=%

is increasing and of bounded variation in every closed subinterval of ]0,1[, yet

£ ¢ BV10,1[.

The initial step in the theoretical development is to characterize the

elements of BVLl] a,bl.

12: FACT Let p be a finite signed Radon measure in ]Ja,b[ — then for

any open set S < la,bl,

lul©) = swplry, ¢ duo €Cy®), [lo]], < 1)

13: DEFINITION Given f € Li]la,b[, let



VEs1abD = suplsy, oo £0':0 € Colabl, |fo]], < 1.

14: THFOREM et f € L'la,b[ ~ then £ € BVL']a,b[ iff

V(f;la,b[) < + <.

And when this is so,

V(f;la,bl) = [Df|la,bl.

PROOF Suppose first that f € BVLl]a,b[ ~- then

V(f;]arb[)
= sup{—- f]a,b[ (1) de:d) S Ci]a,b[, H(bl Ioo E l}
=swp {~ [, pr ¢ DE:0 € Clabl, [lo]], <1}

1l

| - DE|la,b[

IPf |Ja,b[ < + <.
Conversely assume that
V(£;la,b]) < + o

Then

japp £ 1 < V(EIa,0D o],
Since Ci]a,b[ is dense in CO]a,b[, the linear functional
A:C(];]a,b[ +~R

defined by the rule

¢ > Jyg,pr £

can be extended uniquely to a continuous linear functional

A:CO]alb[ > RI



where

[IA]]* < v(E:]a,bD).
Thanks to the "CO" version of the RRT, there exists a finite signed Radon measure
p in Ja,b[ such that

Al = |uldabD

and
A(g) = f]a,b[ ¢ du (v¢ €Cylabl).
Definition:
Df =y
=>
IDf [la,b[ = |u|(la,bl)
= Al

IA

V(£;1a,bl) < + o.

15: IEMMA The map

£ > v(E;]la,bl)

is lower semicontinuous in the L]l_oc]a,b[ topology .

16: APPLICATION The map

f > |Df|la,bl

is lower semicontinuous in the Lioc]a’b[ topology.

17: SUBLEMMA Any element of BV]a,b[ can be represented as the difference

of two bounded increasing functions.

18: LEMMA v £ € BVla,bl,

V(f;la,bl) < Tglabl (< + @)



PROOF' Construct a sequence X of step functions such that
X f > )
in LT Ja,b[ and
loclaml and v,
V(Xn;]arb[) < Tf]a,b[.
Thanks now to lower semicontinuity,

V(E:la,bl) < lim inf ¢(x ;la,o[)

n - c

< Tf]a,b[.

BVla,b[ < BVLl]a,b[.

[Note: If f:[a,b] - R is in BV[a,b], then its restriction to ]Ja,b[ is in

BVla,b[, hence is in BVLl]a,b[.]

20: DEFINITION Iet £ € L']a,b[ —— then the essential variation of f,

denoted e - Tf]a,b[, is the set
inf{Tg]a,b[:g = f almost everywhere}.

[Note: If £ f2 € Ll]a,b[ and if £, = f2 almost everywhere, then

1’ 1

e-T_. ]Ja,b[=e - T, ]a,bl.]
fl f2

2l: IEMMA Iet f € Lila,b[ — then

e - Tf]a,b[ = V(£;]a,bl).

Consequently
22: THEOREM Iet £ € L']a,b[ — then



e - Tf]a,b[ <+ wo<=>f € BVLl]a,b [.

And then

pf |la,b[ = e - Tf]a,b[.

23: IEMMA Let £ € BVL']a,b[. Assume: Df = 0 — then f is (equivalent

to) a unique constant.

Assuming still that £ € BVLl]a,b[, let y = Df and put w(x) = u(la,x[) — then
Dw = y, thus D(f-w) = 0, so there exists a unique constant C such that
£f=C+w

almost everywhere.

24: ILEMMA

TC-}w}a’b[ =e - Tf]a,b[.

PROOF Take points

x0<xl< ses <X1,1
in Ja,b[ ~— then
n
Llctw) Gry) = (C) (k) | < ulabD
i=1
=>
TopJabl < V(Esla,bl)
=g - Tf]a,b[.

25: DEFINITICN Given f € BVLl]a,b[, a function g € Ll]a,b[ such that
g = £ almost everywhere is idmissible if

'I‘g]a,b[ =e - 'I‘f]a,b[.



[Note: Since

e - Tf]alb[ <+ °°=>Tg:[arb£ <4 o,

this says that f is equivalent to g, where g € BVl]a,b[.]

So, in this terminology, C+w is admissible, i.e.,

£fx) = ¢ + pfla, x|

is admissible, the same being the case of

ff(x) =C + Dfla,x].

26: LEMVA
fﬁ is left continuous
_ £F is right continuous.
27: REMARK
fz(x) - f’z(y) = Df [y,xI[
(a <y <x<Db).
£f5(x) - £ (y) = Dfly,x]

28: THEOREM A function g € Ll]a,b[ is admissible iff

ge ol + @ -0)F:0 <0 < 1.

29: N.B. Denote by ATf

the atoms of the theory, i.e., the x € ]a,bl
such that Df({x}) # 0 —— then fe = £f¥ in la,bl - ATf and every admissible g is

continuous in la,bl - AT..

30: LEMMA Suppose that g € Ll]a,b[ is admissible — then g is differentiable
almost everywhere and its derivative g' is the density of Df w.r.t. Lebesgue

neasure.



There is a characterization of the essential variation which is purely

internal.

31l: NOTATION Given an £ € Ll]a,b[, let Cap(f) stand for its set of points
of approximate continuity.

[Recall that Cap(f) is a subset of ]a,b[ of full measure.]

32: ILEMMA

n
e - Tcla,b[ = sup iil |£x;) - £(x5_9) [s

where the supremum is taken over all finite collections of points x, € Cap(f)

subject to

a<x,<x <~~-<xn<b.

0 1



§19. BUC

1l: NOTATION Given a subset M < ]a,b[ of Lebesgue measure 0, denote by

PM]a,b[ the set of all sequences

P;x0 <xl < ese < X
where
a <XO
X <Db
and

X, €la,p[-M (i=0,1,...,n).

[Note: The possibility that M = @ is not excluded. ]

IS

NOTATION Given a function f:]a,b[ - R, let fM be the resriction of

f to la,bl - M.

3: NOTATION Given an element P € PM]a,b[, put

b n
V (§P) = I |f(x) - £, ;).
a i=1
4: NOTATION Given a function f:1a,b[ + R, put
b
Tf la,bl = sup \Y (fM;P).
M PGPNE]a,b[ a
5:

|

DEFINITION Tf la,bl is the total wvariation of fM in la,b[ - M.
M

DEFINITION A function f € Ll]a,b[ is said to be of bounded variation




in the sense of Cesari if there exists a subset M < ]a,b[ of ILebesgue measure 0

such that

Ja,p[ <+ .

gy

7: NOTATION BVCla,b[ is the set of functions which are of bounded

variation in the sense of Cesari.

8: EXAMPLE

BV]a,b[ < BVCla,b[ M = g).

BVCla,b[ = BVLla,bl.
Proceed via a couple of lemmas.

10: LEMMA Suppose that f € BVLl]a,b[ - then £ € BVCla,bl.

PROCF The assumption that
1
f € BVLla,b[ => e -~ Tf]a,b[ < + o,

So there exists a g: g = f£ almost everywhere and

Tg]a,b[ < 4 o,

Take now for M the set of x such that g(x) # £(x), the complement ]a,b[ — M being
the set of x where g(x) = £(x). Consider a typical sum

n
I IEy0ey) - 0 ) |
i=1
which is equal to
n
Eolgx) - glx;_p) |
i=1



which is less than or equal to

T 'b + m.
glabl <

Therefore £ € BVCla,b/|.

11: SUBLEMMA If TfM]a,b[ < + », then there exists a g:]a,b[ - R such that

Tg]a,b[ = TfM]a,b[.

12: LEMMA Suppose that f € BVC]a,b[ — then £ € BVIl]a,b[.

PROOF The assumption that £ € BVC]a,b[ produces an "M" and from the preceding
consideration,
Iy = fM =>glla,b{ - M = f|la,b[ - M,
hence g = f almost everywhere. But
TfM]a,b[ <+ o => Tg]a,b[ <+ »
1
=> g € BV]a,b[ => g € BV, ]a,b[.
Since g = £ almost everywhere, they have the same distributional derivatiwve, thus

fe BVLl]a,b[.

Iet M be the set of all subsets of ]a,b[ of Lebesque measure 0.

13: NOTATION Given an f € BVLl]a,b[, put
o(f) = inf Tf Ja,bl.
MeM ™
14: THEOREM

e - Tf]a,b[ = p(f).



PROCF To begin with,
1
f € BV ]a,b[ => e - Tf]a,b[ < + oo,

On the other hand, £ € BVCla,b[, so there exists M € M:

Tf la,b[ < + o => @(f) < + .
M

® e = Tf]a,b[ < o(f).

[Denote by Mf the subset of M consisting of those M such that Tf la,b[ < + .
M

Assign to each M € Mf a function g:]a,b[ - R such that Iy = fM and

T labl = TfM]a,b[.

Therefore

{T. ]a,b[:M € M.}
fM f

c {Tgla,bI:g = f almost everywhere}
o(f) = inf T Ja,bl
MEMf M
>e - Tf]a,b[.]
o o(f) <e- Tf]a,b[.
[Denote by ME the subset of M consisting of those M that arise from the
elements Tg]a,b[ in the set defining e - Tfla,b[ (i.e., per the requirement that

g = £ almost everywherea) —— then

T Jabl < Tlabl (1€ ),



hence

o(f) = inf T_ Ja,bl[

IA
5
'—h
=
—
2
o

IN

:i.nf{Tg]a,b[:g = f almost everywhere}

=e - Tf]a,b[.]

15: THEOREM Iet f € BVLl]a,b[ —~ then there exists a g € BV]a,b[ which
is equal to f almost everywhere and has the property that

o(f) = Tg]a,b[.
PROCF Take g admissible:

Tg]a,b[ =e - Tf]a,b[ = o¢(f).



§20. ABSOLUTE CONTINUITY 111

1l: DEFINITION A function f:]a,b[ -~ R is said to be absolutely continuous

in Ja,b] if for every e > 0 there exists § > 0 such that for any collection of

non overlapping closed intervals

[aby] < lable.., 2 b1 <labl,

then
n n
T (b ~-al)<s§ => I |f(b) - £( )| < e
R oo 2
2: NOTATION ACla,b[ is the set of absolutely continuous functions in la,bl.
3: N.B. An absolutely continuous function f:]a,b[ - R is uniformly con-
tinuous.

4: RAPPEL A uniformly continuous function f:]a,b[ + R can be extended
uniquely to [a,b] in such a way that the extended function remains uniformly

continuous.
5: LEMMA If f € ACJ]a,b[, then its extension to [a,b] belongs to AC[a,b].

6: THEOREM Let f:la,b[ - R -- then f is absolutely continuous iff the
following four conditions are satisfied.

(1) f is continuous.

(2) f' exists almost everywhere.

(3) f£' € 1Pla,bl for some 1 < p < + @,

(4) v XXy € la,bl,

£(x) = £(xy) + /Xxo i



Here (and infra), L:L is Lebesgue measure on ]a,bl.

7: N.B. For the record,

Pla, b[< I1la,bl (L <p < + «).

8: DEFINITION Let 1 < p < + » — then a function f € L],éoc]a’b'[ admits a

weak derivative in LpIa,b[ if there exists a function- —g—xf— € Lp]a,b[ such that

V€ C:]a,b[,
af 1 Loyl
Napl® &L =~ fapr faLr.

1 . o
9: CRITERION If £ € L, la,b[ and if v ¢ € CJla,bl,

1_
Ma,pp $E 4L = 0,

then £ = 0 almost everywhere.

10: SCHOLIUM A weak derivative of £ in IPJa,b[, if it exists at all,

is unique up to a set of ILebesque measure 0. For suppose you have two weak

derivatives u,v in IFla,b[, thus v ¢ € C_la,b[ ,

1 el
Napp @A == 7y, 0 o' faL

]

1

_ ' 1
pp OV AL = [ ¢

Na, ~ Nap

1 _

and so u = v almost everywhere, ¢ € CZ]a,b[ being arbitrary.

1ll: N.B. If £f,9 € Li’:oc]a’b[ are equal almost everywhere, then they have



the "same" weak derivative.
[v ¢ € C_la,bl,

a€ 1 _ 1
Naor¥& 3 =~ Jya,pp ¢ L

_ 1
=~ Jya,pp ¢ 94
_ dg ., 1
= Jla,p[ Pax A -

sO

i
I
S

almost everywhere. ]

12: ILEMMA Iet f,g9 € L%oc]a,b[ and suppose that each of them admits a

weak derivative —- then £ + g admits a weak derivative and

a _af . dg
ax-——(f'i'g')-a-}{-—'*‘?&.
PROOF V ¢ € c‘(’;]a,b[,
df . dg, o1

fapr @& T @& &
_ af .1 dg 4 1
“Nap &L T apitaEd

1

—_ 1 - ' 1
=~ Jjapr ¢ AT - Jjgpp 0t 9

= - ' 1
= f]a,b[ " (£ + gydl".

13: LEem If y € Cola,bl and if £ admits a weak derivative é-‘fx— , then



Yf admits a weak derivative and

d _ af
& B =vEr v .

PROCF V ¢ € Cz]a,b[,

' 1 R |
app O WOALT =11 0 EWR)' - £@'e))dL

_ daf a1
=~ fIa,b[ o (P =t fy')daL—.

14: SUBLEMMA Given ¢ € C:]a,b[, let

o(x) = f [¢dLl

la,x
and suppose that
1

f]a,b[ ¢ dL™ = 0.

Then ¢ € Cz]a,b[.
15: LEMMA Let f € Lzoc]a,b[ and assume that f has weak derivative 0 —
then £ coincides almost everywhere in ]a,b[ with a constant function.

. oo 1 _ . o
PROCF Fix npo € Cc]a,b[. f]a,b[ wo dL”™ =1, and given any ¢ € Cc]a,b[, put

I(0) = f1ap[ 0 dl — then

I(9 - Te)pg) = I(9) - T(9)I(yy) =0,
hence

Y(x) = - I(¢)1p0)dLl e CCla,bl.

Na,xp @
Since f has weak derivative 0,

daf

1_



0= v ofaLt

Na,br

1
Na,p[ (&~ T(@yyfdl

_ 1 1 1
= Napp @ T = (g pp @ A (U o Fdl)

= 1
= fapp #0F 7 Cak

where

1

C poaL .

0~ fapr £

Therefore £ - C0 = 0 almost everywhere or still, £ = C0 almost everywhere.

16: NOIATION Iet 1 < p < + © — then W-'Pla,b[ is the set of all functions

f e Lp]a,b[ which possess a weak derivative %—xf— i Lp]a,b[.

17: N.B. Wl’l]a,b[ is contained in BVLlIa,b[.

[Take an f € Wl'l]a,b[ and consider

_ af .. 1
DE(E) = fE F A EE€ BOla,bl),

i.e.,

1

daf

Then V ¢ € C::]a,b[,

_ af
Happ O OE=Napr ¢ &

B 1
- - f]a,b[ ¢' fdL ’



so by definition, f € BVLl]a,b[. 1

[Note: The contaimment is strict.]

18: THEOREM Iet 1 <P <+ - then a function f:]a,b[ + R belongs to

Wl’p]a,b[ iff it admits an absolutely continuous representative f:]a,b[ - R such

that £ and its ordinary derivative F' belong to IF]a,bl.

19: IEMMA If f € ACla,b[, then vV ¢ € CJa,bl,

1 . 1
Na,pr ¢ £1A0 = = Sy " FAL
there being no boundary term in the (implicit) integration by parts since ¢ has

campact support in Ja,bl.

20: SCHOLIWM If f is absolutely continuous, then its ordinary derivative

f' is a weak derivative.

One direction of the theorem is immediate. For suppose that f:]a,b[ - R

admits an absolutely continuous representative fila,b[ - R such that £ and f'
are in IP]a,b[ — then the claim is that £ € W 'Pla,b[. Of course, f € IFla,bl.
As for the existence of the weak derivative df , note that v ¢ € Czla,b[,

dx

o Brart = - fapg ¢ faLt

1a,b1
or still,
iyt _ [ 1
f]a,b{ o £'dL™ = f]a,b[ ¢' £dL™,
since f = f almost everywhere. Therefore f' is a weak derivative of f in Lp]a,b[.

Turning to the converse, let f € Wl’p]a,b[, fix a point x, € ]a,b[, and put

0



Fe = £xy) + ﬁ;o g.X?dLl (x € ]a,b[).

Then f € ACla,b[ and almost everywhere,
- df
E' = = (€ Pla,bD)

i.e., almost everywhere,

or still, almost everywhere,

d F_g -
& E-9=0,

which implies that there exists a constant C such that £ - £ = C almost everywhere,
thus f has an absolutely continuous representative £ such that it and its ordinary

derivative belong to Lp}a,b[.

21: REMARK Matters simplify slightly when p = 1:f € Wl’l]a,b[ iff £

admits an absolutely continuous representative f.





