Analysis 101:

Curves and Length



ABSTRACT

In addition to providing a systematic account of the classical theorems of
Jordan and Tonelli, I have also provided an introduction to the theory of the

Weierstrass integral which in its definitive form is due to Cesari.
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§1. FUNDAMENTALS

1: NOTATION Given

X = (X,..0%) €R (M=1,2,...),

put
ll}_{_‘l o (Xi + eee 4 szli)l/z,
hence
!Xml § H?_{_H _<_: {Xll S IXMI (m= l,_..’M).

2: DEFINITION A function f:([a,b] + R' is said to be a curve C, denoted

(13

C <—>f, where

£ = (£ & ,..., fyx) (@ <x <b).

3: EXAMPIE Every function f:[a,b] + R gives rise to a curve C in R2,

viz. the arrow x -+~ (X,f(X)).
4: DEFINITION The graph of C, denoted [C], is the range of f.

5: EXAMPIE Take M = 2, let k = 1,2,..., and put

£,(x) = (sin®(a0),00 (0 $x < D).
Then the fk all have the same range, i.e., [Cl] = [02] = ses if ck <— flibut

the Ck are different curves.

6: REMARK If C is a continuous curve, then its graph [C] is closed,

bounded, connected, and uniformly locally connected. Owing to a theorem of Hahn



and Mazurkiewicz, these properties are characteristic: Any such set is the graph
of a continuous curve. S0, e.dg., a square in R2 is the graph of a continuous

curve, a cube in R3 is the graph of a continuous curve etc.

7: DEFINITION The length of a curve C, denoted £(C), is

n

T.[a,b] = sup I Ex) - £, 1],
£ PeP[a,b] i=1  + — 7L

C being termed rectifiable if £(C) < + .
[Note: If C is continuous and rectifiable, then V € > 0, 3 § > 0:

b n
[lP]] < 8 =>v (£P) = I |l£(x) - £& 1] > 2@ - e.]
a i=1 :

8: LEMMA Given a curve C,

T [a,b] < £(C) < T, [a,b] + +++ + T [3,b] (1 <m< M.
m

1 M

9: SCHOLIUM C is rectifiable iff

fl € BV[a,b] ,...,fM € BV[a,b].

10: THEOREM Let

M
Cr1 <—> fn: [a,b] = R

C <> f£:[a,b] » R

and assume that fn converges pointwise to £ —— then

£(C) < lim inf £(C)).

n > «©



A continuous curve

I <—>y: [a,b] + R

is said to be a polygonal line (and y quasi linear in [a,b]) if there exists a

P € Pla,b] in each segment of which y is linear or a constant.

11: DEFINITION The elementary length ﬂe(F) of T is the sum of the lengths

of these segments, hence Ee(I‘) = ().

12: NOTATION Given a continuous curve C, denote by T'(C) the set of all
sequences

I‘n > Y, [a,b] - RM

of polygonal lines such that

Yn+_f_ (n » «)

uniformly in [a,b].

Therefore
£(C) < lim inf l’.(l"n) = lim inf Ke(l"n).

n -+ o n -+ o

On the other hand, by definition, there is some {l“n} € T(C) such that

!ie(I'n) +£Z(C) (n~» x).

13: SCHOLIUM If C is a continuous curve, then

£(C) = inf [1im inf Ke(Tn)] .
{I'n}EI‘ (C) n->w

14: REMARK Let

C <—> f£:[a,b] ~ R



Assume: C is continuous and rectifiable -— then f can be decomposed as a sum

£ = fAC + fC’ where fAC is absolutely continuous and fC is continuous and singular.

Therefore

£(C) = T,

[a,b] + Tf fa,b].
AC C



§2. ESTIMATES

1: NOTATION Write

Té[a,b]

in place of £(C).

2: DEFINITION Assume that C is rectifiable —- then the arc length function

s: [a,b] ~ R
is defined by the prescription

sx) = Tcla,x] (a <x <b).

oo,

Obviously
s(a) = 0, s(b) = £(C),

and s is an increasing function.

3: LEMMA If Cis continuous and rectifiable, then s is continuous as are

the 'I‘f [a,—] m=1,...,M.
m

: LEMMA If C is continuous and rectifiable, then s is absolutely con-

tinuous iff all the Tf [a,—] (m=1,...,M) are absolutely continuous, hence iff
m

all the fm m=1,...,M) are absolutely continuous.

If C is continuous and rectifiable, then the fm € BV[a,b], thus the derivatives
fr'n exist almost everywhere in [a,b] and are Iebesgue integrable. On the other hand,

s is an increasing function, thus it too is differentiable almost everywhere in

[a,b] and is Iebesgue integrable.



5: SUBLEMMA The comnection between f' and s' is given by the relation

HE" | < s
almost everywhere in [a,b].

[For any subinterval [o,8] < [a,b],

[IE£(R) = £(a) |] < s(B) - s(a).]

£(C) = s(b) - s(a)zfl;l s' > fg [1£"]

.

I.e.: Under the assumption that C is continuous and rectifiable,

L@ > 2 e

L =12 ||£']

iff all the ﬁm (m=1,...,M are absolutely continuous.

This is established in the discussion to follow.

® Suppose that the equality sign obtains, hence

s(b) - s(a) = fg s'.

But also
sx) -s@) > s, sb) -sx > L s,
Z “a Z'x
If
s(x) - s(a) > fzs', s() - s(x) > f];; s',
then

s(b) - s(a) > fg s'y



a contradiction. Therefore
s(x) - s(a) = f: s'
=> g € AC[a,b] => fm € AC[a,b] (m=1,...,M).

® Consider the other direction, i.e., assume that the fm € ACl[a,b], the

claim being that

L@ = £ ||£]].
Given P € Pla,b], write
n
x| ]:f_(xi) ~ %) ||
i=1
n M
_ 2 .1/2
= I LI (5 0) - £ 407 ]
i=l o=l
n M X.
=z 1z ot fl;n)2 11/2
i=1 m=l Ni-l
n X. M
<zt o(xoenH?

i=1 -1 =l

P2

Taking the sup of the first term over all P then gives

L(C) < f]ao [E' ] ¢ < 2(@)

@ =12 |IE'l.

8: N.B. Under canonical assumptions,

2 2.1/2
(U™ + oee + (1009



2

S fX (¢l + eee + qﬁ)l/z.

9: RAPPEL Suppose that £ € BV[a,b] — then for almost all x € [a,b],

|f' (x) | = T! [a,x].

10: LEMMA Suppose that C is continuous and rectifiable —— then

st = [|£']]
almost everywhere in [a,b].
PROOF Since
HE [] < 8%y
it suffices to show that
st < [IE]].

Iet E0 < [a,b] be the set of x such that f and s are differentiable at x and

s'(x) > ||£'(x) || and for k = 1,2,..., let E,_be the set of x € E, such that

0
s(ty) - ste) [£t,) - £(t)) | l+ 1
t2 - tl - t2 - tl k
for all intervals [t.,t,] such that x € [t,,t,] and 0 < &, - t 5£. So, by
1’72 2 2 1 -k
construction,
E,= U
0= o By

and matters reduce to establishing that V k, MEk) = 0. To this end, let € > 0
and choose P € Pla,bl:

n

L ]I:f_(xi) - £(x,

. l"'l) |l > Tf[a,b] - €.
i=l —

Expanding P if necessary, it can be assumed without loss of generality that



1 .
0 < X —xi__l <r i=1,...,n).

For each i, either [Xi-l’xi] 0 Ek # @ and then

R
s(x;) = sy q) > [EGy) - £ ) || + —5—=,

or %, 1.%10 E, = g and then

s(x;) - s(x;_4) > [[£x) - £ _) ]
Consequently
Tg[arb] = s(b) = S(Xn)
n
n

1v

2 IR — £ ) ] + ()
i=

Te [a,b] - ¢ + %— A% (Fk)

v

*(B,) <ke=>A(E) =0 (¢ +0).

11: THEOREM Suppose that C is continuous and rectifiable. Assume: M > 1 —

then the M-dimensional ILebesgue measure of [C] is equal to O.

12: NOTATION Iet

C <> f:[a,b] » RM

be a continuous curve. Given X € [C], let N(f;x) be the number of points x € [a,b]
(finite or infinite) such that f(x) = x and let N(f;—) = 0 in the complement

R - [c] of [c].



1

2(C) = f  N(f;—)dH .

R

[Note: Hl is the l-dimensional Hausdorff outer measure in RM and

ag" < S, N(E—)a,
an VE

1
H(ChH =/, x
RM [C]

g (ICl) < £(C)

and it can happen that
HE([C]) < 2(C).]

14: N.B. If £ is one-to-one, then

N(Ei‘-‘) = X[C]

and when this is so,

g (IC]) = £(C).



§3. EQUIVALENCES

In what follows, by interval we shall understand a finite closed interval < R.
[Note: If I,J are intervals and if 3T = {a,b}, 37 = {c,d}, then the agree-
ment is that a homeomorphism ¢:I + J is sense preserving, i.e., sends a to.c and

b to d.]

1: DEFINITION Suppose given intervals I,J, and curves f:T - RM, g:J > R —

then f and g are said to be Lebesgue equivalent if there exists a homeomorphism

¢:I - J such that £ =g ¢ ¢.

: LEMMA If

£:[a,b] » RT

g:[a,b] » RV

—

are ILebesgue equivalent and if

l_ C<— £

D <— g,

then
£(C) = £(D).

PROOF The homeomorphism ¢: [a,b] + [c,d] induces a bijection

l_ Pla,b] » Plc,d]

P > Q.

Therefore

n
£(C) = sup T fx;) - £(x,_-)
PcPla,b] i=1 HEGy) = 26 1]



n
= sup o |lg(e(x:)) = g(o(x; 1))
pepla,b] i=1 900647 = g (6611 |
n
= sup I gly:) - gly;_q)
0ePlc,d] i=1 latry) = 9y 1}

= £(D).

3: DEFINITION Suppose given intervals I,J and curves f:I - RM, g:J ~ RM -

then £ and g are said to be Fréchet equivalent if for every e > 0 there exists a

homeomorphism ¢:I + J such that

E®) - g(e&) ]| <e (x€TI).

4: REMARK It is clear that two Lebesgue equivalent curves are Fréchet

equivalent but two Fréchet equivalent curves need not be Lebesgue equivalent.

5: LEMMA If

B f:[a,b] » RM
_ g:ifa,b] > R

are Fréchet equivalent and if
T C<— £
_ D<—g,

then

£(C) = £(D).
PROOF For each n = 1,2,..., there is a homeomorphism q>n: [a,b] » [c,d] such

that V x € [a,b],

[1£G) - g G| < & .



Put i:'_n =ge d)n, hence fn is Lebesgue equivalent to g (viz. g ° cbn
thus if
Cn s En’ D <— g,
then from the above
«@(Cn) = Z(D).
But Vv x € [a,b],

lge - £, ]| <L,

i.e., gn ~ £ pointwise, so

£(C)

iA

lim inf £(C )
n

n -+

1

lim inf £(D)

n > <«

£(D).
Analogously

£(D) < L(C).
Therefore

2(C) = £(D).



§4.. FRECHET DISTANCE

Let

T C <= f:[a,b] » R

_ D <—>g:labl » S
be two continuous curves.

1l: NOTATION H is the set of all homeomorphisms ¢: [a,b] » [c,d] (¢(a) = c,

¢(b) = d).

Given ¢ € H, the expression
HE®) - g(¢x) || (a <x <Db)

has an absolute maximum M(£f,g;9).

2: DEFINITION The Fréchet distance between C and D, denoted ||lc,D| |, is

inf M(£,g9;¢).
oeH

[Note: In other words, ||C,D|| is the infimum of all numbers e > 0 with the
property that there exists a homeomorphism ¢ € H such that
[I£E&) -~ g@E) ][] <€

for all x € [a,b].]

3: N.B. If ||C,D|| < &, then there exists a ¢ € H such that

M(£,9;¢) < €.

4: LEMMA Let C, D, C, be continuous curves -- then

0
1 [le,ol| > o;



1) (leoff = [P.Cll;

(ii1) |[CD]] < [[CCyl] + |IceDl s

(iwv) ] [C,D[ | = 0 iff C and D are Fréchet equivalent.

Therefore the Fréchet distance is a premetric on the set of all continuous

curves with values in RM

5: THEOREM Let

C <> f:[a,b] >R (=12,...)

C <> f:[a,b] » RM

be continuous curves. Assume:

lIc,Cl] +0 @),

2(0) < lim inf £(C ).

n - o
PROOF For every n, there is a homeomorphism

¢,: [a,b] > [a /b ] (b (@) =a, ¢, () =D.)
such that for all x € [a,b],

1
[1£G) - £, @0 [] < [lecyll + 5 -

1
D, <> 51 ° ¢t [a,b] - R,

Then pointwise



£(C)

1IN

lim inf £(D ).
n

n > o«

But E(Dn) = E(Cn), hence

£(C)

In

lim inf £(C ).
n = © n

In the set of continuous curves, introduce an equivalence relation by stip-
ulating that C and D are equivalent provided C and D are Fréchet equivalent. The

resulting set [E‘ of equivalence classes is then a metric space: If

- creg
{p} € &,
then
|]{c},{d}|| = ||c,D]|].
6: N.B. If C, C' are Fréchet equivalent and if D, D' are Fréchet equiv-
alent, then

| lc,pl]

IA

lle,ct ] + [l o

I
A

[1ct,nf} < [lc',p*[] + [|p*,D]

[ler o]

Il

and in reverse

ller o || < [fc/ol].

.

lle,ol| = |lc',p!



§5. THE REPRESENTATION THEOREM

Assune:
C <> f:[a,b] » RM
is a curve which is continuous and rectifiable.
l: THEOREM There exists a continuous curve

D <— g:{c,d] » RM
with the property that

£(D) = £(C) (< + =)

Lo = 2l ],
where gyre .19y are absolutely continuous and in addition £ and g are Fréchet
equivalent.
Take £(C) > 0 and define g via the following procedure. In the first place,

the domain [c,d] of g is going to be the interval [0,£(C)]. This said, note that

s(x) is constant in an interval [uo,B] iff f(x) is constant there as well. Next,

IA

for each point So (0 <s £(C)) there is a maximal interval o < X < B

0

Il

(a <o <B<b) with s(x) =s Definition: g(sp)= £(x) (a <x < B).

0.
2: LEMMA

Il

glsgt) =9glsy) (0 < sy < £(C)).



Therefore
g: [c,d] » B

is a continuous curve.

3: SUBLEMMA Suppose that qh: A,B] - C,D] (nh=1,2,...) converges

uniformly to ¢: [A,B] - [C,D]. ILet & [C,D] ~» RM be a continuous function — then

® o ¢n converges uniformly to ¢ o ¢.

PROOF Since ¢ is uniformly continuous, given ¢ >0, 3 § > 0 such that
lu-v]<&s> [|o - ¢v) || <e (uv e[C.D]).
Choose N:
n >N=> ¢ (x) - ¢(x)| <8 (xe AB].
Then

[e(, (=) - o)) || < e.

4: LEMMA f and g are Fréchet equivalent.
PROOF Approximate s by quasilinear, strictly increasing functions s, (x)

(a < x <b) with sn(a) =0, sn(b) = £(C) and

s, (0 -~ sG) | <= @=1,2...).

Then

sn:[a,b] + [0,2(C)]
converges uniformly to

s:[a,b]l = [0,£(C)]
and

g:[0,£(0)] » RY

is continuous, so



uniformly in [a,b], thus v € >0, 3IN:mn >N
=> [lg(s (x)) - g(sx)) || <e (a <x <Dh)

or still,

[EG) - gls ) || <e (a<x <b).

Since the s are homeomorphisms, it follows that f and g are Fréchet equivalent.

5: LEMMA

0 <u<v < LQ)
[lgtv) =g ||=v-u

g ~g@]<v-u @L<m<M.
Consequently Jprese sy are absolutely continuous (in fact, Lipschitz).

6: LEMVA

e = L = /£ g,

where [lg']] < 1.

So
0=2m) - 15 |gr]|
L LD \
= 7071 = Pl

£
=%mﬂ“lWH>

implying thereby that ||g'|| = 1 almost everywhere.



§6. INDUCED MEASURES

1l: NOTATION BO[a,b] is the set of Borel subsets of [a,b].

Let
C «—> £:[a,b] + R

be a curve, continuous and rectifiable.

2: LEMMA The interval function defined by the rule

[c,d] »s(d) -~ s(c) ([c,d] < [a,b])

can be extended to a measure o on BO[a,b].

3: LEMMA For m = 1,...,M, the interval function defined by the rule

[c,d] » T, [c,d] ([c,d] < [a,b])
M
can be extended to a measure W, on BO[a,b].

4: FACT Given S € BO[a,b],

W (8) 2 U.(8) Sy (8) + «ee + uy(S).

5: LEMMA Form = 1,...,M, the interval functions defined by the rule

[c,d) » Tg [c,d]
m

([c,d] < [a,b])

[c,d] - T; [c,d]

=)

can be extended to measures

AT

l
3

on BO[a,b].



6: NOTATION Put

Vo= U ~u;1 m=1,...,M.

[ Thus Y is a countably additive, totally finite set function on BO[a,b].]

~

RECOVERY PRINCIPLE For any S € BO[a,b],

M
Ho(s) =swp I {Z \)m(E)z}l/zr
P} E€P =1

where the supremum is taken over all partitions P of S into disjoint Borel measur-—

able sets E.

8: FACT The set functions Mo u:[-l, 111;, \)m are abseRutely ‘contintdous w.r.t.

HC.
9: NOTATION The corresponding Radon-Nikodym derivatives are denoted by
g =
m duC
dum 0 = d\)_m
_ ’ .

En = an _ m A,
_du
Bm - duc

0: CONVENTION The term almost everywhere (or measure 0) will refer to

the measure space

(Ia,bl, BOla,bl, u.).



11: FACT
— + -
b= B By
and m=1,...,M)
— + — .
% = & T fn
almost everywhere.
12: NOTATION Let
0= (Ol,...,eM).
[Note: By definition,
2 2.1/2
oG || = (6% + ++v + g, M2,

13: NOTATION Given a linear orthogonal transformation )\:RM > RM, let

Ql
I
&

(\)l,. .. ,\)M) = A(vl,. .. ,\)M) .

16: APPLICATICN
(-é-l, e e ’6M) = )\ (@l, e ’OM)

almost everywhere.

[Differentiate the preceding relation w.r.t. p_=
c

uC.I



§S)
1A

1l m=1,...,M

almost everywhere, so
1/2

e}
iN
=

almost everywhere.

18: THEOREM

il
'_l

el

almost everywhere.

PROOFIet0§6<landlet

S={x:||9(x)]| <1- 6}

Then
M
e = s {1 v @Y
{P} EcP mn=l
But
d\)m
Vn® = Jg g W
C
= fE o duc.
Therefore
M
(v @32
=1
M
_ 2.1/2
=1l
M
2.1/2

=1



g 1106 |1 aug

IN

(1 - 6)fE_duC

(1-29 Mo (E).
Since

s=|lE

it follows that

M
{2 v @2 < @- oue.
BEP m=1
Taking the supremum over the P then implies that
UC(S) <@~ <S)UC(S),

] %) To derive

N

thus u,(s) = 0 and |10(x) || > 1 almost everywhere (let § =

a contradiction, take M > 2 and suppose that ||0(x)|]| > 1 + 8 > 1 on some set T

such that uc (T) > 0 — then for some vector

E= (Epraeify €RT (JE][ = D),
the set

9(x) 5

T(E) = {x € T:|| -Egll x5
e T M2
has measure Mo (T(E)) > 0 (see below). Let

= (x AL

_>f.:| jll-"l jM) (j=21"'IM)

be unit wvectors such that



glf"'l F;D/I

>‘21”“’ Aom

3

M""’ )\MM

is an orthogonal matrix. Viewing A as a linear orthogonal transformation, form

as above C = AC, hence

(el,...,eM = MOy revnsG) -
On T(§),
{ej[ = |)‘j1@1 + oeee + AZM@M[
< IGHP
1/2 & 8
sz 7 MY
while
[18]] < 18,1 + -+ + 1§l
=>
8,1 > 18]l - [8,] - -+ -~ [g,]
S
> (1 +96) - (M-1)—- =1+
However
}éwll Sl'

so we have a contradiction.



19: N.B. Ilet {En:n € N} be a dense subset of the unit sphere U(M) in
R (thus Vv n, ||c§n|| = 1). Given a point X € T, pass to

9(x)

NEGE e Um).

Then there exists a E;n :
X

0(x) 5

et~ <2

a point in the S neighborhood of

MZ
9(x)
[eCT]
in UM). Therefore
T= U T(gn)
n= -

0<u-(T) < 2

M~ (T(E ))
n=1 c '

=> 3 n:

UC(T(EQ)) > 0.



§7. TWO THEOREMS

Let
C <—> f:[a,b] » RM
be a curve, continuous and rectifiable.
Iet P € Pfa,b], say

P:a=x0<xl<--- <xn=b.

1l: DEFINITION Let i =1,...,nand form=1,...,M let
&)~ £ 0x)

]JC ( [Xi—l'xi] )

where X, <X<K if uc([xi~l’xi]) # 0 and. let

rh(x;P) =

4

nm(x;P) =0,

where X, ] <X<x if pc([xi_l,xi]) 0.

2: NOTATION

NP) = (ng (GP) e e iy (5P))

3: THEOREM

P2 1106 - nesp) | * au

n
PROCF Given P € Pla,bl, let L' denote a suim over intervals [Xinl’xi] , where

| In(x;P) |[2 # 0 and let I'' denote a sum over what remains. Now compute:



£2 11860 = nexie) 1% au,

%y
- 71
A

1060 = nexie) |17 aug
i-1

X
2
+2 st e || dn

T 2 2
S e [T + [[neP) |7 - 20x) - n(x:P)] dug

i-1
w30 Lt Jlem?||a
X, 4 = e
= 2
=I' S 1+ [[n&P) [ - 20(x) - n(x:P)]du,
i-1

X.
i
+ e fx. lduC

i-1
=z [UC( [Xl—l’xl])
o |_f_(xi) - £0x; 1) 2
+ “C( [Xj_—]_’xj_] ) UC( [Xi—l 'Xi] )

2
| l_f_(xi) - £x;_ ) |
-2 “C([Xi—l’xi]) + g uc([xi__l,xi])

2
| |£(xi) - £(x;_4) ||

Mo (e g o D)

<2 - &'

<@ -2t |lE6p) - £y )]



Gy - £65_ ) ||
M (1% _q0%51)

l

+ I |Ee) - £ D] Q-

[£(x;) = £0x; )]
Vo (X1, %)

£ g g x D) (-

<£w)—z'Hﬂx)—fm ﬁH

-+

IA

L© -2 |]£x) = £x;_p) ]

-+

otz _g,x 1) - ' [E() - £(x,_p) ]

= 2(C) + I'ualx,_y,x; 1) - 2 20 ||£(x) - £, )]

L) +2©) =22 ||£(x;) - £6x;_¢) ]

Il

2[2(©) - 2 ||£&x) = £x;_ )]

n
2[8(C) - T ||£(x) - £, ) []1.
i=1

1l

4: N.B. By definition, uc([xi_l,xi]) is the length of the restriction ‘of

C to [x l,x],:l.e,
Moreover

[£G) = £33 1] < s(xp) ~ s(x;_5) .



So, if uc([xi_l,xi]) = 0, then

llg(xi) - £, 4) || =0=> £ = £(x;_4)
=>
ot £y - £ |
=2t £y - £6 ]+ 2 £ - £055_9) ||
n
= iil EG) - £65_p ]

Abbreviate

1?(fa,b], BO([a,b]), 1)

% ().

5: APPLICATION In L2 (uc) ’

lim n(—P) = 0.
lIp[] >0

6: SETUP

M
° CO <—> fO’ [a,b] = R

is a curve, continuous and rectifiable.
o G < f:lapl > Y k=1,2,...)

is a sequence of curves, continuous and rectifiable.

Assumption: £ converges uniformly to £, in [a,b] and

k 0
lim £(C) = £(C,) .
k—)oo C]{ 0



7: THEOREM
b
lim  V (£;0) = £C) (@ € Pla,b])
lelf -0 a =

uniformly in k, i.e., Y e >0, 3 8§ > 0 such that
b
[l < 8=>v (§:0) - &) | <e
8 —

for all k = 1,2,...,-or still,

b
lHall < 6=>2@) -V (50 «< e

for all k=1,2,... .

The proof will emerge in the lines to follow. Start the process by choosing

60 > 0 such that
b

€

4

provided HPO| | < & . Consider a P € Pla,b]:

0

a=x, <Xx

0 l<.-o<xn=b

with ||P|]| < & .. Choose p > 0 such that

o°
5@ - f @] < 7 (le,dl < [ap])
for all k = 0,1,2,;..., so long as |c - d| < 0 (equicontinuity). Take a partition

Q € P[arb] :

Q
Il

y0<yl< ...<ym=b

subject to

el < v =

1"
.
o
~

N

= |lo]] < §g) «



Put
4= s ||560 - £,69]]

azxd =

and let ko be such that

= € - £
k>ky=> 0 <4 and|£(Ck) £(C0)|<4.

The preparations complete, to minimize technicalities we shall suppose that
(1)

each Ij = [yj_l,yj] is contained in just one I = [¥_1/%] and write % for a
sum over all such Ij —— then
b m
vV (£:Q = _Z_ V(fk;Ij)
a — =1 —
m
= jzlllf-k—(yj) = f_k(yj_l) ||

e o)
i‘zl z I ll_f.]s(yj) - E}E(yj—l) l l

v

n
Zog ) = £ ) ]
i=l — —

8: SUBLEMMA Iet A, B, C, D € R — then

llc-pl|l > |la-8[| - [la-c|| - ||B-D]].
[In fact,
l[la-Bl] =|laA-C+C-D+D- B
<lla-cl| +llc-D]| +||B-D]].]
Take
|7 €= 5 &) - A= £(%5)
D=£f&_ ), B = £,(x; ;).



Then
|15 &) — B Gy [
> [[EpGey) = £505 1) ||
- If_o(xi) - f_k(xi) =1 If_o(xi_]_) - f_k(xj_._]_) I
thus
n
I 1150) - by ) |
> z(CO) - % - N0y ~ Nop
e _ € ¢
>LC) —z-7-7
N
K(CO) 7
But
€
k > ko => |Z(C‘k) - K(CO) | < i
= - £
=> L(C) - 7 < £(Cy) .
Therefore

3e e 3¢
L) - > &) ~ -7

= Z(Ck) - €.

Thus: Vk>ko,

b
Q) -V (£:9 <e  ([|Q]] <v.
a —



Finally, for k < ko, let Yie be chosen so as to ensure that
b
L) -V (559 <e
a [

for all partitions Q with |[Q[[ < v,. Put now

1,...,k

Ykofv}.
0 4

Foeweyg

Then

b
Holl <& = £G) -V (F50) < e

forallk=1,2,... .

Changing the notation (replace Q by P), Ve > 0, 3 § > 0 such that

b
[B]] < 8 = £(c) ~Z (£,P) < ¢

J——

for all k =1,2,... . Consequently

b 2
To 118 &) = n ey [ an

x %

n
$20G) - E 18 Gx) = £ Gy [

b
2[8(C) - V (£:P)]
a —

Il

< 2¢€.



§8. LINE INTEGRALS

Iet
C <> f:[a,b] » ;RM
be a curve, continuous and rectifiable.
Suppose that
F:[C] x RT R,
say

Fx,t) (x € [c], t € RY).

l: DEFINITION F is a parametric integrand if F .is continuous in (X,t)

and VK > 0,

F(x,Kt) = KF(x,t).

2: EXAMPIE let
2 2,1/2
Flrt) =(& + oo + £)72,
3: EXAMPLE (M = 2) Iet
E”(xl,xz,tl,tz) = xlt2 - thl'
4: N.B. If F is a parametric integrand, then V x,
F(x,0) = 0.
5: RAPPEL
Hell =1

almost everywhere.



6

LEMMA Suppose that F is a parametric integrand —- then the integral

1) = 2 FE®R),0())dy,

exists.
PROCF [C] x U(M) is a campact set on which Fis bounded. Since
(E(x),0(x)) € [C] x y(1)
almost everywhere, the function
F(Ex),0(x))

is Borel measurable and essentially bounded w.r.t. the measure Yoo Therefore

1(0) = /2 F(EG),000)dig
exists.
[Note: The requirement "homogeneous of degree 1" in t plays no role in -the
course of establishing the existence of I(C). It will, however, be decisive in

the considerations to follow.]

Iet P € Pla,b] and let gi be a point in [xi_l,xi] (i=1,...,n).

7: THEOREM If F is a parametric integrand, then

n
lim % F(£(E;), £(x;) - £(x;_4))
[l +05=1 = HT TR T
exists and equals I(C), denote it by the symbol
fc F,

and call it the line integral of F along C.

PROOF Fix € > 0 and let B(M) be the unit ball in R Put

= sup |F|.
ki [C] x B(M)



Choose Y > 0:

11t -5l < v (g, €BO)

£
Py ty) = Fat) | < gy -
Introduce n(x;P) and set

g(x;P) = F(£(§;),n(x;P))

if x; 5 <x <x; — then
n f(x.) - £{x. .)
b - =1 ="i-1
fastPdig = I FEE), S b))
n
= I F(£(5), £(x) - £(x; ;)
i=1

modulo the usual convention if uC( [xi_l,xi]) = 0. Recall now that in Lz(uc) ,
lim B(—P) = 9,
[ef] >0 B
hence n(—;P) converges in measure to O, so there is a p > 0 such that for all P
with [[P]] < o,
oG - nex:P) || < v

except on a set SP of measure
(S ) < L
Hetep M
Define o:

lt; =t <d=|[£(t) - £ )]] <.

1



Let 6§ = min(o,p) and let P be any partition with ||P|| < § — then

n

L@ - I F(EE)E6y) - £0x )
i=

= P rE®, 0@y, - 2 Ry,

= 12 FEE,00) - geP) 1du,
By definition, ¢ < p, hence

[16&) ~ nGiP) || < v

except in S_, and

PI
e - £ED ] <y

since

x = &1 <y (%5 $x<x).

To complete the argument, take absolute values:

n
T© - I FEE) L0y - £65) ]

<2 IF(Em ,00) - gGup) |aug

=/ | oo ]du, + fo |eee|du,.
[a,b]-S, c’ s, C

e On [a,b]l = SP at an index i,

[F(£(x),0(x)) - g(x;P) |

[F(£(x),0(x) - F(E(E;),n(x:P)) |

IA

€
3T -



Here, of course, up to a set of measure 0,

O(x) € B(M) and n(x;P) € B(M).

Therefore

f[a,b]-sp |ooo] dyo _<_§f(ié-).g(c) =§_

e On SP’
IF(£(x),00xD)] <M
| FEED ) | < M

Therefore

Sop |+oo | QU < 24 fsP Ly,

= M1 (Sp)

So in conclusion,

duc*l*fs [ een | dpc

i eee
[a,b] —-SP l b

<E+Z=c (P <
and
I({C) = fC F.

8: N.B. The end result is independent of the choice of the £i+

9: THEOREM If fl"""fM € ACla,b], then for any parametric integrand F,



o F = 2EE G, £y (0, £] (). £y (x)dx,
the integral on the right being in the sense of Lebesque.
PROCF The absolute continuity of the fm implies that
belle,dl) = /2 |8 | fax
for every subinterval [c,d] < [a,b], hence Yo is absolutely continuous w.r.t.

Lebesgue measure. It is also true that v - is absolutely continuous w.r.t. Iebesgue

measure. This said, write

oSy Oy A _, A
m dx | ax _duc dx  mdx °
Then
1) = /2 FEE),00) dig
dy
= P F(E®),00) o dx
dy
= 2 FEW,06) =9 dx,
where
|
== g1l 2 0.
Continuing
dy du
L(0) = 12 FE () 1o s 50,0y () o senny Gy(3) pOAx
= L2 E(E () eee By (0, 5] () e, £y (X)X,

the integrals being in the sense of Lebesqgue.



Iet
C <> f:{a,b] »~ R
D <—g:c,d] =R

be curves, continuous and rectifiable.

10: RAPPEL If C and D are Fréchet equivalent, then

[€C] = [D] and £(C) = Z(D).

11: THEOREM If C and D are Fréchet equivalent and if F is a parametric

integrand, then

PROCF Fix £ > 0 and choose § > 0:

e P € Plabl & |[[P|]] < &§=>

n
lT(C) - iil F(E(E;), £(x;) - :f_(xi_l))[ < %..

® Q€ Plc,dl & ||Q]] < 8=

m
lto - =

w| m

Fix P and Q satisfying these conditions and let k be the number of intervals in
P and let £ be the number of intervals in Q. Fix Yy > 0 such that

£
IFGeyoty) = PGy 8 | < 3

when

1=

% =%l < v (%, € Icl = D))

e, - gl <2v digll s €@, [lg,]] < 2m).



Let ¢:[a,b] + [c,d] be a homecmorphism (¢(a) = ¢, ¢(b) = d) such that

£ - g@&) || <y (x € [a,bl).
Iet

P¥:a = x* < x* < ,,, < x* =
0 < ¥ :=b

be the partition obtained from P by adjoining the images under qfl of the partition
points of Q. ILet

Q*:c=y’5<yi<...<y;=d

be the partition obtained from Q by adjoining the images under ¢ of the partition

points of P. So, by construction, r = s, either one is < k + £, and y; = d)(x%;)
(p=0,1,...,9. Choose a point Ep € [X;_l, x;] and work with

£(E) and g(O(E).

Then
|T(C) - 1(D) |
q
5um)—;lmy%hg%>—g%4nl
q
+ pi]_ [F(E(gp) 'E(X;) - E(x;)_l)) - F(g(¢(€p)),g(YE§) - S_(Yf,_]_))l
q .
+L;Fgw@ﬁug%y—$%dn~1®)-
Since
[lex|| < [[p|] <&
Hoxl] < |lef] < &,



the first and third terms are each < -35 . As for the middle term,

Il_f_(cip) - g(¢(€p)) ] <y

[lEG) - £62 1) - glv%) + 9wk ) ||

A

HEGE - g ||+ [I£65 ) - gl 1) |

[EGE) - geea) || + [1E6E ) - (oGt 1)) ||

<Y+ y=2v.

Therefore the middle term is

£ _ q € _ €
“A3EFL CETL 3°3
And finally
€, L€ € _
lTC) -1D) | <5+ z+5=¢
=>
I(C) =I(D) (e ¥ 0)
=>
JoF =/ F.
12: SETUP

M
° CO <—> fo,[a,b] -+ R

is a curve, continuous and rectifiable.
o <> £ :[a,bl ~RY (k=1,2,...)
Ck .—k.- ’ Flag s e

is a sequence of curves, continuous and rectifiable.

Assumption: fk converges uniformly to fO in [a,b] and



10.

lim £(C ) = £(C.).
k + o Ck 0
13: THEOREM
lim I(C ) = I(C.)
k > » Ck 0
or still,

lim [ F=/[_F.
kK + o Ck o



§9. QUASI ADDITIVITY

l: DATA A is a nonempty set, T = {I} is a nonempty collection of subsets

of A, D= {D} is a nonempty collection of nonempty finite collections D = [I] of

sets I € 7, and § is a real valued function defined on 7.

DEFINITIONS The sets I ¢ T are called intervals, the collections D ¢ P

N

-
-

are called systems, and the function & is called a mesh.

3: ASSUMPTIONS A is a nonempty topological space, each interval I has

a nonempty interior, the intervals of each system D are nonoverlapping: Il' I2 € D,

I, 7 I,

uItIlnciiIZ:Qf

cﬁIlﬂiIIt12=ﬂ.

4: ASSUMPTION For each system D, 0 < §(D) < + «, and each e > 0, there

are systems with §(D) < e.

5: REMARK In the presence of §, one is able to convert D into a directed

set with direction "> >" by defining D2 > > Dl iff 6(D2) < cS(Dl) .

6: EXAMPLE Take A = [a,b] and let I = {I} be the collection of all closed
subintervals of [a,b]l. Take for D the class of all partitions D of [a,b]l, i.e.,
D = Pla,bl, and let §(D) be the norm of D.
[Note: Strictly speaking, an element of Pla,b] is a finite set P = {xo,...,xn},

where

=X < < eee € =D
a 0o~ *1 *n !



the associated element D in D being the set

[Xial'Xi] (1=1,...,n).]

7: DEFINITION An interval function is a function ¢:1 - R,

[Note: Associated with ¢ are the interval functions ||¢||, as well as

+

“m

?ml‘q]mlvlﬂ m=1,...,M).]

8: NOTATION Given an interval function ¢, a subset S < A, and a system
D = [I], put

Z[¢ISID} = ZS(IIS)¢(I)I
I

where I ranges over all I € D and s(I,S) = 1 or 0 depending on whether I ¢ S or
I

I/ZSs.
[Note: Take for S the empty set § — then I < @ is inadmissible (I has a
nonempty interior) and I £ @ gives rise to zero. Therefore

z[¢,4,D] = 0.]

N.B. The absolute situation is when S = A, thus in this case,

.
.

Z[¢,A,D] = Z[¢,D] = Z¢(I).
I

10: DEFINITION Given an interval function ¢ and a subset S < A, the
BC-integral of ¢ over S is

lim  %[¢,S,DL
§(MD) + 0



provided the limit exists in RM

[Note: B = Burkill and C = Cesari.]

11: NOTATION The BC-integral of ¢ over S is denoted by

BC J, g ¢-
12: EXAMPLE
Bcfg¢=9_(ERM).
13: DEFINITION An interval function ¢ is quasi additive on S if for each

€ > 0 there exists n(g,8) > 0 such that if D, = [IO} is any system subject to

0

G(DO) < n(g,8) there also exists )\(e,S,DO) > 0 such that for every system D = [I]

with §(D) < A(S,S,Do), the relations

(qal—s)IZ $(I,,S) Hiz: S(IL I = oI || < e
0

(Ga,~8)Z s(I,8) [1 - I s(I,I)s(Iy,S)] [ @) || < e
I

o

obtain.

14: N.B. In the absolute situation, matters read as follows: An interval

function ¢ is quasi additive if for each € > 0 there exists n(e) > 0 such that if

DO = [IO] is any system subject to (S(DO) < n(e) there exists A(E,DO) > 0 such that
for every system D = [I] with §(D) < )\(E,DO) , the relations

(qal—A) Il ¢@ - ¢(IO)H <€

IO ICIO



(@A) = [[e@M || <e
I,

obtain.
[Note: The sum

£ e |]
IA,

is over all I € D, I,éIO for any I0 eDO.]

So, under the preceding conditions,

2o - T 9T
I IO

T [z o) ~¢(IO)]+ I (D)’
I, I, AL,

HZ ¢ = = (T ]] < 2e.
I I,

15: THEOREM If ¢ is quasi additive on S, then

BC fgq ¢
exists.
PROCF To simplify the combinatorics, take S = A. Given e > 0, letrne), DO’
Ale ,DO) be per qa;-A, ga,-A and suppose that Dl’DZ € D, where

o) (Dl) < A (€ IDO)

S(DZ) < A(e,DO) .



Then

R o(I) - I (L) || < 2¢
0
ol Ty

[1Z ¢(T) - L oIy ]] < 2e
_ 5 T

||z q>(:cl) -z ¢(12)|| < 4e,
1 I

Therefore BC [ A ¢ exists.

16: REMARK

e If the q>m m=1,...,M) are quasi additive, then ¢ is quasi additive.

e If the |¢m[ (m=1,...,M) are quasi additive, then |[¢|| is quasi
additive.

17: DEFINITION A real valued interval function ¢ is quasi subadditive on

S if for each ¢ > 0 there exists n(g,S) > 0 such that if D, = [IO] is any system

0

subject to cS(DO) < n(g,S) there also exists A(s,S,DO) > 0 such that for every
system D = [I] with §(D) < }\(e,S,DO) the relation

(gsa = §) I s(I,8) [ I s(LINVID - p(I)] <e
I

o

obtains.

18: N.B. In the absolute situation, matters read as follows: ...

(gsa ~2) L [I (@) - ¥(I)] <e.

IO ICIO

19: LEMVA If ¥:D ~» R>0 is nonnegative and quasi subadditive on S, then



exists (+ «» is a permissible value).

20: THEOREM If y:1 +R>O is nonnegative and quasi subadditive on S and if
BC fg ¥
is finite, then y is quasi additive on S.
PROCF To simplify the combinatorics, take S = A, Since

BCwa

exists and is finite, given € > 0 there is a number p(e) > 0 such that for any

D{) = [IO] € D with 6(D0) < u(e), we have

X £
[BC Sy v = T vy | <3,
To

where I is a sum ranging over all Io € DO‘ Now choose D0 in such a way that

Ty

§ (DO) < mln{U(E) :n(€/6) }r
take

A' () = min{u(e) ,A(s:/6,D0) },

and consider any system D = [I] with §(D) < A'. Since y is quasi subadditive,

TLTOwD -] <=
I0 Ic:]:0 0 6

On the other hand,

€
RN REAOIES

Denote by I' asumoverallIEDwithI)éIO for any I, € D, —— then

0 0

0z |2 @ -vEy|+ @
I, I,



Il

LT @ - w(Iy]

I0 ICIO

+2 L [T 9@ - 9T

I0 ICIO

+ Z'P(I)

Il

4@ = 5C £y 0]
- [T Iy - BC fy V]
o

+2 T[T %D - eIyl

I0 ICIO

€ €
< F - 2 == g,
< 3+26 €

W[ m

The requirements for quasi additivity are thus met.

21: THEOREM Suppose that ¢:1 - RM is quasi additive on S —— then

[1o]]:1 > R,, is quasi subadditive on S.
PROOF Fix € > 0, take S = A, and in the notation above, introduce n(e),
D0 = [IO], X(S,DO), D = [I] - then the objective is to show that
Lz [le@]-lleEy 117 <.
IO ICIO
To this end, let

°I) = T #(D - o(Ty).

ICIO

[o(Ty) + 2Ty [l = Z o)

ICIO



M

=0Z (T ¢ (1)

=1 IcI0

211/2

M
D1z ¢ m*?
ICI0 =l

IN

= I |[e@ ][

ICIO

Meanwhile

G(Ig) = [0(Tg) + 8(T)] +[- o(T)]

L e ] - [loy ||
IcI
0
2 |o(Xy) +o@p[] - [[oxy [
2 - I |©(IO) | ‘
=>
L2 [le@]] - lle@y [ < [ley ]
IcT
0
=>
DLz (fe@ll - lleap ™ < 2oy ||
IO ICIO IO

= Z|[ 2 6@ - ¢(xy)]]
IO ICJZ0

< g,

¢ being quasi additive.

22: APPLICATION If ¢:1 ~ RM is quasi additive, then the interval functions



I |¢m(I) | m=1,...,M
are quasi subadditive.
[In fact, the quasi additivity of ¢ implies the quasi additivity of the o
and

.1

oIt = 1oy
[Note: It is also true that q)r:,q;;l are quasi subadditive. ]

23: LEMMA If ¢:7 - RM is quasi additive on S and if

BC Jg [ ]] < +eo

then ¢ is quasi additive on every subset S' c S.
PROCF First of all, ||¢]|] is quasi subadditive on S, hence also on S'.
Therefore

BC Jgu |[o]]

exists and

BC Sgr o]l < BC fg [lo]] < + =

from which it follows that ||¢|| is quasi additive on S'. Given ¢ > 0, determine
the parameters in the definition of quasi additive in such a way that the relevant
relations are simultaneously satisfied per ¢ on S and per ||¢|| on S', hence

0

< I s I sTIoy - 6(Iy)[] < e
0
and

L s(I,8)I1 - T s(I,I)s(I,S)]||eM]] < e.

I IO



10.

Therefore ¢ is quasi additive on S'.

24: APPLICATION If ¢:7 — RM is quasi additive and if
BC fAH@H <F oy

then ¢ is quasi additive on every subset of A.

Here is a summary of certain fundamental points of this §. Work with ¢ and

|1o]].

e Suppose that ||¢|| is quasi subadditive on S and

BC fs{]q‘;[[ < + oo,

Then ||¢|| is quasi additive on S.
e Suppose that ¢ is quasi additive on S —- then ||¢|] is quasi sub-
additive on S.
So: If ¢ is quasi additive on S AND if

e Sgllol] <+

then ||¢|| is quasi additive on S.
[Note: It is not true in general that ||¢|| quasi additive implies ¢ quasi

additive.]

25: EXAMPIE Take A = [a,b] and let I, D, and § be as at the beginning.

Given a continuous curve

C <—> f:[a,b] » RM,

define a quasi additive interval function ¢:I1 - RM by the rule

$ (1) (‘bl(I) t"’r¢‘M(I))

(£ (@ = £1(C) snensBy(@ = £4(0)),



11.

where I = [c,d] <« [a,b], thus

Ho@ [ = [I£@ - £ [,
so if P € Pla,b] corresponds to
D «—> {Ix; 4,x,1:i =1,...,n},

then

EACIE ;le g6y - £65,_p) 1|
=>
Bc S, l16]] = Lim z |]e@ |
() ~0 Ie
n
g !%jﬁ'* 0 iil HEG) - £65,_1) ]

= £(C).
Therefore C is rectifiable iff

2 L, [10]] <+ =

And when this is the case, ||¢]|] is quasi additive on A.

[Note: A priori,

n
L(C) = sup Do E®) - £ ]
PePla,b] i=1 = — i1

But here, thanks to the continuity of f, the sup can be replaced by lim.]

26: EXAMPLE Take A = [a,b] and let I and D be as above. Suppose that

C <— f:[a,b] » l@{
is a rectifiable curve, potentially discontinuous.

e Given a £ x. < b, put

0

s (x,) = lim swp ||£(0) - £(x)) ]
x+x0



12.

and let s+(b) = Q.

e Given a < X < b, put

s (xy) = lim sup||£(x) - £(x,) ||

x+x0

and let s (a) = 0. Combine the data and set

s(x) = s+(x) + 5 (%) (a < x <Db).
Then s(x) is zero everywhere save for at most countably many x and

o=73sx <2(C).
X

Take ¢ as above and define a mesh § by the rule

n
s0) = |[p|] + 0~ & six,).
i=0

One can then show that ¢ is quasi additive and

BC /| 16}] = £(©).

27: NOTATION Given a quasi additive interval function ¢, let

v[¢$,S] = swp z[||¢]],S,D].
DED

28: N.B. By definition,

BC fgllel| = Lim  z[|]e|},s,DI,
§(M) + 0
S0
BC /| lol] < Vie,s]

and strict inequality may hold.



13.

29: LEMMA Given a quasi additive ¢ and a subset S < A, suppose that

for every € > 0 and any DO = [Ib] there exists k(s,S,DO) > 0 such that for every

system D = [I] with §(D) < A(g,S,D,) the relation

o

I sys) i S(L,I ) o | [=Ho@y 17 < e
0

obtains —— then

BC Jg|lo]| = vi¢,S].



§10. LINE INTEGRALS (bis)

Through out this §, the situation will be absolute, where A = [a,b] and
I, D, and § have their usual connotations.
If
C <> f:[a,b] » RM
is a curve, continuous and rectifiable, then

BC £, |[o]] = £(©).

And if F is a parametric integrand, then
n
J.F = lim r F(£(8:),£(x;) - £(x._4))
C llPll >0 i=l — 71" "—" 1 — L1 l

exists, the result being independent of the £

1l: N.B. Recall the procedure: Introduce the integral

1) = /2 FEE),060))dug

and prove that
n

lim I F(EE),Ex) - £(x._7))
[lplf >0 s= = TR T
exists and equals I(C), the result being denoted by the symbol.
/o F
and called the line integral of F along C.

There is another approach to all this which does not use measure theory.

Thus define an interval function ¢:1 + R by the prescription

o(I;8) = F(£(8),9 (1)),



where & € I is arbitrary.
[Note: By definition,

O(I) = (¢ (D) ,enny gy (D)

= (£,(@ = £(C),.e, 5 (@ - £,(0),

I being [c,d] < [a,b]. Moreover, ¢ is quasi additiwve. ]
2: THEOREM ¢ is quasi additive.

Admit the contention — then

lim L 0(I;¢)
6(D) ~0 IeD
n,
= lim I OF(E(E),£(xy) - £(x;4))

| [P [ [ »~ 0 i=1
exists, call it

(&) S F.

N.B. Needless to say, it turns out that

€) J cF
is independent of the £ (this follows by a standard "e¢/3" argument) (details
at the end).
[Note: This is one advantage of the approach via I(C) in that independence

is manifest.]

To simplify matters, it will be best to generalize matters.
Assume from the outset that ¢:1 - RM is now an arbitrary interval function
which is quasi additive with

(BC) fA llfbl] <t o,



hence that ||¢|| is also quasi additive as well.
Introduce another interval function g:71 - RN and expand the definition of

parametric integrand so that

F:X x RM R,

where X < RN is compact and z(I) < X.

: EXAMPLE To recover the earlier setup, take N = M, keep ¢:1 ~ RM,

let w:T » [a,b] be a choice function, i.e., suppose that w(I) € I < [a,bl, let

C(I) = £(w(I)), and take X = [c] <RM,

5: CONDITION (z) VY e >0, 3 t(ge) > 0 such that if D

5: o = Iyl is any

system subject to <S(D0) < t(e) there also exists T(e,DO) such that for any system

D = [T] with §(D) < T(€,D0) , the relation

max max ||o(I) - o(I) ][] < e

IO ICIO

obtains.

6: N.B. Owing to the uniform continuity of £, this condition is automatic

in the special case supra.

7: THEOREM Let F be a parametric integrand, form the interval function
®:1 » R defined by the prescription
(1) = F(z(D),9(1)),

and impose condition () —- then ¢ is quasi additive.

The proof will emerge from the discussion below but there are some preliminaries

that have to be dealt with first.



Start by writing down simultaneously (qal—A) and (qa2~A) for ¢ and ||¢]|
(both are quasi additive), € to be determined.

Loz o - oy < e
IO IcIO

Lo llem|] <€
I

AL,
plz eIl - el | <&
IOICIO

| |le@m]|| ] <=

IAT,

for §(D,) < n(e) and §(D) < X(E,DO) and in addition

|z ]le@]| -BC Sy [lo]] | <k
IeD
for (D) < o(€).

Fix € > 0. Put

V=BC [ [[6]] (<+ ).

e (F) X x UM) is a compact set on which F is bounded:
IF(gg,j:_)l <CxeX teum))

and uniformly continuous: 3 Yy such that

Iz - x'|]

<y = |FxL - F&',t)] < 3(\5;'*'6) )

e -t



e (a)

oIy

but 0 otherwise and

- 9@ .

but 0 otherwise.

8: NOTATION Dencte by

(I,)
0
ZY+

the sum over the I < I0 for which

Ja(Ty) - oD || > v

and denote by

(I,)
5 0
‘Y-—

the sum over the I < I0 for which

[la(@y) = a(@|] <.

Therefore

(r,) (T,)
0, 0

IcI Y+ Y-

2
oy 2% ea
G5 200 e |

o



To

<z |z
I I0

$(1) - o(1y) ||

Loz [e@ [ = [exy [ |
I, I,

PROCF The inequality

implies that

sO

But for any I,

lamy) - am || 2 v

A

[lotzg) = oo | [

= (on(IO) - o(I)) - (a(IO) - a(I))

oy |12 - 20y + a@ + |fam@ | P

2 - 2&(10) + a(I),

2
L<1-a@y) - o@

2
@Il < o] - atxy - o(D.

0< [[o@]] - a(@y) - ¢(D).

Proof: In fact,

] - 25 @
o] -
[T6 T T]

- |l¢&o) TEHe@ T To@ [] = o (Ty) « oM.



Now quote Schwarz's inequality. Thus we may write

(Iy)
2 0
5o o]

(Iy)
<y (6@ - @y - o@)]]

[ A

2 (}|e(D) - a(Ty) - o(I)) ||

Z[CI0
= T [le@Il - [le@p |l +a@y - 0Ty = T ¢(D)
IcT I
0 0
<z He@I] = [y [ |
Il
0
+ | [q)(IO) - ¥ ¢(@|| (Schwarz).
ICIO

To finish, sum over IO.

® (DO) Assume

§(Dy) < minft(y) ,n(e) mley’) }.

e (D) Assume
5(0) < min{o(€) ,A(€,Dy) ,A(ev”,Dy) TC¥,Dp) 3.

e (g) Assume

2
- , e €
e < min{y, 3(—:-,%(:—}.

Then

Dol oz - eIy |

IO Ic:I0



z L F(z(I),9(D)
IO ICIO

- I F@I),aTy) | e ]

ICIO

+ I ORIy ,(Ty) | o) ||

ICIO

= F(L(I),0(I)) | 6, ]|

= I | T (F@E@D,(D) - FEEI),o(I)) | [e@]]
I IT

0 0
+ I F(E(I),(T)) (1o [] - [lo(zy) bl
Icl
0
< I reapea)| |2 [le@ [l - [loa)ll |
IO ICIO

+ I I |FE@,em) - FEE) ez el

IO ICIO
=z [Feay.ea )| [ 2 He@Il - [loayll |
I 0 0 TeT 0
0 0
(Iy) (T,
+Iz (E,_ 7+ I ) FEE),e@y) - Fem,am) ] 1o ]
0
First:
L |F(z(T.),a(I,)) by ¢ (1) - [ (Ts)
2 RG] |2 el - Teapll |
0 0
sc |z [le@m][] - o]l |
I IcT

0 0



Second: Consider

(T,)
22 Y Ry ey - FEm,em) | |om|].
I

0
Here

Ila(IO) [l =1, |le@]|] =1, lIoc(IO) -alD) || < v,

IIc(I'O) -c@|] <y

[F (2 (1)) ,0(Ty) = FE@,e@) | < gy -

The entity in question is thus majorized by
: @] < i 3 [lem ]
T L I, ¢ (1) S xmm & |[1¢(T)
3(VH+e) Io Y 3 (V+e) Tep
e __ _E
S35y Ve =3

Third:

(T,)
32, Feg),ay) - Fe@,am)]| ||e@]]
I

(I,)
<2C Iz: 2Y+ [ 1o (T) ||

0

Y

<E0z 2@ - ey
Yo I, IeI,

+ |z @[] = [loxp) ] 1]
I, I,



lO.

i -, =
_S—TZ'(E"'E)

y
_8C -

Y

<8 . &y €
Y2 24C 3 °

In total then:

z Ioe(I) - (I <=+S+ £
; . 0 | 3 33
0 0
= €.
And finally
e |
Ao
= 2 | Fz@D,o@)]
IA,
= I [F@,e@)]| |o@]]
LA,
<C z |lo(@]]
1A,

A

= €E _E -
Cs<Cf—3<.e.

Therefore ¢ is quasi additive. And since the conditions on F carry over to
|F|, it follows that ||®|| is also quasi additive, hence
BC /7, |lo]]
exists and is finite.
To tie up one loose end, return to the beginning and consider the line
integrals
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the claim being that they are equal. That this is so can be seen by writing

(€)= (£, F|

n
= [(B, F - T F(E(E),E(x;) ~ £(x; 1))

i=l
n
+ I F(E(8),£(x;) - £(%;_7))
i=1
n
- I F(EED,EE) - £(x;_ 1))
i=1
n
+ I F(E(E),£(5) - £65, 1)) - (B, F|
i=1

and proceed from here in the obvious way.

10: EXAMPLE Take N = 1, M = 1 and define an interval function |.. |:I > R
by sending I to its length |I|. Fix a choice fumction w:I + [a,b]. Consider
a curve
C <—> f:{a,b] ~ R.
Assume: f is continuous and of bounded variation, thus

L) = Tf[a,b] < + oo,

Work with the parametric integrand F (x,t) = xt —— then the data

I->FE@,|I)h

F(£w(@)), |I])

1l

f(1)) 1|

i
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leads to sums of the form
n
i=1

hence to

ch=fo'

the Riemann integral of f.





