Analysis 101:

Surgaces and Area



ABSTRACT

Here one will find a rigorous treatment of the simplest situation in
Surface Area Theory, viz. the nonparametric case with domain the unit square

in the plane.
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§X. THE FRECHET PROCESS

Iet (X,d) be a metric space and let F:X » [0, + «] be a lower semicontinuous
function. Assume:
(A) For each x € X, there is a sequence xn(n =1,2,...) in X - {x} con-
verging to x such that

lim F(Xn) =F(x).
n > o

Iet (X,d) be the completion of (X,d), the elements X of which being equiv-
alence classes of Cauchy sequences in X. Extend F to a function F:X + [0, + o]

by defining

-—

F(x) = inf_lim inf F(x),
{Xn}EX n - o

where the infimm is taken over all Cauchy sequences in x.

1l: THEOREM F is an extension of F, i.e.,
F|X =F.

Moreover F is lower semicontinuous and in addition is unique.

2: N.B. F has the following property:

(B) For each x € X, there is a Cauchy sequence {Xn} € x.such that

Lim F(x) = F(x).
n > o«

To recapitulate:

3: SCHOLIUM Every nonnegative, extended real valued, lower semicontinuous

function on a metric space X with property (A) can be extended to a umique lower



semicontinuous function on the completion

and

4:

EXAMPLE

Consider

- X=10,1]

X =1[0,1]

T F = idy
F=1id .

i

(d(x,y)

d(x,y)

X of X with property (B).

Il

|x = v|)

Ix - y|)



§0. THE BEGINNING

Traditionally, a k-surface in n-space (k < n) is an ordered pair S = (A,f),

where A is a subset of Rk with a nonempty interior (subject to certain restrictions)

and f is a function from A to Rn, i.e., f:A > Rn, thus

£=(£,..0,E).

I

N.B. If k =n, then f is said to be flat.

: REMARK If k=1 and A = [a,b], then f is just a curve.

In this account, we shall take k = 2 and n = 3, thus

fl:A -+ R

E: f,:A >R

2

f3:A - R.

: N.B. There are associated flat maps, viz.
x=0,y= fz(u,v), zZ = f3(u,v)

X = fl(u,v), yv=20, z= f3(u,v)

X = fl(u,v), y = f2(u,v), z = 0,

where (u,v) € A.

In what follows, we do not intend to operate "in general" but instead will

specialize matters to the so-called "nonparametric" situation.



Put

0=1[0,1] x [0,1] cR® (0sx<1, 0<y=1).

4: DEFINITION A nonparametric 2-surface in 3-space is an ordered pair

Sf = (Qlﬁ)l where
fxy) = Ky, £x,y)), £:Q >R

ig a function, thus

!
w

fl (le) =

f3 (x,y) = £x,y).

f2 (XIY) =Yy

5: REMARK Every function f:Q + R determines a nonparametric surface S £

Because of this, the focus is on f, not on Sf.

Restricting matters to Q more or less eliminates the topological aspects of
the theory, thus the discussion is "pure analysis", there being two aspects to the
development, viz.

PART 1: The Continuous Case, £ € C(Q).

PART 2: The Integrable Case, f € Ll Q).

6: EXAMPLE Define f£:Q =+ R by the prescription

O(OSXS-JQ'-)
l(%<xSl).

Then £ is not continuous but it is integrable.



§7. QUAST LINEAR FUNCTIONS

: DEFINITION A quasi linear function is a continuous function II:Q + R

—

for which there exists a decomposition D of Q into a finite number of nonoverlapping

triangles Tl’TZ’ . ..,Tn such that Il is linear in each of these triangles, thus

Ix,y) = ax + bly +cy (x,y) € Ti) ’

the ai’bi'ci being real numbers.

EXAMPLE A constant function

f&x,y) =C(x,y) € Q)

is quasi linear.
Suppose that I:Q - R is quasi linear —— then II maps each Ti into a triangle

Ai c R3 (possibly a segment or a point).
3: NOTATION Let [A.| stand for the area of A,.

4: DEFINITION The elementary area of a quasi linear function H:Q =+ R is

the sum

a(m) =z |4l

where I is taken over the Ti € D.

5: NOTATION Let |T,| stand for the area of T;.

6: N.B. Let

(ullvl)l (uzlvz)l (U.3,V3)

be the vertices of Ti in Q0 — then



1
]Ti{ =5 |det | u,v,1

_uyvglo
7: ILEMMA
1/2
8. = |T.| @ +a%+Dbd) .
1 1 1 1
Therefore
2 2 1/2
a(n) =2 |Ti[ (l+ai+bi) .
1
8: SCHOLIWM
> 5 1/2
a(M =/ / [1+ (aI/3x) + (3Li/3y) ] dxdy.

Q

It follows from this that a(li) is independent of the subdivision D of Q into

triangles of linearity for II.

9: REMARK A quasi linear function II:Q - R is Lipschitz continuous and

2 2 2 1/2
H™ (Grp @) =/ / [1 + (31/3x)” + (30/3y) "] dxdy.
' o)

10: IEMMA Per uniform convergence, the elementary area is lower semi-

continuous on the set of quasi linear functions.



§2. LEBESGUE AREA

Recall that

Q= (0,11 x [0,1] <R (0 <x<1,0<y <1).

1l: ILEMMA ILet £:Q - R be a continuous function -— then there exists a

g ={Hn:n =1,2,...}
of quasi linear functions I’n:Q -+ R such that Hn + £ wmiformly (n + ).
2: NOTATION Given a continuous function f£:Q -+ R, denote by E the collection

of all sequences

g = {T’n:n =1,2,...}
of quasi linear functions ITh:Q + R such that Hn + £ uniformly (n » «).

3: N.B. The preceding lemma ensures that E is nonempty.

4: DEFINITION The Lebesgue area LQ [£] of a continuous function £:Q0 + R
is the entity
inf lim inf a(Hn) .

EEE n o o

5: REMARK This definition and the considerations that follow are an

instance of the Fréchet process: Take for Xthe quasi linear functions on Q,

take for d the metric defined by the prescription
Ay, M) = sup |M; (x,) - L, x,y) |,

and take for F the elementary area —— then the completion X of X is C(Q), the



set of continuous functions on Q, and the extension F of F assigns to each
£ € C(Q) its Iebesgue area:

F(f) = LQ [£1.

6: CONSISTENCY PRINCIPLE The elementary area of a quasi linear function

I:Q > R equals its Lebesgue area.

: LEMMA There is at least one £ € E such that

a(l) ~ Lylfl  (n+ o).

PROOF There are two possibilities:

LQ[f] <+ o or LQ[f] = + oo,

Matters are manifest if LQ[f] = + o, 50 assume that LQ[f} <+ », Given any

positive integer n, there exists a sequence {I[m:m =1,2,...} such that for m » «,
o, - f uniformly and

lim inf a(Hm) < LQ[f] +%1~ ’

Il -~ o

thus there is an m such that

I, - £]], <3

and

am,) < Lylfl + % )

This m depends on n. Write [I(n) in place of I, = then

1
In@ - £, < &

1
a(i(n)) < LQ[f] +=.



Iet now n - « to conclude that
I(n) -~ £
uniformly and

Lim sup a(I(n)) < Ly [f].

n - o
On the other hand,
LQ[f] < lim inf a(Ii(n)).
n - o
Hence the lemma.

8: N.B. This result is known as the proper sequential limit principle.

9: THEOREM Let £:Q0 - R be a continuous function. Suppose that fn:Q -+ R

(n=1,2,...) is a sequence of continuous functions such that fn + f uniformly —-
then

Lylf] < lim inf LIE ].

n - o
PROOF Assume without loss of generality that

l;m:zf LQ[fn] < + « and LQ[fn] <+ o (vn).

Given n, choose per supra a sequence {H‘nm:m =1,2,...} of quasi linear functions
uniformly convergent to fn (m + ») with
a(Hnm) -> LQ[fn] (m > o).

Accordingly

and for each n there exists an integer m = m(n) such that

1 1
S < Fand [a(l ) - LQ[fn]I <z .



Next, vw € Q,

L, &) - £(w) |

i A

N = Eplle + 115, = £]1,

6rﬂ'ﬂ+ Ilfn-.fl‘oo

A

S lE, - ],

A

>0 (n > o).

Put

T

and let

L
i

{Hlflzn =1,2,...}
so g' € 5. And

LQ[f] < lim inf a(rfr'l)

n > o

= lim inf (a(r,;l) - LQ [fn] + LQ[fn])

n -+ o~

[t

1im (a(I[lfl) - LQ[fn]) + lim inf LQ(fn)

n »> o N » oo

0 + lim inf Lo [f ]

n > o

|

lim inf L (£ ).
n - o Q"n

Therefore lebesgue area is a lower semicontinuous functional in the class of

continuous functions (the underlying convergence being uniform).

[Note: It can be shown that ILebesgue area is a lower semicontinuous functional

in the class of continuous functions relative to pointwise convergence.]

Here is a simple application: If V n, LQ[fn] < LQ[f] , then LQ[fn] - LQ[f] .



In fact,

A

lim sup LQ [fn] < LQ [f]

n->«

while on the other hand,

v

lim inf L [f ]
n

L. [f].
no e © 0

10: LEMMA Let L* be a functional in the class of continuous functions
which is lower semicontinuous per uniform convergence and has the property that
for every quasi linear I,

L*[M] = a{l).

Then for every £,

L*[f]

In

LQ[f] .
PROCF Choose & € E such that

a(l)) ~ LQ[f] n + «)

and note that

L*[f] < lim inf L* [Hn]

n >

Il

lim inf a(ll)
n—)-oo n

IA

LQ[f] .



§3. GEOCZE AREA

The setting for the notion of Iebesgue area is the unit square

Q= [0,1] x [0,1].
However there is no difficulty in extending matters to oriented rectangles R < Q:

a<x<b (ac<b)
(Rl = (b -a) (d-c).

c<y<d (c<d

The theory thus formulated applies to any real valued continuous function on
R. In particular: Given a continuous function £:Q - R, let fR be its restriction

to R and denote its Iebesgue area per R by the symbol LQ [fR] .

Introduce
T G (ER) = 2 E6,d) - £0x,0) ax
| GyER) = Jg |EBy) - £y |ay
and put
2 2 2 1/2
T(£;R) = [Ge(£:R)™ + (G (£;R)” + [R[T] ~
1l: LEMMA

[(£R) < Lyl

Iet D be a subdivision of Q into nonoverlapping oriented rectangles R (lines

parallel to the coordinate axes).

DEFINITION The sum of Geocze is the expression

G(£;D) = £ T(f;R),



the summation being taken over the rectangles R in D.

So
G(f;D) < LQ[fR].
And
)} LQ[fR] < LQ{f].
Therefore
G(£;D) < LQ[f].

3: NOTATION Put

r'.[f] = sup G(£;D),
Q D

the Geocze area of f.

Then v D,

G(£:D) < L If]

I’Q[f] < LQ[fI.
[Note: This inequality is trivial if LQ[f] = + «, thus there is no loss of

generality in assuming that LQ[f] < 4+ »,]

s THEOREM

FQ[f] =1 [£f].

This assertion is nontrivial, the first step being to establish it when

of

== P(x,y)

of

’ _E?Y- = q(x,y)

exist in Q and are continuous there.



® Write

P £, - £(x,0) |ax

Gy (£:R)

(b - a) |f(g,d) - £(§,0)| (@ <& <b)

Il

b-a)@-=oalaEn]| (<n<d

‘RI iq(im)‘ l-

e Write

£ 1y - £y |dy

Gy (£7R)

1

(d=-c)|E®mw - f@w| (¢ <u<d

@d-c)b-a)|plvuw| @<v<b

RI[p(v,w) |

Consequently
5 2 1/2
L +pu)” +aEm™1 R

2 2 1/2
[1+pEn” +qg&,n”] IR| + €R|R|:

I'(£;R)

|

where R tends to zero with the diameter of R.

Iet again D be a subdivision of Q into nonoverlapping oriented rectangles
R (lines parallel to the coordinate axes). Since I |R| = |Q| = 1, it follows that

G(£:D)

r TI£;R)

2 2 /2
Z 1+ pEm~ +aEm™] [R|+ el

I

Here € ~ 0 when § -~ 0 (§ being the maximum diameter of the rectangles R in D).
Replace now D by a sequence {Dn} and assume that (Sn + 0 (n » ») — then the
sum

) 5 1/2
L [L+pEm” +qEm7] R



tends to the integral
1/2

A+t + P axay,
0
hence
1/2
Lim G(ED) = /f QL+p°+qg) B
n->ow 0
or still,
SV
TIEl 2 75 L +p° + gD axdy
0

1

LQ[f] (see below).

But, as has been noted above, it is always the case that
< .
I‘Q[f] < LQ[f]
So in the end,

I‘Q[f] = LQ[f] .

5: CONSTRUCTION There is a £ € E such that
2 5 1/2
a(l) (>« > /f (L+p° +q) dxdy.
Q
6: LEMVA
2 212
LQ[f]=ff (1+p~ +9g) dxdy.
Q
PROCF
2 2 172
S/ A +p +q) dxdy
Q
< I‘Q[f] < LQ[f]
< lim inf a(ll ) = lim a(m)
n -+ o n - w©

2 2 1/2
S (L +p +q) axdy.
Q



7: EXAMPLE Suppose that f(x,y) is independent of y -- then —g—f; = 0 and
of

5~X—=f (%), hence

1/2 1/2

gra+pt+d) ady=ry A+ E NS ax

Q
It remains to establish that
To[£] = Ly [£]
in general. To this end, denote by Q a concentric square completely contained

in the interior of Q, let 0 < h <%‘— put

<1l~-nh

I

ny
In
e

Qh:
h

[ AN

ysl"hl

and assume that for h sufficiently small, Q < Q -- then there exists a continuous

function fh:Qh + R with the following properties.

a‘fh af'h _ _ ‘ '
(a) = 3y exist and are continuous functions in Qh.

() Tolfy] < Tolel.

(c) fh +~ £ (h » 0) uniformly in Q.

Granted these points, on the basis of the earlier considerations, from (a),
thus by (b),

Lylfy) < Tolfl < Tylf)

lim sup L [f, ]
hso 2 B

LA

To [£].



But, thanks to (c),

In

lim inf L
olfl-

L. [f]
9_ h-=+0 =

And then
Lg[ffl

IN

lim inf L.[£
in inf Lolg ]

In

lim sup L. [£
N Y

IA

I‘Q [f] < LQ [f].

Suppose now that Q invades Q:Q + Q, hence

Lg [£] -~ LQ[f]

Ly[fl < Tolf] < LyIf]

I‘Q[f] = LQ[f] .



§4. APPROXIMATION THEORY

To finish the proof that
Iy [£] = LQ'[f],

we have yet to establish the validity of points (a), (b), (c) as formulated near
the end of the preceding § and for this, it will be necessary to set up some

machinery.

1: DEFINITION Iet f:Q - R be a continucus function and let 0 < h < %— -

then the function

1
£ (x,y) =4—h7f_1h £ £+ gy + wdmdy
defined in the square
~ h<x<l-h
Qn:
h<y<l-h

is called the integral mean of f.

2: LEMMA fh:Qh + R 1s a continuous function.

3: LEMMA fh—>f (h -~ 0) unifomly:ingth.

of, th
4: IEMA 1 , ——= exist and are continuous functions on Q :
—_ oxX oy h
S ¥ 1 A [fx+h,y+n) - £x-h,y+nld
3%- - 4h2 ~h 1Y n Y n N
%%, 1 n
B 5 = Z}? Iy [f(x+ &£,y +h) - £(x+ &g,y - h)ldg.




5: N.B. Accordingly points (a) and (c) are settled.

The validity of point (b), i.e., the assertion that
I'g[fh] < I'Q[f]

is not so easy to prove.

Start by fixing an oriented rectangle R c Q:

a

N

X <b (a < b)

r Rl = (b -a) (c-4d).

_czgyg<d (c < d)
Then
£, (x,d) - £ (x,0) |
< —1-5 Jl_lh fljh [fEx+ &,d+n) - £(x + &,c + n) d&dn
4h
=>
G (5:R) = /2 £, (6,) - £ (x,0) |dx
< —l—fh fh dgdn/‘b |[f(x + &,d+n) - £(x + g,c + n) |dx.
4h2 -h "-h a
Iet Rgn be the rectangle obtained by subjecting R to the translation
X=x+ g
_ y=y+n,
thus
; = + - + +
Gy(EiR, ) = fo [Ex + £, + ) = £+ £,0 + n) |dx
and so

1

h h
Gy (£, 5R) < 2 f—h U GX(f;REn)dEdn.



Analogously
(£,5R) <=5 2 P G, (6R, )aan.
%n 4n? SR
Finally
IR = |Rg, | =————/h fhh IR, |agan.
To summarize:
6: LEMMA
l/2
(£;R) < [Gy (£ iR) 24 Gy (£, 2 4 lR[ )|
<t [(thh (fR)dd)2
< 2;2- -h Gy £n gdn

2
+ Uy, 7B Gy (e azan)

l/2
+ (fh J"h IRF, ]d?;dn) ]

7: RAPPEL Under canonical assumptions,

2 2 172
(Ug 02+ ooe + (g 0)2)

2

5 1/2
fg O] + ==+ + 40 .

Therefore
1/2

2 2
+ ]R€n| ) d&an

1 2
(£ R) < Z};—Z-ﬂ_‘h Py GgER )%+ G (ER,)

_1 R
-2 f*_lh I3, T(E:Rg ) dEan.

Suppose now that D is a subdivision of Q into nonoverlapping. rectangles R



(lines parallel to the coordinate axes) -—— then

G(f, ;D) = % T(f;R)

1
< Zl;z" f{_lh fl_}h % T(f,Rgn)dEdn,

the sum under J{l h flj L, being the sum of Geocze (for f) relative to the division

D, of Q

e 20 c Q into rectangles R

£’ thus a fortiori,

 T'(£R n) < FQ[f]

g

G(£,:D)

IA

1
= £ 1B TolElagan

I [f]
Q2 fh Jh d&dn
2 ~h-h

il

FQ[f]

=>

sup G(£; ;D)
D h

Fg [£]

A

I‘Q[f] '

from which point (b).

8: LEMMA

LQh [fh] < LQ [£]
and

L.[f] = 1lim L. [f].
Q h+Oth



Since
of of 1/2
h, 2 h,2
LQ [fh] ff[l+(ax) +(3y) ] dxdy,

h Qh

it follows that

_ . 1-h . 1-h 1 , 2
LQ[f] = hli.mo fh fh L+ (El'z— ./i:h (f (x+th,y+n) , - E(x-h,y+n))dn)
1 3 1/2
+ (5 S (E(xHE,yHh) - £(ebE,y-h))AE)T]  axdy.
4h

* % %k % % k¥ k¥ k% % % % %

What follows will not be needed in the sequel but it is of independent

interest.

9: DEFINITION Iet £ € L(Q) and let 0 < h < % —— then the function

£ (x,y) = 4% PP £ e,y aan

defined in the square

h<x<1l-h

h<y<l-h

1A

is called the integral mean of £f.

10: LEMMA fh:Qh -+ R is a continuous function, hence

_ 1
I r lfh} <+ 0 => fhEL(Qh).
%h

11: IEMMA v £ € Ll(Q),

15,115 5 1IEl] ;-



PROOF
I f Ifh(x,y)ldxdy
%

1-h .1-h
=/, fh }fh(x,y)[dxdy

1 1-h1-h h
Sz h U2 B | £6ere yem) |dzan)andy
1 h h ,I-hl-h
2 I Up T [E (e yn) | dxdy }dgan

1 fh fh ( J,1.----1’1+€ fl-h+ﬂ

7 fon Ty Viee Tien |£(0Y) |axdyldEdn

IA

th
1 /h h ,.1 .1
Sz nln oo |£ (x,y) |dxdy }dEdn

IN

1
—= (2h) (zh) | |£]]
A2 L

HfHLl <+ e

12: REMARK An analogous estimate obtains if f € P @< p <+ :

el o 2 TIEN o
h''p 1P
13: ILEMMA As h ~ O, fhconverges almost everywhere to f.
14: IEMMA

S L |E - £] >0 (h>0).
%



PROCF Given € > 0, write £ = ¢ + ¢, where ¢ is continuous in Q, ¥ is

integrable in Q, and f / [¢| < € —— then
Q

IS g - £
h
9

=S 0 | +9) - (@ + )|
h ~ *h

9
ST S o=l * 0 sy - vl
% 9
SIS e = ol + S S fwl+ TS (Y]
% % o5
<f7

6, =~ ol + 7 S v+ 7 S |yl
Q 0

IA

Sl =l +20 7 [y
0

IN

ff|¢n—¢[+2€.

%

Since ¢ is continuous in Q, it follows that in Q ,

uniformly, hence
T/ | —¢] >0 (h-0).
3 h
h
So for all sufficiently small h,

ST o, —¢] <e
h
%



Lim JJ [f - £]| < 3e.
h->0 Qh

15: REMARK An analogous statement obtains if £ € IP(Q) (L <p < + «):

[ rlg - £ >0

%

16: LEMA If £ €1P(Q) (1 <p <+ =), then

ox oy
belong to IP(Q,).
of
PROCF Take p > 1 and consider ST thus
of
h_ 1 y+h _ _
= = 2 fy_h [f(x+h,n) - £(x-h,nldn

almost everywhere in Qh' the claim being that the functions
y+h
fy—h f (zt+h,n)dn

fgig f(x-h,n)dn

are in 1P (Qh) . To discuss the first of these, write

/IR £Gehymidn = ) £Geh,yim)an.

Then

| f_‘h £ (x+h,y+n) dn | P



< (2Pt /l:h | £ (+h,y+n) [Pan.

Since f € 1P (Q), | £ (x+h,y+n) [p is integrable in

h<x<l-h,h<y<l-h -h<n<h.

Therefore

I

T |EGeth,yin) [Pan

is integrable in Qh' hence

fh

O, |£Geth,yn) |Pan

is in P Q)



85. TONELLI'S CHARACTERIZATION

Iet £:Q0 > R be a continuous function.
1: DEFINITION

VX(f§Y) = Tf (__,Y) [Or]—} (0 1)

A
o
N

V,(Eix) = Tg 10,11 (0 <

A
%
1A

1).

2: IEMA

- VX(f;«) is a lower semicontinuous function of y € [0,1]

Vy(f;—) is a lower semicontinuous function of x € [0,1].

PROCF Consider the first assertion and suppose that Y, * Y then

£ (x,yn) - £(x,y)

T 0,1] <« 1im inf T 0,1].
f(—IY)[ ' ] - n - o f(“ryn)[ ! }
I.e.
Vx(f;y) < lim inf Vx(f;yn) .
n - <
3: SCHOLIUM Vx(f ;— and Vy(f ;—) are Lebesgue measurable.
4: DEFINITION (BVT) £ 'is said’to be ofbounded variation in the sense of
Tonelli if

1
fo VX(f;y)dy <+

l (oo}
[}V, (Eix)dx < + =



5: NOTATION

— l e l °
Vp(B) = S5 V, (E5y)dy + 5 U (Erdx.

N.B. Accordingly, if VT(f) < + «, then

ey = {y € [0,1]:V_(£f;y) = + «}
is of Iebesgue measure zero and
ey = {x € [0,1] :Vy(f;X) = + o}

is of Lebesgue measure zero.

7: LEMMA Suppose that Vi(f) < + o —— then £]0” € BV(Q”) and

of

fX = exists almost everywhere in Q
_of . .
fy =% exists almost everywhere in Q.

8: LEMMA Suppose that VT(f) < + o — then

I r ]fx(x,y) |axdy < fg)' VX(f;y)dy <+
Q

IS £ y) |Gy < SV (608K <+ o
o Y y

_ fx
e 11 Q)
£
Y
=>
1/2
2 2 1
[l+fx+fy] e L (Q).



9: THEOREM L [£] is finite iff f is of bounded variation in the sense

of Tonelli.

Assume to begin with that LQ [f] is finite. Iet D be the subdivision of Q

specified by
X0=O <Ky < eee <xj < ees <xm=]_
~ y0=0 <yl< PP <yk< cs e <yn=l
and introduce
— m-1
v (£;y;D) = j-EO [EGey o) — £ | (0 2y 2 1)
n-1
~ vy(f;x;D) = kio ]f(x,yk+l) - £ix,7) | (0 <x<1).

Then

Il

1
.fo vx(f,y,D)dy by Gx(f,R)

l o
fo vy (EixiD)dx = I Gy(£iR),

the summations being over the rectangles R in D. Next
Z GY(f;R)
< G(£;D) < LQ[f].

L Gy(£sR)

Therefore

1
[y Vg (EiyiD)dy
< LQ[f] < + o,

1
fo Vy (f;x;D)dx



From the definitions,
0 < vx(f;y;D) < VX(f;y)

0 <v (£;x;D V _(f:x).
< v, (£ixiD) <V, (£5x)

So, upon sending the maximum diameters of the rectangles R in D to zero sequen-

tially, we conclude that
lim v, (£;y;D) = V_(£;y)

lim Vy(f;x;D) = Vy(f;x)

l — l ] o -
fO VX(f,y)dy = IO lim vx(f,y,D)dy
v Esrax = L lim v (£:x;D)dx
0 y 7 0 Y 7y

or still,
< lim inf fé VX(f;y;D)dy

(Fatou) < LQ[f] < + o,

. 1
< lim inf fo vy(f,x,D)dx

Consequently, under the supposition that LQ[f] is finite, it follows that f is

of bounded variation in the sense of Tonelli.

To reverse this, note first that for any D,

vx(f;y;D)

IN

VX(f;y)

IA

v.__(£;x;D V. _(f:
y( ) y( X)



DG, (ER) < I3V, (£iy)dy

I Gy (£iR) < /g v, (£:%)x.

And
T(£iR) 2 G (fiR) + G (f;R) + [R]
=>
G(£:D) = £ T(£:R)
< I G (fiR) + I Gy (£5R) + Z [R]
< fl V. _(f;y)dy + fl V. (;x)dx + 1
-0 x 0 vy’
= VT(f) + 1.
However
T [f] = sup G(£;D).
Q D
Therefore
I*Q[f] < 4+
=>
LQ{f] < 4 oo,

10: REMARK Individually

1 1 .
Iy Ve Eay, [y V, (Edx, 1

are all < Lo{f] .



§6. TONELLI'S ESTIMATE

Iet £:0 + R be a continuous function.

1l: THEOREM Suppose that LQ[f] is finite —= then

1/2

L[F] > [ [ [+ +£2]  dxdy.
Q 0 X Y
Iet D = {Rl, 2""’Rn} be a subdivision of Q, where

1& = [ak’bk] x [ck,d,k] k=12,...,n).

2: LEMMA Given € > 0, there is a D such that

NI, )2 4 (S 12+ | |2]l/2
| £ axdy)? + £ dxdy)© +
=1 Tk ¥ Ry &
R
-/ J 1+ £+ £7] dxdy| < €.
Q * Y
[Recall that
- f
X
e 1t Q)
£
Ty
and use the Vitali covering lemma. ]
Proceeding
n
|z LAY ors <k
k=1 0
=>
n
| 77- 3 [...1%%] <«



F -3 -1 e
0 k=1
=>
n
Yo
k=1 0
=>
1
T .02 s s
k=1 0
And
n
roifl = I 12, 4y
k=1 0
But
Iolf] = Tylf].



§7. THE ROLE OF ABSOLUTE CONTINUITY

Iet £:Q - R be a continuous function.

l: DEFINITION (ACT) £ is said to be absolutely continuous in the sense

&f Tonelli if it is of bounded variation in the sense of Tonelli and if

For almost every y € [0,1], the function x » f(x,y) is absolutely continuous

For almost every x € [0,1], the function v + f (X,y) is absolutely continuous.

2: REMARK Since f is BVT, the ordinary partial derivatives

of of
% & 3y

belong to LY (Q). So, thanks to ACL,

£ew ).

3: NOTATION Put

o™ R = 10, 1-n) x [0, 1-k],

where
0<h<1
_ 0 <k < 1.
4: PICTURE
1
1 -k
Q(h,k)




5: NOTATION Given an ACT function f, put

£ ,y) = g P T £En) azan.

6: LEMA
b ok 000 | aay < I 5 1£6y) | ady.
7: LEMA
§L2'Xk)_ = o S5 f§+k ¢ agan
A R Y 3
oy hk "x y on

(h,k)

[Note: It follows from these relations that £ is a C' function.]

Therefore
1-h 1-k [/ h, k). 2 h,K) .2
fO fO 1+ [fx 1° + [fy 17 dxdy
= AR ARG L P K apan?
0 0 Rk ‘0 7o 959N

LG g Sy £+ £,y + ) dgan)?

LB Re x+g, y+n) dgan?} dxdy

I o Jo By



T g 5 A ey

+ I (x4 8 v+ n1%} dgdn] dxdy

[fg“h“”zfl SURV N f2 + f}% dxdy] dkdn

h k
fO

7o

-

1 1.1 )
sm-fgf}g[fofo 1+ £ + £ dxdy] dgan

B

A+ £2 + £2 dxdy
x "ty

hk
T /
_ A+ £2 4 £2

—fo l+fx+fydxdysLQ[f].

8: RAPPEL During the course of establishing that
T [f] = L.[f],
Q[ ] Q[ ]
it was shown that if f was C', then

nlel =7 s+ gh%+ gHAY?

Q

dxdy.

So, upon applying this to f(h'k) , the upshot is that

= PR A g2 212 aay.

9: SCHOLIUM If f is absolutely continuous in the sense of Tonelli, then

1/2

L[] = ff[1+f +f] dxdy.

Q



[In fact,
.. (h,k)
L.[f] < 1lim inf L [£ ]
Q hoo oWBX
k>0
. (h,k)
< lim sup L [£ 1
h-o o®%
k>0
<SS+ £l £211/2 gvay
0 y
< LQ[f] .1

10: EXAMPLE Suppose that f:R2 + R is a C' function. Put

Grf(Q) = {(le}r fx,y): (x,y) € Q} .

Then
I s [1+f}2<+fz]l/2

dxdy.
0 Y

i

H (Grg @)

Consequently

]

2
H™ (Grg (@) = T [£].

Matters can be reversed, namely:

11: SCHOLIUM If f is of bounded variation in the sense of Tonelli and if

_ 2 2.1/2
LQ[f] = [/ J [l+fX+fy_]

Q

dxdy,

then f is absolutely continuous in the sense of Tonelli.

We shall sketch the proof.



12: LEMMA For every oriented rectangle R < Q,

1/2

Lolf] = J J [1+ £ dxdy.

+f2]
R A £

Explicate R < Q:

a b (a < b)

I
»
A

, IRl = (b-a) (c -4d)

c<sy<d (¢c<d)

and introduce

W (E5R) = /S V, (£y) dy
W (E:R) = PV (£:%) dx.
y a'y

13: ILEMVA For every oriented rectangle R ¢ Q,

W (£R) < Lplf]

~ Wy(f;R) < LR[f].
Therefore
— . 2 2,1/2
Wx(f,R) < fRf 1+ fX + fy] dxdy
. 2 2.1/2
_ Wy(f,R) < fRf [1+ fX + fy] dxdy.

Denoting by R the set of oriented rectangles in Q, a rectangle function is a

function ¢:R +~ R. So, e.g., the assignments

R‘*Wx(f;R)

(RER
R > W _ (£;R
> Y( )



are rectangle functions.

14: DEFINITION A rectangle function R + ¢(R) is said to be absolutely

continuous if for every € > 0 there exists § > 0 such that
[O@®R)| + e + [9R)| < &
for every finite system of oriented rectangles Rl' .o ,Rn which satisfy the conditions

R‘i’nR‘J?=ﬂ(i;£j)and|R1|+...+|Rn]<6.

15: CRITERION If & € L1(Q) and if

d@R) =S/ |¢| d&xdy (R € R),
R

then ¢ is absolutely continuous.

6: APPLICATION The rectangle functions

——

R > WX(f;R)
(R € R)
R » Wy (£;R)
are absolutely continuous.
[Note: Bear in mind that
L+ £+ f§, V2 ¢ Mgy

Recall that the contention is that £ is absolutely continuous in the sense of

Tonelli, i.e.,

For almost every y € [0,1], the function x + f(x,y) is absolutely continuous

__ For almost every x € [0,1], the function y - £ (x,y) 1is absolutely continuous.



Consider the first of these assertions. Using the absolute continuity of

Wx (f;R) to eliminate a potential singular term, we have
W (£:0) =/ J |, ()| dxdy.
Q
On the other hand, by definition,
W(£:Q) = SX V. (Fiy) d
x ! 0 Vx\ti¥) Y.
Therefore
oy - E Gy | axd ay = 0
0 "'x'' 0 '"x :
But
V(i) = LGy | ax
x Wiyl = Jg L Ry

for almost every y in [0,1]. Therefore

_ 1
V (£iy) = Sy [f 0y | ax

for those v £ E, .where E is a certain subset of [0,1] of ILebesgue measure 0. And

this implies that f(x,y) is absolutely continuous as a function of x for y £ E.

17: N.B. In general, if f is of bounded variation in the sense of Tonelli,

Il

1
WX(f;Q) fO V. (£iy) dy

v

I Ug 1£, Gy) | axl ay

Il

Jf |fX(XIY)1 dxdy,
Q

the inequality becoming an equality in the presence of the absolute continuity of

R » WX(;E;R) .



§8. STEINER'S INEQUALITY

Suppose that
fl:Q + R
fZ:Q -+ R

are continuous functions.

1l: THEOREM

L.[£.1 + L. [f,]
Q"1 Q2
LQ[(fl+f2)/2] < 5

PROCF The assertion is trivial if
LQ[fl] =+ » or LQ[fz] = + o,

so it can be assumed that both are finite. Accordingly, given a subdivision D of Q,

form the sums of Geocze per fl’fz’ and (fl + f2)/2, hence

G(fl;D) + G(fZ;D)
2

G((£; + £5)/2;D)

IA

LQ[fl] + LQ[fZ]
2

A

G((£) + £,)/2;D)

LQ[fl] + LQ[fz]
2

A

Lol (£ + £5)/2]

2: RAPPEL If f:Q » R is continuous, then LQ[f] is finite iff f is of
bounded variation in the sense of Tonelli, there being the estimate

2, 2,172
Lyl = [ [ 1L+ £+ £

Q

dxdy,



the inequality becoming an equality iff f is absolutely continuous in the sense of

Tonelli.
Suppose that
fl:Q + R
B f2:Q -+ R
are absolutely continuous in the sense of Tonelli —— then the same is true of

(fl + fz)/2 and Steiner's inequality is the relation

2 2 .1/2 2 2 .1/2
;s {[1 + flX + fly] + [1 + f2x + f2y]
0 2
£+ £ £+ f
- [1+ (_15_5__2552 + (.EX;E__gZ)Z]l/z} dxdy = 0
or still, that
1.2 Ffixo2 . Fiy o210 1.2 Fox2 . Foy21s
JTHIE + D+ D17+ 3+ %+ D9
0 2 2 2 2 2 2
£ £ £ £
1.1 1x | T2x 2 by . T2y.2,1/2
- [(§-+ i) + (—5—-+ —5—) + (—§~'+ -j—ﬁ ] } dxdy = 0.
3: LEMVA
k k k k
2 .2 21/2 2 2 2.1/2.
Y (a. + b, +c.) > [(Z a,)"+ (2 h)"+ (2 c,)7]
i=1 1 1 1 - =1 1 i=1 1 i=1 1

To conclude that the foregoing integrand is nonnegative, take k = 2 and



1 2" "1 2771 2
£ f
1 _ 2% _ 2y
8y =g Py =g 6= 5

Suppose that f1 and f2 are absolutely continuous in the sense of Tonelli and

- £, is a constant. To

that equality obtains in Steiner -— then the claim is that fl 2

establish this, observe first that

S A{...}axdy = 0
Q

and since the integrand is nonnegative, it must be equal to zero almost everywhere

in Q. This implies that

P = o T1y = Ty
almost everywhere in Q or still, that
2 211/2 -0

[(£, = 507 + (£, = £5)

almost everywhere in Q.

4: NOTATION E c Q is the set consisting of

(1) All lines x

il

x. such that fl (xo,y) ’ f2 (xo,y) are not both absolutely

0
continuous in y.

(2) All lines vy

Yo such that fl (x,yo) ’ f2 fx,yo) are not both absolutely

continuous in Xx.

(3) All points (x,y) such that

£ &)y £y (Y), fly(x,y), fzy(x,y)

are not all defined.



(4) All points (x,y) at which

2 _ g L2

- fZX) + ('fly

[(Ey, # 0.

5: N.B. E has planer measure zero, hence for almost all points (xo,yo) €Q

the lines x = Xy and y = Yo have in common with E at most a set of linear measure

ZeX0.

Fix one such point (xo,yo) and let (x,y) be any other point with the same

property —— then

- = Y
£ (y) = £ (x007,) f§0 Fipber¥g) d + fy 1 Gy) oy

- = 4
£,06,) = £5(x0:¥) = fXXO FuBr¥g) G+ fy

Since apart from a set of linear measure zero the integrands on the right are equal,

it thus follows that

fl(x,y) - £,y = fl(xo’yo) = £5(xqr¥g)

which is true for almost all (x,y) in Q, hence for all (x,y) in Q (fl and f2 being

continuous).

EXAMPIE It can happen that equality prevails in Steiner, yet neither fl

nor f2 is ACT.

[Iet ¢(x) be a continuous monotonically increasing function such that ¢'(x) = 0

almost everywhere and ¢(0) = 0, ¢(1) = 1. Working in [0,2] x [0,2], put

|
o

(0

A
b
IA

1, 0

N
[IAN

£ &y) = y = 2)

iA
»
A

2’0

IA
IA

2)

£, GLy) = o6 = 1) a y



and

@ (x) (0

f2 (x,v) =1 (1

Then

LQ[(fl + f2)/2] =6

I lf,] = 6
Ll = 6
=>
6=0+6_12_4,

A

IA

IA

IA

l,o

IA

A

A

AN

2)

2).



§9. EXTENSION PRINCIPLES

Let ¢:R + R_ . be a nonnegative rectangle function.

0

: PROBLEM Determine conditions on ¢ which imply that ¢ can be extended

to a measure on B(Q) (the o-algebra of Borel subsets of Q).

2: DEFINITION ¢ satisfies condition C if for every choice of the systems

rlpooa’rk

rese R se.n
BBy

of oriented rectangles such that

riﬂrj=,6 (i #3)

rlU... UrchlU... URnU... (finite or infinite)

there follows

Blry) + vee +0(5) S OR) + oee FOR) + o0 .

3: DEFINITION ¢ is continuous if for every € > 0 there exists § > 0 such

that ¢(R) < € for every oriented rectangle R such that IR] < §.

CRITERION If ¢ is finitely additive and continucus, then ¢ satisfies

-
-
i

condition C.

5: N.B. Suppose that ¢ is a Borel measure — then the restriction ¢ = @|R

satisfies condition C.



[Put Bl = Rl’ B2 = R2\R ’

. By =RAR U --- UR _),uen o

¢(I‘l) + e + ¢(rk)

@(rl) + e + cb(rk)

CID(rl U ees U rk)

IA

@(Rl U eee UR Usss)

]

®(Bj U ++- UB_ U--:)

@(Bl) F oeee + @(Bn) F oeen

A

@(Rl) + eee + @(Rn) + e

1

QR + ove + QR + -o-

6: NOTATION Given a set E ¢ Q, let
I*(¢;E) = inf Z ¢R)),
where the inf is taken over all rectangles Rl, .o 'Rn” .. (finite or infinite) of
oriented rectangles in Q such that E ¢ U Rn (take T (4,9) = 0).

7: LEMMA Suppose that ¢ satisfies condition C -— then T'*(¢;—) is a metric

outer measure.

8: NOTATION Put

T(¢p;—) = T*(¢;—) |B(Q),



a measure on B(Q).

9: THEOREM ¢ extends to a measure on B(Q) iff ¢ satisfies condition C.
PROOF The necessity follows fram #5 and the sufficiency follows from #7

(obviously, ¥V R € R, T(¢;R) = ¢(R)).

10: ILEMMA If ¢ and ¥ are Borel measures and if ¢(R) = ¥(R) (VR € R),

then ®(E) = VY(E) (V E € B(Q)).

Suppose that £:Q + R is of bounded variation in the sense of Tonelli and recall

that

W (E:R) = /Y, (F5y) dy

.R) = /P .
W (£7R) = SV, (£:x) .

It is clear that

W (£;—)

Wy(f;m)

are finitely additive and it can be shown that they are continuous. Therefore
WX(f =)

Wy(f;-“)

satisfy condition C (cf. #4), thus they each admit a unique extension to a measure
on B(Q), denoted
WX (£;E)
E -~ (B € B(Q)).

Wy (£:E)



Accordingly there are Lebesgue decompositions

2 ,.0
fEf £, dL” + W (£:8)

Wx(f;E)

_ 2 0,c.
Wy(f,E) I Ifyl dL +Wy(f,E),

— E

where
W (f;—)

0

are singular.



§10. ONE VARIABLE REVIEW

Tn the Frechet process, take for X the quasi linear functions I on [0,1],

take for d the metric defined by the prescription
a(ry,T,) = f7 |1 (&) - T, &) |ax
1'2 “fo II‘lX sz)l ’

and take for F the elementary length —- then lower semicontinuity is manifest,
D)

as is property (A). Here X = Ll [0,1] and property (B) is satisfied:

l: DEFINITION Put

yie] = F(E) (£ € 11[0,11)

and call it the generalized variation of f.

2: DEFINITION (gBV) A function £ € L'[0,1] is of generalized bounded

variation if

3: NOTATION gBV[0,1] is the set of functions of generalized bounded

4: THEOREM Iet f € Ll [0,1] —= then £ is of generalized bounded variation

iff there is a g € Ll[o,l] which is equal almost everywhere to f and Tg[(),l] < + oo.

Therefore

Bv[0,1] < gBV[0,1].

5: THEOREM Suppose that f € gBv[0,1] -~ then

Uif] = inf{Tg[O,l] :g = £ almost everywhere}.



6: RAPPEL Given an f € Ll[O,l] ' Cap(f) is its set of points of approx-

imate continuity.
7: N.B. Cap(f) is a subset of [0,1] of full measure.

8: LEMMA If £ € L'[0,1], then
n~-1
Y[f] = suwp z {f(xi+l) - f(xi) |/
i=1
where the supremum is taken over all finite collections of points X, € Cap(f)

subject to Xy <R

[Note: IfE c Cap(f) is a subset of full measure, then the supremm can

be taken over the X, € E.]

.
-

RAPPEL If fn + £ in Ll[O,l] , then there is a subsequence {fnk} such

that fnk + f almost everywhere.

10: IEMMA Y is lower semicontinuous w.r.t. convergence almost everywhere,

i.e., if fl’fZ’"' is a sequence in Ll[o,l] that converges almost everywhere to

fe Ll[O,l] , then

4[f] < lin inf U[f ].

n -+ o

11: DEFINITION The essential derivative of f at a point x is the derivative

of £ computed at x after deleting a set of Lebesgue measure 0.

12: THEOREM Suppose that Y[f] is finite ~ then the e'sser_itial derivative

of £, denoted still by f!, exists almost everywhere and

1
q[£] 2/, | £ (x)] ax.



Moreover equality obtains iff f is equivalent to an absolutely continuous function.



§11. EXTENDED LEBESGUE AREA

In the Frechet process, take for X the quasi linear functions II on

[0,1] x [0,1] (= Q), take for d the metric defined by the prescription

a(my iy =/ /|0 (xy) - I, Gx,y) | dxdy,
Q

and take for F the elementary area —— then lower semicontinuity is manifest, as is

property (A). Here X = Ll(Q) and property (B) is satisfied.

I

DEFINITION Put
4If] = F(E)  (fe (o)

and call it the generalized variation of f.

2: EXTENSION PRINCIPLE Suppose that £:Q + R is continuous —— then
qQ[f] = LQ[f].

3: N.B. Therefore qQ can be viewed as an "area functional" on L}(Q),

there being no a priori assumption of continuity, which justifies calling qQ

extended Iebesgue area.

:+ LEMMA Suppose that f£:Q -+ R is continuous.

e If LQ[f] < + », then for every € > 0 there is a § > 0 such that if

g:Q »~ R is continuous and
|£6,y) - gx,y)| < 8

on a set of measure greater than 1 - §, then

LQ[g] > LQ[f] - €.



e If LQ[f] = + «, then for every M > 0 there is a § > 0 such that if
g:Q -+ R is continuous and
|[£,y) - gx,y)| < 8

on a set of measure greater than 1 - §, then

LQ [g] > M.

There are two possibilities:
LQ[f] < 4+ o Oor LQ{f] = + o,
For sake of argument, consider the first of these.

Since uniform convergence of {‘-hn (x,y)} to £(x,y) implies that d(Hn,f) converges
to zero, it follows that qQ[fI < LQ[f]. To go the other way, take € > 0, let § > 0

be per supra, and choose a quasi linear function II such that

;rlE o a? < 82

Q

Then

|£(x,y) - I, y){< ¢

on a set of measure greater than 1 - §, hence

LQ[H] > LQ[f] - €

2 - .
qQ[f] b3 LQ[f] £
There is also a GeoOcze version of these considerations.

: DEFINITION let f € I!'_.l Q) and let R ¢ Q be an oriented rectangle, thus

in the usual notation,



b (a < b)

I\
IA
»
A

r IRl = -a)@d-c).

In

c<sysd (c < Ad)

Then R is said to be admissible if f(x,y) is approximately continuous in x for
almost all y on the boundary lines of R parallel to the y axis and if f(x,y) is
approximately continuous in y for almost all x on the boundary lines of R parallel

to the x axis.
[Note: A subdivision D of Q into nonoverlapping oriented rectangles R is

admissible provided this is of the case of each of the R.]

Using this data, one can arrive at the extended Gebcze area, denoted

HQ[f] .

|2
:
8

VIQ(f) = I{Q[f] .

: N.B. Recall that
[olfl = Iylfl - (£ € C(Q),

i.e.,

GeOcze area = Iebesgue area.



§12. THEORETICAL SUMMARY

What is said below for the integrable case runs parallel to what has been

said for the continuous case.

1: DEFINITION (gBVT) Iet f € L'(Q) — then f is said to be of generalized

bounded variation in the sense of Tonelli if

[ UEC—Y)] dy < + @

fé ULF (x,—) ] dx < + o.

The gBVI-functions can be characterized.

2: THEOREM Let f € Ll(Q) -— then £ is of generalized bounded variation
in the sense of Tonelli iff there are functions g and h equal to £ almost every-

where in Q such that

1
fo Ve (giy) dy < +

1
fO Vy(g;x) dx < + oo,

3: REMARR Suppose that £ is gBVT —— then it can be shown that there is

a function k equal to f almost everywhere in Q such that

l (o]
Jg Vi, Uciy) dy < +

1
fO Vy(k,x) ax < + e,

f BVT => f gBVT.



[Note: Recall that f BVT means, in particular, that f € C(Q), hence
1
f e L7(0).]

THEOREM HQ[f] < + « iff f is gBVT.

I3
H

6: THEOREM Suppose that £ is gBVT —— then the essential partial deriv-

atives fX and fy exist almost everywhere, are integrable, and

5 21/2
Qfl =/ S [L+f + £7] dxdy.
Q 0 X Yy

7: DEFINITION (gACT) Suppose that £ is gBVT — then f is said to be

generalized absolutely continuous in the sense of Tonelli if f coincides almost

everywhere with a function g which is absolutely continuous w.r.t. x for almost all

y and absolutely continuous w.r.t. y for almost all x.

8: SCHOLIUM

e If f is gBVT and if

2 | 2.1/2
U [fl =SS [1+ £ +£7] dxdy,
Q 0 X Y
then £ is gACT.
e If f is gACT, then
5 5 1/2
UIQ[f] =/ [ [1+ fx + fy] dxdy.

Q



§13. VARIANTS

Up to this point, the discussion has taken
Q= [0,1] x [0,1]
as the domain of discourse. Of course, matters can be extended with little change
when Q is replaced by
[a,b] x [c,d].

This done, the next step is to replace Q by a nonempty open subset Q c R2

1l: RAPPEL A continuous function f:]a,b[ + R is of bounded variation in a

nonempty open interval ]a,b[ < R provided

Tf]a,b{ < + o,

DEFINITION A continuous function £:Q » R is of bounded variation in a

nonempty open subset £ < R provided
TfSZ < 4+ o,
where

Tfﬂ = IZ; Tf]an,bn[:

the nonempty open intervals ]an,bn[ running through the connected components of

2 (admit £ <),

3: NOTATION Let Q be a nonempty open subset of Rz.

e For any real number X, let Q(x) denote the open linear set which is
the intersection of  with the straight line x = X.

® For any real mmber y, let Q(y) denote the open linear set which is

the intersection of Q with the straight line y = y.



Given a continuous function £:Q - R, introduce
V (£:y:9) = T(y)

Vy (£;2;0) = TQ(x%).

[Note: Take
TV, =0 if Q) =g
vV, =0 if Qx) = 8.1
4: LEMVA

VX(f;i—r;Q) is a lower semicontinuous function of y
in J=oo, 4o,

Vy(f :X:0) is a lower semicontinuous function of x

DEFINITION (BVT) f is said to be of bounded variation in the sense of

Tonelli if

fﬁ Vx(f;§;9)dl7 <t

s v (£ < + o,

6: ILEMMA Suppose that £:2 + R is of bounded variation in the sense of

e

Tonelli -— then

_ of

L =%
exists almost everywhere in Q

ey

fy T oY




and

IA

JIE ey | dxdy = SV (E:950) dy < + e
Q - X

A

JE Y | dxdy < SOV (£1%30) dX < + w
o Y -y

=>

).

m

2

Another setting for the theory is a nonempty open subset Q < RS, Ll (Q)

then being replaced by Ll (Q), the analog of a gBVT function now being an element

of BVLlQ.

: DEFINITION Iet f € Ll () — then f is a function of bounded variation

in @ if the distributional partial derivatives of f are finite signed Radon

measures

9 3y = -
Me Jofgmdx=-Jgedy

Y ¢ € CC(Q)

39
u fQ £ dy

) - a
y Y o ¢ duy

of finite total variation.

NOTATTON BVLlQ is the set of functions of bounded variation in Q.

Given g € it (€), put

+o - -, e - -
Viplgi) = J_ V (giyiQ) dy + J_ Vy(g:x;sz) dx.



. THEOREM Iet f € I1(Q) — then f € BVIIQ iff

inf{VT(g;Q) :g = £ almost everywhere} < + =,



