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The purpose of this book is to give a systematic treatment of fibration
theory and sheaf theory, the emphasis being on the foundational essentials.
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§0. CATEGORICAL CONVENTIONS

In this book, the foundation for category theory is the "one universe" approach
taken by Herrlich—St:cecker-r . The key words are "set", "class", and "conglomerate".
Thus the issue is not only one of size but also of membership (every set is a class

and every class is a conglomerate).
0.1 DEFINITION A category C is a class of objects Ob C, a class of morphisms
Mor C, a function dom:Mor C >~ Ob C, a function cod:Mor C ~ Ob C, and a function

o:{(f,9):f,g € Mor C & cod £ = dom g} » Mor C (o(f,g) =g o f)

such that... .

0.2 TERMINOLOGY

® Small Category: A category whose morphism class is a set.

® large Category: A category whose morphism class is a proper class.

[Note: If C is a category and if Ob C is a proper class, then C is large.]

Given a category C and objects X,Y € Ob C, it is not assumed that the class

Mor (X,Y) = {f:f € Mor C, dom f = X, cod f = Y}

is a set.

0.3 DEFINITION A category C is said to be locally small if Vv X,Y € Ob C,

Mor (X,Y) is a set.

0.4 EXAMPLE SET is a locally small large category.

T Categony Theory, Heldermann Verlag, 1979; see also Osborne, Basdic Homological

Algebra, Springer Verlag, 2000.



0.5 EXAMPIE TOP is a locally small large category.
0.6 EXAMPLE SCH is a locally small large category (cf. 23.20).

0.7 REMARK There are abelian categories A whose positive derived category

D+§ is not locally small.

0.8 NOTATION CAT is the locally small category whose objects are the small
categories and whose morphisms are the functors.

[Note: CAT is a locally small large category.]

0.9 DEFINITION A metacategory C is a conglomerate of objects Ob C, a con-

glomerate of morphisms Mor C, a function dom:Mor C »~ Ob C, a function cod:Mor C -

Ob C, and a function
o:{(f,9):f,g € Mor C & cod £ = dom g} + Mor C (o (£,9) =g o f)

such that... .

N.B. Every category is a metacategory.

10

0.10 NOTATION Given categories » the functor category [C,Dl is the meta-
D

category whose objects are the functors F:C »+ D and whose morphisms are the natural

transformations Nat(F,G) from F to G.

0.11 REMARK Suppose that C and D are nonempty.

e If F:C~ D is a functor, then F:Mor C +~ Mor D is a function, i.e., F

is a subclass

F < Mor C x Mor D.



And F is a proper class iff Mor C is a proper class.

e If F,G:C » D are functors and if E:F - G is a natural transformation,

then Z:0b C » Mor D is a function, i.e., E is a subclass
Y c Ob Cx Mor D.
And E is a proper class iff Ob C is a proper class.
Accordingly, if Ob C is a proper class, then [C,D] is a metacategory, not a

category.
[Note: If, however, C is small, then [C,D] is a category and if D is locally

small, then [C,D] is locally small.]

0.12 EXAMPLE Let ON be the ordered class of ordinals — then [QN_OP,SET] is

a metacategory, not a category.

0.13 NOTATION C€AT is the metacategory whose objects are the categories and

whose morphisms are the functors.



§1. 2-CATEGORIES
It is a question here of establishing notation and reviewing the basics.

1.1 DEFINITION A 2-category € consists of a class O and a function that assigns

to each ordered pair X,Y € O a category €(X,Y) plus functors

CX’Y’Z:C(X,Y) x €(Y,2) > €(X,2)
and
Ll — C(X,X)
satisfying the following conditions.
(2—catl) The diagram
id x C
C(X,Y) x (€(Y,2) x €(Z,W)) — —— C(X,¥Y) x C(Y,W)
A
(C(X,Y) x €(Y,Z)) x €(Z,W) C
Cc x id
€(X,2) x €(z,W) > C(X,W)
C
commates.
(2-cat2) The diagram
L R
1 x €(X,Y) > €(X,Y) < CX,Y) x1
I x idj jid x T
cX,X) x €(X,Y) > C(X,Y) < €(X,Y) x C(Y,Y)
C C

commites.



1.2 REMARK It is not assumed that the €(X,Y) are small or even locally small.

1.3 TERMINOLOGY Let € be a 2-category.
® The elements of the class O are called O-cells (denoted X,Y,Z,...).

e The objects of the category €(X,Y) are called l-cells (denoted f,qg,h,...)

(and we write £f:X —— Y or X £ > Y).

® The morphisms of the category €(X,Y) are called 2-cells (denoted o,B,

o
Yre..) (and we write o:f —>gor £ —>9).

N.B. It is common practice to define a 2-category by simply delineating the
0—cells, the l-cells, and the 2~-cells, leaving implicit the precise definition of

the €(X,Y) (as well as the CX v.7 and the IX) .
’ r

1.4 EXAMPLE There is a 2-category 2-REL whose 0~cells are the sets, whose
l-cells f:X » Y are the subsets f of X x Y, and whose 2-cells a:f —>g (f,9 ¢
X x Y) are defined by stipulating that there is a unique 2-cell from £ to g if

f ¢ g but no 2-cell from f to g otherwise.

1.5 EXAMPLE There is a 2-category 2-TOP whose 0-cells are the topological
spaces, whose l-cells are the continuous functions, and whose 2-cells are the

homotopy classes of homotopies.

1.6 EXAMPLE Let C be a locally small finitely complete category —- then there
is a 2-category €AT(C) whose O-cells are the internal categories in C, whose l-cells
are the internal functors, and whose 2-cells are the internal natural transformations.
[Note:

® Take C = SET -~ then the O-cells in CAT(SET) are the small categories.



® Take C = CAT — then the O-cells in CAT(CAT) are the small double

categories.]

1.7 NOTATION
e The composition of

o B
f——>9—>h

in €(X,Y) is denoted by B e a.

[Note: @Given a l-cell £, there is a 2-cell id.:f — > £ such that o e id

£ £
for all o:f —>g and idf e B =8 for all B:h —=>f.]
e The image of l-cells f£:X + Y, k:Y -~ Z under CX,Y,Z is denoted by k o f.
[Note: Iet lX be the image of the unique object of 1 under IX (hence lX:X > X) —
then for any l-cell £:X + Y,

C(lX,f) =f o lX= f= lY o f = C(f,lY).]

o H
e The image of 2-cells f —>g, k —> £ under CX 7.7 is denoted by p * .
r r

[Note: If o:f —=>g, then

On the other hand, if £:X > Y, k:Y > Z, then
ldk * 1df = ldk o f.]
To illustrate, suppose given

- o B8
£ >g >h

M v
k >4£ > M.




Then
Uu*xotko f——=3L0g
_ V% Bl e g——smo h,
Therefore

(v «B) e (u*a)= CX'Y,Z(B.\)) °® CX,Y,Z(oc,u)

CX,Y,Z((B'V) e (a,u))

CX,Y,Z(B ®ea, Ve

(ve ) » (Bea).

1.8 REMARK The equation

(v «B8) @ (u=*a) (vVveyu = (Bea)

is called the exchange principle.

1.9 EXAMPLE Suppose that

of —=>g
ik ——s £.

Then

(= idg) e (io'lk * 0)

(id,@ *0) @ (U * idf).

1.10 EXAMPLE Suppose that OL,B:].X > lX -— then

coefB=0eo.



In fact,
ooeB=(id, * o) @ (B % id, )
x 1x
= (id, e B) * (0 @ id, )
x 1x
=B*OL

Be ile) * (idl ® o)

=(B*idl)o(idl * Q)

X X

R e .

I

1.11 DEFINITION The underlying category UC of a 2-category € has for its

class of objects the 0-cells and for its class of morphisms the l-cells.

[Note: In this context, lX serves as the identity in Mor (¥X,X).]

1.12 NOTATION Let

2-CAT = CAT(SET)  (cf. 1.6).

1.13 EXAMPLE We have

U2-CAT = CAT.

1.14 EXAMPLE Every category C determines a 2-category € for which U€ = C.

[Iet 0 = Ob C and let €(X,Y) = Mor(X,Y) (viewed as a discrete category).]

1.15 DEFINITION Iet € be a 2-category —— then a l-cell f:X + Y is said to be

a 2-isomorphism if there exists a l-cell g:Y + X and invertible 2-cells




d):lX ——>g o f

I,U:lY —sf o qg.

1.16 DEFINITION Let € be a 2-category —- then O-cells X and Y are said to

be 2-isomorphic if there exists a 2-isomorphism f:X - Y.

1.17 EXAMPLE In 2-TOP, topological spaces X and Y are 2-isomorphic iff they

have the same homotopy type.

1.18 EXAMPLE In 2-CAT, small categories I and J are 2-isomorphic iff they are

equivalent.

It is clear that 1.1 admits a "2-meta" formulation (cf. 0.1 and 0.9), thus

O may be a conglomerate and €(X,Y) may be a metacategory.

1.19 EXAMPLE There is a 2-metacategory TOP whose O-cells are the Grothendieck
toposes, whose l-cells are the geometric morphisms, and whose 2-cells are the
geometric transformations.

[Note: The O-cells in TOP constitute a conglomerate. However, if E, F
are Grothendieck toposes and if f,g:E —— F are geometric morphisms, then there
is just a set of natural transformations f* —— g* or still, just a set of geo-

metric transformations (£*,f,) —— (g%,g,).]

1.20 NOTATION 2-CAT is the 2-metacategory whose 0O-cells are the categories,
whose l~-cells are the functors, and whose 2-cells are the natural transformations.
[Note: On the other hand, as agreed to above (cf. 1.12), 2-CAT is the 2-cat-

egory whose 0-cells are the small categories, whose l-cells are the functors, and



whose 2-cells are the natural transformations.]

1.21 DEFINITION Let € be a 2-category —— then a diagram

b
%
N3

f

of 0-cells 2-commutes (or is 2-commutative) if the l-cells

fouW— 2
g o viW——> 2
are isomorphic, i.e., if there exists an invertible 2-cell ¢ in €(W,Z) such that

¢:f o U =59 o V.

1.22 EXAMPLE Given categories A,B,C and functors F:A + C, G:B > C, let A X- B

A€ECbA
be the category whose objects are the triples (A,B,f), where and
B€EObB

f:FA »~ GB is an isomorphism in C, and whose morphisms

(AIBIf) _—> (A' rB' rfl)

are the pairs (a,b), where a:A + A' is a morphism in A and b:B > B' is a morphism

GB
l@o

FA' —— > GB'
f

in B, such that the diagram

A —

£
Fa
T



commuites. Define functors

Il
i

P(A,B,f) (P(a,b) = a)

Q(a,B,£)

il
o

(P(a,b) = b)

and define a natural isamorphism
S5:tFeP—>GoQ
by

f
:FP(A,B,f) = FA

(A,B,f) > GB = GQ(A,B,f).

Then the diagram

vej
v
1w

1>
v
10

of 0-cells in 2-€AT is 2-commutative.

F G
[Note: A x.B is called the pseudo pullback of the 2-sink A > C < B.

In this connection, recall that the pullback A x, B of (F,G) is the category whose

¢
objects are the pairs (A,B) (A € Ob A, B € Ob B) such that FA = GB and whose mor-
phisms

(A,B) —_—> (A‘ IB')



are the pairs (a,b), where a:A » A' is a morphism in A and b:B + B' is a morphism

in B, such that Fa = Gb, there being, then, a commutative diagram

q
Bx B B
A > C .1
r =

1.23 REMARK The comparison functor

F:éxcg’_—>é5 B

C C
is the rule that sends (A,B) to (A,B,id) (id the identity per FA = GB) and (a,b)
to (a,b). While clearly fully faithful, I need not have a representative image,

hence is not an equivalence in general.

Definition: G has the isomorphism lifting property if Vv isomorphism §:GB +~ C

in C, 3 an isomorphism ¢:B -+ B' in B such that G¢ = ¢ (so GB' = C).
Exercise: Given G:B ~ C, the comparison functor I' is an equivalence for all
F:A + C if G has the isomorphism lifting property.

Solution: Take an object (A,B,f) in A >_5C B, let y:GB ~ FA be f—l, and get

an isomorphism ¢:B > B' such that G¢ = f_l and GB' = FA —— then
(ldAl(b) H (AIBIf) > F(AIB')
is an isomorphism
f
FA > GB
ia j%
FA > GB' ,
id

thus I' has a representative image.



§2, 2-FUNCTORS

Suppose that € and €' are 2-categories with O-cells O and O' —- then a
2-functor F:€ - ¢' is the specification of a rule that assigns to each 0-cell
X € 0 a 0—ell FX € O' and the specification of a rule that assigns to each

ordered pair X,Y € 0 a functor

FX’Y:C(X,Y) — €' (FX,FY)
such that the diagram
C
C(X,Y) x €(Y,2) > €(X,2)
Fxy ¥ Fyv,z Fx,z
¢! (FX,FY) x €' (FY,FZ) > L' (FX,FZ)
C
commutes and the equality
I =F oT

obtains.

[Note: The underlying functor

UF:0¢ —— UC!

sends X to FX and f:X » Y to Uf:FX > FY.]

N.B.
(1) Fy sy = Iy

2) F id. = i ;

X, Y% .yt

(3) FX,Zk o £ = FY,Zk ° FX,Yf;



(4) FX,YBooc=F BeF, ,o;

w =
(5) ‘X,ZB * O FY,ZB % FX'YO(..

2.1 EXAMPIE There is a 2~functor

M:2-TOP —> 2~CAT

that sends a topological space X to its fundamental groupoid IIX.

2.2 EXAMPLIE Let C and C' be locally small finitely complete categories and
let ¢:C > C' be a functor that preserves finite limits —- then there is an induced
2-functor

CAT (¢) :CAT(C) — CAT(C') (cf. 1.6).

2.3 NOTATION Let € be a 2-category.

° Cl-OP is the 2-category obtained by reversing the l-cells but not the

2—-cells, thus

P xv) = ¢(y,x).

) CZ.OP is the 2-category obtained by reversing the 2-cells but not the

1-cells, thus

& Px,v = exn®.

° €l,2—OP

is the 2-category obtained by reversing both the l-cells and the
2-cells, thus

1,2-0P

¢ %, = ¢y, %.

N.B. Taking opposites defines an isomorphism

OP:CAT ~ CAT



of metacategories. On the other hand, this operation does not define a 2-functor
2-CAT —— 2~-CAT

but it does define a 2-functor

2-¢a0) 2™ __ 2-¢at

which in fact is a "2-isomorphism".

2.4 DEFINITION A derivator in the sense of Heller is a 2-functor

D: (2-can) V™% . 2-eac.

2.5 EXAMPLE Fix a category C —— then there is a derivator DC in the sense of

Heller that sends I € Ob CAT to [I,C].

2.6 RAPPEL Let C be a locally small category and let W < Mor C be a class of

morphisms —— then (C,W) is a category pair if W is closed under composition and

contains the identities of C.

2.7 EXAMPLE Iet (C,W) be a category pair. Given I € Ob CAT, let W, < Mor(I,C]
be the class of morphisms that are levelwise in {§ —— then
(IL,C1 ,tip)
is a category pair, so it makes sense to form the localization of [I,C] at wI:
-1
WI [z,Cl.

Define now a derivator D (. W) in the sense of Heller by first specifying that



Next, given a functor F:I - J, the precomposition functor
F*:[d,C] » [I,C]

is a morphism of category pairs (i.e., F*wJ c (UI) , thus there is a functor

-

-1 -1
FE;[3,C — wl [I,Cl,

call it D F, hence

(C,)

DicnFPic,mI — Dicmi-

Finally, a natural transformation Z:F -+ G induces a natural transformation

F— D

D e,y %P (c,w) c,mn®

2.8 REMARK A derivator in the sense of Grothendieck is a 2-functor

1,2-0p

D: (2-CAT) —— 2-CAT.

[Note: Using opposites, one can pass back and forth between the two notions.]
N.B. What I call a derivator (be it in the sense of Heller or Grothendieck)

others call a prederivator and what I call a homotopy theory (definition omitted)

others call a derivator.

2.9 CONSTRUCTION Suppose that € is a 2-category, fix a O-cell X € 0, and
define a 2-functor

@X: ¢ —— 2-CAT

as follows.



® Given a 0-cell Y € O, let
CI)XY = ¢(X,Y),
a O-cell in 2-CAT.

® Given an ordered pair Y,z € 0, let

(CDX)Y’Z:C(Y,Z) E— 2—€A€(®XY,®XZ)

be the functor that sends a l-cell g:Y » Z in ¢(Y,%2) to the l-cell

((DX)Y,Zg:Q: (XIY) _> t (Xr Z)

in 2-CAT specified by the rule

((<I>X)Y,Zg)f geof

it

((‘PX)Y,Zg)OL 1dg * q

and sends a 2-cell B:g ——>g' in €(Y,Z) to the 2-cell
. - ¥
Oly,z8: By, 29 ==> (%), 49
specified by the rule

((@X)Y’ZB)f =B % idf.

2.10 EXAMPLE

-Op

e Take € = (2—CAT)l -— then the construction assigns to each small

category 1 a derivator

-OP

op: (2-cam) 1 F . 2-eac

in the sense of Heller.

1,2-0p

® Take € = (2-CAT) —— then the construction assigns to each small

category I a derivator

1,2-0P

<I>I: (2-—_(13_’1_‘) —> 2~CAT

—



in the sense of Grothendieck.

let €, €' be 2-categories and let F,G:¢ - €' be 2-functors —- then a 2-natural
transformation Z:F - G is a rule that assigns to each 0-cell X € 0 a 1-cell EX:FX -
GX subject to the following assumptions.

(1) For any l-cell f:X - Y, the diagram

&3]

X
X > GX
Fy vt Gy vt
FY > GY
Sy

commuutes.

(2) For any pair of l-cells f,g:X -~ Y and for any 2-cell a:f —> g,

ldEY * FX,YOL = GX,YO(, * 1dEX.

[Note: E is a 2-natural isomorphism if v X € O, Eg is a 2-isomorphism (cf.

1.15).]

Points (1) and (2) can be rephrased.

2.11 NOTATION
® Define a functor

AF'G:C' (FX,FY) — €' (FX,GY)
on objects by
AFGf'=: o f! (£':FX - FY)
4

and a morphism by
AF’GOL' =id. *xa' (a':f' —59g').



® Define a functor

hg, it (GX,G0) —> €' (FX,GY)

on objects by
'=g' e B (9':GX > GY)

and on morphisms by

=
[o]
|

=B' % id; (B':g' —> £f').
X

Then it is clear that points (1) and (2) amount to the demand that the diagram

F.

XY
¢(X,Y) > €' (FX,FY)
%,y % a
¢! (GXIGY) > ¢! (FXIGY)
s, r

commutes.

2.12 EXAMPLE Let C and C' be locally small finitely complete categories, let
¢,P:C > C' be functors that preserve finite limits, and let £:¢ - U be a natural

transformation -- then there is an induced 2-natural transformation

CAT (&) :CAT () —— CAT(Y) (cf. 2.2).

2.13 EXAMPLE Suppose that ¢ is a 2-category and let £:X - Y be a 1-cell ——

then there are 2-functors
@X:C —> 2-€AT
(cf. 2.9).
@Y:C — > 2-€AT



And there is a 2-natural transformation
®f:®Y _ @X,
namely the rule that assigns to each 0-cell Z the l-cell

€ )Z:C(Y,Z) — €(X,2)

f

defined by

(0),g=go f

(CDf)ZB =B % idf.

2.14 DEFINITION et ¢, €' be 2-categories and let F:€ -~ €' be a 2-functor —

then F is a 2-equivalence if there is a 2-functor F':€' -~ € and 2-natural isomorphisms

T F' o F —> idé:

FeF' — ide,.
2.15 LEMMA A 2-functor F:€ -~ €' is a 2-equivalence iff
(1) v X, Y € 0, the functor

FX,Y:€(X,Y) —> €' (FX,FY)

is an isomorphism of categories;

(2) v X' € 0", 3 X € 0 such that FX is isomorphic to X' in UC'.

Iet €, €' be 2-categories and let F,G:€ ~ €' be 2-functors. Suppose that

5,0:F > G are 2-natural transformations —— then a 2-modification

U:E = Q

is a rule that assigns to each 0-cell X € 0 a 2-cell



LrEg =—>%

such that for any pair of l-cells f,g:X > Y and for any 2-cell a:f ——>gq,
Ty » Fy yo = Gy o * Ly

Iet €, €' be 2-categories —- then there is a 2-metacategory 2-[¢,C'] whose
O-cells are the 2-functors from € to €', whose 1-cells are the 2-natural trans-
formations, and whose 2-cells are the 2-modifications.

[To explicate matters:

e If F,G:€ » ¢' are 2-functors, if =,Q,I':F - G are 2-natural transformations,

and if Y:=Z » Q, U:Q > T are 2-modifications, then U @ U:E + ' is defined levelwise:
1 e II)X = I/IX ° ‘JX
e If F,G,H:C » €' are 2-functors, if

5,0:F ~ G

r,7:G »~ H

are 2-natural transformations, and if U:E = Q, U:T - T are 2-modifications, then

UxU:TeZ->Te  is defined levelwise:

(M*q)X=MX*qX']

2.16 EXAMPIE Let € be a 2-category — then there is a 2-functor

o
¢t oP > 2-[¢,2-CAT] .

To wit:

® Send X to <I>X (cf. 2.9).

£
® Send X > Y to <I>f:<I>Y - CDX (cf. 2.13).



10.

® Send a:f—>g to (Doc:@f - <Dg, where v Z € O,
(CDO(,)Z: (CDf)Z > (<I>g)Z
is the 2-natural transformation defined by stipulating that at a l-cell h:Y -» Z,
((q)O(.)Z)h = ld-h * Ole

[Note:

af ——=>g
=>idh*oczhof—>h°g.

idh:h: >h

((2g),), =hof

((3) ), =h o g.]

2.17 EXAMPLE Let 2 be the category with two objects and one arrow not the
identity —— then if C is a category, its arrow category C(») can be identified
with the functor category [2,C]. Now let 2 be the 2-category determined by 2

(cf. 1.14) ~—- then if ¢ is a 2-category, we put
c(») = 2-[2,C].

Therefore the 0-cells of €(») "are" the l-cells of €, the l-cells of €(») "are"

the commutative squares of l-cells of €, and the 2-cells of €(») "are" the pairs

¢ v
X———m Y X—— Y
f g £ g
Xl > Yl , X! N Yl



11.

of commutative squares of 1-cells of € plus 2-cells
a:dp —> Y

0l =

subject to
id * o = o' % id_.
g £
[Note: The categories (UC) (»), UC(»>) have the same objects but the first is

a nonfull subcategory of the second.]

2.18 NOTATION €AT, is the 2+metacategory whose O-cells are the 2-categories,

2
whose l-cells are the 2-functors, and whose 2-cells are the 2-natural transformations.

[If 5:F > F' and Q:G > G' are 2-natural transformations, then

Q% 5:GoF— 5 G' oF!
or still,

(Q % Z):GFX —> G'F'X,

X

which in turn is defined as the corner arrow in the commutative diagram

U

GFX > G'FX
= ! =
GFX,F'X“X} G FX,F'X™X
GF'X > G'F'X

prx

[Note: 2-functors are composed in the obvious way.]



§3. PSEUDO FUNCTORS

Suppose that € and €' are 2-categories with 0-cells O and O' — then a

pseudo functor F:€ - €' is the specification of a rule that assigns to each 0O-cell

X € 0 a O=cell FX € O' and the specification of a rule that assigns to each ordered

pair X,Y € 0 a functor

Fy yi€&,Y) —> €' (FX,FY)
plus natural isomorphisms
YX,Y,Z:CFX,FY,FZ ° Fyy * Fy,z) = Fx,2 ° K,v,z
and
SX:IFX —_— FX,X o IX

satisfying the following conditions.

(cohl) Given composable 1l-cells f,g,h in €, the diagram

i *
W * Y, g
Fh o Fg o Ff >Fh o F(g o f)
Yg,h * 1de Yg o £,h
v v
F(h o g) o Ff >F(h o g o f)
Yf,h °o g

of 2-cells commutes:
Yg o £,n® Gy * Ve o) =Yg h o g® (gn * 1dpg)-

(coh2) Given a l-cell f:X -+ Y in €, the diagram



ide * SX*
Ff o ]FX SFf o F]X
Y
lX,f
\"
Ff F(f o lX)
of 2-cells commutes:
1.8 ® (dpe * 8y¢,) = idpg,
and the diagram
SY* * ide
lFY o Ff > FlY o Pf
Yf’]v
\"2
Ff F(lY o f)

of 2-cells commtes:
Ye,1, ® (&, * idge) = idpe.

[Note: To ease the notational load, indices on F and Y have been suppressed,

e.g., if £:X + Y and g:Y » Z, then Yf,g = (YX,Y,Z)f,g' Also,
CSX*
6Y*
GX
stands for evaluated at the unique object of 1. Finally, when it is
§



necessary to exhibit the implicit dependence on F, append a superscript, e.g.,

F F

e, g’ SX* .]

N.B. In ¢, if £,f':X —> Y, if o:f =—>f', if g,9':Y — > 7, and if

B:g ——>g', then by naturality, the diagram

Ye

g
Fg o Ff >F(g o £f)
FB % Fo F(B % a)
v v
Fg' o Ff' SsF(g' o £')
. Yfllgl

of 2-cells commutes:

FBxa) e Yf,g = yf,'g, e (FB * Fu).

3.1 REMARK A pseudo functor is a 2-functor iff all the Y v.7 and 8y are
r--r

identities.

3.2 NOTATION Iet MOD stand for the 2-metacategory whose 0-cells are the
combinatorial model categories, whose l-cells are the model pairs (F,F') (F a left
model functor, F' a right model functor), and whose 2-cells are the natural trans-

formations of left model functors.

3.3 EXAMPLE Define a pseudo functor
H:M0D —— 2-CAT
as follows.
® Given a combinatorial model category C, let

HC = W7C,



the localization of C at the weak equivalences (.
® Given an ordered pair C, C' of combinatorial model categories and a

model pair (F,F'), thus

10
Q

F'
send (F,F') to
LF:HC — HC',
where LF is the absolute total left derived functor of F.
® Given a natural transformation Z:F -+ G of left model functors, let
L5:lLF —— LG

be the induced natural transformation of absolute total left derived functors.

3.4 NOTATION Iet 2-GR stand for the 2-category whose O-cells are the groups,
whose l-cells are the group homomorphisms, and whose 2-cells are the inner auto-
morphisms.

[Spelled out, if G and H are groups and if f,g:G -+ H are group homomorphisms,

then a 2—cell o:f ——>g is an element o € H such that V 0 € G,

f(o)o = ag(o).]

3.5 EXAMPLE Fix a nonempty topological space B. Define a pseudo functor
PRIN,:2-GR —> 2-€AT

as follows.
e Given a group G, let PRINB G be the category of principal G-spaces
4

X over B (cf. 9.3).



® Given a group homomorphism £:G - H, let

PRIN, ¢:PRINg o —> PRIN,

be the functor that sends X to X x_ H, where

f
X xc H= X x H/{x - o,7)~(x,£(0)1) }.
e Given g:f —s g, let
PRINB,OL:PRINB,f —_— PRINB,g
be the natural transformation which at X is the arrow
XX H—> Xx H
£ g
that sends (x,1) to (X,OL—lT).

[Note: If f£:G -+ H, g:H - K, then Ye g is the canonical isomorphism
r

(X xg H) x K —> X x_ o ¢ K.
And § Cx is the canonical isomorphism
X —> X %X, G.]
ldG
F F!
3.6 DEFINITION Let ¢ > ' > ¢'' be pseudo functors —-- then their
composition F' o F is the pseudo functor defined by
X — F'FX
and
1 —_ 1
(F' ° Py v= Frx,ry ° Fx,v
plus
£ g F' o F
e Given l-cells X >Y and Y > Z in €, the 2-cell vy is the

f.g



composition
F' F
YFf,Fg F Yflg
F'Fg o F'Ff >F'(Fg o Ff) >F'F(g o £f)
and
F' o F
® Given a 0-cell X in ¢, the 2-celi § is the composition
X%
P! F
(SFX* F'GX*
] ]
lF'FX - SF lFX >F FlX.

Iet €, €' be 2-categories and let F,G:€ + €' be pseudo functors —- then a

pseudo natural transformation Z:F - G is a rule that assigns to each 0-cell X € O

a l-cell EX:FX + GX plus a natural isomorphism

x,vle,r %%,y > Yp,c ° Fx,v

satisfying the following conditions.

£ g
(cohl) Given l-cells X > Y and Y > Z in €, the diagram
1ng * Te Tg * 1de
Ggof°EX >Gg°EY°Ff >EZo g o Ff
!
G . . F
Y * id_ id. * Y
flg h‘}( -7 Flg
\" \%
G(gof)°EX >EZ°F(q°f)
T
gof

of 2-cells comutes:

. F . . _ G .
(J.dEZ * Yf,g) ° (Tg * 1de) ° (J.(ilGg % Tf) T £® (Yf,g * J.dE ).



(cohz) Given a 0-cell X in ¢, the diagram

G .
I} * id_
X* Ex
lGX ° Eg¢ >G]X ° By
T
lX
v v
Zg ° lpx >Eg ° Fly
. F
id_. % §
Eg X*

of 2-cells commutes:

F
X

o (55, *1id ) =id. * ¢

X X X

T

1

(coh3) Given l-cells f,g:X + Y in € and a 2-cell a:f — g in €, the

diagram
'f
Gf o EX >EY o Ff
Go % id_ id., * Fo
X Y
v Vv
Gg o :X > :Y o Fg
T
g

of 2-cells camutes:

(id. *FOL).Tf=T ® (Go % id_ ).
“y g °x

[Note: Again, some of the indices have been omitted.]

3.7 REMARK If F,G:€ » €' are 2-functors, then a pseudo natural transformation



¥ is a 2-natural transformation iff all the Ty y are identities.
14

3.8 DEFINITION Iet F,G,H:€ - €' be pseudo functors and let EZ:F > G, Q:G ~ H

be pseudo natural transformations —- then their composition 2 @ £ is the pseudo

natural transformation defined by letting

(@5, =0 ° E

and

]

® =

[

*T;) ® (Tg*idg ).

iy X

Q .
Te = (id

[Note: Here = and T‘Q refer to the natural transformations belonging to the

pseudo natural transformations 5 and Q.]

3.9 REMARK There is a metacategory whose objects are the pseudo functors from

¢ to €' and whose morphisms are the pseudo natural transformations.

let €, €' be 2-categories and let F,G:C - €' be pseudo functors. Suppose that

£,Q:F > G are pseudo natural transformations —- then a pseudo modification

Y.

[1]

—> 0

is a rule that assigns to each 0-cell X € O a 2-cell
Tty =—>

such that for any pair of l-cells f,g:X » Y and for any 2-cell o:f —s g,

{1}

9
(Uy * Fy o) @ (Ty g = (1y y)g @ (Gg v * ).

3.10 REMARK If F,G:¢ - €' are 2-functors and if Z:F > G, Q:F > G are 2-natural



transformations, then the t°, TQ are identities and a pseudo modification U:5 -+ Q is

a 2-modification.

Pseudo modifications are composed by exactly the same procedure as 2-mod-

ifications (recall the definition of 2-[¢€,€']).

3.11 NOTATION PS-[¢,('] is the 2-metacategory whose 0-cells are the pseudo
functors from € to €', whose l-cells are the pseudo natural transformations, and

whose 2-cells are the pseudo modifications.
N.B. 2-[C,C'] is a sub—-2-metacategory of PS-[¢,C'].

3.12 REMARK The triple consisting of 2-categories, pseudo functors, and pseudo

natural transformations is not a 2-metacategory.

[Note: There is a metacategory whose objects are the 2-categories and whose

morphisms are the pseudo functors.]



84. FIBRATIONS

Fix a category B —-— then the objects of CAT/B are the pairs (E,P), where
P:E -~ B is a functor, and the morphisms (E,P) -~ (E',P') of €AT/B are the functors
F:E > E' such that P' o F = P,

[Note: C€AT/B can be regarded as a 2-metacategory, call it 2-€AT/B: Given
l-cells F,G: (E,P) >~ (E',P'), a 2—cell F ——>G is a natural transformation Z:F > G
such that v X € Ob E, P’EX = idPX' Another way to put it is this. There are

comutative diagrams

\
1t

p! P

g
W <——— It
el |
W <~———— It
[P —
g

1w
1

And a natural transformation Z:F - G is a 2-cell iff

idy, * 2 = id,.
Here
id,:P > P ((idP)x = idPX) .
Meanwhile,
id,, * B:P' o F > P' 0 G
and

(idy, * E)y = P'E..]

4.1 DEFINITION Let P:E ~ B be a functor and let B € Ob B — then the fiber

EB of P over B is the subcategory of E whose objects are the X € Ob E such that



PX = B and whose morphisms are the arrows f € Mor E such that Pf = ids.

[Note: 1In general, Ey is not full and it may very well be the case that B

and B' are isomorphic, vet EB = 0 and EB' =z 0.]

N.B. There is a pullback square

\%
It

—
av)

”_.<._—__th|

v
1w

in CAT.

4.2 NOTATION Given X,X' € Ob EB’ let MorB(X,X‘) stand for the morphisms X -+ X'

4.3 DEFINITION Let X,X' € Gb E and let u € Mor(X,X') —- then u is prehorizontal

if Vv morphism w:X0 - X' of E such that Pw = Pu, there exists a unique morphism

v € MJrPX(XO,X) such that u o v = w:

u
X > X!
v w
X, X,
[Note: ILet
Moru(XO,X') = {we M)r(XO,X') :Pw = Pul.

Then there is an arrow

T
IVbrPX(XO,X) > lvbru(XO,X ),



viz. v >u o v (in fact, P(w o v) = Pu o Pv = Pu o idPX= Pu) and the condition

that u be prehorizontal is that Vv X0 € EPX’ this arrow is bijective.]

4.4 DEFINITION Let X,X' € Ob E and let u € Mor(X,X') — then u is preop-

horizontal if V morphism w:X + X, of E such that Pw = Pu, there exists a unique

0

morphism v € Mor (X"XO) such that v o u = w:

X!
u
> X!
w v
XO XO.
[Note: Iet

Morn(X,XO) = {w e mr(x,xo) :Pw = Pu}.

Then there is an arrow

]
MorPX' (X ,XO) - Moru(X,XO) ’

viz. v > v o u (in fact, P(v e u) = Pv o Pu = id o Pu = Pu) and the condition
PX!

that u be preophorizontal is that Vv X0 € EPX’ this arrow is bijective.]

4.5 LEMMA The isomorphisms in E are prehorizontal (preophorizontal).

4.6 REMARK The composite of two prehorizontal (preophorizontal) morphisms

need not be prehorizontal (preophorizontal).

4.7 DEFINITION The functor P:E + B is a prefibration if for any object

X' € Ob E and any morphism g:B - PX', there exists a prehorizontal morphism u:X - X'



such that Pu = g.

4.8 DEFINITION The functor P:E - B is a preopfibration if for any object

X € Ob E and any morphism g:PX - B, there exists a preophorizontal morphism

u:X > X' such that Pu = g,

4.9 LEMMA The functor P:E - B is a prefibration iff v B € Ob B, the canonical
functor

B, —> B\E (X > (id.,%))

has a right adjoint.

4.10 LEMMA The functor P:E > B is a preopfibration iff v B € Ob B, the canonical

functor

B, —> BB (X~ (Xidy)

has a left adjoint.

4.11 DEFINITION Let X,X' € Ob E and let u € Mor (X,X') —— then u is horizontal

if ¥ morphism w:X, > X' of E and v factorization
Pw = Pu o x (xEMor(PXO,PX)),

there exists a unique morphism V:X0 + X such that Pv =xand u ¢ v = w.
Schematically:

w Pw

0....>X >X",|PXO > PX
v u X Pu

> PX!' l.

N.B. If u is horizontal, then u is prehorizontal. Proof: For Pw = Pu =>

PX. = PX, so we can take x = idPX, hence Pv = idPX =>v & MorPX(XO,X) .

0



4.12 DEFINITION Let X,X' € Ob E and let u € Mor (X,X') —- then u is ophor-

izontal if v morphism w:X - X, of E and Vv factorization

0
Pw =x o Py (xElVbr(PX',PXO)),

there exists a unique morphism v:X' > X, such that Pv = xand v ¢ u = w.

0
Schematically:

N.B. If u is ophorizontal, then u is preophorizontal. Proof: For Pw = Pu =>

PX., = PX', so we can take x = id , hence Pv = id => v € Mor (X',XO).

0 PX' PX' PX'

4.13 DEFINITION The functor P:E + B is a fibration if for any object X' € Ob E
and any morphism g:B -+ PX', there exists a horizontal morphism u:X + X' such that

Pu=g.

N.B. If {i:X » X' is another horizontal morphism such that Pi = g, then 3 a

unique isomorphism £ € Mor Ey such that 4 =u o f.

[We have
3 Pu
! X« oo o5 X >X",'P>”< > PX >PX'I
v u idB Pu
u Pu
l X o o o o> X >x'],IPx > PX >PX'I-
v i1 idB Pua
Here
_Pv=idB&u°v=ﬁ

&
"
|_l.
o
>
o
=]
<
1l
&



Therefore

o
o
<42
[+]

<
Il
[e]
o
<
I
o

v o v =id_
X

vov=idx.]

4.14 DEFINITION The functor P:E ~ B is an opfibration if for any object
X € Ob E and any morphism g:PX -+ B, there exists an ophorizontal morphism u:X - X'

such that Pu = g.

N.B. If G:X + X' is another ophorizontal morphism such that PU = g, then 3

a unique isomorphism f € Mor E; such that u=f ou (cf. supra).

4.15 LEMMA The functor P:E + B is a fibration iff the functor POP:EOP > B¢

is an opfibration.

Because of 4.15, in so far as the theory is concerned, it suffices to deal

with fibrations. Still, opfibrations are pervasive.

4.16 EXAMPLE The functor E - 1 is a fibration.
[Note: The functor 0 + B is a fibration (all requirements are satisfied

vacuously) .]

4.17 EXAMPLE The functor idE:E > E is a fibration.



G
4.18 EXAMPLE Given groups , denote by the groupoids having a

IQ

I\/_er(*,*) = G
single object * with - —- then a group homomorphism ¢:G -~ H can
l\ler(*,*) =H

be regarded as a functor ¢:G - H and, as such, ¢ is a fibration iff ¢ is surjective.

[Note: The fiber G, of ¢ over % "is" the kernel of ¢.]

4.19 EXAMPLE Let U:TOP ~ SET be the forgetful functor -- then U is a fibration.
To see this, consider a morphism g:Y - UX', where Y is a set and X' is a topological
space. Denote by X the topological space that arises by equipping Y with the
initial topology per g (i.e., with the smallest topology such that g is continuous

when viewed as a function from Y to X') — then for any topological space XO’ a

function X, -~ X is continuous iff the composition X0 -+ X > X' is continuous, from

0
which it follows that the arrow X - X' is horizontal.
[Note: The fiber 'IDPY of U over Y is the partially ordered set of topologies

on Y thought of as a category.]
4.20 LEMMA The isomorphisms in E are horizontal.

4.21 ILFMMA Iet u € Mor(X,X'), u' € MorX',X"'""). Assume: u' is horizontal ——
then u' o u is horizontal iff u is horizontal.

[Note: Therefore the class of horizontal morphisms is closed under composition

(cf. 4.6).]

4.22 THEOREM Suppose that P:E - B is a fibration. Let u € Mor(X,X') be



horizontal. Assume: Pu is an isomorphism —— then u is an isomorphism.

PROOF In the definition of horizontal, take X, = X', w= id , and consider

0

Xl
the factorization
Pv=1id =Pue (Pu) ' (x= (Pw7Y).
pX!'
Choose v:X' + X accordingly, thus u ¢ v = id , so v is a right inverse for u.

Xl
But thanks to 4.20 and 4.21, v is horizontal. Since Pv = (Pu) T, the argument can

be repeated to get a right inverse for v. Therefore u is an isomorphism.

4.23 APPLICATION A fibration P:E - B has the isomorphism lifting property
(cf. 1.23).
[Iet ¥:PX' +~ B be an isomorphism in B. Choose a horizontal morphism u:X - X'

such that Pu = w_l -- then u is an isomorphism in E (cf. 4.22) and Pyt = y.]

4.24 TEMMA Suppose that P:E -+ B is a fibration. Consider any object X' € Ob E
and any morphism g:B + PX'. Assume: :X > X' is prehorizontal and Pii = g — then
U is horizontal.

PROOF Choose a horizontal u:X -+ X' such that Pu = g — then u is prehorizontal
so 3 a unique isomorphism £ € Mor 12 such that 4 = u ¢ £. Therefore U is horizontal
(cf. 4.20 and 4.21).

[Note: Here are the details. Consider the commutative diagrams

4

e
b
v
o

> X!

<
—_—

c

<
_—
—_—

[t}

o
e
2
bR




Then

- ~

QoeVov=ucev=14

1l
o
<]
<

Il
3

uovovy

. d u
X > X! X > X!
id_ i id, u
X
X X , X X .

Therefore by the uniqueness inherent in the definition of prehorizontal,

id

<
0
<
Il

vov=idX .1

4.25 THEOREM Let P:E - B be a functor —- then P is a fibration iff

1. vX'€EObEand V g € Mor(B,PX'), 3 a prehorizontal & € Mor(X,X'):Pi = g
(cf. 4.7);

2. The composition of two prehorizontal morphisms is prehorizontal.

PROOF The conditions are clearly necessary (for point 2, cf. 4.24 and recall
4.21). Turning to the sufficiency, one has only to prove that the U of point 1 is
actually horizontal. Consider a morphism w:XO + X' of E and a factorization

~

Pw=Piox (xE€ Mor(Pxo,Pi)).

Then there is a prehorizontal ﬁo € Mor ()Nio,f() :Pii0 =x (=> P)EO = PXy). Here



10.

. 0 . 4
L
X0 > X > X
and
P(ﬁoﬁo) =PﬁoPﬁo=Pﬁox=Pw.
But U o ﬁo is prehorizontal, thus there exists a unique morphism \70 € Mor _ (XO,}N(O)
PXO
such that u o 4, o V. = w:
0 0
a e ﬁo
Ve ]
XO > X
\70] W
XO XO .
Putv=u0 ° Vg ——thean=Pu0 f>Pv0=Pu0 ° lde{ =Puo=xandu°v=
0

u o Uy © \70 = w. To establish that v is unique, let v' Xy > X be another morphism

with Pv' = xand U °o v' = w. Since ﬁo is prehorizontal and since Pv' = x = Pﬁo,

the diagram
X0 > X
A
vl L 4 lvl
% %y
admits a unique filler v'' € Mor _ (XO,}N(O) u, © v'' = v'. Finally
PX
0
dou,ov'=U0ov'=w



11.

4.26 DEFINITION Iet P:E ~ B be a functor —- then a morphism £:X + Y in E

is vertical if Pf is the identity on PX = PY.

4.27 EXAMPLE vV B € Ob B, the elements of Mor EB are vertical.

4.28 LEMMA Suppose that P:E -+ B is a fibration — then every morphism in E
can be factored as a vertical morphism followed by a horizontal morphism.

PROCF Let f:Y » X' be a morphism in E, thus Pf:PY > PX'. Choose a horizontal
u:X - X' such that Pu = Pf ( => PX = PY). Consider

£ Pf

l
Y oo o o> x______>X", PY = PX > PX >PX'l,
v u 1dpg Pa

where Pv = idPX (so v is vertical) and u o v = f.

4.29 DEFINITION A morphism F:(E,P) > (E',P') in €AT/B is said to be horizontal

if the functor F:E - E' sends horizontal arrows to horizontal arrows.

4,30 NOTATION CAEh/lg is the wide submetacategory of €AT/B whose morphisms are

the horizontal morphisms.

4.31 NOTATION FIB(B) is the full submetacategory of @:Mh/g whose objects are

the pairs (E,P), where P:E -~ B is a fibration.
4.32 EXAMPLE Take B = 1 — then FIB(1l) is €AT.

By definition, the 2-cells of 2-CAT/B are the vertical natural transformations,

i.e., if 7,G:(E,P) »~ (E',P") are morphisms, then a 2-cell F => G is a natural



12.

transformation Z:F - G such that v X € Ob E, P'EX = idPX or still, such that

v X € Ob E, &, is a morphism in El'DX (P'FX = PX = P'GX), hence E_ is vertical

X X

(per P').

4 .33 NOTATION 2—CAEh/Z§ is the sub-2-metacategory of 2-€AT/B whose 0-cells

are the objects of ¢AT/B, whose l-cells are the horizontal morphisms, and whose

2-cells are the vertical natural transformations.

4.34 NOTATION FIB(B) is the 2-cell full sub-2-metacategory of 2-CAT, /B

whose underlying category is FIB(B).

4.35 LEMA Let (E;,P;), (E,/P,) be objects of CAT/B. Assume: E; and E, are

1

equivalent as categories over B, thus there are functors F,:E, >~ E, and F:E, - E

1'=1 =2 2°=2 =1

over B and vertical natural isomorphisms

ElZ:Fl o F2 — J.dEz

F

Then send horizontal arrows to horizontal arrows.

F)

PROOF It suffices to discuss Fl' So let ul:Xl - X]'_ be a horizontal arrow in

P;}l, the contention being that Flul is a horizontal arrow in Ez. Suppose that

w,:X, > F{X] is a morphism of E, and consider a factorization

P2w2 = P2Flul ° X, (x2 € Mor (P2X2’P2F1X1)) .
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Put
L= )y
thus i:F2Fl ]'_ — X]'_ and Pli = idplxi . Working with
10 F2w2:F2X2 — X]'_,
write
P (1o Fyw,) =Pji e P Fw,
= icilplXi ° P2w2
= P2W2
= P2Flul ° X,
= Plul ° X,

Since uy is horizontal, there exists a unique morphism vl:F2X2 > Xl such that

PV, =X, and U oV = ie Fow,. Put
j = ((512)X2)‘l,
thus j:X2 _ F]_FZX2 and P2j = iszxz. ILet
vy = Flvl ° 3.
Then

P2v2 = P2 (Flvl ° j)

PZFlVl ) sz

= P.v, o i
1"1 ° %
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It remains to check that

To begin with,

Fiu ov2=Flul°Fllej

Fl(ul ° Vl) °

Fi(i o Fowy) o j
= F;i o F,Fw, © j.

On the other hand, by naturality, there is a commutative diagram

j
FiFy%y < %
FiFoW) W)
¥ 1
FlFZFle D — Fle .
k
Therefore
Fll o F:Lsz2 ° g = Fll ok o W,
= W,.
Here
k Fll
¥ L} 1
Fle > FlFZFle _— Fle

is the canonical arrow, hence is the identity.

[Note: The proof of uniqueness is left to the reader.]

4.36 APPLICATION P;:E; » B is a fibration iff P,:E, + B is a fibration.

1'=1
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[Suppose that P, is a fibration. Let g:B - P2X:'2 be a morphism in B — then

1

the claim is that 3 a horizontal morphism Uy :X, > Xé such that Pou, = g.

2 L ] | 1T — L
® Assume first that X2 = lel’ hence P2X2 = P2F]_X1 = Ple, hence

. ] 1 . ' = = = —_—
g:B ~> Ple. Choose a horizontal ul'Xl - Xl such that Plul g (=>7p Xl B)

. ' ] ] = = =
then Flul.Fle > lel is horizontal and P2Flul Plul g, so we can take u, Flul.

e In general, given an arbitrary X!, there exists an X]'_ and an isomorphism

PP X! > X!

1%1 5 from which an isomorphism P2¢:P2F1Xi > szé or still, an iscmorphism

-1 .
. - ' o > ' - ' [} :
Pztp.PlXi P2X2. If now g:B P2X2, then (Pzw) .P2X2 > PlX]_ and, in view of what

has been said above, 3 a horizontal morphism u, such that Pou, = (Pzw)_l ° g or

still, Pzw o P = g or still, P2 (y o u2) =g. And Y o© u, is horizontal (cf. 4.20

2%2
and 4.21).]

4.37 DEFINITION Let P:E -~ B, P'":E' + B be fibrations —- then P, P' are

equivalent if E, E' are equivalent as categories over B.

N.B. If (E,P), (E',P') are objects of CAT/B and if F:(E,P) > (E',P') is a

morphism, then vV B € Ob B, F restricts to a functor FB:E‘B - 51'3

4.38 CRITERION Let P:E ~ B, P':E' »~ B be fibrations, F:(E,P) > (E',P') a
horizontal functor —— then F is an equivalence of categories over B iff V B € Ob B,

the functor FB:E‘B > Eé is an equivalence of categories.

4.39 NOTATION Given objects (E,P), (E',P') in FIB(B), let [E,E'l; be the
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metacategory whose objects are the horizontal functors F:(E,P) - (E',P') and

whose morphisms are the vertical natural transformations.

4.40 EXAMPLE Take B = 1 — then



§5. FIBRATIONS: EXAMPLES
The ensuing compilation will amply illustrate the ubiquity of the theory.

5.1 EXAMPLE The functor
Ob:CAT ~ SET
that sends a small category C to its set of objects is a fibration.
[Suppose that g:B -~ Ob C', where B is a set. To construct a horizontal

u:C » C' such that Ob u = g, let C have objects B and given x,y € B, let

Mor (x,y) = {x} x Mor(g(x),g(y)) x {yv},
composition and identities being those of C'. Define the functor u:C -~ C' by
taking u = g on objects and by taking

u:Mor (x,y) -+ Mor (g(x),g9(y))

to be the projection.]

5.2 EXAMPLE Let C be a category with pullbacks. Consider the arrow category
C(+) -- then the objects of C(+) are the triples (X,f,Y), where f:X ~ Y is an
arrow in C, and a morphism
(X,£,Y) » (X',£',¥")
is a pair
‘_ $p:X > X

Py > Y'
of arrows in C such that the diagram

X— > X'

fl - lf.

=
Y
K



commutes. Define
cod:C(+) > C

by
£

cod (X > Y) =Y, cod(o,y) = y.

Then cod is a fibration and the fiber (_;(—>)Y of cod over Y can be identified with

c/Y.

[A morphism (¢,y) is horizontal iff the commutative diagram

is a pullback square. This said, given a morphism g:Z2 -~ Y' in C, to construct a
horizontal
u: (X, £,v) » (x',£',Y")

such that cod u = g, form the pullback square

Then
(Pygr9) (2 Xyy X',p,,2) » (X',£7,Y")
is horizontal and ood(px.,g) = g, so we can take X = Z Xy X', £= Py Y =2,

u = (pX.,g)-]



5.3 EXAMPLE Iet C be a locally small finitely complete category. Fix an
internal group G in C —— then the restriction of cod to G-BUN(C) is a fibration.

[Recall the definitions:

e An object of G-BUN(C) is an object E P > B of C/B together with an

arrow E X G s > E such that the diagram

u
ExG——sE
Pg lp
F——r—————>B8B
p
commutes.
® A morphism
p T
(E > B) > (E' > B')
of G-BUN(C) is a pair
$:E —> E'
Y:B —> B'
of arrows in C such that the diagram
¢

=
W <—=
=

comutes and ¢ is G-equivariant, i.e., the diagram



u
EXG——>E
¢ x id, [cb
E'XG— 5 E'

Lll

commutes. ]

[Note: Given a morphism g:1§ > B in C, to construct a horizontal

. P p
u: (E > B) >(E > B)

such that cod u = g, form the pullback square

-~ g
5 =B XB E > E
ﬁJ Jp
B > B .
g
] . . ~ u ~
Then the universal property of pullback determines a unique arrow E X G > B

such that the diagram

5 i 3
ExXG > E
PE[ JP
B B
p

comutes subject to

§oﬁ=uo(§xidG),

Therefore u = (§,g) is a horizontal morphism p -~ p such that cod u = g.]



5.4 EXAMPIE Given a category C, define a category fam C as follows.

e The objects of fam C are the families {Xi:i € I}, where I is a set
and X, € Ob C.
e A morphism
{xi:i € 1}~ {Yj:j € J}
of fam C is a pair (¢,{fi:i € I}), where ¢:I -~ J is a function and £, X, > Y¢(i)
is a morphism in C.
[Note: The caomposite
(llh{gj=j € J}) o (¢,{fi:i €1I})

is the pair
(LP ° ¢r{9'¢(1) ° fi:l € I})-]
Let U:fam C > SET be the functor that sends {X;:i € I} to I and (¢,{f,:i € I})
to ¢ -- then U is a fibration.

[let ¢:I ~ J be a function, {Yj:j € J} a family of objects of C. Put X, Y¢(i)

and let fi:Xi ~Y be the identity — then the morphism (¢,{fi:i € I}) is

¢ (1)
horizontal and its image under U is ¢.]

[Note: The horizontal morphisms are the pairs (¢,{fi:i € I}), where viel,

fi is an isomorphism.]

(@]

N.B. Let ~ be categories, let
D

U:fam C + SET

V:fam D + SET



be the associated fibrations, and let F:C > D be a functor —— then F induces a
horizontal functor
fam F:fam C > fam D

by setting

fam F{Xi:i €I} {in:i € 1}

and

fam F(¢,{fi:i € I}) (¢:{Ffi:i € 1}).

5.5 REMARK Take C = SET —— then the fibrations

U:fam SET - SET, cod:SET(») - SET
are equivalent.
[Define a horizontal functor
fam SET ~ SET(~)

on objects by sending the family {Xi:i € I} to the triple

(] x.,f,1)
ﬁ ll I r

where f (Xi) = i, and define a horizontal functor

SET(+) ~ fam SET

on objects by sending the triple (X,f,Y) to the family {f “(y):y € ¥}.]

5.6 EXAMPLE Let C be a locally small finitely complete category. Suppose
that M = (M,0,s,t,e,c) is an internal category in C, thus M is an object of C,

O is an object of C, and there are morphisms s:M -+ O, t:M > O, e:0 + M, c:M XO M->M

satisfying the usual category theoretic relations.



Here

M > 0 .

Define a category C(M) as follows.

e The objects of C(M) are the pairs (I,u), where I is an object of C
and u:I > O is a morphism of C.

® A morphism

(T,u) » (J,v)
of C(M) is a pair (¢,f), where ¢:I »~ J and £:I + M are morphisms of C such that
sof=u,tef=vo¢.
[Note: To formulate the composition law, let
(¢,£):(T,0) > (T,v), (P,9):(T,Vv) > (K,wW)

be morphisms. Consider the arrows

hil t oy g S
I > M > 0, I > J > M > O.

Then
Sogo¢=vod=tof,

from which an arrow h:I - M XO M such that

T, ©ch=gqgo ¢.

Now put

(W,9) o (¢,£) (Y o ¢, c © h)



and observe that

Soc0h=SOTrs°h=s°f=u

t°C°h=t°”ﬂ't°h=t°go¢=W°LP°¢-]

Iet UM:Q(M) + C be the functor that sends (I,u) to I and (¢,f) to ¢ -- then
UM is a fibration.
[let ¢:I > J be a morphism of C, where (J,v) is an object of C(M) —- then
the morphism
(b, o v o 9):(I,v o)~ (J,V)

is horizontal and its image under UM is ¢.]

N.B. ILet C be a locally small finitely complete category, let be

internal categories in C, let

UysC) ~ ¢
UysCiN) ~ ¢

be the associated fibrations, and let F:M - N be an internal functor (so F = (FO’Fl)
is a pair of morphisms FO:O -+ P, Fl:M + N subject to ...) —— then F induces a
horizontal functor

C(F) :C(H) > C(N)

by setting

o 1)

C(F) (I,u) = (I,F

C(F) (4,£) = (¢,F) ° £).



[Note: If F,G:M - N are internal functors and if Z:F > G is an internal
natural transformation (thought of as a morphism Z:0 - N subject to ...), then

the prescription

[1l

Q(E) (I,U.) = (idII ° u)

determines a vertical natural transformation

C(E):C(F) ~ C(G).
Denote by [M,N]. , the category whose objects are the internal functors from M to N
int

and whose morphisms are the internal natural transformations —-- then the association
F > C(F), & » C(E) defines a functor

MNT, o~ [CM),C(M ], (cf. 4.39)

which is full and faithful. Therefore, from the 2-category perspective, CAT(C)

(cf. 1.6) is 2-equivalent to a full sub-2-category of FIB(C).]

5.7 REMARK Let X be an object of C. Put 0 =X, M =X, takes=t=idX,
e = idx, c= idX, and let X be the internal category of C thereby determined —-
then C(X) can be identified with C/X and U, becomes the forgetful functor UX:(_:/X >

C. Moreover, the functor

C > FIB(Q)
that sends X to (C(X) ,UX) is full and faithful.

[Note: The assumption that C is finitely complete is not needed for these

considerations.]

Let I be a small category, F:I - CAT a functor.



10.

5.8 DEFINITION The integral of F over I, denoted INTF, is the category

whose objects are the pairs (i,X), where i € Ob I and X € Ob Fi, and whose mor-
phisms are the arrows (§,£):(i,X) » (3,Y), where § € Moxr(i,j) and £ € Mor((F6)X,Y)
(composition is given by

(8',£') o (§,£) = (8" o &, £' o (FS")E)).

5.9 NOTATION Let

OF:INT -1

be the functor that sends (i,X) to i and (§,f) to 6.

[Note: The fiber of OF over 1 is isomorphic to the category Fi.]

The relevant points then are these.
e The preophorizontal morphisms are the (§,f), where £ is an isomorphism.
[Mote: The composition of two preophorizontal morphisms is therefore preop-
horizontal.]

° @F is a preopfibration.
5.10 FACT GF is an opfibration (quote 4.25 in its "op" rendition).

let F,G:I » CAT be functors, Z:F > G a natural transformation.

5.11 DEFINITION The integral of = over I, denoted IN'I'IE, is the functor

INDF > INT.G

defined by the prescription

(O 2) (1,%) = (1,5%)

(@T,2) (5,6) = (8,45) -
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Obviously,

[1]

Og © IL;E = Opy

and INT_= sends ophorizontal arrows to ophorizontal arrows. Therefore INTIE is

T°

an ophorizontal functor from INT_F to INTIG.

- -

N.B. The association
TP > (INTIF,@F)
- INT.=

—1

[1]

defines a functor

INT. : [I,CAT] ~ CAT/I.

5.12 EXAMPLE ILet I be a small category —— then the twisted arrow category
I(~>) of I is the category whose objects are the triples (i,6,j), where 6:i - J
is an arrow in I, and a morphism

(i,6,3) » (1',8',3")

is a pair
p:i" > 1

Y3 > 3!

of arrows in I such that the diagram

(o]
=
L B
(o]
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I
commites. Denote by the canonical projections
_ 1
I(>) » 1%
I("'>) > :_[_r
hence
- SI(S = dom § sl(q;,q)) = ¢
tls = cod (S, tI(dD,U)) = 11):
°I
and are opfibrations.
t
_ I
[let
HI:EOP x I -~ CAT

be the functor (j,i) - Mor(j,i), where the set Mor(j,1i) is regarded as a discrete
category —— then

INT H
—0P , g 1

can be identified with I(~>), 0., becoming the functor

I

(5p/tp):L(~>) > I x L.

Therefore are opfibrations (the ambient projections are opfibrations and
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opfibrations are composition closed).]

The notion of pseudo pullback, as formulated in 1.22, can be extended from

€AT to CAT/B.

5.13 CONSTRUCTION Fix a category B. Let + (E,P) be objects of
(E,,P,)
=272

¢AT/B and let
Fl:(El’Pl) > (EIP)

Fy: (E,/P,) > (EP)

be morphisms of €AT/B —- then the pseudo pullback E

X

- Ez of the 2-sink

1 -E
P P
(El'Pl) > (EIP) < (-E—:Z’PZ)
is the following category.
® 2An object of El *m EZ is a quadruple (B,Xl,Xz,cb), where B € Ob B,

X € Ob(_E_Jl)B, X, € Ob(E,)y, and ¢:F{X; > F)X, is an isomorphism in E..
e A morphism
1 1 L] 1
(BIXlIX21¢) —> (B lxlrle(b )
is a pair (fl’fz) , where fl.Xl - Xi is a morphism in E‘l’ f2.X2 > X2 is a morphism

in Ez, subject to fl and f2 induce the same morphism B -+ B' (i.e., Plfl = szz)



and the diagram

commutes.

Define functors

by

14.

¢
Fle > F2X2
Flfl F2f2
F]_Xi > FZXé
(b'
Py gy 5_}3_ E, > E
B Py:E “E E, 7 E
pl(B’Xl' 21(1)) = Xl (Pl(fl,fz) =
pz (BIXlIXZI(b) = X2 (pz (fl'fz) =

and define a natural transformation

by

Then the diagram

-

B X3 B,

1]

:F

1

°Pp T E 0P

:F.X
(B,X) 1 %,,9) 171

> F2X2 .
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of 0-cells in 2-CAT/B is 2-cammutative.

[Note: Iet

E) 5 By > B

—

be the canonical projection —— then

F °pp:(B §§ E,, M) ~ (E,P)

F, ° p,: (B *E E,,m ~ (E,P)

are morphisms in CAT/B. E.q.:
P o Fy o p (BX,X,,¢) = PFX; = P;X, =B
while

T(B,Xy,Xy,¢) = B.

Moreover, E is vertical. In fact,

PE = P¢ = id_ = id ]
(B,X] Xy, 0) 9 = ne,x,,%,,0)

N.B. As regards the fibers, V B € Ob B,

(By %5 By)p = (By)p 5§B (E))g-

(E, ,P,)
5.14 EXAMPLE If , (E,P) are objects of FIB(B) and if
(E,,P,)

Fi:(E,Py) > (E,P)

Fz:(EZ'PZ) - (EIP)
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are morphisms of FIB(B), then the canonical projection
H:El EE Ez > E

is a fibration.

5.15 DEFINITION The functor P:E -+ B is a bifibration if it is both a fibration

and an opfibration.

5.16 EXAMPLE The functor
Ob:CAT - SET

figuring in 5.1 is a bifibration.

5.17 EXAMPLE The functor
cod:C(+) -~ C

figuring in 5.2 is a bifibration.



86. FIBRATIONS: SORITES

6.1 LEMMA If F:C ~ D and G:D ~ E are fibrations, then so is their composition

G o F:C - E.

6.2 REMARK Display the data:

@]
\

GeF

<« i

1td

Then F defines a morphism

(g,G ° F) - (QIG)

in CAT/E but more is true: F sends horizontal arrows to horizontal arrows. There-
fore F defines a morphism

(C,G o F) >~ (D,G)
in €AT /E or still, F defines a morphism
(C,G ° F) > (D,G)

in FIB(E).

6.3 LEMMA The projection functor
CxD>D

is a fibration.

6.4 IEMMA If F:C ~» D and F':C' > D' are fibrations, then the product functor

F x F':Cx C' > D x D'

is a fibration.



6.5 LEMMA Let F:C - D be a fibration and let I be a small category -- then
F*:[llg] -> [EIQ]

is a fibration.

B P

6.6 RAPPEL Given a 2-sink B' > B < E in CAT, its pullback E' = B' Xn

E
is the category whose objects are the pairs (B',X) (B' € Ob B', X € Ob E) such that

RB' = PX and whose morphisms

(B1,X) > (B)iX,)
are the pairs (¢,f), where q):B]'_ > Bé is a morphism in B' and £:X, > X, is a morphism

in E such that 8¢ = Pf, there being, then, a commutative diagram

Pry
E' > E
P'[ lP
B' > B .
B8

6.7 LEMMA Suppose that the functor P:E - B is a fibration —— then for any

functor B:B' - B, the functor P':E' + B' is a fibration.

PROOF Iet g':B'' » P'(B',X) ( = B') be a morphism in B'. Choose a horizontal

u:Y > X such that Pu = Bg', thus PY = 8B'', PX = BB', and
(g',uw): (B'"',Y)> (B',X)

is a horizontal morphism in E' such that P'(g',u) = g'.



[Note: The ovposite of a pullback square is a pullback square. So, if the
functor P:E ~ B is an opfibration, then for any functor g8:B' - B, the functor

P':E' > B' is an opfibration.]

N.B. The pair

(E',P") FIB(B')
is an object of

(E/P) FIB(B).

And the projection prE:E' -+ E sends horizontal arrows to horizontal arrows.

6.8 APPLICATION Suppose that

are fibrations. Form the pullback square

B s B > By
El . > B .
1

Then the corner arrow

is a fibration (recall 6.1).



6.9 REMARK The category FIB(B) has finite products.

[The projections

are morphisms in FIB(B) (cf. 6.2). Therefore FIB(B) has binary products. And

id.B serves as a final object (cf. 4.17).]

B P
> B <

Given a 2-sink B' E in €AT, one can form its pseudo pullback

B' xp E (cf. 1.22). Introduce the comparison functor

PB' xp E-B' g B (cf. 1.23)

and consider the diagram

1o

1w
1t
\
I

P'

4 X
B ——
o

10 <— 11X

1w
v
1o

the square on the right being 2-commutative.

6.10 LEMMA Suppose that the functor P:E - B is a fibration --— then the pro-
jection B' *g E > B is a fibration.

PROOF If (B',X) is an object of B' Xy E, then

rs',x) = (8',X,id) ~» B' = P'(B',X).



But P has the isomorphism lifting property (cf. 4.23), hence T is an equivalence

over B' (cf. 1.23), from which the assertion (cf. 4.36).

6.11 DEFINITION Let P;:E, ~ B, P,:E, ~ B be fibrations -- then a morphism

1 2°=2

F: (g:l,Pl) -> (_E_:2,P2) in FIB(B) is said to be internal if given any vertical arrow

£, € Mor E, (thus P,f, = id (cf. 4.26)), there exists a horizontal arrow f; € Mor E

1 1

per F such that Ff =f2 (=> P, £ =P2Ff = p, £, = id).

1 171 1 272
[Note: In this context, there are three possibilities for the term "horizontal”,

viz. per Pl' per P,, or per F.]

N.B. If F is a fibration, then F is internal (recall that F is necessarily a

morphism in FIB(B)) .

6.12 LEMMA Suppose that F is internal —- then V B € Cb B,

Fpi(Ey)p > By

is a fibration.

6.13 LEMMA Suppose that F is internal -— then F is a fibration.

PROOF Given a morphism g:X, > FX!, the claim is that there exists a horizontal

2 1’
morphism u:Xl > Xi per F such that Pu = g. To establish this, start by applying
. L ' : : “’.N ]
P2, hence Pzg.sz2 > P2FXl Ple. Next, choose a horizontal morphism u.Xl - Xl
per P, such that Plﬁ = Pyg (=> Pl}~(l = P,X,) —- then Fu is, by assumption, horizontal

per P2. Consider now the factorization

PoFX) ———> PfXy ———> P

id P2Fu

:EX'

2771



or, equivalently, the factorization

[} - |

PXx, —mm™>P.X — .5 P.X!',
272 id 11 P.FG 171

From the definitions, there is a unique morphism V:X2 -> F;{l such that P2v = id

and Fu o v = g. Schematically:

g9
[ . |
X, o o o o> FXg ————> FX1
2 v 1 - 1

But v is vertical, so, F being internal, one can find a horizontal arrow V per F

suchthatF?r=v,wherethecodcmamofx7is}~<l. Put u =1 o v — then Fu =

~

FQ o F¥ = Fu © v = g and u is horizontal per F (verification left to the reader).]



§7. THE FUNDAMENTAL 2-EQUIVALENCE

Let B be a category ——- then B can be regarded as a 2-category B for which
UB =~ B (cf. 1.14), but we shall abuse notation and write B in place of B (no

confusion will result in so doing).

N.B. Traditionally, B is replaced by ]§OP, the relevant 2-metacategories being

2-8%, 2-eat]
and

ps-[B%F, 2-¢at].

[Note: The first is a sub~2-metacategory of the second.]

The 0-cells of
ps- (8%, 2-¢AT]

are the pseudo functors from ]§OP to 2-CAT. If F:]_B:OP -+ 2-¢AT is a pseudo functor,

then v B € Ob B, FB is a category and v B, B' € Ob Band vV B € Mor(B,B'), FB:FB' -

FB is a functor.

7.1 EXAMPLE Take B = TOP and let (X,TX) be a topological space —- then Ty

can be viewed as a category and a continuous function f: (X,TX) > (Y,TY) induces

a functor f_l:TY - Ty Therefore this data determines a 2-functor

TP > 2-¢AT.

7.2 EXAMPLE Take B = CAT and fix a category D — then for any small category
C, [C,D] is a category and a functor F:C + C' induces a functor F*:[C',D] - [C,D].
Therefore this data determines a 2-functor

car™® . 2-¢AT.



7.3 EXAMPLE Take B = SCH and given a scheme X, let QCO(X) be the category
of quasi-coherent sheaves on X -— then a morphism f£:X » ¥ induces a functor

£%:0C0(Y) > QCO(X). Therefore this data determines a pseudo functor

s ——» 2-¢AC.

£ g
[Note: Bear in mind that if X > Y > Z, then (g o £)*:000(Z) + QCO(X)

is not literally f* o g*:QC0(Z) ~ QCO(X)... .]

7.4 NOTATION Given pseudo functors F,G:B°° - 2-€AT, let PS(F,G) stand for
the metacategory whose objects are the pseudo natural transformations Z:F - G

and whose morphisms are the pseudo modifications U:E - Q.
Here is the main result.

7.5 THEOREM There is a 2-functor

grog:PS~[B”, 2-€AT] > FIB(B)

with the following properties.

(1) V ordered pair F,G of pseudo functors 1§OP > 2-¢CAT,

(grog)F’G:PS ¥,G) ~ [gro]éF, 9IO§G]]§

is an isomorphism of metacategories.
(2) v fibration P:E + B, 3 a pseudo functor F:]_3OP - 2-CAT such that E is

isomorphic to grogF in FIB(B).

7.6 REMARK Therefore PS- [1§OP,2—CAE] and FIB(B) are 2-equivalent (cf. 2.15).



The proof of 7.5, when taken in all detail, is lengthy.

OP

7.7 GROTHENDIECK CONSTRUCTION Let F:B™ - 2-CAT be a pseudo functor -- then

groBF is the category whose objects are the pairs (B,X), where B € Ob B and

X € Ob FB, and whose morphisms are the arrows (8,f):(B,X) » (B',X'), where

B € Mor(B,B') and f € Mor (X, (FR)X').

[Note: Suppose that
(8,£): (B,X) » (B',X")
B',£):(B",X"'") > (B'",X"").
Then by definition
(B',£') o (B,£) = (B" o B, £' oy ).
Here
£! o f € Mor(X,F(B' o B)X'")

is the composition

f (FR)E'

X > (FR)X' ————— > (FB) (FB")X'' = F(B' o B)X''

the isomorphism on the right being implicit in the definition of pseudo functor.

Using the first axiom for a pseudo functor (cf. §3), one can check that this com-

position law is associative and using the second axiom for a pseudo functor (cf. §3),

one can check that the identity in Mor ((B,X), (B,X)) is the pair (idB,X = F(idB)X) .]

7.8 NOTATION ILet

@F :groEF > B

be the functor that sends (B,X) to B and (B8,f) to B.



7.9 LEMMA @F is a fibration and the fiber of @F over B is isomorphic to the

category FB.

To complete the definition of grog so as to make it a 2-functor, one has to

consider its action on the pseudo natural transformations and the pseudo mod-
ifications.
e ILet F,G:I}OP -+ 2-CAT be pseudo functors, E:F » G a pseudo natural trans-

formation, the associated data thus being v B € Ob B, a functor

EB:FB > GB,

and V B € Mor(B,B'), a 2-commtative diagram

[1]

B
FB > GB
FB' > GB'
EB'

in 2-CAT, where

TB:EB o F —=> G o EB'
is a natural isomorphism subject to the coherency conditions. We then define a
horizontal functor

groBE:grogF _— gro]éG

by the prescription

(grogE) (B,X) = (BIEBX)

(gl’OBE) (Brf) = (Blg) 14



where g € Mor(EBX, (GB) (HB.X')) is the composition

:Bf TB,X'

£, (FB) (X') ———> (GB) (55,X").

(1]
b

e ILet F,G:]§OP » 2—CAT be pseudo functors, =,0:F > G pseudo natural trans-

formations, and U:Z -~ Q a pseudo modification, the associated data thus being

V B € Ob B, a natural transformation Y, :Z; + Q subject to the commutativity of

the diagram
g, x!
:B(FB) (x") > (GB) (:B.X')
‘JB’ (FB) X' (GB) (LIB. ,X')
QB(FB) (x") > (GB) (QB.X') .
Q
'8,x!

We then define a vertical natural transformation
groléq:grogz > grogsz
by the prescription
(grog) g, %) = (dgrg y) -
[Note: To see that this makes sense, observe first that grqu has to be
indexed by the pairs (B,X) (B € Gb B, X € FB), so
(grogq) B,%) (grOEE) (B,X) ~ (grogﬂ) (B,X)

or still,

(groELI) (B,X) : (BIEBX) g (BIQBX) -



But
XEFB=>EBXEGB
X€FB=>QBX€GB.
And v X € FB,

qB,X € Mor (5 X, QBX) .

Therefore the pair (1d.B, qB,X) belongs to

Mor ( (gro_ =) (B,X), (groBQ) (B,X))

per groBG. That B‘l is vertical is obvious:

06 (90D (5 ) = 85(idy, Up )

idB = id@F(B,X) .]

In summary: The Grothendieck construction provides us with a 2-functor

gro:PS-[B, 2-€AT] > FIB(B)

and it remains to address points (1) and (2) of 7.5. Since the verification of the
first point is straightforward (albeit tedious), we shall focus on the second which
requires some additional input.

Let P:E + B be a fibration and suppose that g:B -~ B' is an arrow in B.

Assuming that E‘B' #z 0, for each X' € Ob EB" choose a horizontal u:X - X' such

that Pu

g and define g*:gB. -> EB as follows.

e On an object X', let g*X' = X.

® On a morphism ¢:X' ->}~(', noting that P(¢ o u) = P¢p o Pu:idB' o Pu =

g = Pu, let g*$ be the unique filler in the fiber over B for the diagram



=

> 52
v
s

g*¢’ ¢ °u

7.10 ILEMVA g*:EB, - E‘B is a functor.

[Note: Take g* to be the canonical inclusion if F;'.B, = 0.]

Needless to say, the definition of g* hinges on the choice of the horizontal
u:X > X'.

7.11 DEFINITION A cleavage for P is a functor ¢ which assigns to each pair
(g,X"), where g:B - PX', a horizontal morphism u = o(g,X"') (u:X - X') such that

Pu=g.
[Note: The axiom of choice for classes implies that every fibration has a

cleavage.]

7.12 EXAMPLE. Consider grogk —- then the canonical cleavage for G)F is the rule

that sends B:B » B' ( = @F(B',X')) to the horizontal morphism

(B,1d : (B, (FB)X') » (B',X").

(FR)X")

Consider now a pair (P,0), where o is a cleavage for P —- then the association

g*

> Ep)

g
B —— EB’ (B > B') — (Lj:B.

defines a pseudo functor ZP 5 from __OP to 2-CAT.

r



7.13 LEMMA If P:E ~ B is a fibration, then E is isomorphic to grogl, . in
gl 4

FIB(B) -

PROOF Define a horizontal functor ¢:E - groBZP . by the following procedure.
® Given X € Ob E, let
X = (PX,X) (X e b EPX = Ob ZP’0PX) .
® Given a morphism f:Y ~ X in E, ¢f must send oY = (PY,Y) to X = (PX,X).
So let of = (Pf,¢f), where
oc € Mor (Y, (ZP,on)X) ’
or still,

e € Mor (Y, (P£) *X) ((Pf)*X € EPY)

is defined to be the unique filler in the fiber over PY for the diagram

o(Pf,X)
(Pf) *X > X
A

be - £

Y Y .

Here, by definition, Po(Pf,X) = Pf.
The claim then is that ¢ is an isomorphism of categories. But it is clear
that ¢ is bijective on objects. As for the morphisms, the arrow
Mor(Y,X) - Mor((PY,Y), (PX,X))

taking £ to (Pf,¢ f) is manifestly injective:

(B, 80) = (Pg,4)

f = o(PE,X) o s o(Pg,X) ° ¢ = g.



To establish that it is surjective, consider a pair (g,y), where g:PY - PX and

Yy > (ZP’Gg)X (so Py = id, ). ILet f = o(g,PX) ° ¢ - then

Pf = Po(g,PX) o Py
=g o idPY = q.
Schematically:
f Pf
Yy sgx—— x|, lpy > PY > S
Y o(g,PX) id_PY g

Because 0(g,PX) is horizontal,  is characterized by the relations Py = idPY

and 0(g,PX) ¢ § = f. Meanwhile

g o (P£,X)
Y — s PEH* —m > X

or still,

e o (g,PX)
Y — o g*x > X.

However Pcbf = idPY (cbf is, by definition, a morphism in the fiber over PY) and
o(g,PX) ° cbf = f. Accordingly, by uniqueness, bg = Y. Therefore

of = (P£,00) = (g,¥) .

The proof of 7.5 is therefore complete.



88. SPLITTINGS

Let P:E - B be a fibration.

8.1 DEFINITION A cleavage o for P is said to be split if the following

conditions are satisfied.
(l) G(idPXIIX|) = id-xl'
(2) o(g' o g,X'") =0(g',X'") °oo(g,g'*X"'").

[Note: A fibration is split if it has a cleavage that splits or, in brief,

has a splitting.]

8.2 EXAMPLE In the notation of 4.18, assume that ¢:G +~ H is surjective, hence
that ¢:G > H is a fibration —- then a cleavage ¢ for ¢ is a subset K of G which
maps bijectively onto H and ¢ is split iff K is a subgroup of G. Therefore ¢ is

split iff ¢ is a retract, i.e., iff 3 a homomorphism ¢:H -~ G such that ¢ o ¢ = idH.

8.3 REMARK The association

opP
Ip B~ > 2-€AT

is a 2-functor iff P is split.

8.4 THEOREM Every fibration is equivalent to a split fibration.

[Note: The meaning of the term "equivalent" is that of 4.37.]

There are some preliminaries that have to be dealt with first. So suppose

that P:E + B is a fibration —- then vV B € Ob B, there is a fibration UB:§/B > B



(cf. 5.7) and a functor

Fp,p* [B/B/Elp > By

namely:
(1) Given a horizontal functor

F: (B8/B,Uy) + (E,P),
assign to F the object F(idB) in Ob Es.

(2) Given horizontal functors

F,G: (B/B,U;) ~ (E,P)

and a vertical natural transformation Z:F -+ G, assign to £ the arrow EidB:F(idB) -
G(idB) in Mor Ep.
8.5 LEMMA The functor
Fp,B* [}é/B’E]I_a > By
is an equivalence.

[Tt is not difficult to prove that FP,B is fully faithful. To see that FP,B
has a representative image, fix an X € Ob EB and define a horizontal functor
FX:1§/B -+ E by the following procedure.

® Given an object a:A + B of B/B, put

Fea = a*k (a*:E, > E, (cf. 7.10)).

e Given a morphism




of B/B, there are horizontal arrows
u:a*Xx —> X (Pu = a)
u':a'*X — X (Pu' = a')
with
Pu=a=a' o f="ru" of,

so there exists a unique morphism

a*f:FXa = a*} —> a'*X = FXa'

such that Pa*f = f and u' o a*f = u. Schematically:

a*X « « ¢« e >a'"* —uw— X, A > A' > B .
a*f u' f a'

The definitions then imply that

FP’BFX = FX(ldB)

!
-
ol
u
o

Now introduce a 2-functor
sp (P) :];%OP - 2-CAT
by stipulating that

sp(P) (B) = [B/B,El

and letting
sp(P)B:sp(P) (B') - sp(P) (B) (8:B +~ B')

operate by precomposition via the horizontal arrow B,:B/B + B/B' induced by 8.



[Note: Strictly speaking, [1_3/B,’£3]B is a metacategory rather than a category

but this point can be safely ignored.]

Pass next to grogsp (P) —— then the canonical cleavage for G)s (

p(P) is split

(cf. 7.12).

The final step in the proof of 8.4 is to define a horizontal functor
FP:grolésp(P) > E

with the property that vV B € 0b B, (FP)B = FP This done, it then follows from

/B’
4.38 that FP is an equivalence of categories over B (cf. 8.5).

Consider an object (B,X) of groBsp(P) -~ then
X € Ob sp(P) (B) = Cb [E/B,E]B,

so X:B/B + E is a horizontal functor and we put

FP(B,X) = X(idB) € Ob E‘B

Turning to a morphism (8,f):(B,X) - (B',X') of groBsp(P), as usual, B:B - B',
while
f:X > (sp(P)B)X'

is a vertical natural transformation indexed by the objects A ~ B of B/B. To define
Fp(8,£) :X(idp) ~ X' (idg,),
note first that

fidB:x(idB) + ((sp(P)B)X") (idB) .

Proceeding,

Sp(P)B:[E/B'rE]B e [§/BIE]BI



where
(sp(P)B)X' = X' o By,
hence
((sp(P)B)X') (idy) = (X' o B,) (idy)

B

= X'(B > BY).

In the category B/B', idB,:B' - B' is a final object, thus there is an arrow

B
X'(B

> B') —> X'(idB,).

Definition: FP (B,£) is the result of composing

fidB:X(idB) - X'(B

B
> B')

with the preceding arrow, thus

FP(B,f) :X(idB) > X! (idB) .



§9, CATEGORIES FIBERED IN GROUPOIDS
Let P:E - B be a fibration.

9.1 DEFINITION E is fibered in groupoids by P if v B € Ob B, EB is a groupoid.

9.2 RAPPEL let G be a topological group, X a topological space. Suppose that
Xx G+ X

X is a free right G-space: ~— then X is said to be principal
(X,g) >X - g

provided that the continuous bijection 6:X x G » X x X/ X defined by (x,9) -

G

(x,x « g) is a homeomorphism.

let G be a topological group — then an X in TOP/B is said to be a principal

G-space over B if X is a principal G-space, B is a trivial G-space, the projection

X > B is open, surjective, and equivariant, and G operates transitively on the

fibers. There is a cammutative diagram

X X
X/G > B

and the arrow X/G > B is a homeomorphism.

9.3 NOTATION Iet
PRT
PRIN;
be the category whose objects are the principal G-spaces over B and whose morphisms

are the equivariant continuous functions over B, thus

¢
> X!
l
B

W <—X

14



with ¢ equivariant.

9.4 FACT Every morphism in P G is an isomorphism.
14

[Note: The objects in P which are isomorphic to B x G (product

/G
topology) are said to be trivial, thus the trivial objects are precisely those

that admit a section.]

9.5 EXAMPLE lLet G be a topological group —— then the classifying stack of

G is the category PRIN(G) whose objects are the principal G-spaces X - B and

whose morphisms (¢,f):(X >~ B) = (X' - B') are the comutative diagrams

¢
X— 5 X'
B— 5 B',
£

where ¢ is equivariant. Define now a functor P:PRIN(G) - TOP by P(X ~ B) = B
and P(¢,f) = £ — then P is a fibration. Moreover, PRIN(G) is fibered in groupoids

by P:

PRIN(G)p, = PRIN; .,

which is a groupoid by 9.4.
9.6 REMARK Suppose that P:E - B is a functor with the property that v B € Ob B,
By is a groupoid —- then it is not true in general that P is a fibration.

[E.g.: In the notation of 4.18, consider a homomorphism ¢:G > H which is not

surjective.]



9.7 IEMMA If E is fibered in groupoids by P, then every morphism in E is
horizontal.
PROOF Let f € Mor(X,X') (X,X' € Ob E), thus Pf:PX +~ PX', so one can find a

horizontal UyX, > X' such that Pu, = Pf. But u, is necessarily prehorizontal,

hence there exists a unique morphism v € Morp. (X,XO) such that u o v = f:
0

u
L}
XO > X
v £
X X.

Since u is horizontal and v is an isomorphism, it follows that £ is horizontal

(c£. 4.20 and 4.11).

N.B. Suppose that

E is fibered in groupoids by P

E' is fibered in groupoids by P'.

Then every functor F:E ~ E' such that P' o F = P is automatically a horizontal

functor from E to E' and [E,E'l; is a groupoid.

9.8 LEMMA Let P:E > B be a functor. Assume: Every arrow in E is horizontal
and for any morphism g:B > PX', there exists a morphism u:X + X' such that Pu =g —
then P is a fibration and E is fibered in groupoids by P.

PROOF The conditions obviously imply that P is a fibration. Consider now an

arrow f:X » X' of l_a_B for some B € Ob B —— then f is horizontal, so there exists



a unique morphism v € MorB(X',X) (PX = B = PX') such that £ o v = idX,:

f
X > X!
v idX,
X! xX! .

Therefore every arrow in EB has a right inverse. But this means in particular
that v must have a right inverse, thus f is invertible.

9.9 ILEMMA Suppose that

El is fibered in groupoids by Pl

E, is fibered in groupoids by P,
and
E is fibered in groupoids by P.
Iet
- Fy:(E,P) > (E,P)

Fy: (Ey/Py) + (E,P)

be morphisms in FIB(B) -- then the canonical projection

is a fibration (cf. 5.14) and E; x E, is fibered in groupoids by IL.
E

[Recall that

€ g Blp~ Ep X Bl



and the pseudo pullback on the right is a groupoid {cf. 1.22).]

Let P:E ~ B be a fibration. Denote by B or the wide subcategory of E whose

morphisms are the horizontal arrows of E. Put

Phor - PlE‘hor‘

9.10 LEMMA P,

hor:Eklor +~ B is a fibration and Ehor is fibered in groupoids by

hor



§10. DISCRETE FIBRATIONS

10.1 RAPPEL A category is said to be discrete if all its morphisms are
identities.
[Note: Functors between discrete categories correspond to functions on their

underlying classes.]
N.B. A discrete category is necessarily locally small.

10.2 EXAMPLE Every class is a discrete category and every set is a small

discrete category.

10.3 LEMMA A category C is equivalent to a discrete category iff C is a
groupoid with the property that v X,X' € Ob C, there is at most one morphism from

X to X'.

Every discrete category is a groupoid. So, if P:E » B is a fibration, then
the statement that E is "fibered in discrete categories by P" (or, in brief, that

E is discretely fibered by P) is a special case of 9.1.

10.4 EXAMPLE Let C be a locally small category -— then V X € Ob C, the

forgetful functor UX:g/X > C is a fibration (cf. 5.7). Moreover, C/X is discretely

fibered by (VY € Ob C, the fiber (Q/X)Y is the set Mor(Y,X)).

Ux

10.5 LEMMA Iet P:E ~ B be a functor — then E is discretely fibered by P iff
for any morphism g:B - PX', there exists a unique morphism u:X + X' such that

Pu = qg.



PROOF Assume first that E is discretely fibered by P, choose u:X + X' per g
and consider a second arrow U:X -~ X' per g —— then Pi = Pu. Since u is horizontal
(cf. 9.7), thus is prehorizontal, there exists a unique morphism v € NbrPX (i,X)

such that u o v = 1Q:

e
\

<
—_—
M ————— 4
o3

bt

But the fiber EPX is discrete, hence X = X and v is the identity, so 4 = u. In

the other direction, consider a setup

\4 Pw

s x ' px > PX > px' .}

u X Pu

With "x" playing the role of "g", let v:X, + X be the unique morphism such that

0
Pv = x —— then

u° V:X0 > X' =>Pu o v) :PXO -+ PX!

W:XO - X' = P(w) :PX0 +> PX'.

Accordingly, by uniqueness, u o v = w. Therefore every arrow in E is horizontal
which implies that E is fibered in groupoids by P (cf. 9.8). That the fibers

are discrete is clear.

Suppose that P:E ~ B is a fibration such that E is fibered in sets by P (so,

VBEObI_B_,g:Bisaset). Let g:B > B' be an arrow in B — then the data defining

the functor g*:EB, > EB of 7.10 is uniquely determined, as is the cleavage



o:P > ZP o’ where in this context, ZP 5 is to be viewed as a functor from EOP
I4 4 -

to SET.

10.6 NOTATION FIBSEI,(E) is the full subcategory of FIB(B) whose objects are

the fibrations P:E - B which are fibered in sets by P.

If F:(E,P) > (E',P') is a morphism in FIBSET(I_S), then there is an induced
natural transformation
SR D) >z

“F'°P,o0 P', 0"

10.7 LEMMA The functor

oP
FIB.om(B) > [E™,SET]

that sends (E,P) to ZP s is an equivalence of metacategories.

14

Oop

[To reverse matters, take an F:E™ - SET and consider gropF —- then here a

morphism (B,X) - (B',X') is an arrow R:B »> B' such that X = (FR)X' and it is obvious

that grogF is fibered in sets by @F (cf. 7.9).]

10.8 EXAMPIE Let C be a locally small category —— then an object of

is called a presheaf of sets on C. Given X € Ob C, put

By

Mor (—,X) .

Then

Mor (X,Y)

Nt (ny by

u



and in this notation the Yoneda embedding

Y :C »>

1

sends X to hX Moreover, under the correspondence of 10.7,

g/x <> hX

Thus, symbolically,

¢ —> € —> FIByn(C) —> FIB(Q).

FIBS



§11. COVERING FUNCTIONS

Let C be a category.

11.1 DEFINITION Given an object X € Ob C, a covering of X is a subclass C

of Ob C/X.

11.2 DEFINITION If C, C' are coverings of X, then C is a refinement of C'
(or C refines C' or C' is refined by C) if each arrow g € C factors through an

arrow g' € C':

Y « e e e o> Y'
g g'
X ——— X .

[Note: If C < C', then C is a refinement of (', the converse being false

in general.]

11.3 EXAMPLE Take C = {idX:X + X} and suppose that C is a refinement of C' —

then there is an element of C' which is a split epimorphism (a.k.a. retraction):

X o o o o @ > Y!
idX g'
X X

11.4 DEFINITION A covering function K is a rule that assigns to each X € (b C a

conglomerate  k,, of coverings of X.

X



11.5 REMARK If the cardinality of Ob C/X is n, then there are 2" subsets of

n

Ob ¢/X, thus there are 22 possible choices for Kye

11.6 NOTATION Given covering functions k and k', write k' < k (and term «'
subordinate to k) if for each X € Ob C, every covering C' € K)'( is refined by some

covering C € Kyge
11.7 EXAMPLE
e Define a covering function k by setting Ky = # —— then k is subordinate
to all covering functions.
e Define a covering function k by setting Ky = all coverings of X —— then

every covering function is subordinate to .

11.8 NOTATION Given covering functions k and k', write k = k' if k' £ k and

k < k', and when this is so, call k and k' equivalent.

11.9 DEFINITION Let Kk be a covering function -- then its saturation is the
covering function sat k whose coverings are the coverings that have a refinement
in K.

11.10 EXAMPLE Assume that K, # § and let ¢:X' > X be an isomorphism -- then

X

{9} € (sat )y Indeed, every C € k, refines {¢}:




11.11 IEMMA Suppose that k is a covering function —— then k is equivalent to

sat k and sat k is saturated. Moreover, K is saturated iff « = sat k.

11.12 ILEMMA Suppose that k and k' are covering functions —— then k and k'

are equivalent iff sat « = sat «k'.

11.13 DEFINITION Let k be a covering function — then «x is a coverage if

VXeEObC, ¥V CE KX,andvf':X'-rx,thereisaCf.E , such that

K%
g' fl
£' o Cf, = {f' o g':g' € Cf.} (Y! > X! s X)

is a refinement of C.

11.14 EXAMPLE Define a covering function « by letting Ky be comprised of all

singletons {f} (f € Ob C/X) — then k is a coverage iff for each X € Ub C, every

diagram of the form

>

Xl . > X
1
can be completed to a commutative square
92
Y > X2
91 }fz
Xl— > X .
hid



[Note: This condition is realized by the opposite of the category of finite

sets and injective functions.]

11.15 LEMMA Suppose that k and k' are equivalent covering functions — then

k is a coverage iff k' is a coverage.
N.B. Therefore k is a coverage iff sat k is a coverage (cf. 11.11).

11.16 DEFINITION Let Kk be a covering function —— then k is a Grothendieck

coverage if VX € Ob C, V C € Kyr Vg:¥+>Xin (C, and V £':X' > X, there is a

pullback square

m—
b
[,
Q

fl

such that the covering

{X' x, Y

> X':g € C}

belongs to Ky e

[Note: It is a question here of a specific choice for the pullback.]

11.17 REMARK By construction, f' o g' factors through g, hence a Grothendieck

coverage is a coverage.

11.18 EXAMPLE Given a topological space X, let O(X) be the set of open subsets
of X, thus under the operations
UAaV=UnvV
U<V <=>UcV, , 0=, 1=%,

Uvv=0 vV



O(X) is a bounded lattice. Let O(X) be the category underlying O(X) and define
a covering function K by stipulating that Ky is comprised of the collections {Ui}

of open subsets Ui of U whose union U Ui is U — then k is a Grothendieck coverage.

i

[Given a 2-sink U' —> U <— U; in O(X), the commutative diagram
uUnu, ———— U,
i i
v ——— U

is a pullback square and

UU'ﬂUi=U'ﬂUUi=U'ﬂU=U'.]
i i

11.19 EXAMPLE Take C = TOP and fix X € Ob C. Let K, be comprised of the

collections {gi:Yi - X} such that v i, 95 is an open map and the induced arrow

_|_i_ Yi + X is surjective —— then K is a Grothendieck coverage, the open map coverage.
i
[Note: The pullback of an open map along a continuous function is an open

map (in this context, "open" incorporates "continuous").]
11.20 EXAMPLE Take C = TOP and fix X € Ob C.
e Let K, be comprised of the collections {gi:Y.l + X} such that v i, 93
is an open inclusion and the induced arrow _[_| Yi + X is surjective —— then k is

i
a Grothendieck coverage, the open subset coverage.

[Note: The pullback of an open inclusion along a continuous function is an

open inclusion.]



® Iet Ky be comprised of the collections {gi:Yi -+ X} such that Vv i, g5

is an open embedding and the induced arrow _|_| Yi + X is surjective —- then k is
i
a Grothendieck coverage, the open embedding coverage.

® Iet ky; be comprised of the collections {gi:Yi -+ X} such that v i, 95

is a local homeomorphism and the induced arrow _U_ Y, > X is surjective —-- then «
i

is a Grothendieck coverage, the local homeomorphism coverage.

[Note: A local homeomorphism is necessarily an open map and the pullback of
a local homeomorphism along a continuous function is a local homeomorphism. ]

FACT The open subset coverage, the open embedding coverage, and the local
homeomorphism coverage are equivalent. Moreover, each of these is subordinate to

the open map coverage.

11.21 EXAMPLE Iet gof_—_fl\’!ﬁ be the category whose objects are the C -manifolds
and whose morphisms are the C —functions — then _(f_—_MAN_ does not have all pullbacks
but it does have certain pullbacks, e.g., the pullback of a surjective submersion
along a C -function is again a surjective submersion. Since an open subset of a
C -manifold can be viewed as a Coo—-manifold, one can form the open submanifold

coverage. On the other hand, there is a Grothendieck coverage k in which Kn is

comprised of all singletons {f}, f:N - M a surjective submersion. E.g.: If {Ui}

is an open submanifold coverage of M, then the induced arrow _|_]_ Ui + M is a
7 ,
surjective submersion.
[Note: If £:N - M is a surjective submersion, then V y € N, there is an open

subset Uy c M with f(y) € Uy and a C —function s:Uy + M such that f o s = id



and s(f(y)) = vy:

s
U, > N
y
Jf
M M.

Therefore the surjective submersion coverage is subordinate to the open subman-

ifold coverage.]

11.22 EXAMPLE Suppose that C has pullbacks -~ then there is a Grothendieck

coverage K in which k. is comprised of all singletons {f} (f € Ob C/X), where £

X
is a split epimorphism.

[Split epimorphisms are stable under pullback.]

11.23 RAPPEL A locally small, finitely complete category C fulfills the

standard conditions if C has coequalizers and the epimorphisms that are coequalizers

are pullback stable.
[Note: SET fulfills the standard conditions (as does every topos) but TOP

does not fulfill the standard conditions (quotient maps are not pullback stable).]

11.24 EXAMPLE Suppose that C fulfills the standard conditions -- then there

is a Grothendieck coverage k in which K¢ is comprised of all singletons {f}

(f € Ob C/X), where f is an epimorphism that is a coequalizer.

11.25 DEFINITION Given an object X € Ob C, an opcovering of X is a covering

of X in _C_IOP.



11.26 EXAMPLE Let RNG be the category of commutative rings with unit. Define

an opcovering function k by letting Ka be comprised of the collections {ﬂi:A ->
A[all] }, where v i, A[a;l] is the localization of A at a; and the ideal generated
by the set {ai:i € I} is all of A —- then k is a Grothendieck opcoverage, the

Zariski opcoverage.

[If £f:A >~ B is a homomorphism, then v i, there is a pushout square

> A[all]

>

e

> BI(E@N T ]

11.27 DEFINITION Suppose that Kk is a coverage — then K is a pretopology if

VXEOb_C_:,VCEKX,Vg:Y->XinC,andegE:<,thereisaCOEKXsuchthat

C0 is a refinement of

h g
U goC ={gohigelCsashecC} (Z > Y > X).

11.28 LEMMA If k and k' are equivalent coverages, then Kk is a pretopology

iff k' is a pretopology.

11.29 IEMMA Suppose that k is a pretopology. Fix X € Ob C and let Cl,C2 € Ky =

‘G

then 3 C € KX:C is a refinement of .

¢

PROOF For each f2:X2 + X in C2, there is a Cf € Ky such that f2 ° Cf



refines Cl (cf. 11.13). On the other hand, there is a C € Ky such that

is refined by C (cf. 11.27). But

refines both Cl and C2.

11.30 ILEMMA Let Kk be a covering function —- then Kk is a pretopology iff

K is a pretopology.

sat

11.31 DEFINITION Suppose that k is a coverage —— then Kk is a Grothendieck

pretopology if v X € Ob C, Vv C € K, V g:¥ >~ X in C, andegEK

X Y’
h g
UgOCg={g°h:gEC&h€Cg}(Z > Y > X)

geC

belongs to Ky

N.B. It is obvious that a Grothendieck pretopology is a pretopology.

11.32 REMARK The various examples of Grothendieck coverages set forth above
are Grothendieck pretopologies.

[The morphisms appearing in 11.22 and 11.24 are composition stable, while the
verification of the requisite property in 11.26 is mildly tedious pure algebra
(the terminology in this situation would be Grothendieck preoptopology...).]

[Note: Take k per 11.14 and impose on C the conditions therein (so that k is

a coverage) — then k is a pretopology but it need not be a Grothendieck pretopology.]



10.

11.33 DEFINITION A pretopology (or a Grothendieck pretopology) K is said

(or

to have identities if vV X € Ob C, {id:X ~» X} refines same covering in kg

belongs to KX) .

[Note: This will be the case in all examples of interest.]

11.34 REMARK If ¢:X' » X is an isomorphism in C, then {¢} might or might not

belong to Ky

[Consider the open subset coverage of 11.20 —-- then an arbitrary homeomorphism

$:X' » X is certainly not admissible.]

11.35 LEMMA Let k be a Grothendieck pretopology with the property that for

any isomorphism ¢:X" -+ X, the covering {¢} belongs to — then the coverings

“x
C e Ky are closed under precomposition with isomorphisms, i.e., if g:¥ » X is in
C and if wg:Y' + Y is an isomorphism, then {g o wg:g € C} e Kyeo

PROOF By hypothesis, {wg} € K

dom g’ SO we can take Cg = {wg}, hence

U ge C =1{go Yy :ge ) e
gg{gwgg}K

geC X

11.36 REMARK Suppose that C has pullbacks and the scenario in 11.35 is in

force -- then the particular choice for the pullbacks figuring in 11.16 is immaterial.

Iet Kk be a covering function. Fix X € Ob C —— then «k induces a covering
function k on C/X via the following procedure. Fix an object f':X' » X in C/X —-

then a covering

gl
{(g:Y > X) > (F:X' — X)}




11.

of £' belongs to Ef, iff the covering {g':Y > X'} belongs to Ky,.

[Note: There is a commutative diagram

gl
> X!
g £
X X .]

N.B. If k is a pretopology, then so is k.



§12. SIEVES

Let C be a category.

12.1 DEFINITION Let X € Ob C —— then a sieve over X is a subclass $ of Cb C/X

g £ f
such that the composition Z > Y > X belongs to $ if Y > X belongs to $.
E.g.: The minimal sieve over X is 'gm:i_n = g.

12.2 IFMMA If $ and §' are sieves over X, then $ refines $' iff § < §'.

12.3 LEMMA Every covering C of X is contained in a sieve $(C) minimal w.r.t.
inclusion (the sieve generated by C).
[$(C) is comprised of all morphisms with codomain X which factor through some
element of C.]
12.4 EXAMPLE The sieve generated by {idX:X + X} is
$ o = 00 O/X%,

the maximal sieve over X.

[Given f:Y -~ X, consider

Y > X

It follows from 12.3 that every covering function K gives rise to a covering

function $(k) whose coverings at X are the $(C) (C € KX) .



[Note: $(k) is equivalent to k.]

12.5 DEFINITION A sifted covering function is a covering function all of

whose coverings are sieves.

[Note: The term sifted coverage is to be assigned the obvious meaning.]

12.6 NOTATION Given a sieve $ over X and a morphism f:Y - X, put

£f*3 = {g:cod g =Y & £ o g € §}.

1l

Then f*$ is a sieve over Y.

12.7 IEMVA Suppose that k is a sifted covering function —— then K is a sifted
coverage iff vVXe O C, V§ € Kyr and vV £':X' » X, £'*$ has a refinement %' in

KX' L

PROCF Using the notation of 11.13, let us first prove the sufficiency of the
condition. Thus put Cf. = §', the claim being that f' o $' is a refinement of §.
But

gt € §' =>g' € £'*§ (cf. 12.2) => f' o g' € 5.
T.e.:
f' o g' c &,

so f' o $' is a refinement of $. As for the necessity, write $' in place of Cf,,

hence by assumption f' o $' is a refinement of §, hence f' o $' ¢ § (cf. 12.2)

(f' o ' is a sieve over X). To see that $' c £'*%, let g' € $' — then

f' o g' €f' o g' c §=>g' € £'*3,

12.8 DEFINITION A sifted covering function k is sieve saturated if $ € Ky

andSC5'=>$'€KX.



12.9 LEMMA Suppose that kK is a sieve saturated sifted covering function —

and v £':X' > X, £'*% € K-

then k is a sifted coverage iff v X € Ob C, V § € Kyt %

12.10 LEMMA Suppose that k is a sieve saturated sifted covering function —-—

then k is a pretopology iff k is a Grothendieck pretopology.

12.11 DEFINITION A sifted covering function k is locally closed provided the

following condition is satisfied: If $ € Ky and if §' is a sieve over X such that

£*g! € Ky for all £:¥ - X in &, then §' € Kye

12.12 IFMMA Suppose that K is a sieve saturated sifted céverage —- then k is
a Grothendieck pretopology iff « is locally closed.
PROOF Using the notation of 11.31 (with "g" replaced by "f"), to check that
"Grothendieck pretopology" => "locally closed",

take 5f = f*g' ¢ Ky = then

U f05f={f0h:f€5&h6f*5'}
fe$

belongs to Kye But

h € £%8' => £ o h € &'

=> fOSfCS'.
feg

Therefore $' € Ky (¢ being sieve saturated), so Kk is locally closed. Turning to
the converse, the data is the sieve
$! ={f0h:f€5&hE$f}

and the claim is that it belongs to k But vV £ € 3,

%



£*g' o Sf € K, => f*§' €

Y Y

=> ' .
$' e Ky

12.13 ILEMMA Let k be a sifted covering function. Assume: «k is locally closed

and V X € Gb C, 3ax € Kx — then k 1s sleve saturated.
PROOF Fix § € Kyr Suppose that § < ', and let f:Y - X be an element of § —
then
£*%8 c £*3'.
But
*¢ — = *GT
£*3 = Ob C/Y € ky => £*3' €k,
—_ '
> 8' € Ky

12.14 DEFINITION Suppose that Kk is a sifted coverage —— then Kk is a Grothendieck

topology if it is locally closed and V X € Ob C, gmax € Kge

[Note: It follows from 12.13 that x is sieve saturated. Therefore k is a

Grothendieck pretopology (cf. 12.12) and it is automatic that 12.9 is in force.]

12.15 IEMMA If k is a Grothendieck topology and if $,$' € Kyr then $ N §' € Kye
PROOF For any f:Y - X in §,
f*g' = £*($ n §').

Fowever, thanks to 12.9 (applied to $'), £*$' € Kyr SO

f*(¢ n §') € Ky => gng'e Ky

12.16 EXAMPLE Take C = O(X), X a topological space (cf. 11.18). Given an open



set U c X, a sieve $ over U is a set of open subsets V of U which is hereditary

in the sense that
VES &V cV=>V'EeES.

One then says that $ covers U if U V = U. Denoting by Ky the set of all such $,
ves

the assignment U ~ k. is a Grothendieck topology k on O(X).

U

12.17 DEFINITION Let k be a sifted covering function —— then its sifted
saturation is the sifted covering function sif k whose coverings are the sieves

that contain a sieve in k.

12.18 ILEMMA For any covering function «k,

sif $(k) = $(sat «).
Denote this covering function by J(k) —- then J(k) is sifted and sieve saturated.

12.19 LEMMA Suppose that § is a sieve over X —— then $ € J(K)X iff $ contains

an element of KX.

12.20 THEOREM If K is a pretopology with identities (cf. 11.33), then J(k)
is a Grothendieck topology.

PROOF The assumption that K is a pretopology implies that sat k is a pre-
topology (cf. 11.28) (k and sat Kk are equivalent), hence that $(sat «) is a pre-
topology (cf. 11.28) (sat x and $(sat k) are equivalent), in particular J(k) =
$(sat k) is a coverage. Therefore J(k) is a Grothendieck pretopology (cf. 12.10)
(J(k) is sieve saturated), thus J(k) is locally closed (cf. 12.12). Finally, if

{idX:X + X} refines C € Kyer then

$({id X > X1) < $(0) € $(K)y < T(K) .



But
5({idX:X > X}) = 8 ax (cf. 12.4)

$0) =8, = 5. €IWy

[Note: The two descriptions of J(k) supplied by 12.18 are used in the proof.]

12.21 REMARK In the literature, terminology varies. For example, some author-
ities would say that a "Grothendieck topology" is a covering function k which is
a Grothendieck pretopology with identities whose underlying coverage is a Grothen-—
dieck coverage. Such a k generates a "Grothendieck topology" in our sense via

passage to J(x) (cf. 12.20).

12.22 EXAMPLE Take for k the coverage defined in 11.14 (assuming the relevant
conditions on C) -- then k is a pretopology (cf. 11.32) with identities (...) and

here § € J(|<)X iff $ is nonempty (cf. 12.19).



§13. SITES

Let C be a small category.

13.1 DEFINITION A Grothendieck topology on C is a function 1 that assigns to

each X € Ob C a set T, of sieves over X subject to the following assumptions.

X

(1) The maximal sieve ‘$max € Ty

(2) If § € Tg and if £:Y - X is a morphism, then £*$ € Ty

(3) If % € T and if $' is a sieve over X such that f*$' € Ty for all

f:¥Y - X in 4, then §' ETX.
[Note: Within the setting of a small category, this is just a rephrasing
of the definition of "Grothendieck topology" as formulated in 12.14 (however, "k"

has been replaced by "t" and Ty is a set rather than a mere conglamerate).]

13.2 DEFINITION A site is a pair (C,t), where C is a small category and T is

a Grothendieck topology on C.

13.3 REMARK Suppose that we have an assignment X - Tx satisfying (1), (2) of
13.1 and for which

SETX&$C5'=>S'ETX.

Then to check (3) of 13.1, it suffices to consider those $' such that $' < 3.

13.4 DEFINITION

e The minimal Grothendieck topology on C is the assignment X - {Smax}'

e The maximal Grothendieck topology on C is the assignment X -+ {$}, where

$ runs through all the sieves over X.



13.5 NOTATION Let T, stand for the set of Grothendieck topologies on C.

13.6 EXAMPLE Take C = 1 — then C has two Grothendieck topologies: {8}

Given ©, T ETC, write T < 1' if V X € Ob C, Tg © T}'(.

13.7 LEMVA The poset e is a bounded lattice.

PROOF If 7, T' € Ter let T A T' be their set theoretical intersection and let

T v 1" be the smallest Grothendieck topology containing their set theoretical union.

As for 0 and 1, take 0 to be the minimal Grothendieck topology and 1 to be the

maximal Grothendieck topology.

13.8 THEOREM The bounded lattice To is a complete Heyting algebra or, equiva-

lently, the bounded lattice Tc is a locale.



§14. SUBFUNCTORS

Let C be a locally small category.

14.1 DEFINITION A subfunctor of a functor F:gOP -~ SET is a functor G:gOP -+ SET

such that v X € Ob C, GX is a subset of FX and the corresponding inclusions con-

stitute a natural transformation G -+ F, so V £:Y + X there is a commutative diagram

J_Y
GY > FY
GE il
GX > FX .
%

[Note: There is a one-to-one correspondence between the subobjects of F and

the subfunctors of F.]

14.2 LFMMA Fix an object X in C —- then there is a one-to-one correspondence
between the sieves over X and the subfunctors of hX (cf. 10.8).
PROCF If $ is a sieve over X, then the designation
GY = {f:Y > X & £ € §}

9

defines a subfunctor of hX (given 2 > Y, Gg:GY > GZ is themap £ -~ £ o qg).
Conversely, if G is a subfunctor of hX’ then GY < Mor (Y,X) and

$=UGY
Y

is a sieve over X.

14.3 EXAMPLE The subfunctor corresponding to Smax is hX and the subfunctor



corresponding to gmin is @, (the initial object of (_E) .
C

Suppose now that C is a small category —— then in view of 14.2, the notion

of Grothendieck topology can be reformulated.

14.4 NOTATION Given a subfunctor G of hX and a morphism f£:Y + X, define f*G
by the pullback square

f*G —— G
g llc;
—_
hy ————> By
f
in é —— then £*G is a subfunctor of h,.

14.5 DEFINITION A Grothendieck topology on C is a function 1 that assigns

to each X € Ob C a set Ty of subfunctors of hX subject to the following assumptions.
(1) The subfunctor hX € 3%
(2) If G € Tx and if £:Y > X is a morphism, then £*G € Ty

(3) If G € Ty and if G' is a subfunctor of hX such that f*G' € Ty for all

f € Gy, thenG'ETX.

14.6 LEMMA Iet T be a Grothendieck topology on C -- then

- '
GETX&GCG > G ETX.

14.7 LEMMA Let T be a Grothendieck topology on C — then

1 — !
G,G ETX—>GnG ETX.



14.8 REMARK Suppose that we have an assigmment X - T, satisfying (1), (2) of

X
14.5 and for which

GETX&GCG'=>G'ETX.

Then to check (3) of 14.5, it suffices to consider those G' such that G' < G.



§15. SHEAVES

In what follows, all categories are assumed to be locally small for the

generalities and small for the sheaf specifics.

15.1 RAPPEL A full, isomorphism closed subcategory D of a category C is said
to be a reflective subcategory of C if the inclusion 1:D + C has a left adjoint
R, a reflector for D.

[Note: A reflective subcategory D of a category C is closed under the forma-

tion of limits in C.]

Let D be a reflective subcategory of a category C, R a reflector for D —

then one may attach to each X € Ob C a morphism rX:X > RX in C with the following

property: Given any Y € Ob D and any morphism f:X -+ Y in C, there exists a unique

morphism g:RX -~ Y in D such that £ = g o Tye

N.B. Matters can always be arranged in such a way as to ensure that Ro 1 =

Let C be a small category. Suppose that S is a reflective subcategory of (_S
Denote the reflector by a —— then there is an adjoint pair (a,1), 1:S —><§ the
inclusion.

Assume: a preserves finite limits.

[Note: It is automatic that a preserves colimits.]

i

G>hX

such that giG is an isomorphism -- then the assigmment X - Tx is a Grothendieck

15.2 THEOREM Given X € Ob C, let Tx be the set of those subfunctors G



topology T on C (in the sense of 14.5).

PROOF Since
it follows that hX € Ty hence (1) is satisfied. As for (2), by assumption a

preserves finite limits, so in particular a preserves pullbacks, thus

af*G > aG
qlexg als
ahy > ahy
ahe

is a pullback square in S. But giG is an isomorphism. Therefore éif*G is an

isomorphism, i.e., £*G € Tye The verification of (3), however, is more complicated.

® Suppose that G € 1, and G is a subfunctor of G':

X
ig:G ~ hy
, 1:G > G'.
_ iG,:G' > hX
Then
i, = 1ig ¢ 1 =>ai, =ai,, ° ai.
But ai, is an isomorphism, hence

id = aig, o ai o (aig ™,

which implies that giG. is a split epimorphism. On the other hand, a preserves

monomorphisms, hence giG. is a monomorphism. Therefore giG. is an isomorphism,



i.e., G' € Tge

® It remains to establish (3) under the restriction that G' is a subfunctor
of G (cf. 14.8). Using the Yoneda lemma, identify each f € GY with £ € Nat (hy,G)

and display the data in the diagram

1 L 1
hYXGG > G G

HG'

10 1 hy, >G .
Y f

Now i is an equalizer (all monomorphisms in C are equalizers), thus ai is an
equalizer (by the assumption on a). But the assumption on G' is that V Y and

v £ € GY, gif is an isomorphism, thus ai is an epimorphism (see 15.6 below).

And this means that ai is an isomorphism (in any category, a morphism which is an
equalizer and an epimorphism is an isomorphism). Finally,

i,=1,°¢1i=>ai, =ai. o ai.
G' G =G =G -



Therefore ai., is an isomorphism, i.e., G' € t

G X"

15.3 RAPPEL Given a category C, a set U of objects in C is said to be a

f
>
separating set if for every pair X Y of distinct morphisms, there exists
>
g

a U e U and a morphism ¢:U » X such that £ o ¢ 2 g o 0.

15.4 EXAMPLE Suppose that C is small —- then the h, (¥ € Ob C) are a separating

set for é

15.5 LEMVMA Iet C be a category with coproducts and let U be a separating set —-—

then v X € Ob C, the unique morphism

dom £ > X

vel f € Mor(U,X)

such that v £, FX ° inf = f is an epimorphism.

15.6 APPLICATION Suppose that C is small. Working with C, take X = G in

15.5 — then

11 by

Y £ Ta

is an epimorphism.
[Note: To finish the argument that ai is an epimorphism, start with the

relation
Tg o Il I ig=1 e I4.



Then

alg o al || || ip) = al ° all,,-

Since FG is an epimorphism, the same is true of ‘EFG (left adjoints preserve epi-

morphisms). And

é(__l__|_|if) =_|_|_U_§if

is an isomorphism, call it ¢, hence

alg =ai o (@l o o7l

Therefore ai is an epimorphism.]

15.7 DEFINITION Fix a Grothendieck topology T € ’L‘g —- then a presheaf F € Ob
is called a t-sheaf if vy X € Ob Cand V G € T the precomposition map
ié:Nat(hX,F) -+ Nat (G,F)
is bijective.
Write sh _(C) for the full subcategory of é whose objects are the T-sheaves.
15.8 EXAMPLE Take for T the minimal Grothendieck topology on C —— then
sh_(0) = C.

[Note: In particular, §.le (1) = i =~ SET.]

15.9 EXAMPLE Take for t the maximal Grothendieck topology on C —- then the

objects of sh_(C) are the final cbjects in o

[First, vX e b C, 4, ~» hX But f, is initial, thus the condition that F
C C

10>



be a t-sheaf amounts to the existence for each X of a unique morphism hX » F.

Meanwhile, by Yoneda, Nat(hX,F) ~ FX.]

15.10 THEOREM The inclusion 1 :Sh (C) » C admits a left adjoint a :C ~ Sh_(Q)
that preserves finite limits.

[Note: We can and will assume that a.° 1. is the identity.]

Various categorical generalities can then be specialized to the situation at

hand.

15.11 DEFINITION A morphism f:A -+ B and an object X in a category C are said
to be orthogonal (f L X) if the precomposition map f£*:Mor (B,X) - Mor(A,X) is bi-

jective.

15.12 RAPPEL Let D be a reflective subcategory of a category C, R a reflector

for D. Iet W, be the class of morphisms in C rendered invertible by R.
® LetXEOb(_Z-—‘thenXEObQiffvawD, fiLX

e LethlVbr_C_I——thenfewDiffVXEObQ,fLX.

15.13 NOTATION Let W_ be the class of morphisms in C rendered invertible by

(331

eW , 1P,

15.14 EXAMPLE If F € Ob C, then F is a t-sheaf iff v A

€ Mor (::, then = € wT iff for every t-sheaf F, = L F.

[1]
1

15.15 EXAMPLE If



[Note: If X € Ob C and if G € Ty then for every t-sheaf F, iG 1L F, thus

ig € WT.]

15.16 RAPPEL Let D be a reflective subcategory of a category C, R a reflector

for D —- then the localization w;lg is equivalent to D.

15.17 APPLICATION The localization w;l{: is equivalent to Sh_(C).

15.18 RAPPEL Let D be a reflective subcategory of a finitely complete category

C, R a reflector for D — then R preserves finite limits iff wD is pullback stable.

15.19 APPLICATION Since gT:(:: > &T © preserves finite limits, it follows

that wT is pullback stable.

15.20 EXAMPIE Take C = 1, so 1 =

&

— then #Tl = 2. On the other hand, SET

has precisely 3 reflective subcategories: SET itself, the full subcategory of

final objects, and the full subcategory of final objects plus the empty set (#RX =1
if Xz 0, RI=0). In terms of Grothendieck topologies, the first two are accounted
for by 15.8 and 15.9. But the third cannot be a category of sheaves per a Grothen-
dieck topology on C = 1. To see this, note that the class of morphisms rendered
invertible by R consists of all functions f:X » Y with X # @ as well as the function
g > @ (thus the arrows @ > X (X z @) are excluded). Suppose now that Z is a nonempty

set and X,Y are nonempty subsets of Z with an empty intersection. Consider the

pullback square

x
gd=XnY > Y
iy iy
X >Z r
i



where J_X,ZLY are the inclusions — then R_'LY is an isomorphism but R;Y is not an
isomorphism. Therefore the class of morphisms rendered invertible by R is not
pullback stable.

15.21 NOTATION Iet F € Ob C be a presheaf. Given X € Ob C, let 1, (F) be the

set of subfunctors iG:G > hX such that for any morphism f:Y » X, the precomposition
arrow

(igeg) *sNat (hy,F) > Nat (£4G,F)

is bijective.
15.22 ILEMMA The assignment X - TX(F) is a Grothendieck topology tT(F) on C.

N.B. T(F) is the largest Grothendieck topology in which F is a sheaf.

15.23 SCHOLIUM For any class F of presheaves, there exists a largest Grothen-
dieck topology t(F) on C in which the F € F are sheaves.

15.24 DEFINITION The canonical Grothendieck topology Tean OF C is the largest
Grothendieck topology on C in which the hX(X € Ob C) are sheaves.

[Note: ILet T € 1, — then 1 is said to be subcanonical if the hy (X € Cb C)

are t-sheaves.]

15.25 EXAMPLE Take C = O(X), X a topological space (cf. 11.18) —- then the
Grothendieck topology T on O(X) per 12.16 is the canonical Grothendieck topology,

%T (0(X)) being the traditional sheaves of sets on X, i.e., Sh(X).



§16. SHEAVES: SORITES

The category §_le (C) associated with a site (C,t) has a number of properties

that will be cataloged below.

16.1 LEMMA §ET (C) is complete and cocomplete.

[This is because §ET (C) is a reflective subcategory of é which is both com—
plete and cocamplete. Accordingly, limits in @T (C) are computed as in (:2 while

colimits in %T (C) are computed by applying a. to the corresponding colimts in (:2.]

16.2 EXAMPLE Given T € Tor define 0T by the rule

—

{0} if g €1
C

X

0.(X) =

gif g _¢& ..
¢ X

Then OT is a 1-sheaf and, moreover, is an initial object in %T <.
16.3 LEMYA sh (C) is cartesian closed.
16.4 LEMVA Sh (C) admits a subobject classifier.
16.5 REMARK Therefore jﬂ}_,c (C) is a topos.
16.6 LEMA Sh _(C) is balanced.

16.7 LEMMA Every monomorphism in §_k_1T (C) is an equalizer.

[Iet Z:F > G be a monomorphism in _S_IlT(g) —— then 1TE:1TF > 1TG is a monomorphism



in C, hence is an equalizer. But a_ preserves equalizers (since it preserves

finite limits).]
N.B. Monomorphisms in §I1_T (C) are pushout stable.
16.8 LEMMA Every epimorphism in &T (C) is a coequalizer.

16.9 IL.FMMA @T (C) fulfills the standard conditions (cf. 11.23).

[Epimorphisms in §ET (C) are pullback stable (cf. 17.16) and every epimorphism

in %T (C) is a coegqualizer (cf. 16.8).]

16.10 LEMMA In §_le (C), filtered colimits commute with finite limits.

16.11 RAPPEL Coproducts in é are disjoint.

[In other words, if F = 'LL Fi is a coproduct of a set of presheaves Fi’ then
1l

viel, ini:Fi+Fisamnonorphisrnandvi,j €I (i=3j), the pullbackFi XFFj

is the initial object in C.]
16.12 LEMMA Coproducts in §ET (C) are disjoint.

16.13 RAPPEL Coproducts in é are pullback stable.
[In other words, if F = _I_]_ Fi is a coproduct of a set of presheaves Fi’
i€eT
then for every arrow F' - F,
1] F' x  F, = F'.]
ie1 Foi1

16.14 IEMMA Coproducts in @T (C) are pullback stable.



16.15 DEFINITION Let C be a category which fulfills the standard conditions.

u

>
Suppose that R X is an equivalence relation on an object X in C. Consider
>

A\

the coequalizer diagram

> X/R = coeq(u,v).

Then there is a commutative diagram

v
> X
u T
X > X/R
T

and a pullback square

X > X/R .
il

One then says that R is effective if the canonical arrow

is an isomorphism (it is always a monomorphism) .

[Note: C has effective equivalence relations if every equivalence relation

is effective.]

16.16 ILEMMA Equivalence relations in §ET (C) are effective.



[The usual methods apply: Equivalence relations in SET are effective, hence
equivalence relations in C are effective etc.]
16.17 LEMVA The gThX (X € Ob C) are a separating set for @T Q).

PROOF Iet 5,58':F » G be distinct arrows in &T (C) — then the claim is that

HXEObgandc;:gT}B(-rFsuchthatE°0¢E’ °© 0. But £ z Z' implies that
By # By (3 X € Ob Q) which implies that Zgx # 50x (3 x € FX). Owing to the Yoneda
lemma, FX = Nat(hX,F), SO x corresponds to a o' € Nat(hX,F), thus = o o' #z Z' o o',

Determine O’:él_ThX -+ F by the diagram

by = &

o! o

Then ¥ o 0 2 E' o O,
N.B. All epimorphisms in %T (C) are coequalizers (cf. 16.8). So, for every
1-sheaf F, the epimorphism FF of 15.5 is automatically a coequalizer. Therefore

the a h (X € Ob C) are a "strong" separating set for sh (C).

16.18 DEFINITION Let C be a cocomplete category and let k be a regular cardinal —
then an object X € Ob C is k-definite if Mor(X,—) preserves k-filtered colimits.

16.19 LEMVA Sh_ (C) is presentable.

PROOF Fix a regular cardinal « > #Mor C —— then V X € Gb C, hXEObcziis

k—definite, the contention being that v X € Ob C, a hy € Ob Sh_ (C) is k-definite,



which suffices. To see this, note first that a k-filtered colimit of T-sheaves
can be computed levelwise, i.e., its k-filtered colimit per C:I is a t-sheaf. Now

fix a k—filtered category I and let A:I - _SET'(C_I) be a diagram —- then

I

I\Iat(gThX,colJ'mI 4;) I\Iat(gtrhx,colin'lI 184)

u

Nat (hx,colimI 1TAi)

[

c:olimI Nat (hX, 1TAi)

13

colim; Nat(a h,,A;).

16.20 REMARK A presentable category is necessarily wellpowered and cowell-

powered.

16.21 DEFINITION Let E be a topos —— then E is said to be a Grothendieck topos

if E is cocomplete and has a separating set.

[Note: In general, a cocomplete topos need not admit a separating set.]

It therefore follows from 16.17 that the cocomplete topos §£1_T (C) is a Grothen-

dieck topos.



§17. LOCAL ISOMORPHISMS

Let C be a locally small category.

17.1 DEFINITION Let f:X -~ Y be a morphism in C — then a decomposition of

k m
f is a pair of arrows X > M > Y such that £ = m ° k, where k is an epi-

morphism and m is a monamorphism. The decamposition (k,m) of f is said to be
minimal (and M is said to be the image of f, denoted im f) if for any other factor-

£ n
ization X > N > Y of £ with n a monomorphism, there is an h:M -+ N such that

hok=4£andn o h =m.

17.2 LEMMA Suppose that C fulfills the standard conditions (cf. 11.23) —— then
every morphism f:X + Y in C admits a minimal decomposition £ = m o k, where k is

a coequalizer and m is a monomorphism, the data being unique up to isomorphism.
Let C be a small category.
17.3 RAPPEL C fulfills the standard condtions (and is balanced) .

let H,K € Ob C:I be presheaves and let = € Nat(H,K). Form the pullback square

g
Hx H—mo—ou—s H

)
11

1]

Then p and g are epimorphisms.



17.4 NOTATION cSH:H - H X H is the canonical arrow assoclated with idH, thus

pocSH=1dH=qocSH.

N.B. cSH is a monomorphism.

17.5 LEMMA E is a monomorphism iff cSH is an epimorphism.
[Note: Consequently, if © is a monomorphism, then (SH is an isomorphism.]
Fix a Grothendieck topology T € T

c

17.6 DEFINITION Iet H,K € Ob C be presheaves and let & € Nat(H,K). Factor &

per 17.2:

k m
H > M > K.

Then £ is a t1-local epimorphism if for any f:hY + K, the subfunctor f*M of hY

defined by the pullback square

f*M ——> M
if*M m
hY > K
f
is in Ty

17.7 1EMMA Every epimorphism in c:: is a 1-local epimorphism.

[1]

17.8 DEFINITION Let H,K € Ob C be presheaves and let E € Nat(H,K) — then

is a t-local monomorphism if cSH is a 1-local epimorphism (cf. 17.5).

17.9 LEMMA Every monomorphism in § is a t-local monomorphism.



(1

17.10 DEFINITION Let H,K € Ob C be presheaves and let I € Nat(H,K) —— then

is a t-local isomorphism if = is both a t-local epimorphism and a t-local mono-

morphism.

17.11 EXAMPIE If G € 1, then i.:G - hX is a t-local isomorphism.

X’ G

[For any f:Y = X, there is a pullback square

f*G — > G
if*G iG
_—
N

in C:: and £*G € Tyr thus iG is a t1-local epimorphism. On the other hand, iG is a

monomorphism, hence iG is a 1-local monamorphism {(cf. 17.9).]

[Note: If G is a subfunctor of hX and if iG:G -> hX is a t-local epimorphism,

then G € 3% Proof: Take f = idX and consider

G G

hy —————h,.]
17.12 THEOREM wT is the class of t-local isomorphisms.

17.13 NOTATION Denote by S, the "set" of reflective subcategories S of C:I

with the property that the inclusion 1:§ - é has a left adjoint g:(il - S that

preserves finite limits.



We shall now proceed to establish the "fundamental correspondence”.

17.14 THEOREM The arrows

—_—> T (cf. 15.2)

2c c

| Tg—> 8§ (ef. 15.10)

are mutually inverse.

To dispatch the second of these, consider the composite

Ty —>

(_: T

§§—> c

Take a T € To and pass to §h_T (C) — then the Grothendieck topology on C determined

by %’L’ (C) via 15.2 assigns to each X € Ob C the set of those subfunctors iG:G > hX

such that ETiG is an isomorphism or, equivalently, those subfunctors iG:G -> hX

such that iG is a t-local isomorphism (cf. 17.12). But, as has been seen above,

the subfunctors of hx with this property are precisely the elements of Ty (cf. 17.11).

Therefore the composite

Ty —> Sy —> T

is the identity map.
It remains to prove that the composite

—> T —> §C

%
is the identity map. So take an S € §C’ produce a Grothendieck topology t on C
per 15.2, and pass to Sh (C) —- then S < Sh _(C). Thus let F € Ob S, the claim being

that F € Ob _S_IlT(Q) or still, that F is a t-sheaf, or still, that v X € Ob C and



v G E 5% iG 1 F, which is clear since iG € wT (cf. 15.15).  To reverse matters

and deduce that sh (C) < S, one has only to show that if Z:H > K is a morphism

in E_\: and if aF is an isomorphism, then a % is an isomorphism (cf. 17.17 infra).
To this end, factor E per 17.2:

k m
H > M > K.

Then a& = am ¢ ak. But af is an isomorphism and am is a monomorphism (a preserves
finite limits). Therefore ak is a monomorphism. But ak is a coequalizer (a is a
left adjoint), thus ak is an isomorphism (in any category, a morphism which is a
monomorphism and a coequalizer is an isomorphism). And then am is an isomorphism -

as well.
e Assume that af is an isomorphism, where Z is a monomorphism —- then
a £ is an isomorphism.

[Bearing in mind that here H = M, consider a pullback square

f*H — > H

&3]

£*H

hy ————> X

£

Then the assumption that af is an isomorphism implies that ai.,, is an isomorphism
which in turn implies that if*H € Ty- Therefore = is a 1-local epimorphism or still,
5 is a t-local isomorphism, hence = € wT (cf. 17.12), so gTE is an isomorphism.

e Assume that af is an isomorphism, where E is a coequalizer -- then gTE

is an isomorphism.



[Because gTE is a coequalizer, to conclude that QTE is an isomorphism, it

suffices to verify that a g is a monomorphism. For this purpose, consider the

pullback square

H > K .

Then cSH is a monomorphism and there are pullback squares

aq 2.4

aH Xg K 2.

'
B

< |
(§Y))
3]
1
—
O
—
I
-
1

'k
\%
'&
)
o
\
)
=~

But chH = §_,, is an isomorphism, thus QTSH =3 is an isomorphism (cf. supra),

aH

SO gTE is a monomorphism. ]

17.15 THEOREM Let H,K € Ob C be presheaves and let = € Nat(H,K) —— then

a £:a H > a K is an epimorphism in Sh _(C) iff £ is a 1-local epimorphism.

17.16 APPLICATION The epimorphisms in %T (C) are pullback stable.

[The class of T-local epimorphisms is pullback stable.]

17.17 ILEMMA 1et Ql’ 92 be reflective subcategories of a category C. Suppose

—— then D, < D,.

thatWDcw i 5

D, D



PROCF' Take X; € Ob D;. To conclude that X; € Cb D,, it need only be shown

thatVwaD,

f (cf. 15.12). But
D, !

X

lEOle=>wD L X

=1 1

=> =
WD L X X



§18. Kk-SHEAVES

Let C be a category.

18.1 DEFINITION Let C be a covering of X € Ob C —— then a functor F:C_IOP -~ SET

has the sheaf property w.r.t. C if the following condition is satisfied: Given

elements

XqEFY(g:Y+XinC)

which are compatible in the sense that if
hl:Z -+ dom 91 (gl:Yl - X in ()
(1) _
h2:Z + dam g, (g2:Y2 + X in ()

and

(ii) gl o hl = 92 o h2
imply

(iii) (Fh:L (xgl) = (Fh2 (ng).

then there exists a unique x € FX such that Vv g:¥Y -~ X in C,

(Fg)x = xg.

18.2 REMARK Suppose that $ is a sieve —— then elaments Xe EFY (£:Y > X in %)

g £
are compatible iff whenever Z > Y > X, there follows

Xe o g = (Fg) (xf) .

[Note: If C is locally small, then

sieves <—> subfunctors (cf. 14.2),



say

$<-—>GchX.

Accordingly, a compatible family corresponds to a natural transformation G -+ F
and F has the sheaf property w.r.t. § iff every natural tranformation G - F extends

uniquely to a natural transformation hX + F.]

18.3 EXAMPLE Take C = {id,:X + X} ~— then every functor F:C* + SET has the

sheaf property w.r.t. C.

18.4 LEMMA A functor F:gOP ~+ SET has the sheaf property w.r.t. C iff it has

the sheaf property w.r.t. $(C) (cf. 12.3).

18.5 EXAMPLE Fix X € Ob C —— then every functor F:(_:OP -+ SET has the sheaf

property w.r.t. smax (cf. 12.4).

18.6 DEFINITION Suppose that k is a covering function ~- then a functor

F:COP + SET is a k-sheaf if it has the sheaf property w.r.t. all the coverings in k.

N.B. The x-sheaves and the $(k)-sheaves are one and the same.

18.7 REMARK Let C be a small category and suppose that T is a Grothendieck
topology on C —— then T can be defined as in 13.1 or as in 14.5, thus there are
two possible interpretations of the phrase "t-sheaf", viz. the one above or that
of 15.7. Fortunately, however, there is no ambiguity: Both are descriptions of

the same entity.

18.8 LEMMA If k is a coverage and if «' < k, then every k-sheaf is a k'-sheaf.



[This is because if F is a k-sheaf, then F has the sheaf property w.r.t.

every covering that has a refinement in k.]
18.9 APPLICATION Equivalent coverages have the same sheaves.

Write §1_1K (C) for the full submetacategory of [gOP,SET] whose objects are the

k-sheaves.

18.10 LEMMA Suppose that Kk is a coverage —— then

sh_(C) ()

-S——}lsatK

-S—}—I-S(sat K) .

18.11 THEOREM Suppose that k is a pretopology with identities -- then J(k)
is a Grothendieck topology (cf. 12.20) and

Shy ) (©) = Sh (©).

In the presence of a size restriction and pullbacks, there is another way to

formulate the sheaf property. Thus let C be a covering of X € Ob C, say C =

g .
i
{Yi > X:i € I}, where I is set. Assume that the pullbacks
1
1Tij
Yi ><X Yj > Yi
1T2
ij 9i
Yj > X
%

exist for all i,j € I.



18.12 ILEMVMA Under the preceding conditions, a functor F:goP ~+ SET has the

sheaf property w.r.t. C iff in the diagram

1
ng FTrij
FX ~ > FYi > F(Yi XX Yj)
pr, prij
p
e L >
FX > 1T Fyy T Pl %, Y,)
k > k,2
Py
r. .
P J prl]
]
FX > FY. > F(Y, %, Y.),
Fg., J 2. 1 X
] 1]

e is an equalizer of Py and P, in SET.

18.13 DEFINITION Let C be a locally small category, K a covering function —-

then k is subcaronical if ¥ X € Ob C, hy is a k-sheaf.

18.14 EXAMPLE Assuming that C has pullbacks, define k by Ky = {f}, where

f € Ob C/X — then k is subcanonical iff the f are coequalizers.

18.15 EXAMPLE Take C = TOP —— then the open map coverage is subcanonical. But
the open subset coverage, the open embedding coverage, and the local homeomorphism
coverage are all subordinate to the open map coverage, hence they too are sub-

canonical (cf. 18.8).



18.16 EXAMPLE Take C = SCH (cf. 0.6) and fix X € Ob C (0, being understood).
e Iet kg be comprised of the collections {gi:Yi -+ X} such that Vv i, 9;

is an open immersion and U 93 (Yi) = X — then k is a Grothendieck coverage, the

Zariski coverage.

e Iet Ky be comprised of the collections {gi:Yi -+ X} such that v i, 9;

is etale and U g;(Y,) = X - then « is a Grothendieck coverage, the étale coverage.

® Iet Kk, be comprised of the collections {gi:Yi + X} such that v i, 9;

is smooth and U g (Yi) = X —— then k is a Grothendieck coverage, the smooth coverage.
e Iet Ky be comprised of the collections {gi:Yi + X} such that Vv i, 93

is flat + locally of finite presentation and U 9 (Yi) = X —— then K is a Grothen-

dieck coverage, the fppf coverage.

18.17 REMARK Fach of these Grothendieck coverages is a Grothendieck pretopology

with identities.

An open immersion is necessarily étale, an étale morphism is necessarily smooth,
and a smooth morphism is necessarily flat + locally of finite presentation. There-
fore the Zariski coverage is subordinate to the étale coverage which in turn is sub-
ordinate to the smooth coverage which in turn is subordinate to the fppf coverage.

[Note: If k is the fppf coverage and if k' is the Zariski coverage, then

every kK-sheaf is a x'-sheaf (cf. 18.8) but there are «'-sheaves that are not k-sheaves.]
18.18 THEOREM The fppf coverage is subcanonical.

Consequently, the Zariski coverage, the étale coverage, and the smooth coverage



are all subcanonical (cf. 18.8).
It turns out that the fppf coverage is subordinate to the so-called "fpgc

coverage" (see below).

18.19 DEFINITION ILet f£:X » Y be a surjective morphism of schemes — then £

is locally quasi-compact provided that every quasi-compact open subset of Y is

the image of a quasi-compact open subset of X.

13.20 EXAMPIE Iet f:X » Y be a surjective morphism of schemes.
(1) If f is quasi-compact, then f is locally quasi-compact.
(2) If £ is open, then f is locally quasi-compact.
Given a scheme X, let Ky be comprised of the collections {gi:Y.l + X} such that
v i, 9; is flat, U 9: (Yi) =X, and || Y, > X is locally quasi-compact -- then K
i

is a Grothendieck coverage, the fpgc coverage.

[Note: Like its predecessors, the fpgc coverage is a Grothendieck pretopology

with identities.]

18.21 1FMMA The fppf coverage is subordinate to the fpgc coverage.

[A flat morphism locally of finite presentation is open.]

18.22 THEOREM The fpdgc coverage is subcanonical.

Therefore

18.22 => 18.18.

18.23 REMARK The coverage K that assigns to each scheme X the collections



{gi:Yi + X} such that Vv i, 9; is flat and U g; (Yi) = X is not subcanonical.

Returning to the generalities, let again C be a locally small category.

18.24 ILEMMA Suppose that k is a subcanonical covering function -- then

v X € Ob C, the induced covering function K on C/X is subcanonical.

18.25 EXAMPLE Take C = TOP, let « be the open subset coverage, and fix

X € Gb C — then

§Q<(9(X)) = Sh(X)
and the inclusion O(X) - TOP/X induces an arrow

R:Sh (TOB/X) - Sh(X)
K

of restriction. On the other hand, there is also an arrow

P:sh(x) ~ Sh_(IOB/X)
K

of prolongment and (P,R) is an adjoint pair.



§19. PRESITES

19.1 DEFINITION A presite is a pair (C,k), where C is a small category and
K 1s a covering function which is a Grothendieck pretopology with identities whose

underlying coverage is a Grothendieck coverage (cf. 12.21).
Explicated:

19.1 DEFINITION (bis) A presite is a pair (C,«), where C is a small category
and k is a covering function subject to the following assumptions.

(1) v X € 0b C, {id:X > X} € Ky

(2) v X € 0b C, v C e KX,V g:Y > X in €, and v £':X' +~ X, there is a pullback

square
X! XX Y ——— > Y
g' g
Xt —m 4> X
fl
such that the covering
g.I
{x xg ¥ ———> X':g € C}
belongs to Kyr

(3)VXEObC_I,VCEKX,Vg:Y—>XinC,andVCgEKY,

h g
U goC ={gehigeCs&heC} (Z > Y > X)
geC 9

belongs to Ky



[Note: Here, of course, it is understood that v X € Ob C, Ky is a set of

subsets of Ob C/X.]

19.2 THEOREM Suppose that (C,«k) is a presite — then

shy (@ =8h () (cf. 18.11)

and the elements of §_ng (C) are characterized by the equalizer diagram figuring

in 18.12.

19.3 EXAMPLE Take C = 0(X), X a topological space (cf. 11.18) and define the

covering function k as there -- then the pair (C,«) is a presite and J(k) is the

Grothendieck topology T on O(X) per 12.16. And a functor F:(_:OP -+ SET is a k-sheaf

iff for any subset U < X, any open covering U= U Ui’ and any collection S € FUi
iex

(1 €I such that v i,j € I,

si|Ui nu = sj}Ui nu,

there exists a unique s € FU such that s; = s|Ui V i € I, or, equivalently, the

diagram

—_————>
> TTFUi T F@u, nu
i , 13

j)
is an equalizer diagram.

[Note: The empty covering of the empty set is admissible. Suppose that it is
excluded (retaining, however, idg: g + @) —— then the result is another presite
(C,«") but now §h-J(|<') (C) is sh(x || {#}), the open subsets of X || {*} being the

empty set and any set of the form U U {*} with U < X open. For instance, consider



the case when X is a singleton —- then X _|_|_ {*} has two points, the underlying
topological space is Sierpinski space, and §£1J(|<') (C) is equivalent to the arrow

category SET(~).]

19.4 DEFINITION Let (C,k), (C',x') be presites —— then a functor ¢:C +~ C'
is geometric provided the following conditions are satisfied.
(1) vXeOb(C,vCe Kyr

d o C e (sat K')<I>X'

(2) vXeObC, vCE KX’ Vag:¥Y>Xin C, and v £':X' > X, the canonical
arrow
1} 1
P (X ><X Y) + &X XCI)X 0)'4

is an isamorphism.

N.B. The first condition is equivalent to requiring that & o C has a refine-

ment in k' (cf. 11.9).

19.5 EXAMPLE Take C = C' —— then io'lC is geometric iff k < k' (cf. 11.6 (with

the roles of k and k' reversed)).

19.6 NOTATION PRESITE is the locally small category whose objects are the pre-
sites and whose morphisms are the geometric functors.

[Note: PRESITE is a locally small large category.]

19.7 LEMMA Let (C,k), (C',x') be presites and suppose that ¢:C ~ C' is a
geometric functor. ILet F' be a k'~sheaf ~— then F' ¢ ¢ is a k-sheaf.

PROOF Iet C be a covering in k — then ¢ o C has a refinement in k', hence
91
> X

F' has the sheaf property w.r.t. & o C (cf. 18.8). Assuming that C = {Yi



i € 1}, where I is a set, this means that the diagram

—.—>
¥ 1
> il F <I>Yi / [j F (<I>Yi xq)x <I>Yj)
> 14

F'oX

is an equalizer diagram in SET. But

]

(Y., x Y. x oY,
1 J

XYj) i X

¥ ~ '
F o @(Yi X Yj) = F (<I>Yi X CDYj),

X dX

thus it remains only to quote 18.12.

A functor ¢:C » C' determines a functor 6P . F - (C_:')OP, from which an induced

functor

OP

©®) " 1), sEn > 1, sETI,

i.e.,

% A ~
(&%) ":c' ~ C.

Assume now that (C,k), (C',k') are presites and that ¢:C + C' is a geometric
functor -- then in 19.7, it is officially a question of
*
<I>OP = (q)OP)

F' o F'

*
rather than F' o ¢. Agreeing to abbreviate (<I>OP) to ¢*, there is an induced

functor

sh #*:5n , (C') > Sh ()

and a commutative diagram



' o*

—_—— [ ()D>
-

'
S_hK.(g_) >_Sll'<(9).
sh o*

19.8 EXAMPIE Let X,Y be topological spaces and let f£:X - Y be a continuous

function. Define k as in 11.18 (per X or Y) —— then there are presites

(Q(X) ,k) with Sh_(Q(X)) = Sh(X)
(cf. 15.25)
(Q(¥) %) with Sh_(0(¥)) = Sh(v).

In addition, the functor £ 1:0(Y) -+ 0(X) is geometric and V F € Sh(X),

Fo (£ H% < £,

(£,F)V = F(£ V).

19.9 NOTATION Given a presite (C,k), J(k) is a Grothendieck topology and

%IJ(K) (€) = sh (C) (cf. 18.11).

Write 1 (=1 I (K)) for the inclusion Sh (C) » C and denote its left adjoint by

a_ (=

a, (& aj(,) (cf. 15.10).

Let (C,x), (C',x') be presites and suppose that &:C + C' is a geometric

functor -- then by the theory of Kan extensions, ¢* has a left adjoint ¢, :C:I -+ C'



19.10 LEMMA The composite

sh,_(C) > C > C'
is a left adjoint for

Sh a*:sh,(C") > Sh (©).

PROOF If F is a k-sheaf and F' is a k'-sheaf, then

M)r(gK, o <I>! o 1KF,F')

I3

Mor(lK, °ca., ° <I>! ° 1KF,1K,F')

zMor(gK, ° 1 °a, e <I>! o 1KF,F')

u

l\/br(gK, o <I>! o 1KF,F')

n

lVbr(<I>! ° 1KF,1K,F')

143

Mar(lKF,CD* ° 1K,F')

134

Mor(i F,1 o Sh d*F')
K 'k =

Mor (F,Sh ¢*F').

I3

19.11 REMARK The pair
(éK. ° <P! ° 1. Sh o%)
defines a geometric morphism

sh_,(C") »sh (©

if in addition a° o, o 1 preserves finite limits.



19.12 EXAMPLE Consider the setup of 19.8. Dictionary:

f—l< > &
f*( >_SE©*
f* <« >a , ° % ©°1.

In traditional terminology:

f, = direct image

f£*

il

inverse image.

[Note: The pair (f*,f,) defines a geometric morphism Sh(X) -+ Sh(Y).]

19.13 LEMMA There is a 2-functor

Sh:PRESITE - 2-CAT

which on objects sends (C,«) to Sh (C).

N.B. It then makes sense to form

ILOppraTTE sh (cf. 7.7).

19.14 EXAMPIE Take the data as in 19.8 —— then there is a functor

'I‘OPOP - PRESITE

which on objects sends X to (0(X),x). From here, pass to opposites and postcompose

with Sh to get a 2-functor

oo Sh
TOP > PRESITE= ——m—> 2-CAT

which on objects sends X to Sh(X). One may then consider its Grothendieck opcon-

struction ... .



§20. INVERSE IMAGES

ILet P:E - B be a fibration. Suppose that k is a covering function on B —

then its inverse image P—lK is the covering function on E specified by the following

procedure. Let X' € Ob E and let {g:B » PX'} € « For each g, choose a hor-

PX'"*
izontal morphism u:X - X' such that Pu = g —— then the class {u:X > X'} is a

covering of X'. One then takes for (P_‘lK) the conglamerate of all such coverings

Xl
of X'.

20.1 LEMMA If k is a coverage, then Pl is a coverage.

20.2 LEMVA If k is a Grothendieck coverage, then P—lK is a Grothendieck coverage.

PROOF Referring to 11.16, take X' € Gb E, let C € (P_lK) take u:X » X' in

XII

C, and let £:Y » X' —- then the problem is to construct a pullback

Y Xy X ———> X

v u

Y > X!
f

of u along f such that the covering

v

{Y x,, X > Y:u € C}

Xl
belongs to (P—lK)Y. To this end, pass to B and form PY Xpx B per the assumption

on K:
Prp

PY x B— > B=PX

PX'

PY > PX!' .




Choose a horizontal v:Z - Y such that Pv = h, hence PZ = PY x

P! B, the claim

being that Z is a pullback of u along f£. The first step in the verification is

to find a morphism k:Z > X rendering the diagram

k
> X
v u
Y > X!
£
commutative. So consider
fovw P(f o v)
'z e oo x— sx' ' spx—  Spx !,
u prB Pu=g

Then

P(f o v) = Pf o Pv.

On the other hand,

PuoprB=g°prB=Pf°h=Pf°Pv.

Accordingly, since u is horizontal, there exists a unique morphism k:Z - X such

that Pk = prB and u o k = £ © v. There remains the universality of Z: If

]~<:E+X -~ - ~
subject to u ¢ k = £ o v, then there is a unique ¢:Z - Z such that

Existence of ¢ Since PZ = PY x

PX B is a pullback, there is a unique IP:PE -+ PZ



such that
prBow (= Pk o ) = Pk

hoty (=Pv o y) = Pv.

Bearing in mind that v is horizontal, consider

~

v Pv
P

4 ——> bPY

Then

Py = Pv o y,

which implies that there exists a unique morphism cb:i =+ Z such that P$ = ¢ and

vo¢=\~7. To check that k o ¢ = k, consider

uc°k P(u o k)
e Xx——ux', 'pg > PX . PX' .
u Pk Pu

[N

Because u is horizontal, there is a unique morphism £:Z2 > X such that PL = Pk and

~ ~

uol=uok. Obviously, then, £ = }~< But meanwhile,

vop=v=>Ffovogd=Ffov=uok.

u0k°¢=u°]2.

~

P(k o ¢) =Pk o Pp = pry o ¢ = Pk.

Therefore k o ¢ = k.

Uniqueness of ¢ If ¢l,¢2:5 -+ Z both satisfy the requisite conditions, then



I
<2

Po =V [T Ve

and , thus cbl = cbz (cf. supra).

<2

P¢2=(I) V°¢2=

20.3 REMARK It is not assumed that B or E has pullbacks but merely certain

pullbacks as per the definition of Grothendieck coverage.
20.4 LEMMA If k is a pretopology, then Pl is a pretopology.

20.5 LEMMA If k is a Grothendieck pretopology, then p ¢ is a Grothendieck
pretopology.
20.6 LEMMA If k is a pretopology (or a Grothendieck pretopology) with identities,

then P 'k is a pretopology (or a Grothendieck pretopology) with identities.

20.7 REMARK Ignoring issues of size, it follows that if (B,k) is a "presite",

then (g,P"lK) is a "presite" (cf. 19.1 and 19.1 (bis)).



§21. ALGEBRAIC STRUCTURES

Let (C,k) be a presite.

21.1 LEMVA Let F:C* - SET be a functor — then F is a k-sheaf iff v S € Ob SET,

the presheaf X - Mor(S,FX) is a k-sheaf.

21.2 DEFINITION Let A be a locally small category with products —- then a

functor F:C*° - A is a k-sheaf with values in A if V A € Ob A, the presheaf

X » Mor (A,FX) is a k-sheaf.

Write §2|< (C,A) for the full subcategory of [_C_IOP,é] whose objects are the

k-sheaves with values in A (thus

Sh _(C) = sh (C,SED)).

21.3 REMARK Iet C = {Yi > X:i e I} e Kyer where I is a set —— then for any

functor F:C_:OP - A, the diagram

X

—_—
> T FY; TT Yy %y Y)
1 S 1,]

is an equalizer diagram in A iff v A € Ob A, the diagram

Mor (A,FX)

> T;F Mor (A,FY,) l,TTJ Mor (A,F (Y, % Yj))
_—

is an equalizer diagram in SET.

The central problem at this juncture is to find conditions on A which suffice



to ensure that the inclusion
OP
1 i8h (C,A) > [C7 Al

admits a left adjoint

OP
Q. [c™,a] » S_hK(g,Z_&)

that preserves finite limits (cf. 15.10 for the case A = SET).

e Assume: A is a construct, i.e., there is a faithful functor U:A > SET

which, in addition, reflects isomorphisms.

21.4 EXAMPLE HTOP is not a construct. TOP is a construct but the forgetful

functor U:TOP -+ SET does not reflect isomorphisms.

One then imposes the following conditions on the pair (A,U).
(1) A is complete and U is limit preserving.

(2) A has filtered colimits and U is filtered colimit preserving.

21.5 EXAMPLE Taking for U the forgetful functor, these conditions are met by
the category of abelian groups, groups, commutative rings, rings, modules over a
fixed ring, vector spaces over a fixed field, ... .

[Note: Neither coproducts nor coequalizers are preserved by U.]

21.6 LEMMA Iet F:(_:OP - A be a functor -- then F is a k-sheaf with values in

A iff U o F is a k-sheaf.

21.7 REMARK The forgetful functor U:TOP -+ SET preserves limits and colimits.

On the other hand, it is not difficult to exhibit a presite (0(X),k) (cf. 19.8)



and a functor F:0(X) P, TOP such that U o F is a k-sheaf but F is not a k-sheaf
with values in TOP.
[Note: This does not contradict 21.6 (cf. 21.4).]
21.8 THEOREM The inclusion
OP
1K=§1K(§,é) > [g ré]
admits a left adjoint
OP
gK.[(_Z Al > §_h_K(§,13)
that preserves finite limits.
Implicit in the proof is the fact that for any functor F:(_:OP > A,
a (UoeF) =UoalF
=T -T

thus there is a commutative diagram

K
>
OpP
@K(Q,A) g [C™.,A]
=K
U* U*
Y
>
OP
@K(C_I) [C™ ,SET].
<_—.__——___————-
—-K
Here U, is given on objects by
UF=UeF
and on morphisms by
(U4E) ¢ = UZ,.



APPENDIX
Let C be a category.

NOTATION SIC is the functor category [_QOP,C_:] and a simplicial object in C

is an object in SIC.

In particular:

”~

SISET = }

is the category of simplicial sets.

Iet C be a small category —- then

(2%, 1", seT] ]

SIC

i

[c x 8%, ser]

4

u

(™, 147, sET] ]

(¢, s1sET],

the objects of the latter being termed simplicial presheaves.

Suppose that (C,k) is a presite.

DEFINITION The objects of SISh (C) are called simplicial k-sheaves.

The product C x A is a presite, viz.
KX x [n] ~ k%!

where



is the inclusion

inX = X x [n]
lnf = f x ld[n]’

It thus makes sense to form §I_1K (C x 4.

IFEMMA We have

n

SIsh (C) = sh (C x 4).

All the basic results on presheaves and K-sheaves of sets extend without

essential change to simplicial presheaves and simplicial k-sheaves.

a
=K
N.B. It is customary to use the same symbols for the induced adjoint
Yk
pair -

SIC — > SISh (C)

P —— _.——__.K -

sish_(C) > SIC .

LEMMA Sh (C,SISET) can be identified with

SISh_(C) = Sh_(C x ).

PROOF A simplicial presheaf F:gOP ~+ SISET determines a sedquence {Fn} of

functors Fn:gOP -+ SET via the prescription FnX = (FX) ([n]) and F is a simplicial

k—sheaf iff V n, Fn is a k-sheaf. Assume now that F:goP - SISET is a k-sheaf with

values in SISET — then for every simplicial set S, the presheaf X -+ Mor (S,FX)



is a k-sheaf. In particular: v n, the presheaf

X » Mor(A[n],FX)
is a k-sheaf. But

Mor (A[n],FX) ~ (FX) ([n]) = F X,
SO V n, Fn is a k-sheaf, i.e., F is a simplicial k-sheaf. Conversely, if F is a

simplicial k-sheaf, then F is a k-sheaf with values in SISET. To see this, given

a simplicial set S, write

n
Il

COllHﬁ A[ni].

Then

Mor (S,FX) Mor(coli‘mi A[ni],FX)

Y

limi Mbr(A[ni],FX)

2

lJ.'mi Fn.X'
i

And lJmi Fni € Ob §QK(Q) is computed levelwise.



§22. A SPACES
Let A be a locally small category with products.

22.1 NOTATION Given a topological space X, write Sh(X,A) for the category
whose objects are the k-sheaves with values in A.

[Note: Here k is taken per 11.18, so

%(Xré) = S—h-K(Q(X) ré) -]
N.B. Therefore
Sh(X) = sh(x,SET).

22.2 EXAMPLE For any k-sheaf F on X with values in A, Ff is a final object in A.

22.3 LEMMA Suppose that X is a one point space —— then the functor

ev
sh(x,8) —> 2

that sends F to FX is an equivalence of categories.
22.4 REMARK If X is a one point space, [0(X)F,Al can be identified with the
arrow category A(+). Fix a final object *, in A —— then the functor A > A(»)

which sends an object A to the arrow A > ¥ has a left adjoint, viz. dom.

22.5 LEMMA Iet X,Y be topological spaces and let f:X * Y be a continuous
function —— then there is an induced functor

£,:5h(X,A) > Sh(Y,A) (cf. 19.8).

22.6 EXAMPLE Assuming that X is not empty, fix a point x € X and let iX:{x} - X



be the inclusion — then there is an induced functor

(lx)*:%({X}ré) > §]_3__(Xlé) .

Now choose a final object *A in A, from which an induced functor

Skyx:é - %(Xré) ’

where

A (x €U
SkYX @)@ =
*  (x g U).

1>

22.7 LEMMA If A is cocomplete, then SkyX admits a left adjoint
sh(x,a) ~ A,

the stalk functor.

PROCF et C_)(X)X be the subcategory of O(X) whose objects are the open subsets

of X containing x — then the inclusion 1X:Q(X)X > O(X) is geometric, hence there
is an induced functor

1%:5h (Q(X),A) > Sh, (Q(X)_,A).

This said, consider the composite
1% colim
X
> Sh (0(X) ,A) ——— A.

sh(x,a) = sh_(Q(X) ,8)

22.8 DEFINITION An A space is a pair (X,OX) , where X is a topological space

and OX is a k-sheaf with values in A.
[Note: If A is cocamplete, the stalk of OX at x € X is denoted by the symbol

X, x



'I‘OP; is the category whose objects are the A spaces and whose morphisms are

the pairs

£, £
(%,0) —— > (¥,0,),

where f:X ~ Y is a continuous function, f#:OY + £,04 is a morphism in Sh(Y,3),

-1,0P
and £,0, = Op o (£ 7).

[Note: The composition

(g,g" o (£, £
of
(£,£%) (@,9")
x,0) ——— €, 0y)) ——— (%,0,)
has first caomponent g o £ and second component g*(f#) ° g# (o £),=qg,° £).

And ld(X,OX) is the arrow
(id,,,id, )
dy 0y

(X,OX) > (X,OX) .]

N.B. Define a 2-functor F:TOP -+ 2-CAT by sending X to Sh(X,A) and £:X + Y

to f,. One can then introduce JLOmp F, the Grothendieck opconstruction on F.

Thus its objects are the pairs (X,OX) , where OX is a k-sheaf with values in A, and
its morphisms are the pairs

£, )
(x,0,) > (%,0,),

where £:X - Y is a continuous function, #f:f*OX - OY is a morphism in Sh(Y,3),



and £,0, = 0y o ()P, Here
(g,#g)o(f,#f) =(ge f,#g ° 9*(#f))
and
id = (id,,id, ).
(X,OX) dx 0X
Conclusion: ...?

22.9 EXAMPLE Take A = RNG (cf. 11.26) — then TOPFNG is the category of

ringed spaces.

If U is an open subset of X and if iU:U + X is the inclusion, then
(j-U)*z_S_]f}'(Uré) > %(Xlé)

admits a left adjoint

(i) *:5h(X,8) + Sh(U,a) .

This is true without any additional assumptions on A. To proceed in general,
however, we shall suppose that A is complete and cocomplete and impose on A the
conditions set forth in §21, thereby ensuring that 21.8 is in force, hence that

£,:5h(X,A) + Sh(Y,a)

has a left adjoint

£*:5h(Y,A) + Sh(X,A) (cf. 19.12),

Mor (f*OY’OX) =~ Mor (OYI f*OX) ’

with arrows of adjunction



=

22.10 NOTATION Let P,:TOP, + TOP be the functor that sends (X,OX) to X and

(£, £ to f.

22.11 LEMMA PA is a fibration.
PROOF Given (Y,OY) and f£:X » Y, the morphism
. *
(13 )2 (6, £0y) > (T,0,)

is horizontal.

22.12EXAMPLETakeX=U,Y=X,f=iU——theni60x=OX|Ua.nd

(igritg )+ 0,0y [0) > (,0y)

is horizontal. Here

uOX:OX > i*(OX[U)

at an open subset V ¢ X is computed by

OX(V) > OX(U nv)

per UNV >V,

Iet

(£,£%)

(X, OX) > (Y, OY)

be a morphism of A spaces —— then f#:OY > f*OX is a morphism in Sh(Y,3), thus

corresponds to a morphism £ #:f*OY > OX in Sh(X,A) under the identification

Mor (£*0 ,OX) ~ Mar(OY,f*OX) .



[Note: The composite

* *
£*0y > £%£,04

is f#. Observe too that

(idy, £y) 2 (X,0) —> (X, £50,)

f
#
is a morphism of A spaces: f*OY > (idX) *OX = OX
and the diagram
(£,£%)
(X,OX) > (Y,OY)
(idX,f#)
(X, £*0,,) > (Y,0,,)
¥ (Er1 ) ¥
Y

in 'IOP? commutes. ]

Consequently, at the level of stalks, V x € X, there is a morphism
- *
(f#)x. (f OY)x -+ 0

X, x

22.13 LEMMA Fix x € X — then the stalk functor at f(x) is the composition

(iX)* o f*,
[The functor (i )* o £* is a left adjoint for £, o (L ), = (f o i), =

(L () x-]



[Note: Technically,
(lX) *

so "taking the stalk at x" is really (ix) * modulo the equivalence

sh({x},3) — A (cf. 22.3).]

22.14 APPLICATION V x € X,

OY,f(x) = (ix)*(f*OY) = (f*OY)x'

In particular:

(£409) £ ) = (F¥Ealy) -

I
> % —— then

Fix a one point space * and consider X
!*:%(Xlé) > &(*Ié) .

ev

Now postcompose !, with the equivalence Sh(x,A) > A of 22.3 to get a functor
r:sh(x,a) - A,

the global section functor:

I'F = FX.
[Note: If
(£,£%)
(X,OX) _— (Y,OY)
is a morphism of A spaces, then
£

MOy = 0y (1) ————> (£,0,) (¥)



0. (£ 1y)

X

I

I

OX (X) = I‘OX

is a morphism in A.]
22.15 LEMMA The global section functor T is the restriction to sh(X,a) of
Lim: [0(x)F,a].
22.16 RAPPEL The functor
lim: (0(x)°F,a] » 2
is a right adjoint for the constant diagram functor

x:a > [0 %F,al.

Display the data:

lim 1

Then a left adjoint for

is

22.17 EXAMPLE Iet A be a comutative ring with unit. Consider the ringed

space (Spec A,OA) —— then

POA = OA(Spec A) =~ A.



[Note: Here OA = OSpec A 1S the structure sheaf of Spec A.]

22.18 REMARK Spec A = @ iff A = {0} (a zero ring). Of course, {0} is a
final object in RNG and

in agreement with 22.2.

22.19 IEMMA The diagram

E}l(*lé) > §_]~1(Xré)
ev
A > Sh(X,A)
A
commites up to isomorphism:
I* 2 A o ev.

PROOF For any 0, and for any 0,

M)r(!*O*,OX) Mor (0,,!,0

%

R

2

Mor (0%, (1405) (%))

Q

Mor (ev 0*’0X (X))

2

Mor (ev 0,, I'OX)

Q

Mor (A o ev 0*'0X)'



§23. LOCALLY RINGED SPACES
Let C be a category.

23.1 DEFINITION A subcategory D of C is said to be replete if for any object
X in D and for any isomorphism £:X > Y in C, both Y and f are in D.

[Note: If D is a full subcategory of C, then the term is isomorphism closed.

E.g.: Reflective subcategories are isomorphism closed. ]

23.2 EXAMPLE Let LOC-RNG be the subcategory of RNG whose objects are the local
rings and whose morphisms are the local homomorphisms —— then LOC-RNG is a replete

(nonfull) subcategory of RNG.

23.3 DEFINITION Let C,C' be categories —— then a functor F:C - C' is said to
be replete if it has the isomorphism lifting property (cf. 1.23), i.e., if VvV iso-
morphism y:FX > X' in C', 3 an isomorphism ¢:X > Y in C such that F¢ = y (so Fy=X').

[Note: One can thus say that a subcategory D of C is replete provided the

inclusion functor D + C is replete.]
23.4 EXAMPIE A fibration P:E - B is replete (cf. 4.23).

23.5 LEMVA Iet F:(E,P) > (E',P') be a morphism in C€AT/B, where P:E - B,
P':E' » B are fibrations — then F is replete iff vV B € Gb B, the functor Fpilp

El'3 is replete.

23.6 REMARK The fiberwise condition on F amounts to the assertion that if
P:FX - X' is a vertical isomorphism in E', then there exists a vertical isomorphism

¢:X > Y in E such that F¢ = ¢ (so FY = X').



23.7 DEFINITION A ringed space (X,OX) is a locally ringed space if each stalk

OX,x is a local ring.

[Note: mX,x is the maximal ideal of oX,x and k(x) = OX,x/mX,x is the residue

field of OX X.]

r

23.8 REMARK Consider the pair (&, Oﬂ)’ where Op} = {0} (a zero ring) (cf. 22.18) —-

then there is no stalk and the local ring condition is vacuous, so (&, Oﬂ) is a
locally ringed space.

[Note: Zero rings are not local rings.]

let (X,OX) . (Y, OY) be locally ringed spaces. Suppose that

(£,£1
(X,0,) > (¥,0,)

is a morphism of ringed spaces -- then (f ,f#) is a morphism of locally ringed spaces

if v x € X, the ring homomorphism

(f#)x:OY,f(x) M oX,x
is local.
23.9 NOTATION Iet
IOC_TOPFNG

be the subcategory of TOPFNG (cf. 22.9) whose objects are the locally ringed spaces

and whose morphisms are the morphisms of locally ringed spaces.
[Note: To verify closure under composition, recall that

(£,£h) (g,5™)
(X,OX) ————— (Y,OY) —_— (Z,OZ)



#

has first component g ¢ £ and second component g, (f#) o g', And here

(o £)* = f* o g* (...)

while
# #
(ge(f7) o g Yy = £y o f*(g#),
i.e.,
£%(g,) £,
*crk *
f*g OZ > £ 0Y > OX.
S0, V x € X, the stalk homomorphism
(Guteh) o gh )
is the arrow
*
(Ey o £%(gu))
which when explicated is the composition
(g#)f(x) (f#)x
07,9 o £(x) > Oy ey — Y% %
of two local homomorphisms, thus is a local homomorphism. ]
The functor
PBL\T_(_;_:TOPF c TOP (cE. 22.10)
restricts to
LOC—'IOPRN p

call it ]‘_OC—PRNG.

23.10 LEW!A‘_IQC:PRL\TG is a fibration.

—



PROOF In the notation of the proof of 22.11, if (Y,OY) is a locally ringed

space, then so is (X,f*OY) (Vv x € X, (f*OY)x = OY f(x))’ Moreover,
(f,qu) : (X,f*OY) > (Y,OY)

is a morphism of locally ringed spaces:

Uy € Mor (0, £, E*0,)

Y
=>
* *
(uOY)# € Mor(f OY,f OY)
or still,
(UOY)# = 1df*0Y-
In addition, it is horizontal when viewed from the perspective of TOPENG' Consider
now a setup
(n,h*)
"2,0) « - - o> X)) — 5 (1,0 L, >X——>Y' (h=fogq),
Z Y Y
(fIUO ) g f
Y

where (h,h#) is a morphism of locally ringed spaces -- then there is a unique filler
@gh:(2,0) > (x,£%0,)
g’g . ’ Z 14 Y

in TOPFNG such that

(£uy) © (3,99 = (nh,
Y

the claim being that (g,g#) is a morphism of locally ringed spaces. To begin with

g#:f*OY > g*OZ.



On the other hand,

#
h":0, > b0, = (£ o 9),0,

= f*g*OZ .

Mor (f*OY’g*OZ) = Mor(Oy,f*g*OZ) ’

hence under this identification,

#

h" € Mor (0,,£,9,0,)

corresponds to an element

h,. € IVbr(f*OY,g*OZ)

#£

which, in fact, is precisely g# (since £, (h#f) ° Uy = h#) . Accordingly, to
Y

ascertain that Vv z € 2, (g#)z is local, it suffices to consider (h#f #g)z:
14

hy. € Mor (£40,,,0,)

#f

<—— h#f’#g € Mor (g*f*OY,OZ)

124

Mor ((£ o g) *OY,OZ)

U

Mor (h*OY,OZ) .

But

N

Mor (1#0,,0,) = Mor (0,,h,0,) .

Therefore
By, ag " = " Py

And, V z € 2, (h#)z is, by hypothesis, local.



N.B. The pair

RNG
and the pair
(TOPRNG ’ PRNG)
are objects of
FIB(TOP)

and the inclusion functor

LOC-TOP - TOP

is horizontal.

[Suppose that

£,£%)

(X,OX) _— (Y,OY)

is horizontal in IOC—-'IOPRN

G To see that it is horizontal in —T?—P-RNG’ introduce

(f,uo ):(X,f*OY) - (Y,OY)
Y

which is horizontal in —— then there is a vertical isomorphism

’IOPFI C

Vi (X,OX) > (X,f*OY)

and a commutative diagram

(£, £")
(X,OX) > (Y,OY)
v
(X,f*OY) > (Y'OY)’

(£,uy)
OY



(£, = (Fuy) o v
Y
is horizontal (cf. 4.20 and 4.21).]

23.11 ILEMMA LOC-TOP v 1S @ replete (nonfull) subcategory of TOP G*

[This is an application of 23.5 (and 23.6). Thus let
(i, () H) s (2,00 > (x,0)

be a vertical isomorphism in TOPRN

c’ where (X,OX) is in IOC-TOP — then (X’O}'i)

— RG

is necessarily a locally ringed space and (idX ' (id\() #) is a morphism of locally
ringed spaces.]
[Note: It follows that the inclusion functor

100
I0C TOPD\NG - 'IOPRNG

T

reflects isomorphisms.]

23.12 REMARK Suppose that (Y,OY) is a locally ringed space. Iet f:X > Y be
a continuous function and let

# R
(£,£7) 2 (X,0) > (¥,0,)

be a horizontal morphism in TOPENG ~— then (X,OX) is a locally ringed space and
(f ,f#) is a morphism of locally ringed spaces.

[First choose a horizontal morphism
~ ~# . ~ -
(£,f )'(X’OX) > (YIOY) (£ = £)

. _ = =
in IOC_TOPFNG then (f,£f

) is a horizontal morphism in 'IOPENG, so there is a



vertical isomorphism

v (XIOX) > (XIOX)

and a commutative diagram

i (5
(X,OX) > (Y,OY)
v
(XIOX) # > (YIOY) .
(£,£7)
Since I_OC—'I'OP_E”G is a replete subcategory of ‘I'OP__—, both (X,OX) and v are in
IOC—TOP_____FNG' Finally,
(£,£%) o v = (£,F
= (5,69 = & FH o v,
hence (f ,f#) is a morphism of locally ringed spaces (and, as such, is horizontal).]

23.13 DEFINITION 2An affine scheme is a locally ringed space which is isomorphic

as a locally ringed space to (Spec A,OA) (OA =0 for some A € Ob RNG (cf. 22.17).

Spec A)
[Note: A ringed space which is isomorphic as a ringed space to a (Spec A,OA)
is automatically a locally ringed space and the isomorphism is one of locally ringed

spaces. ]

23.14 NOTATION AFF-SCH is the full subcategory of ]'.OC—-'I'OPRNG whose objects

are the affine schemes.

23.15 REMARK The category AFF-SCH has finite products and pullbacks, hence is



finitely complete.

23.16 THEOREM The functor

OP

(Spec,0) :RNG~~ - AFF-SCH

that sends A to (Spec A, OA) is an equivalence of categories.

N.B. We shall also view (Spec,0) as a fully faithful functor

OP

RNG - IOC—TOPJRNG'
Let
OP
[:1OC-TORpy ~ RNG
be the functor defined on objects (X,OX) by
F(X,OX) = OX(X)

and on morphisms

(£,£%)

(X,04) > (¥,0y)

by
et0 ) » 0L ()
YUY X *

23.17 THEOREM The functor I' is a left adjoint for the functor (Spec,0):

Mor (I'(X,0y) ,A) = Mor((X,OX) s (Spec AIOA)) .

23.18 APPLICATION (Spec Z,OZ) is a final object in IOC_TOPFIJG'



10.

[Indeed,

Mor (I(X,0,),2) in RNG "

is

Mor (Z,T(X,0,)) in RNG.]

23.19 DEFINITION A scheme is a locally ringed space with the property that

every point has an open neighborhood which is an affine scheme.

23.20 NOTATION SCH is the full subcategory of IOC—'IDPENG whose objects are

the schemes (cf. 0.6).

[Note: AFF-SCH is a full subcategory of SCH.]

23.21 REMARK The category SCH has finite products and pullbacks, hence is
finitely complete.

[Note: SCH does not have arbitrary products, hence is not complete. Consider,

for example | P]é.]
1

N.B. If A is a zero ring, then Spec A is an initial object in SCH whereas

Spec 7 is a final object in SCH.

When dealing with schemes, one sometimes says "let X be a scheme" rather than

"let (X,OX) be a scheme."

23.22 DEFINITION Iet X be a scheme — then an open subset U ¢ X is an affine

open subset of X if U is an affine schame.

23.23 LEMMA The affine open subsets of a scheme X constitute a basis for the



11.

topology on X.

[Note: Therefore every open subset of X is a scheme.]

23.24 REMARK The intersection of two affine open subsets of X is open but it
need not be affine open.
[Note: ILet X be a scheme.

® X is semi-separated if for each pair U,V c X of affine opens the inter-

section U N V is affine open.

® X is quasi-separated if for each pair U,V c X of affine opens the inter-

section U N V is a finite union of affine opens.
One has
separated => semi-separated => quasi-separated.

Every affine scheme is separated.]

23.25 LEMMA The underlying topology on a scheme X is locally quasi-compact.
[Recall that v A € Ob RNG, Spec A is quasi-compact (but rarely Hausdorff or

even Tl) . On the other hand, an open subset of Spec A is not necessarily quasi-
compact (although this will be the case if, e.g., A is noetherian).]
23.26 DEFINITION Let I be a set.
® Given i € I, let Xi be a schane.

e Given i,j € I, let Uij c Xi be an open subset and let

$,.:U.. > T

ij*rij ji

be an isomorphism of schemes (take U =% and q)ii = 1dXi) .



12.

® Given i,j,k € I, assume that

635034 N Up) = Usy N Uy

and that the diagram

ik
‘s . . N .
ij ik ki Xj

commutes.
Then the collection

(I, (Xl:l € I) ’ (Uljzlrj € I) ’ (Cle:l,J € I))

is called glueing data.

23.27 THEOREM Given glueing data, there exists a scheme X, open subschemes

Ui c X, with X= U U,, and isomorphisms cpi:Xi - Ui of schemes such that
ieT

(1) ¢i(Uij) =U; N Uj

and

_ .-l
(2) ¢ij = ¢j !Ui nuy e ¢i|Uij.

23.28 EXAIPLE Take U;; = g for all i,j -- then X = [] X,.
i
[Note: If Al, ces ’An are nonzero commutative rings with unit, then

n n
1l Spec A; = Spec ( T A;)
i=1 i=1



13.

but for an infinite index set I, || Spec A; is not an affine scheme (it is not

guasi-compact).] *

23.29 IFMMA Iet S be a scheme and let Xi (i€e1), Yj (j € J) be objects of
SCH/S —- then

¢ 1] %) x

i j i,J



§24. MODULES
Iet (X,OX) be a ringed space.
24.1 DEFINITION An Ox—module is a sheaf F of abelian groups on X such that

VY open subset U c X, the abelian group F(U) is a left OX(U) -module and for each

inclusion V c U of open sets there is a commutative diagram

0, (@ x F(U) ———— F(U)
0 (V) x F(V) ———— F(V).

24.2 NOTATION OX—M_OQ is the category whose objects are the OX—modules.
[Note: A morphism F + G of OX—modules is a morphism = of sheaves of abelian
groups such that VvV open subset U c X, the arrow EU:F(U) + G(U) is a homomorphism of

left OX (U)-modules. Denote the set of such by

Hom, (F,G).
OX

Then this set is an abelian group which, moreover, is a left FOX—module: Given

s € FOX and Z:F - G, define st by the prescription

i

(SE) (s|u) By

U

So, e.g., as left FOX—rrodules,

T'F.]

n

Hom, (0,,,F)
OX X

24.3 REMARK There is a standard list of operations that I shall not stop to



rehearse (kernel, cokernel, image, coimage,...).

24.4 FXAMPLE Iet Z be the sheaf associated with the constant presheaf U + 7 —-

then a Z-module is simply a sheaf of abelian groups on X.

24.5 THEOREM OX—NDD is an abelian category.
24.6 THEOREM OX—M)D has enough injectives.

24.7 THEOREM OX—MOD is complete and cocomplete.

[Any abelian category has equalizers and coequalizers.

® Given a set T and for each i € I, an OX—module Fi, the product

ITF

ier
is the sheaf that assigns to each open subset U c X, the product

T F; (U

i€r
of left 0X (U)-modules. It is also the categorical product.

® Given a set I and for each 1 € I, an OX—module Fi’ the direct sum

o Fi
ieT

is the sheaf associated with the presheaf that assigns to each open subset U c X,

the direct sum

® F.(U)
ier t

of left OX (U)=modules. It is also the categorical coproduct.]

24.8 DEFINITION Given Ox—modules F and G, their tensor product



Fe, G
OX

is the OX~module which is the sheaf associated with the presheaf that assigns to
each open subset U c X, the tensor product

F(u) & G(U)

0, (©)

of left OX (G) =modules.

24.9 DEFINITION Given OX-modules F and G, their internal hom

Hom, (F,G)
OX

is the OX—module which is the sheaf that assigns to each open subset U c X, the

left OX (U) -module

HomoxlU (Flu,Glu).

24.10 ILEMMA Iet F,G,H be OX—modules — then

Hom, (F @ G,H) =Hom, (F,Hom, (G,H)).
OX 0 OX OX

X

[Note: As left I‘OX—modules,

Hom., (F R G,H) =~ Hom, (F,Hom (G,H)) .1
OX OX OX OX
24.11 DEFINITION Suppose that

(£,£7)
(X,OX) > (Y,OY)

is a morphism of ringed spaces.

e Iet F be an OX—module. Form f£,F (an object of Sh(Y,AB)) -- then £.F



#

is an f*OX—module, hence is an OY—module via the arrow f :OY > f*OX’ call it

res. F.

f

e Iet G be an OY-module. Form £*G (an object of sh(X,AB)) -- then f*G

is an f*OY—mdule. On the other hand, f#:f"‘OY > OX is a morphism in Sh(X,RNG),

thus
OX [<] f*OY £*G
is an OX—module, call it extf G.
24,12 EXAMPIE Take G = OY —- then
ext. OY ~ OX.

24.13 IEMMA The functor

extf:OY—-MOD _ 0X~MOD
is a left adjoint for the functor

res J‘:.:OX—MOD _ OY—MOD.

24.14 REMARK Let

£, £t (g,g™)
(X,0,) >(2,0,) 4 (¥,0y) >(2,0,)

be morphisms of ringed spaces -- then the functors resg ° res. and resg o £ are

equal while the functors ext. ¢ ext and ext are naturally isomorphic.

£ g go f

24.15 NOTATION 0-MOD is the category whose objects are the triples (X,OX,F) ’



where (X,OX) is a ringed space and F is an OX-module, and whose morphisms are
the triples
(£,£%,5): (X,04,F) > (¥,0,,6),

where f:X - Y is a continuous function, f#:OY > f*OX is a morphism in Sh(Y,RNG),

2:6 » f£,F is a morphism in Sh(Y,AB) such that v open subset U c X, the diagram

OY(U) x G(U) > G(U)

ox(f“lm x F(Ely) — o rE

commuites.

24.16 LEMMA The projection
(%, 0, F) > (X,00)
is a fibration

< 0= 12]
PMOD'O MOD -~ TO‘FNG'

PROOF Given (Y,Oy,G) and

(£, £
(x,OX) > (Y,OY) '

the composition

(X,OX,OX <] £*G)

f*OV

> (X,f*Oy,f*G) >(Y,Oy,G)

is horizontal.



[Note: Recall that
(idx'f#) : (X,OX) > (X,f*OY)

is a morphism of ringed spaces and there are arrows

T 0, —> £,£%0

Y Y

G —> £,£%C

of adjunction.]

24.17 REMARK The commutative diagram

Pyop
0-MOD > 'IOPF]IG
D
riG ° TMoD PrvG
TOP TOP

is thus an instance of 6.2.



§25. QUAST-COHERENT MODULES
Let (X,OX) be a ringed space.

25.]1 NOTATION Given a set I and an O‘K-module F, write F(I) for the direct sum

o Fi (v i, Fi=F).
ier

25.2 DEFINITION An OX—module F is said to be quasi-coherent if Vv x € X, there

exists an open neighborhood U of x, sets I and J (depending on x), and an exact

sequence

() >F|u >0

(1)
(OX!U) >(OX]U)

of 0 |U-modules.

25.3 NOTATION QCO(X) is the full subcategory of OX—MOD whose objects are the

quasi-coherent OX—modules .

25.4 REMARK In general, QCO(X) is not an abelian category.

25.5 LEMMA Iet F,G be quasi-coherent OX—modules — then F & G is quasi- coherent.

[Note: An infinite direct sum of quasi-coherent OX—modules need not be quasi-

coherent. ]

25.6 LEMMA Let F,G be quasi-coherent OX—modules -- then F R, G is quasi-
X
coherent.

[Note: On the other hand, Homo (F,G) need not be quasi-coherent.]
X



N.B. QQO(X) is a symmetric monoidal category under the tensor product (the

unit is OX) .

25.7 DEFINITION An OX—module F is said to be locally free if v x € X, there
exists an open neighborhood U of x and a set I (depending on x) such that F|U is

isomorphic to (0y[U) @ 25 an Oy |U-module.
25.8 LEMMA A locally free OX—module F is necessarily quasi-coherent.

25.9 LEMMA Suppose that

£, £h
(,0,) > (2,0,

is a morphism of ringed spaces.
® Iet F be a quasi-coherent OX—module —— then res £ F is not necessarily

a quasi-coherent OY—module .

® Iet G be a quasi-coherent OY-module —— then extf G is necessarily a

quasi-coherent OX_module.

25.10 CONSTRUCTION Let (X,OX) be a ringed space. Suppose that A € Ob RNG
and ¢:A -+ FOX (= OX(X)) is a ring homomorphism. Iet M be a left A-module. Consider
the canonical arrow
(m,1%) £ (%,0) —> (%,0,),

#

where O,* = A (7" = ¢) — then ex*t:Tr M is quasi-coherent. In addition, the assignment

M—*eXtﬂM



defines a functor
A-MOD -~ QCO(X)

and given any Ox—module F,

Homox(exl:TT M,F) = HomA(M,FF) ’

where the left A-module structure on I'F comes from the left FOX—-module structure
via ¢.
25.11 REMARK One can take A = I‘OX, ¢ = id, in which case it is customary to

write FM in place of extTr M.

Given A € Ob RNG, we shall now recall the connection between A-MOD and

QCO(Spec A). So in 25.10, take (X,OX) = (Spec A,0,) (hence FOA ~ A) -- then for
every left A-module M, the sheaf M is canonically isomorphic to FM (and this iso-

morphism is functorial in M). Therefore the M are quasi-~coherent and given any

OX—module F.

HomOA(M,F) = HomA(M,I‘F) .

25.12 IFMMA For all left A-modules M and N,

~ o~

Homo (M,N) = HomA(M,N) .
A
[Bear in mind that
T M =& M
I’ltl ~ N.]



25.13 LEMMA For every quasi-coherent OA—module F,
('F) = F.

25.14 THEOREM The functor
~:A-MOD - QCO(Spec A)
that sends M to M is an equivalence of categories.
[In fact, ~ is fully faithful (cf. 25.12) and has a representative image

(cf. 25.13).]
25.15 EXAMPLE The category of abelian groups is equivalent to QCO(Spec Z).

25.16 LEMMA Iet A,B € Ob RNG, suppose that

#

(£,£7) : (Spec B,OB) -+ (Spec A,OA)

is a morphism of affine schemes, and let p:A > B be the associated ring homomor-
phism.

® For every left B-module N,

resg N =z (resp N)
functorially in N.
® TFor every left A-module M,
extf M=z (extp M)

functorially in M.

25.17 REMARK There is a functor

(spec, 0,~) oD (28) ¥ — 0-M0D



which sends an object (A,M) to
(Spec A,OA,M)
and which sends a morphism (f,¢):(®&,M) - (B,N) to
(Spec f,Of,¢) : (Spec B,OB,IZT) — (Spec A,OA,I\Z) .
[Note: On a principal open set D(a) (a € A4), D7I(D(a)) = Ma and

((Spec £),N) (D(a)) = N(D(f(a))) = N

f(a)*©

Furthermore, there are arrows of localization

T A— A M > M

a a
B —— —_
> Bf(a) , N > Nf (a)

and a commutative diagram

(AIM) _— (Aa'Ma)

(BIN) — (Bf (a) ’Nf (a) ) ~]

It remains to consider the pairs (X,OX) , where X is a scheme.

.r.

[Note: It has been shown by Rosenberg that (X,OX) can be reconstructed up

to isomorphism from QCO(X) .]

25.18 LEMMA Let F be an Ox—nodule —-— then F is quasi-coherent iff for every

T Lecture Notes in Pure and Applied Mathematics 197 (1998), 257-274.



affine open U < X (U = Spec A), the restriction F|U is of the form M for some M

in A-MOD.

N.B. If F is a quasi-coherent OX—-module, then for all affine open U, V with

V ¢ U, the canonical arrow

OX(V) @OX ) F(U) » F(V)
is an isomorphism of OX (V) modules.
25.19 LEMMA Suppose that
(£,£h)
(X,OX) > (Y’OY)

is a morphism of schemes. Let G be a quasi-coherent OY—mdule —- then ext £ G is

a quasi-coherent OX—module (cf. 25.9).

25.20 REMARK The notation used in 7.3 is suggestive but misleading: Replace

*
f byextf cee o

25.21 IEMMA Suppose that

(£, £h)
(X,OX) > (Y’OY)

is a morphism of schemes, where f is quasi-compact and quasi-separated. Let F be

a quasi-coherent OX—module —— then res £ F is a quasi-coherent OY—module (cf. 25.9).

25.22 REMARK If U is an open subset of a scheme X, then in general, resiU OX!U

is not quasi~-coherent.

25.23 THEOREM QCO(X) is an abelian category.



25.24 RAPPEL A Grothendieck category is a cocamplete abelian category in

which filtered colimits commute with finite limits or, equivalently, in which

filtered colimits of exact sequences are exact.

N.B. In a Grothendieck category, every filtered colimit of monomorphisms is

a monomorphism, coproducts of monomorphisms are monomorphisms, and

t:]| xi+Trxi
i i

is a monomorphism.

25.25 EXAMPLE ILet A be a commutative ring with unit -- then A-MOD is Grothen-
dieck.
[Note: In particular, AB is Grothendieck but its full subcategory whose objects

are the finitely generated abelian groups is not Grothendieck.]
25.26 THEOREM QQO(X) is a Grothendieck category.

25.27 DEFINITION Given a locally small category C, an object U in C is said to
be a separator for C if the functor Mor (U,—):C + SET is faithful, i.e., if for
every pair f,g:X - Y of distinct morphisms, there exists a morphism ¢:U -+ X such

that £ ¢ 0 2 g o 0.

25.28 EXAMPLE Iet A be a commutative ring with unit -- then A, viewed as a

left A-module, is a separator for A-MOD.
25.29 THEOREM QCO(X) admits a separator.

N.B. Every Grothendieck category with a separator is complete and has enough

injectives.



25.30 REMARK It can be shown that QCO(X) is a coreflective subcategory of

OX-MOD, i.e., the inclusion functor
00 (X) - OX—MOD
has a right adjoint.

Fix a regular cardinal «.

25.31 DEFINITION Iet C be a locally small cocomplete category —-- then an

object X € Ob C is k-definite if Mor (X,—) preserves k-filtered colimits.
25.32 EXAMPIE In TOP, no nondiscrete X is k—definite.

25.33 DEFINITION Let C be a locally small cocomplete category —— then C is

k-—presentable if up to isomorphism, there exists a set of k-definite objects and

every object in C is a k-filtered colimit of k-definite objects.

25.34 EXAMPLE SET and CAT are & o-Presentable but TOP is not k-presentable

for any «.

25.35 DEFINITION ILet C be a locally small cocomplete category —- then C is
presentable if C is k-presentable for some «.
[Note: Every presentable category is cocomplete (by definition) and complete,

wellpowered and cowellpowered. ]

25.36 THEOREM (Be]<e+) Suppose that C is a Grothendieck category with a

" Math. Proc. Camb. Phil. Soc. 129 (2000), 447-475.



separator —— then C is presentable.

25.37 APPLICATION QCO(X) is presentable.



§26. LOCAL TRIVIALITY

Let C be a category.

26.1 DEFINITION A subcategory of trivial objects is a replete subcategory

of C.

26.2 EXAMPLE If C has initial objects, then the associated full subcategory is

isomorphism closed, hence is a subcategory of trivial objects.

26.3 EXAMPLE If C has final objects, then the asociated full subcategory is

isomorphism closed, hence is a subcategory of trivial objects.

Let A be a category, F:A ~ C a functor.

26.4 DEFINITION The replete full image of F is the isomorphism closed full

subcategory of C whose objects are those objects which are isomorphic to some FA

(A € Ob A).

26.5 EXAMPLE Take A = SET, C = GR, F:A » C the left adjoint to the forgetful

functor — then the replete full image of F is the category of free groups.

oP
26.6 EXAMPLE Take A = RNG™ , C = LOC-TOP i F:BA > C the functor that sends

A to (Spec A, OA) -- then the replete full image of F is the category of affine schemes.

Iet T c C be a subcategory of trivial objects.

26.7 DEFINITION Let C be a covering of an object X in C ~- then X is locally

trivial (w.r.t. T) if the domain of each g € C is in T.



26.8 DEFINITION Let k be a covering function on C —— then an object X in C
is locally trivial (w.r.t. T) if it is locally trivial (w.r.t. T) for some

CEKX.

N.B. To ensure that
"trivial"™ => "locally trivial",

it suffices to assume that V T € Ob T, {id:T » T} € K.

26.9 REMARK Suppose that V X € Ob C, Ky = {idX:X + X} -- then for any T,

the locally trivial objects are the trivial objects.

26.10 EXAMPLE Take C = SET.

® Iet T be the subcategory whose only object is the empty set # and whose

only morphism is idg:ﬂ + @. Define a covering function k by setting Ky = g »x} —

then all objects are locally trivial.
e Iet T be the subcategory whose objects are the singletons. Define a

covering function k by setting Kg = idﬂ and

Ky = {{x} » X:xex} X=z80).

Then all objects are locally trivial.

26.11 EXAMPLE Take C = TOP, let K be the open subset coverage (cf. 11.20),
and take for T the euclidean spaces, i.e., the topological spaces which are homeo-
morphic to some open subset of same R® —- then the locally trivial objects are the
topological manifolds.

[Note: To say that X is a topological manifold means that X admits a covering



n,
by open sets Ui c X, where v i, Ui is homeomorphic to an open subset of R 1 (ni

depends on 1i).]

26.12 EXAMPLE Take C = DOC—TOPFNG, let « be the open subset coverage, and

take for T the affine schemes —- then the locally trivial objects are the schemes

(cf. 23.19).

[Note: An open subset U of a locally ringed space (X,OX) can be viewed as

a locally ringed space (let OU = 0X|U) , thus it makes sense to consider the open

subset coverage. ]

26.13 EXAMPLE Take C = TOPEN:; let « be the open subset coverage, and take

T = I_.OC—’I’OP_FNG (which is replete (cf. 23.11)) —-- then here, all locally trivial

objects are trivial.

[Note: If U < X is open, then the stalk of OU at an x € U is OX X.]
r

Consider a one point ringed space ({x},O{X}) —-— then O{x}ﬂ = {0} (a zero ring),
0 { X}{x} = A (a ring). Abbreviate this setup to ({x},A) —- then a morphism
(£,£%)
({x},) ——— ({y},B)
of ringed spaces is simply a homomorphism f#:B -+ A.

26.14 EXAMPLE Iet T be the replete subcategory of TOPE!NG whose objects are

the pairs ({x},A), where A is a local ring, and whose morphisms are the morphisms

(£,£%)
({x},A) — & ({y},B)

#

of ringed spaces such that the momomorphism £":B -+ A is a local homomorphism.



I RNG

Define a covering function « on TOP_. . by setting “@,0p " id(ﬂ,%) and

K(XIOX) = {({X}’OX,X) > (X,0,) :x € X} (X = ).
Then the locally trivial objects are the locally ringed spaces.

Let P:E ~ B be a fibration. Suppose that T < E is a subcategory of trivial

objects and let k be a covering function on B.

26.15 DEFINITION An object X € Ob E is locally trivial (w.r.t. T) if it is

locally trivial (w.r.t. T) for some C € (P—lK)X.

[Note: This reduces to 26.8 if E = B, P = id.]
Let P:E > B be a fibration. Suppose that B has a final object #; and that

E, # 0. Let C be a subcategory of E,_ . Denote by ';[_‘C the full subcategory of E
B -

*

whose objects are the X for which there exists an object C € Ob C and a horizontal

arrow X + C.

26.16 LEMMA IC is a replete subcategory of E.

26.17 REMARK There is an analogous statement involving opfibrations with trivial

objects determined by a subcategory of the fiber over an initial object.

26.18 EXAMPLE Consider the fibration PA:TOPP - TOP of 22.11. Place on TOP

the open subset coverage k and take for C the fiber over a singleton *, thus the

objects of '_I_‘C are the A-spaces (X,OX) which are the domain of a horizontal arrow

(X,05) > (*,04) over !:X » * for same 0.



e The trivial objects are the (X,OX) such that OX % 1*%0, (= Ao ev 0,
(cf. 22.19)).

[The point is that for any X, the arrow
(!,uo*) (X, 1%0,) ~ (*,0,)
is horizontal (cf. 22.11).]
Observe next that if U is an open subset of X, then
i%:5h(X,8) ~ Sh(U,A)
and v 0, the arrow

(iUIUOX) : (UrOXIU) > (Xlox)

is horizontal (cf. 22.12). So, if X = U Ui' then
ieT

. -1
{( 30! ):(U.,O IU) - (X,O )}E (P, k) .
lUi 0, Firtx!Ns X A (%,0,)

e The locally trivial objects are the (X,OX) such that X admits an open

covering {Ui:i € I} with the following property: V i,

OXIUi = !I(O*)i.

[Note: !?_ is calculated per Ui’ hence
13:%(*Ié) > %(Ullé)

and (O*)i is an object in Sh(x,A) that depends on i.]

26.19 EXAMPLE Consider the fibration Ob:CAT - SET of 5.1. Place on SET the
"inclusion of elements" coverage k (cf. 26.10) and take for C the singleton {1} in

the fiber over *, thus the objects of To are the small categories C such that

-~



¢

> 1 is horizontal.

e The trivial objects # 0 are the small categories C such that V X,Y € Ob C,
#Mor (X,Y) = 1.
[Assume first that C is trivial and pass to the arrow Ob C + *. Proceeding

as in 5.1, construct a category é and a horizontal CZI > 1 such that Ob ! is

! ~ o~ - ~ !
> % —— then v X,Y € Ob C, #Mor(X,Y) = 1. But since C

Ob C > 1 is horizontal,

there is a vertical isomorphism v:C ~ C and a commutative diagram

> 1

10— A

> 1,

!
so VvV X,Y € Ob C, #or(X,Y) = 1, which settles the necessity. Turning to the

sufficiency, consider a setup

OCh w
_-____._.>ll ’ IOb(_lO >0 C—m> x

1 X !

@]
v
10 |5

the claim being that there exists a unique functor v:C,~ C such that Ob v = x

and ! o v = w. This, however, is obvious: Define v on an object XO by VX0 = xX0

and on a morphism £.:X, -~ Y. by vfO = f, the unique element of mr(xXO,xYO) .1

070 0

N.B. The arrow 0

> 1 is horizontal. Therefore 0 is trivial.

[In the foregoing, let C = 0 —— then Ob C = #, hence Ob (_:O =f and x = idg.

And this means that Cj = 0, so v = id,.]

—

0



By definition, if C # 0, then

1y

“ob ¢ = {{x} > Ob C:X € Ob C}.

Choose a horizontal uy :C, + C such that Ob u, = iy, thus Ob G, = {X}. And

Uy

> C:X € Ob C} € (Ob_lK)C.

&
e The locally trivial objects # 0 are the small categories C such that

¥ X € 0b C, Mor(X,X) = {id.}.
[Construct (_:X as in 5.1, thus V X € Ob C,

Mor, (X,X) = {X} x Mor(X,X) x {X},

implying thereby that

#Mor (X,X) =1 <=> #or(X,X) = 1.]

o

E.g.: Every set viewed as a discrete category is locally trivial.

26.20 EXAMPLE Viewing R as a topological ring, given a topological space B, let

6B= (B x R > B).

Then BB is an internal ring in TOP/B. This said, denote by M the category whose
objects are the internal GB-modules.

(x) Take B = * — then My is the category of real topological vector spaces.

Define a pseudo functor F:'I‘OPOP + 2-CAT by sending B to B_/_IB and B:B > B' to

FR:My, » My ("pullback"). TUse now the notation of 7.7 and form gro,mPF, the objects

of which are the pairs (B,M), where B € Ob TOP and M € Ob FB, and whose morphisms



are the arrows (g,f):(B,M) » (B',M'), where B8 € Mor(B,B') and £ € Mor (M, (FR)M').

Consider the fibration G)F:gro,I,OPF +~ TOP of 7.9. Place on TOP the open subset

coverage Kk and take for C the subcategory of the fiber over * whose objects are

the Rn, thus the objects of '_I_‘C are the pairs (B,M) which are the domain of a

horizontal arrow (B,M} - (*,Rn) over 1:B - * for some R".
® The trivial objects are the (B,M) such that M = B x R™.

[The point is that for any B, the morphism

(,id  ):(B, FHRY) > (xR
(F1)R

is horizontal (cf. 7.12) and (F1)R® = B x R.]
Observe next that if U is an open subset of B, then FJ_UI\_/IB - l\_/IU Agreeing

to write M|U in place of (FZLU)M, the arrow

(iridhy ) ¢ (U,M|U) > (B,M)

is horizontal (cf. 7.12). So if B= U Ui’ then

i€l
. . -1
{(lUi,ldMlUi)-(Ui,MlUi) > (B,M)} € (057) B,M) °
® The locally trivial objects are the (B,M) such that B admits an open

covering {Ui:i € I} with the following property: V i,

7y

MU, ~ U, xR .

[Note: Here n; depends on i and the isomorphism is camputed in I\_IIU -]
i

26.21 RAPPEL The triple <AB,®,/> is a symmetric monoidal category and the



commutative monoids therein are the commutative rings with unit.
26.22 NOTATION Given A € Ob RNG, let A-MOD be the category of left A-modules.

Let A,B be comutative rings with unit and suppose that f:A - B is a ring
homomorphism —— then there is a functor

res
bid

B-MOD ~——w > A-MOD (restriction of scalars)

and a functor

A-MOD —— > B-MOD (extension of scalars).

26.23 IEMMA The functor ext. is a left adjoint for the functor resc.

hid

26.24 NOTATION MOD(AB) is the category whose objects are the pairs (A,M),
where A is a commuitative ring with unit and M is a left A-module, and whose
morphisms are the arrows (f,¢):(A,M) » (B,N), where f:A +~ B is a ring homomor-

phism and ¢:M > N is a morphism in AB such that the diagram

fR ¢
ARM > B&N
M > N
¢

commutes, the vertical arrows being the actions of Aand B on M and N.

26.25 REMARK There is a 2-functor

F:RNGD - 2-CAT

that sends A to A-MOD and f:R + S tO res.:B-MOD + A-MOD. Its Grothendieck

£



10.

construction JropE can be identified with MOD(AB) .
[Note: There is a pseudo functor

F:RNG » 2-CAT

that sends A to A-MOD and f:A - B to eth:A—MDD -+ B-MOD.]

26.26 LEMMA The projection (A,M) - A defines a fibration

P,p:MOD(2B) ~ RNG.

PROOF Given (B,N) and f:A - B, the morphism

(A,rest) > (B,N)

is horizontal.

26.27 LEMMA The projection (R,M) - R defines an opfibration

Pap:MOD(AB) ~ RNG.

PROOF Given (A,M) and f:A - B, the morphism
a,mM -~ (B,B &, M)

is ophorizontal.

26.28 REMARK Therefore PAB is a bifibration (cf. 5.15).

26.29 EXAMPLE Consider the opfibration P,,:MOD(AB) - RNG of 26.27.

Place on

RNG the Zariski coverage k (cf. 11.16) and bearing in mind 26.17, take for C the

subcategory of the fiber over Z whose objects are the Zn, thus the objects of IC

are the pairs (A,M) which are the codomain of an ophorizontal arrow (Z,Zn) - (A,M)

over !:7 -+ A for some 7.



11.

® The trivial objects are the (A,M) such that M is a free left A-module
of finite rank.
e The locally trivial objects are the (A,M) such that M is a finitely

generated projective left A-module.

APPENDIX

Fix a topological group G and consider the fibration G-BUN(TOP) -~ TOP of

5.3 — then its fiber G-BUN(TOP), over * is (isomorphic to) MOD., the category

of right G-modules over the monoid G in TOP. Take for C the singleton subcategory
{G » %}, thus the objects of To are the X » B which are isomorphic to a product
X x G~ B. )

® Place on TOP the open subset coverage —- then the locally trivial objects

over B are thoseobjects X - B in P for which there exists an open covering

/G

{U;:i € I} of B such that v i, X|U; = U, x G in g@Ui’G.

® Place on TOP the open map coverage (cf. 11.19) —- then the locally

trivial objects over B are the objects X - B of P—@—B G
r



STACKS

Let B be a category equipped with a Grothendieck coverage k such that
Y B € Ob B, {idB:B +~ B} € Kg-

ST-1: NOTATION Given {gi:Bi - B} € Kpr put

and define ﬁij, ﬂij rer the pullback square

1
MTe
ij
1 > By
2
ij 93
B. B .
3 7. >
j

ST-2: NOTATION Given {gi:Bi + B} € Kgr PUt

Bisk B %8 B 5 B

12 13 23

and define ﬂijk’ ﬁijk, Wijk by the pullback squares
1T23 Tr23
ijk ijk
Bijk _— Bjk Bijk > Bjk
1T12 1Tl Tr13 1T2
ijk jk ijk jk



Let F:];%OP + 2—CAT be a pseudo functor (cf. §3).

ST-3: DEFINITION A set of descent data on {gi:Bi +~ B} € Ky is a collection

of objects X, € FBi and a collection of isomorphisms

2 1

in FBij which satisfy the cocycle condition

13 12

Pl b4 = F(Migp) 944 © F

23
i3k 95k
in FBijk modulo the "coherency" implicit in F.

[Spelled out, the demand is that the composition

23 2
P 5 F () X
Yﬂ23 2 &y
i3k’ M5k 5 -
> Flige © misd¥
2 13
F(me © T %
-1
Y13 2%
i3k’ Mik ,
- rl e rds,
13
P(m. e i
( 1jk) cbn.k 13 1
> F(Trijk) ° F(1Tik)Xi

is the same as the composition

23 . 2
F(m 5 F (M50 X



23
F(nis,) ¢.
ijk’ ik 23 1
Y23 1 5
i3k’ ™5k 1 ’3
> F(1Tjk ° Trijk)Xj
2 12
Fm5 © Mg %
-1
Y12 2 %
D 12 2 )X,
12
F(my5,.) és o
13k 12 1
> F(Trijk) o F(1Tij)Xi
Y12 1 X
ijk""13 1 12
1 13
F(TTik o Wijk)xi
-1
Yiz 1 %
T3k’ ik

13
> F (Trijk)

1
° F(m)X;.]



ST-4: DEFINITION If

({Xi},{¢ij})

({%{3, 1o} 51

are sets of descent data on {gi:Bi -+ B} € k,, then a morphism

SERRCPRIENCeRTIN)

is a collection of arrows Ei:Xi > Xi in FB, such that the diagram

2 q)ij 1
F(wij)xj > F(ﬁij)Xi
2 1
F (wij) gj F (nij) £
2 o ) R
F(?Tij)Xj > F(TTij)Xi
(blj

comutes in FB...
1]

ST-5: NOTATION Given {g.:B. - B} € k_, there is a category
= - 171 B g

F({gi:Bi - B})

whose objects are the sets of descent data and whose morphisms are as above.

ST-6: LEMMA The assignment
FB > F({g;:B; > B})
that sends X € FB to

({F(gi)X},{d)ij}),



where

b5= (7, W (" X,

is a functor.

ST-7: DEFINITION Suppose given B and k —-- then a pseudo functor F:]§OP -+ 2-CAT

the functor

is said to be a stack if for all B € Ob B and all {gi:Bi > B} € Kgr

FB —> F({g;:B; + B})
is an equivalence of categories.

ST-8: REMARK Consider the setup of 18.12 —- then F:QOP > SET is a sheaf iff

it is a stack.
[Note: As usual, SET is viewed as a sub-2-category of 2-CAT whose only 2-cells

are identities.]

ST-9: EXAMPLE The pseudo functor
0B + 2-CAT

that sends X to TOP/X is a stack in the open subset coverage.

8T-10: EXAMPLE The pseudo functor

scHF > 2-¢AT

that sends X to QCO(X) is a stack in the fpgc coverage (hence in the Zariski

coverage, the étale coverage, the smooth coverage, and the fppf coverage).

ST:11l: EXAMPLE Given a topological group G, the pseudo functor

10 > 2-CAT

that sends B to PRIN, is a stack in the open subset coverage.

G
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