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ABSTRACT

The purpose of this book is to lay out certain aspects of descriptive

set theory.
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Prerequisites
It is assumed that the reader is familiar with the language

and notation employed in elementary algebra, analysis, set theory,

and general topology.
As usual

&L the set of positive integers

Z the set of integers

"

Q the set of rational numbers
Vv

Mg the set of irrational numbers

R the set of real numbers

L, the set of complex numbers.
n n ,n _n A .

The symbols N°, 2, @, B, R, € (n a positive integer) are

then to be assigned their customary interpretations.

Tacitly, we shall always operate within the strictures of ZFC
(Zermelo-Fraenkel Axioms + Axiom of Choice)}, unless the contrary

is explicitly stated.



§1. Generalities
MAAY VAR A AN

Throughout this book, whenever the word set is used, it is
always understood to mean a subset of a given set which, gener-
ically, is denoted by X; we shall use the word class for a set

VAANANYS
of sets and the word collection for a set of classes. If S and
NAAAAAAAAASAY,
T are subsets of X, then the union, intersection, difference,
and symmetric difference of S and T are denoted by SuT, S5nT,
S-T, and SaAT, respectively. P(X) stands for the class of all

subsets of X; @ stands for the empty set.

By card(X), we mean the cardinality of X. A set is said

to be countable if its cardinality is KX finite if its cardi-
MAYI AN WAASAAANS

0’

nality is <N_, uncountable if its cardinality is >X,, infinite
0 VAN AL NN 0 WAV AN

if not finite, i.e., either countable or uncountable. If F is
a finite set, then #(F) is the number of elements in F.
As is customary,
No < NI <esa¥ Na Cows

are the infinite cardinals and
B Y N e

wo < w‘ <¢o.< wa <.0.
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are the infinite initial ordinals. In this connection, bear in
mind that o 1is an arbitrary ordinal and W, is the first
ordinal such that

card({8:8<wa}) =N, .

Traditionally, w, is denoted by w, while oy is denoted

by Q. By ¢, we understand the cardinality of the continuum,

N
i.e., ¢ =2 %, The continuum hzgothesis is the statement that
Ro
2 = R the %eneralized continuum hzgothesis is the statement
N
that 2 % = N ., for all ordinals o. Both of these statements

are independent of ZFC.

The characteristic function of a subset S of X 1is the

function XS:K - R defined by .

1 if xeS
xg(x) = _
0 if xeX-S.

There is a canonical identification between #P(X) and the set
Fnc(X,{0,1}) of all functions from X to {0,1}, mnamely the

rule S+ Xg-
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If § and T are subsets of X, then

XsnT = XgXr = minlXg,Xt)
XsuT = Xs * X7~ Xgar = Max(Xg,xp)
with Xg < XT iff ScT. Furthermore,
Xg-1 = Xg(1 - Xg)
Xspr = Ixg ~xl-

Let {Si} be a sequence of subsets of X -- then the set
of all those points of X which belong to Si for infinitely
many values of i 1is called the upper 13Ei} or l&g&}ksuperior of
the sequence and is denoted by 1I1im Si or 1lim sup Si, while
the set of all those points of X which belong to Si for all
but a finite number of values of i is called the lower limit

or limit inferior of the sequence and is denoted by 1lim S; or

lim inf Si' Evidently,

In the event that

'l

[
n
w
t
L]
-«
-

ot
[ ™
=
wn
[N



1-4
then S 1is said to be the limit of the sequence S],Sz,... and
we write S = lim Si' For instance, if {Si} is an i&ﬁlﬁﬁé@&g

decr i i .C S, .D8S.
(decreasing) sequence in the sense that S1 SIH(Sl 81+t

) Vi,
then 1lim Si = USi(ﬂSi). In general, it is always true that
ﬂSiC:Ilm Sic:llm Sic uSi.

In terms of characteristic functions,

XTim 5, = 1M Xs,
i i
X1im 5, - 10 Xg,
= i i
Example  Suppose that {Si} is a sequence of pairwise disjoint subsets of
X — then lim Si = 0.

The preceding notions can be interpreted topologically. For
this purpose, it will be convenient to consider first the elements
of a useful abstract construction.

Thus let (X,T) be a topological space -- then by the sequen-
tial modification of (X,%) we mean the topological space whose
underlying set is still X itself but whose topology T, consists,

by definition, of the complements of those subsets S of X which

are closed under pointwise convergence of sequences, i.e., a subset
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S of X is T_-closed iff for every sequence {xi} cS,
x; * x==>x€S. It is easy to check that the class of closed
subsets thereby singled out does in fact satisfy the usual axioms
involved in defining a topology by closed sets. The canonical
map (X,Es) + (X,¥) 1is continuous, or, what amounts to the same,
the T -topology on X is finer than the T-topology. In addition,
it is clear that a sequence {xi} in X 1is TT-convergent to a
point x 1iff it is T -convergent to x. These remarks enable
one to characterize the sequential modification of (X,T) in a
simple way. Indeed, T is the finest of all topologies T,o T
on X which have the following property: A sequence in X 1is
T-convergent iff it is T,-convergent.

The essential significance of the sequential modification is

contained in:

Lemma 1 Let f:X>Y be a map from X 1into a topological space

Y -- then f is continuous per T iff £ is sequentially con-

tinuous per T.
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[We omit the elementary verification.]

In connection with the preceding developments, a modicum of
caution must be exercised, viz.: The Es-closure of a subset S
of X need not consist just of the sequential limits from S but,
in general, will be much larger, as can be seen by simple examples
(cf. Exer.8). This can easily be made precise. Given S, let
uS be the set of all T-limits of sequences in S. Putting uOS =S,

define by transfinite recursion

uaS = u(\vj uBS) (a<Q).
B<a
Then the ¢S-closure of S is \vj UBS' Another way to look at it
a<f
is to let So run through those subsets of S having cardinality
SNy - then the union of the zs—closure of the S0 is the .-

closure of S. In any event, the moral is that sequences do not
ordinarily suffice; nets (or filters) will usually be needed.

[Note: Let E&g be the category whose objects are topological
spaces and whose morphisms are continuous maps; let ESBS be the

category whose objects are the sequential topological spaces, i.e.,
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those topological spaces in which every sequentially closed subset
is closed, and whose morphisms are continuous maps -- then there
is a canonically defined coreflective functor

E&R\*_% ESBS ’
viz. the rule

(X,T) ~» (X,ES)
together with the obvious assignment of morphisms. Eggs thus
appears as a coreflective subcategory of ESR, which, in fact, is
monocoreflective , hence, on the basis of standard categorical
generalities, is closed under the formation of quotients and
coproducts in ESE.]

Suppose now that X 1is again merely an abstract set but that

Y 1is a topological space. Let Fnc(X,Y) be the set of all func-
tions from X to Y equipped with the topology of pointwise
convergence -- then by Pnc(X,Y)S we understand the sequential
modification of Fnc(X,Y). The class of closed sets for the asso-

ciated topology is thus comprised of those subsets of Fnc(X,Y)



which are closed under pointwise convergence of sequences.

Example If X and Y are both topological spaces, then the closure in
Fnc(X,Y)S of the subset of all continuous maps is known as the class of
Baire functions (from X to Y).
WVAANY YA SAAAASA A

The identification P (X) =Fnc(X,{0,1}) enables one to topolo-
gize P(X) 1in a canonical way. Indeed, equipping {0,1} with the
discrete topology, place on Fnc(X,{0,1}) the topology of pointwise
convergence -- then this topology may be pulled back to P(X), the
upshot being that P(X) thus topologized is a compact Hausdorff
space which, moreover, is totally disconnected. Write P(X)S for
the corresponding sequential modification -- then P(X)S is still

Hausdorff and totally disconnected but, in general, need not be

compact (cf. Exer. 12). Given a sequence {Si}C:P(X), the relations
XIim s, = 1M Xg
i i
X1im 5, - 1IN Xg.
= i i

then make it clear that 1lim Si exists topologically, i.e., per

P(X)S, iff 1im Si exists in the sense that 1lim Si = 1lim Si'
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We shall terminate this & with some definitions and related
notation.

Let & be a nonempty subset of P(X). Write SS, 30, zd, 56
for the class of subsets of X comprised of all nonempty finite
unions, countable unions, nonempty finite intersections, countable
intersections of sets in & (repetitions being permissible); write
3. for the class of subsets of X comprised of all sets in §
and all differences of sets in $; write 5c for the class of
subsets of X comprised of all complements of sets in §.
Successive application of these operations is represented by juxta-
position of the symbols, e.g., 506 E (50)6’ the class of all
countable intersections of countable unions of sets belonging to 8.
Obviously,

S5, =85, 85, =8

it
"

5 35° %3207 % = s
$=38ccr 8o T Fser Bcs T %o -
The class g 1is termed additive (o-additive) if it is non-

empty and closed under the formation of nonempty finite (countable)

unions, i.e., provided § = 55(50). The class § 1is termed
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multiglicative (G-multiglicative) if it is nonempty and closed

under the formation of nonempty finite (countable) intersections,
i.e., provided § = Sd(Sé). If Peg and if $§ 1is both additive

and multiplicative (o-additive or d&-multiplicative), then §

is called a lattice (o-lattice or &-lattice). Every o-lattice

or 6-lattice is a lattice but, of course, not conversely. Naturally,
a lattice of sets is an abstract lattice.

Example Let X be a topological space - then the class of all open (closed)
VAAAAAN -

subsets of X is a o-lattice (§-lattice).
If $ 1is a nonempty subset of P(X) and if Xo is an
arbitrary subset of X, then the trace of $ on X0 is the class
trxo(ﬁ) = {SnXo:SES}.

The trace operation will preserve certain structures, e.g., the
trace of a lattice is again a lattice.

Notes and Remarks

NAAAMARE Aot \APPA  rep

The notion of characteristic function is due to Ch. de la Vallée Poussin,

Trans. Amer. Math. Soc., AQXISIS), pp. 435-501. Its use was, however, first

anticipated by E7 Borel, Lecons sur la Théorie des Fonctions, Gauthier-Villars,

Paris, 1898 (see p. 109). E7 Borel also introduced the upper limit and lower

limit of a sequence of sets; cf. his Lecons sur les Fonctions de Variables

Réelles, Gauthier-Villars, Paris, 1905 (see p. 18). Here
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upper limit = limite compléte

{Iower limit = limite restreinte.

Strangely enough, the limit of a sequence of sets was formalized only later,
viz. by Ch. de la Vallée Poussin (op. cit.), the term being limite unique,

the notation being lim, and also, independently, by F. Hausdorff in his classic

Grundziige der Mengenlehre, Veit & Comp., Leipzig, 1914 (see p. 21), where also

will be found the limit superior, limit inferior terminology. The notation lim

and lim was codified by Ch. de la Vallée Poussin, Intégrales de Lebesgue,

Fonctions d'Ensemble, Classes de Baire, Gauthier-Villars, Paris, 1916 (see p. 8).

For an exhaustive study of closure operations and their modifications, consult

v
E. Cech, Topological Spaces, Academia, Prague, 1966. The topologization of P(X)

is the subject of a paper by R. Bagley, Michigan Math. J. v%(1955‘56), pp. 105-

108; see also L. Savel”ev [I. CaBempes], Sibirsk. Mat. Z., 6(1965), pp. 1357-

1364. An elementary but useful survey (with extensive references) on the various
operations Ss’ 50, Sd’ 56’ Sr, SC (and much more) has been given by W. Sierpifski,

Proc. Benares Math. Soc., N.S. 9(1947),pp. 1-24. The origin of the various sub-
www

scripts used therein is this:
s,0: Summe
d,ds: Durchschnitt,

r:relative (complement), c:complement. Sierpinski's Hypothdse du Continu, Chelsea,

New York, 1956, is highly recommended as a source for additional information about
the continuum hypothesis and its consequences. Many of the statements in this

book have subsequently been approached from the point of view of Martin's axiom;

cf. D. Martin and R. Solovay, Ann. Math. Logic, 2(1970), pp. 143-178.
0]



1-E-1
Exercises
WA A

(1) Let Si = [0,1] for odd values of i and Si = [-1,0] for even

values of i —then Tim S, = [-1,1] and lim S, = {0}.

(2) Let {xi} be a sequence of real numbers; let Si = ]-°°,xi [ = then

]=o, TTE'xi [ c TTE'Si c] -, Tim x; ]

]—w,limxi[c_uﬂsic ]—m,limxi].

(3) Let {Si}, {S;}, {S?} be sequences of sets with S; c s, c st for
all i. Suppose that 1lim Si = Jim S? =S, say — then lim Si exists and

is equal to S.

(4) The union (intersection) of a sequence of sets {Si} can always be

represented as the limit of an increasing (decreasing) sequence of sets.

[In fact
usi = lim(slu...usi)
msi = lim(S]ﬂ...ﬂSi).]

(5) Let {Si} be a sequence of sets — then lim(SlA...ASi) exists iff
Tim Si =§.
(6) If {Si} is a sequence of sets, then
X - 1im Si = Iim(X-Si), X - 1im Si = Iim(X-Si).

(7) 1f {Si}’ {Ti} are sequences of sets, then

lim(SiuTi) lim SiUlim Ti

lim(SiLJTi) S>limsS. ulim T, ,

lim(SinTi) clim Siﬂlim Ti

limS.Nlim T, ,

lim(s, nT,)
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Tim(s; -T) c Tim s, - lim T,
lim(s; -T.) > lims, - Tim T, .

Consequently, if lim Si and lim Ti exist, then so do lim(SilJTi),

lim(Sieri), and 1lim (Si-Ti), with

lim(SiUTi) lim SiUIim Ti

lim(SirWTi) = lim SirWIim Ti
lim(Si-Ti) = lim Si -lim Ti
(8) Let be the characteristic function of the rationals -- then

8.
Xg is the pointwise limit of no sequence of continuous real valued functions
Wy

on Ji. However, is a Baire function on J& since

X
2

XQ(x) = lim [1im {cos(m!ﬂx)}zn] (xER) .
vy

m-—>0 fn -0

In addition,
1 - XQ(x) = lim sgn{sinz(m!nx)} (x€R) .
w m v
[Note: This example shows that sequences do not suffice to describe a

closure in the sequential modification of a space.]

(9) Let (X,¥T) be a topological space, (X,ES) its sequential modifica-
tion. Let Y be a subset of X; let T(Y) and ES(Y) be the corresponding
relative topologies -- then E(Y)S o ES(Y), i.e., the sequential modification
of the relative topology on Y is finer than the relativization to Y of the
sequential modification of the topology on X, there being strict containment

in general but equality if Y is in addition Is-closed.

[To illustrate this phenomenon, take for X the following subset of the

upper half-plane + the origin:
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fa = (;—,r'\—):m,n=1,2,...} U {bn=(o,;:-):n=1,2,...} U {c=(0,0)}.

Topologize X by specifying local open neighborhoods: The open neighborhoods
of an and bn are to be the relativized usual open neighborhoods but the

open neighborhoods of ¢ are to be the relativization of the usual open neigh-

borhoods of {0} x] 0,e[ (¢>0) with ¢ added in. Consider Y= {amn} U {cl}.]
(10) tLet (x',T'), (X",T') be topological spaces -- then
] 1B} 1 (R} = 1] 13 ] "
(X' xx", (T xE)s) (x XX,(ESXES)S)-

[To illustrate this phenomenon, take X'=££ in the relative topology U
and take X'"'=Q in the topology T'" obtained by specifying that the open
wwv open
neighborhoods at the nonzero points are to be the relativized usua]Aneighborhoods
but the open neighborhoods at zero itself are to be the relativization of the

usual open neighborhoods of the sequence {é?:neN} with 0 added in. Consider
wv

the diagonal D, as well as D-{(0,0)}.]

(11) Suppose that X is finite or countable -- then the sequential modi-

fication P(X)s of P(X) 1leaves P(X) unchanged.

[Observe that if X is finite or countable, then the topology of point-

wise convergence on P(X) is metrizable.]

(12) Suppose that X is uncountable -- then the sequential modification

P(X)S of P(X) is never the same as P(X).

[In the topology of pointwise convergence, P(X) is, of course, compact.
Show, therefore, that the uncountability of X necessarily forces P(X)S to

be noncompact.]



(13) Let $ be a nonempty class of subsets of X =- then 55 = §

but, in general, 506 # 560'

[The second point can be seen by taking for $ the class of all bounded
closed intervals of the line which have positive length -- then, by a category

argument, v&?ﬁﬁo - 506']

(14) There exist classes $ such that

g ss 7 Ssd
$ 78, =5
$ 78, %8,

There exist classes % such that

57 go = 505
st So 7 506 = soéo’

Admitting the continuum hypothesis, there exists a class $ of subsets of the

line such that

2 ? so ? 306 ? 5060 - 50606 *
One can go much further (to any a<Q!); cf. §6.

[Note: The last assertion is tied up with an old problem of A. Kolmogoroff;
cf. Fund. Math.,‘£2(1935), p. 578. For the details on the line, see W. Sierpinski,

Mat. Sb., N.S. &g(1936), pp. 303-306.]

(15) There exist classes $§ for which 3, 8 srr’ srrr’ ... are all

distinct. |If S=Sr, then S=Sd but, in general, if S=Sr, then S#SS.
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(16) If $ is a lattice, then Srr is the class consisting of all

unions of two sets from the class Sr.
[Use the identities
(S‘ - 52) - (S3 - S“) = [Sl - (S2 U 53)] U [(S‘ n S“) - 52]

(sl - sz) U (53-s“)= [(s'u 53) - (szns“)] - [(szu S:.) - ((s‘nsh) U (sznsa))].]



1-P-1
Problems

i. LIMITS OF LATTICES

Let 3 be a lattice in X; let 1im $(1im 8) stand for the subsets of
X which are the upper limit (lower limit) of a sequence of sets from $ --

then

ug = 1im8Nitims .

[It suffices to prove that u§ = 506 n 560' For this purpose, establish
the following generality. Let {S; j}, {S? J.} be two double sequences of sets
’ ’

in X such that

st . oS! st . c su

isJ i,j+1° PyJ i,j+l
with
) N S .= N U sit.,
ki j |,J i j l’J
S
Then

— M 1 ] il ] 1
s-hm((sl J.ns]’j) U (sz’j ns‘

14

.nsY Ju...u(s' .ns" .n...ns"t .)).]
Jj 2J) (J,J 1 )

sJ JsJ

14 ’

Ref W. Sierpifski, C.R. Acad. Sci. Paris, 192(1931), pp. 1625-1627.
VWirwy WAw

1. A THEOREM OF INSERTION

Let $ be a lattice in X; let SOG SG, 566556 with 50:)56-- then

. € )
there exists an S ﬁgnsCS such that SO:>S:>S6
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[Use the following generality. Let {S;}, {S?} be two sequences of sets

in X such that

S: ©s!
i

1 = [
i+1’ Si Si+1

with
k)s; > N S?
Then
H [} o i H (X H il
u(sinsi) sim(siusz) N (szusa)n....]

Ref W. Sierpifski, Fund. Hath.,dé(lSZh), pp. 1-5.

i1, UPPER LIMIT OF A SEQUENCE OF SETS

Let I be the class of all infinite subsets of V&L~~ then, given any

sequence {Si} of subsets of X,

1im Si = U M S;.
1€l i€l

Supposing that I€I, say | = {ij:j=l,2,...}, let us agree to write limi Si

for lim S; .
j

It is easy to give examples where card( N Si) < 1 VIELIT and yet, e.g.,
i€l
card(1im Si) = r¢. Accordingly, one asks instead: How does the cardinality of

M S, influence the cardinality of liml Si?
i€l
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(1) True or False?

(a) 3 a sequence {Si} such that VIEI, N S, is finite but

i€l
lim Si is infinite.

(b) 3 a sequence {Si} such that vi€l, card( N Si) S K, but
i€l
card(]im' Si) 2N,

{2) True or False?

(a) If wviel, card( N Si) < N, then 3 an IOGI such that
i€l
card(lim, S.) £ N (N <N,
o 0

(b) If VIEL, card( N Si) < NO’ then there exists an lOEI such that
i€l

card(lim1 Si) s N

0 0
in conclusion, let {Si} be a sequence of subsets of X such that
card{ N Si) S Ny VIEI -~ then {Si} admits a convergent subsequence iff 3
1€l

an IOEI such that card(liml Si) <N

0 0

Ref M. Laczkovich, Anal. Math., 3(1977), pp. 199-206.
W —_——

IV. THE CHARACTERISTIC FUNCTION OF A SEQUENCE OF SETS

Denote by Seq(P(X)) the class of all sequences of subsets of X =- then
by the characteristic function of an element § = {Si} of Seq(p(X)) we under-

stand the function y.,:X+R defined by the series
S wy
Xg(x) =2+ T xg (x)/3' (xex) .
i

The range of Xg is evidently a subset of C, the classical Cantor set. In
fact, the map S = Xg implements an identification between Seq(P(X)) and

Fnc(X,C).
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Here are some elementary remarks.

(1) The sets in the sequence S are all one and the same iff Xg @ssumes

only the values 0 and 1.

(2) The sets in the sequence S are pairwise disjoint iff Xg assumes

only the value 0 and values of the form 2/3“.

(3) A sequence S of sets is increasing iff Xg assumes only the values

0, 1, and values of the form l/3n.

(4) A sequence S  of sets is decreasing iff Xg assumes only the

values 0, 1, and values of the form 1- (1/3").

(5) A sequence S of sets is convergent iff Xg @ssumes only the values

0, 1, and values of the form m/3n.
"Characterize those S for which:
() X0 =€ (b) xg(X) = c.

Show that if X 1is in addition a topological space, then Xg is continuous

iff all the sets in S are open and closed.

[Note: Suppose that X is a metric space with weight No ~-- then, upon
consideration of the characteristic function of a base of cardinality No’ one

can readily establish the following well-known results:
X is the continuous image of a subset of C. Furthermore, if

X is compact
X is compact and totally disconnected

X is compact, totally disconnected, and perfect,
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then

X is a continuous image of C
X is a homeomorphic image of a closed subset of ¢C

X is a homeomorphic image of C.]

Ref E. Szpilrajn, Fund. Math.,‘zl(l938), pp. 207-223.

[A transfinite generalization can be found in M. Stone, Fund. Math., 33(1945),
T T vy

pp. 27-33.]

V.  THE EQUALITY (INEQUALITY) OF $i6 AND 3.
be nonempty
Let X be a set of cardinality No; let 5<:P(X)/\-- then, of necessity,
506 N 560'
[This is easy, the point being that the complement of a countable subset

of X is either countable or finite.]

Let X be a set of cardinality >No ~- then there necessarily exists an

$cP(X) for which 506 # 560'

[There is no loss of generality in supposing that X is a subset of JL of

cardinality X,. Let 8 be the class of all sets of the form Xﬁlk n’

_ 1k k+1 . . . .
lk,n = ];F > o [ a generic dyadic open interval. We claim that 506 # séo‘
To prove this, select in each nonempty XrHk n some point X, n»  say. Denote
’ 3
by X, the totality of all such =-- then X-XOESOG but X—XOESGU.

&Sj W. Sierpinski, Spis. Bulgar. Akad. Nauk,,Jaz(1936), pp. 181-195.
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[Note: Let X be any set; let $ be a nonempty subset of P(X). Write

SZ’ SA for the class of subsets of X comprised of all nonempty unions, non-

empty intersections of sets in $ (repetitions being permissible) -- then always

SZA = SAX-]

Vi. DIFFERENCES, UNIONS, INTERSECTIONS

Let X be a set of cardinality K Let $cP(X) be nonempty -- then

0’

srcror B 5roro » &

=3

rérér réré

but, in general,

srorg # Sror ? srﬁré # srcSr '

Discuss the effect of permuting the roles of r and o or of r and .
What happens if X is a set of cardinality >N0?
Ref S. Picard, Fund. Math.,l£2(1936), pp. 262-266.

[See also the paper of Sierpifski's referred to in Prob. V.]
Vii. FILTERS AND ULTRAFILTERS

Let $ be a nonempty subset of P(X) - then § is said to be a filter on
X if:

(i) @ ¢ES;

(i) 8=35

(iii) Sse€8g, ScT=—>TE€ES.
The collection Fil(X) of all filters on X is ordered by the inclusion relation
(induced from that on P(P(X)) ).

[Note: Occasionally, condition (i) is dropped, P(X) itself being regarded

as a filter (cf., e.g., Exer. 9(84)).]
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An ultrafilter on X s a filter which is properly contained in no other
filter on X. t.e.: The ultrafilters on X are the maximal elements in the
ordered set Fil(X).

A filter 8 on X is an ultrafilter iff for each ‘S Cc X, either S € §

m
or X-Se8g. |If Sl""’sm are subsets of X whose union g:{Si is an
element of an ultrafilter § on X, then at least one of the !Si belongs to §.

Every filter is contained in an ultrafilter; moreover, every filter is the
intersection of the uitrafilters containing it.

A filterbase on X is a class $§ of nonempty subsets of X with the
SAAAANANANAN?

property that

VS], 52 €8, 35, € 3stsS,C Sl N SZ’

3 3

A class 8 is contained in a filter iff it is a filterbase. If & is a

filterbase, then
Fil(s) = {Tc X: 35 €8 st S T}

is the smallest filter containing $ or still, the filter generated by &.

A class $ is said to have the finite intersection property if the inter-
section of the members of any finite subclass of $ 1is nonempty. Suppose that
8 has the finite intersection property - then Sd is a filterbase, thus §
is contained in Fil(ﬁd), thence in an ultrafilter. Every filter has the finite

intersection property.

Ref H. Cartan, C.R. Acad. Sci. Paris, 322(1937), pp. 595-598 and pp. 777-779.

[Note: The purpose of this problem is merely to fix the terminology and

recall some basic facts.]
Viti. COMPACT AND COUNTABLY COMPACT CLASSES

Let $ be a nonempty subset of P(X) - then § 1is said to be gompact

(countablz compact) if every subclass (countable subclass) of $ with the finite
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intersection property has a nonempty intersection.

There is no a priori connection between the compactness {(countable com~
pactness) of a class and the topology of pointwise convergence on P(X) (or of

its sequential modification).

Example Let X be a compact (countably compact) Hausdorff space - then the
NN pord

class of all closed subsets of X is compact (countably compact).

There are countably compact classes which are not compact.

The main stabilization result is this: Suppose that

compact

countably compact.

Then

SSA is compact
355 is countably compact.

[since compactness (countable compactness) is evidently preserved by
operation A(8), it suffices in either case to deal just with 55. Consider,
therefore, a class {(countable class) {Si: i €1} of elements of 53 with the
finite intersection property. Fix an ultrafilter So on X such that §; € 50 vi.

Write S, = v Sij (j e J;), J; a finite set (S.,. € 8 ¥j). Choose, as is

ij
J
possible {cf. Prob. V1), an index i; €45 for which sij €8, - then the

class consisting of the Sij (i € 1) has the finite intersection property, so

nsij.#q)wz}nsi#w.]
1

Ref E. Marczewski, Fund. Math., &9(1953), pp. 113-124,
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[The notion of a countably compact class of sets is due to W. Sierpifski,

Fund. Math.,\%‘l(l933), pp. 250-275.]



§2. Partitions
Vary  VWAAAAANAAAAMAANY

Let X be a nonempty set -- then by a partition of X we
NANAAANAAAAN
understand a class P(X) = {Xi:iEI} of nonempty, pairwise disjoint

subsets Xi of X such that X =\JXi, i.e., such that

Xy = Z:Xxi. The Xi are called the components of P(X). Associated
with the partition P(X) 1is a surjective map f£:X->1I, viz. the

map assigning to X€Xi¢—>X the index 1; conversely, associated
with a surjective map f:X~>1 1is a partition P(X), viz. the par-

tition whose ith-component X; 1is the fiber £ 11y,

Example The equivalence classes determined by an equivalence relation on X
MAAAm

form a partition of X.

A partition Q(X) 1is said to be a refinement of the partition
P(X), written
Q(X)gP(X) or P(X)2Q(X),
if every component of Q(X) is contained in a component of P(X).
Evidently, Q(X) refines P(X) iff every component.of P(X) 1is a
union of components of Q(X). The partition whose components are

the elements of X refines every partition of X; every partition
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of X refines the partition whose sole component is X itself.

Let
P'(X) = {Xi,:i'EI‘}
PU(X) = {Xjn:i"el™)
be two partitions of X -- then by the neet of P'(X) and P"(X)

we mean that partition P'(X) AP"(X) of X whose components are

the nonempty Xi,r1X. It is clear that P'(X) AP"(X) 1is a

e
simultaneous refinement of both P'(X) and P"(X); moreover,
P'(X) AP"(X) 1is refined by every partition with this property.
Since the relation of refinement is reflexive and transitive, it
follows that the collection of all partitions of X is in fact a
directed set.

[Note: The collection of all partitions of X <carries the
structure of a lattice possessing certain supplementary character-

istics {cf. Exer. 3).]

Examele Suppose that f:X » X is a map without fixed points -- then there
exists a disjoint decomposition
X=XlUX2UX3
of X such that X, n f(Xi) =@ (i=),2,3).
[Note: Strictly speaking, this decomposition need not be a partition of
X since a given Xi may be empty. For the easy details, see M. Katétov,

Comment. Math. Univ. Carolin., 8(1967), pp 431-433.]
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In many of the applications, the emphasis is not so much on
partitioning X by certain of its subsets as it is on partitioning
the elements of a given class of subsets of X by elements from
that class.

Let, then, & be a nonempty class of subsets of X; it is
not required but it is not excluded that X itself belongs to &.
Let S€§ ~-- then by an §-partition of S, we understand a class
P(S) = {Si:iEI} of nonempty, pairwise disjoint subsets SiES such
that S = kJSi, i.e., such that Xg = Z:XSi. The Si are called
the components of P(S).

The collection of all S-partitions of S need not be directed
by the relation of refinement, the point being that there is no
reason to expect that the meet of two $-partitions be again an
8-partition. However, there is a simple condition on $ which will
guarantee this, namely that $ be a multiplicative class. The
multiplicativity of &, an essentially minimal requirement, also

ensures that it is permissible to take the trace of an $-partition.
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Thus let S,Te$ with SoT#@. Suppose that P(S) = {Si:iel} is an
$-partition of S -- then by the trace of P(S) on T we mean
that $-partition trT(P(S)) of T whose components are the non-
empty SifﬁT. To within the empty set, this notation agrees with
that introduced in §1.

Partitions of restricted cardinality (viz. §No) figure prom-
inently in the theories of the integral and derivative. To stress
this, let us agree that an $-partition of S€$ 1is finite {countable)
if this is so of the <corresponding index set. The class of all
components arising from all possible finite (countable) $-partitions
of S will be denoted by CDmS(S) (O-ComS(S)) while the collection
of all possible finite (countable) &-partitions of S will be
denoted by Parg(S) (0-Pars(8)). If % 1is multiplicative, then,
per the relation of refinement, both Pars(S) and o-Pars(S) are
directed sets. Conventionally, S admits infinite $-partitions if
c-Pars(S) is nonempty; of course, for this to be the case, 3

itself must be at least countable.
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Example Take X = [0,1] ~-- then the traditional notion of a partition of
WWAAAAN

X consists in the specification of points 0=x,<x,<...< X <X = 1. Observe,
however, that the intervals [XO’XI]""’[xn-l’xn] do not partition X. The
way out is to use instead the intervals [xo,xl[,[xl,xz{,...,[xn_1,xn] or the
intervals [xo,xl],]x',xz],...,]xn_1,xn]. Note too that while the intervals

}xo,x][,...,]x ,xn[ do not partition X, they do constitute a topological

n-1
partition of X; «cf. infra. |In passing, we remark that it is easy to exhibit

1

‘ = -
vyl ;ﬂ (n=1,2,...). Con

countable partitions of X, e.g., {0}, and the
sider now the class $§ of all closed subintervals of X; § 1is multiplicative,
singletons (as well as the empty set) belonging to §. Given J[a,b] in &, it

is clear that

Parg([a,b]) = {[a,b]}, 0-Parg([a,b]) = 0,
Therefore, in so far as it is a question of finite or countable partitions, §
is inutile. Trivially, of course, [a,b] = U {x}, an uncountable union (if

asxsb
b>a).

The preceding example, its essential simplicity notwithstanding,
already contains a degree of unpleasantness. Our strictly set-
theoretic definition of partition allows for no overlap in the com-
ponents. In certain situations, however, this turns out to be an
unduly restrictive condition, particularly in the presence of other

structures, for instance, a topology. Though this will not be a



2-6

point of concern at present, nevertheless an illustration may prove

helpful.
Let X be a topological space -- then by a topological parti-
VWAAAAAANAAY  vAAAA
tion of X we understand a class P(X) = {X.:i€I} of nonempty,
AN 1

pairwise disjoint, open and connected subsets Xi of X such that
L)Xi is dense in X. The X; are called the components of P(X).
WIWAAANAAAAAAN
A topological partition Q(X) 1is said to be a refinement of the
WAAAAAAAAAAN
topological partition P(X), written
Q(X) £P(X) or P(X)=zQ(X).
T T
if every component of Q(X) is contained in a component of P(X).
Specialize now and suppose that X 1is actually a metric space
with metric d. Let €>0 -- then an e-partition of X 1is a
VP NAAAS A g
topological partition with the property that each of its components
d-Eartitionable
has diameter <e. X 1is called, if for every € >0, there exists
an e-partition of X.
Example The metric space (X,d) is strongly d-partitionable if for every

E>0, there exists a finite €-partition of X. We then ask: What metric spaces

are strongly d-partitionable? It turns out that there is a very simple answer.
roperty

To give it, recall that X hasﬁéi if for every £€>0, X can be written as
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the union of a finite number of connected subsets each of diameter less than €.
In terms of this notion, the sought for characterization then reads: X is
strongly d-partitionable iff X has property S. Consequently, if X s
strongly d-partitionable, then for every €>0, it is possible to find a finite
ge-partition of X all components of which have property S, hence there is a
sequence Pj(X), PZ(X)’ ... such that Pi(X) is a finite 1/i-partition of X
and Pi+l(X) is a refinement of Pi(X). Assume in addition that X 1is compact
and connected, i.e., that X is a continuum -- then, as is well-known, X is
locally connected iff X has property S. By definition, a continuous curve

is a locally connected continuum. In view of what has been said, therefore,

every continuous curve is strongly d-partitionable, a theorem of R. Bing.

[Note: For a complete discussion of these and other related results, see

R. Bing, Bull. Amer. Math. Soc., 55(1949), pp. 1101-1110, and 58(1952), pp. 536~
W Wy

556.]
Notes and Remarks
VAWAVAANY VA WAARAWAASNS

Partitions, in one guise or another, have been around from the beginning.
They will play a central role in the sequel. Incidentally, it should be noted
that partitions and equivalence relations are coextensive notions, both being
descriptions of the same mathematical reality. Observe too that the axiom of
choice is entirely equivalent to the statement that every partition of every set
has a‘§£$‘2f representatives, i.e., if P{(X) = {Xi:iEI} is a partition of X,

then there exists a subset CP( of X such that CP(X)fwxi= {x;} in. The

X)

discovery that continuous curves could be topologically partitioned was one of

the most important combinatorial developments of the 1950's. The term continuous
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curve arises, of course, from the famous theorem of Hahn-Mazurkiewicz which
states that a metric space is a continuous curve iff it is the continuous image
of [0,1]. For this reason, continuous curves are sometimes referred to as
3&323 spaces. A systematic treatment of these matters can be found in G. T.

Whyburn, Analytic Topology, Amer. Math. Soc. Colloguium Publications, vol. 28,

New York, 1942, and T. Radd, Length and Area, Amer. Math. Soc. Colloquium Publi-

cations, vol. 30, New York, 1948. Finally, for much additional information on

the general theory of partitions, the reader can consult with profit 0. Ore,

Duke Math. J.,“2(19h2), pp. 573-627.
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Exercises
WAAAAAA A

(1) For n=1,2,..., let P be the number of partitions of a set of n

elements ~- then the P satisfy the recursion relation

What is the relationship between the P and exp(exp x~-1)?

(2) Let X = {Xi:iEI} be a class of nonempty subsets of a set X ~-- then
X determines a partition PX of X which partitions each of the Xi and is

refined by any partition of X with this property.
[Given a subset E of |, put

xE = M X, N N (X=X,).
ice ' iel-E !

Consider the nonempty XE']

(3) Let

PI(X) = {X,,:i'€l"})

P”(X)

{Xi”:i”el“}

be two partitions of X =-- then by the join of PYX) and P"(X) we mean that
VAAAMAL

partition P'(X) v P"(X) of X whose components are the minimal nonempty

ux,, = UX; - It is clear that P'(X) v P'"(X) 1is refined simultaneously by both

P'(X) and P'(X); moreover, P'(X) v P''(X) refines every partition with this

property.
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[Note: In the technical language of the trade, the collection of all
partitions of X is a relatively complemented, semimodular, complete lattice
with largest and smallest elements. It is called the Bartition lattice attached

WAAAAAAAY
to X. Up to isomorphism, every abstract lattice appears as a sublattice of

some such partition lattice; cf. P. Whitman, Bull. Amer. Math. Soc.,£§§19h6),

pp. 507-522.]

m
(4) Suppose that X = U X, is the union of m=2" nonempty, distinct
i=1

subsets Xi -~ then there exist n+l nonempty, pairwise disjoint subsets Yj of
n+1

X such that X = U Y,.
j=1

[There are two ways to look at this. The first method consists in remarking

that X must have at least n+1 distinct elements, say x s X SO

17"+’

X = {x‘} U ...LJ{xn} u (x- {x‘,---.xn})

which is certainly a partition of X with the desired property. However, while
the axiom of choice has not been used, the construction can hardly be considered

effective. The second (effective) method consists in considering M= {1,...,m},

the 2™-1 nonempty subsets of which, {i‘,...,is}, can be arranged into a
i i
finite sequence according to the size of the number 2 L. .42 S, Denoting by

{Mk} the sequence thereby obtained, put
Zk = N Xi - U Xi'
IEMk |€M-Mk
The z, may be used to determine the Yj']

[o o]
(5) Suppose that X = U X; is the union of countably many nonempty,
i=1

distinct subsets Xi -~ then there exist countably many nonempty, pairwise dis-
oo

joint subsets Yj of X such that X = U Yj'
Jj=1
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[The axiom of choice is not needed here (Kuratowski); cf. A. Tarski, Fund.

Math-,w§(1924), pp. 45-95 (see pp. 94-95).]

(6) Let X be a set; let f:X > X be a map. Suppose that f s injec-
tive =-- then X can be uniquely decomposed as a countable union of pairwise

disjoint sets XgrXysee (possibly @) such that

f(xo) = X f(x,) = f(xm) (iz1).

0,
[Take

Xy = " £ (x), X, = 1) - £ () (iz1),

i=
0
where f (X) = X.]

(7) Let X and Y be sets; let f:P(X) » P(Y) and g:P(Y) » P(X) be

maps. Suppose that

VS, TEP(X), SCT=>f(S)c f(T)

vS,TeP(Y), ScT=>g(S)cg(T).

Then there exist disjoint decompositions X = XILJXZ, Y = Y‘UY2 such that

f(XI) =Y. g(Yz) = XZ' Must these decompositions be partitions of X or Y?

[First prove that if M is a set, ¢:P(M) > P(M) a map such that

VA,BEP(M), ACB = ¢(A) c ¢(B),

then for some subset M_ of M, ¢(Mo) =M This done, specialize and for

0 o’

Sc X, put
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¢(S) = X - g(¥-f(s)).

The preceding remark implies that ¢ has a fixed point X say. Take, then,

1’
X, = X=X, Y, = f(xl), Y, =Y~ YI.]

(8) There exists a nonempty set X and a nonempty class § of subsets of
X with the following property: Every nonempty S&$ admits a partition by three
elements of § but no nonempty SE§ admits a partition by two elements of §.

Can % be taken multiplicative?

(9) Let & be a nonempty class of subsets of X with the property that
every nonempty element of $ can be written as the union of three distinct
elements of § -- then every nonempty element of § can be written as the

union of two distinct elements of §.

(10) There exist a nonempty set X and a nonempty class § of subsets
of X with the following property: Every nonempty SE§ admits a partition by
two elements of $ but no nonempty SE$ admits a partition by countably many

elements of $. Can % be taken multiplicative?

[Note: Suppose that X =v§\ -~ then in this case, if every nonempty SE€8
can be partitioned by two elements of $, it must actually be the case that

every nonempty SE$ can be partitioned by countably many elements of §.]

(11) Exhibit an explicit countable partition of J&, each component of

which is countable.

(12) Exhibit an explicit partition of v&, each component of which con-

sists of two elements.
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(13) Exhibit an explicit partition of [0,1], each component of which

consists of two elements.

(14) Take X =R == then there exists a subset S of X and a countable

set of real numbers {si} such that

o
X= U (s, +5),
g

where
P #j=>(s,+5) N (sj+5) =0
[This is easy: 29t s = [0,1[ and choose the 5 in the obvious way.]
(15) Take X = [0,1] =-- then there exists a subset S of X and a

countable set of real numbers {Si} such that

X = U (si+-S) s
j=1

where
i #j=> (s, +8) N (sj+5) = P,

[This is difficult; cf. J. v. Neumann, Fund. Math., 11}1928), pp. 230-238.
We remark that the axiom of choice is needed here; naturally, neither S, nor

any of its translates is Lebesgue measurable.]

(16) The continuum hypothesis is equivalent to the statement that the

real line - the origin can be partitioned into countably many rationally

independent sets.

[This result is due to P. Erdos and $S. Kakutani, Bull. Amer. Math. Soc.,

&9(19&3), pp. 457-461. In brief, the argument runs as follows.
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Admit the continuum hypothesis. Let {xB:E < w‘} be a Hamel basis for R.
vw

Given nonzero rational numbers r R write Ji(r‘,...,rn) for the set of

1"

all x€R such that x =r x, +...+r x, (B, <...<B ) =- then, in an obvious
wy 1 Bl n Bn 1 n
notation,

R = {0} v U(r Jyr‘,...,rn) (disjoint union).

e .,rn)

Decompose each \&ﬂrl,...,rn) by considering for every B8 < w, the subset com-

prised of those x for which Bn = B.

Deny the continuum hypothesis. Let {xB:B < wa} be a Hamel basis for
R -- then a2 2. Let {X.} be any countable partition of R - {0} -- then
ww I o

there exists an index i for which

card({wl < B< wa:i(B) = i}) 2N

2,
where i(B) is defined by requiring that there be ordinals é, E with
Bg < wys Bg <y 8y T X8 Xi(e)
Bg < Bg g ()

Conclude from this that there exist ordinals

B! < Wy B < w w, £ B*, BF* < Wy,

1 1

i = i(B*) = i(B**)

gt < gu Bx < Bk
such that
XB' + XB*’ XB" + XB*’ XB' + XB**’ XB” + XB**

all belong to Xi.]
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Problems
VA i

I.  MESH FUNCTIONS

Let $ be a nonempty class of subsets of X; let S&§ <-- then by a
mesh function & on Par.(S) we understand a rule which assigns to each
WAAWY WA A as s
P(S) in Pars(S) a positive real number &(P(S)) subject to the following

rule: ve >0 HPE(S)EEPar S) such that G(Pg(S)) <g. If ParS(S) admits

5(
a mesh function 6§, then & can be used to direct ParS(S): Q(s) § P(S)
iff 8(Q(S)) < 8(P(S)). It is to be stressed that if Q(S) is a refinement
of P(S), then there may be no relation between &(Q(S)) and &(P(S)); in

fact, & need not decrease upon refinement.

[Take X = [0,1[ and let $ be the class of all left closed and right
open subintervals [a,bl of X. Fix § = [a,b] in $ =-- then an element
P(S) in Pars(s) has the form {[ai,bi[:i=1,...,n}, where, say, a,=a,

<bl=a <b2 ... . Put 68(P(S)) =max(bi-ai) -~ then & s

1

bn=b and a 2

a mesh function on Pars(S) which, moreover, does decrease upon refinement.
Define now a function O on X via the following stipulation: o(x)=0 if
x is irrational, o(x)=1/q if x=p/q is rational (0spsq, q min.). Put
8(P(s)) = L(o(a;) +0(b,)) +max(b, -a,) - (o(a) +5(b)) -- then & is a mesh

function on Parg(s) which, this time, need not decrease upon refinement.]

Ref L. Cesari, Trans. Amer. Math. Soc., 102(1962), pp. 94-113.

[Note: Suppose that X is a continuous curve. Let Top-Par(X) be the
collection of all finite e-partitions of X =-- then the rule which assigns to

each P(X) in Top-Par{X) the maximum diameter of its components can be viewed,
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in the obvious way, as a mesh function on Top-Par{(X) which, moreover,
decreases upon refinement.]

11. THEOREMS OF RAMSEY AND SIERPINSK!

Given a set X and a natural number n, let us agree to write <X>h for

the class of all subsets of X of cardinality n.

Theorem (Ramsey) Let X be a set gi cardinality No; let {xl""’xm}

be a finite partition of (X)h -- then there exists an infinite subset S§ of

X and an index i such that {$) <X,.

[There is no loss of generality in taking X =Ji. This being so, 1t will
then be enough to prove that for any map f :<§>H + {1,...,m}, there exists
an infinite subset S of ¢L such that f 1is constant on <S>%. Proceed by
induction on n. If n=1, the result is clear so assume that it holds for
n21l. lLet f rﬁﬁ}h+' + {1,...,m} be a ﬁap. Given x§§f write f  for the

function on (ﬁ;-{x})h defined by the rule
F () = f({x}u?).

Apply the induction hypothesis in an appropriate way to fx.]

§2£ F. Ramsey, Proc. London Math. Soc. (2),\3&}E930), pp. 264-286.

One possible generalization of Ramsey's theorem might read: Let X be a
set of cardinality R,; let {xi,...,xm} be a finite partition of (X)% --
then there exists a subset § of X of cardinality N1 and an index 1| such
that <S>B czxi. This statement is, however, false. In fact, even more can

be said:



2-P-3

N
Theorem (Sierpifiski) Let X be a set of cardinality 2 o _. then
WAAAAAAN —— —-— — —

there exists a finite partition {X,,...,Xm} of (X)h with the following

property: For every subset S of X of cardinality N, <S>n ¢3€i

(i=1,...,m).

[There is no loss of generality in taking X =J§. Furthermore, it can be
supposed that m=2, n=2, the general case being a consequence of this one.
Let < be the usual ordering of Ji; let <w be some well-ordering of Ji --
then we define a map f: <2}§ + {0,1} by requiring that f({x,y}) =0 if <
and < order the pair {x,y} in the same way and f({x,y}) =1 if < and
<, order the pair {x,y} in the opposite way. If now S were a subset of
‘& of cardinality R, such that either f(<$>2) =0 or f((s)z) =1, then
of necessity either the natural order or its inverse would well-order S, an
impossibility. The partition of <¢§5 canonically associated with f thus

has the desired properties.]

Ref W. Sierpinski, Ann. Scoula Norm. Sup. Pisa Cl. Sci. (2),~af1933), pp. 285-

287.

[A useful survey on this interesting subject was given by P. Erdds and

R. Rado, Bull. Amer. Math. Sochég(1956), pp. 427-489. See also P. Erdos,

A. Hajnal, and R. Rado, Acta Math. Acad. Sci. Hungar., lg(}965), pp. 93-196;

P. Erdos and A. Hajnal, Proc. Symp. Pure Math., 12(!971), pp. 17-48. For an
account of recent developments (and additional references), cf. R. Graham,

B. Rothschild, and J. Spencer, Ramsey Theory, Wiley, New York, 1980.]
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1. DISJOINT AND NONDISJOINT CLASSES

Let 8 be an infinite class of sets -- then there necessarily exists an

infinite subclass § of ¥ such that either

0

VS',S!ES :S" £ S = $'ns'"'=g¢
or
vS',S"'€F iS5 # 5" = S'NS"#4g.

On the other hand, there exists an uncountable class § of sets such that
8 contains no uncountable subclass having one or the other of the preceding

properties.

J355 W. Sierpifiski, Fund. Math., ;ﬁi(l948), pp. 165-174,

V. PARTITIONS OF THE PLANE

The continuum hypothesis is equivalent to the statement that the plane can
be partitioned into two sets X and Y, where X(Y) intersects every line

parallel to the x(y)-axis in a finite or countable set.

&Ei W. Sierpinski, Bull. Acad. Sci. Cracov1e,~6519!9), pp. 1-3; W. Sierpinski,

Fund. Math., 5(1924), p. 177-187.
T v

The plane cannot be partitioned into two sets X and Y, where X inter-
sects every line parallel to the x-axis in a finite set and Y intersects every

line parallel to the y-axis in a finite or countable set.

Ref H. Tietze, Math. Ann., 521(1923), pp. 290-312.
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[Note: By comparison, the continuum hypothesis is equivalent to the
statement that space can be partitioned into three sets X, Y, and 27, where
X(Y,Z) intersects every line parallel to the x(y,z)-axis in a finite set;

see W. Sierpifiski, Rend. Circ. Mat. Palermo (2),“L(1952), pp. 7-10.]

The axiom of choice implies that the plane can be partitioned into two

sets X and Y, where X(Y) intersects every line parallel to the x(y)-axis
N

in a set of cardinality <2 0.
j%f W. Sierpinski, Soc. Sci. Lett. Varsovie C.R. Cl. 11} Sci. Math. Phys.,
Jﬁ~(1932), pp. 9-12.

The continuum hypothesis is equivalent to the statement that there exist

in the plane three straight lines L‘, Lz’ L3 with the property that the plane

is the union of three sets § S S such that Si intersects every line

17 727 73

parallel to L; (1=1,2,3) in a finite set.

j%j F. Bagemihl, Z. Math. Logic Grundlag. Math.,v1ﬁ196l), pp. 77-79; R. Davies,

Z. Math. Logic Grundlag. Math., Ji(1962), pp. 109-111.

The axiom of choice implies that the plane can be partitioned into count-

ably many sets, none of which contains the vertices of an equilateral triangle.

Ref J. Ceder, Rev. Roumaine Math. Pures Appl., &3(]969), pp. 1247-1251.

oy

The continuum hypothesis implies that the plane can be partitioned into
countably many sets, none of which containes the vertices of an isosceles

triangle.

Ref R. Davies, Proc. Cambridge Philos. Soc., 72(1972), pp. 179-183.
Yt WYy



2-P-6

[Note: There is an extensive literature on these and related themes. For
additional results, together with a variety of conjectures, see P. Erdos, Real

Anal. Exchange,v£}1978-79), pp. 113-138.]




§3. Semirings
VWA VAAAA A
Let X be a nonempty set; let &8 be a subset of P(X)
containing the empty set -- then & is said to be a semiring
WA NAAAAA
(o-semiring) if & is multiplicative and if for all nonempty
WAV NIAAAN
S, Te$ with S=>T, there exists a finite (finite or countable)
d-partition of S having T as a component. A semialgebra
N AAA A A
(o-semialgebra) is a semiring (o-semiring) containing X. It
NN P st o
is clear that every semiring is a o-semiring but the converse
is not true. Conventionally, {@} is both a semiring and a

o-semiring.

Examples (1) Take X=R. Let § be the class consisting of all bounded,
N v
open intervals, and all singletons -- then 8 is a semiring.

(2) Take X=R. Let 2 be the class consisting of all bounded, left
closed and right open intervals, and all singletons -- then § 1is a og-semiring
but not a semiring.

Partition theory leads at once to the consideration of semi-

rings (o-semirings). Indeed, let £ be a multiplicative class;

let S€$ -- then the class consisting of the empty set and the
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elements of Coms(S) (o-Coms(S)) is a semiring (o-semiring).

[Note: Tacitly, of course, S # #. Accordingly, SeComS(S),
hence Coms(S) is not empty. On the other hand, c-Coms(S) may
very well be empty (cf. §2).]

Semirings (or o-semirings) also arise naturally in the pres-
ence of certain chain conditions. Thus let § be a multiplicative
class containing the empty set -- then § 1is said to satisfy the
finite (countable) chain condition if for all S, Te$ with S oT,

class
there exists a finite (countable)/\{Si}CIS such that
T=ScS c...cC LJS. = S,
1 2 S|
i
where S, -Si_leS for each i>1. Here, of course, repetitions
are allowed. Any multiplicative class containing the empty set

for which the finite (countable) chain condition holds is evidently

a semiring (o-semiring).

Example Let $ cP(X) be a lattice -- then the class of all sets of the
NAAAAAN
form S$-T, where S, TE€$ and S>T, is a semiring. Indeed, the condition

as regards the empty set is trivial (take S=T). Let now $;-T; and

1

S2 -T2 be in our class. Multiplicativity is then a consequence of the identity
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(5, -TPn(s,=T)=(s;ns,) - (s,ns,) n(7,UT,).

If in addition, S.-T is contained in S_~T then

1 1 2 2’
$,-T,c (s1 nsz) - (T‘ nTZ) CSZ-TZ,

from which it follows that the finite chain condition is in force, as can be

seen by a direct set-theoretic calculation.

Lemma 1 Let 2 be a semiring; let Sl,...,Sm be nonempty,

pairwise disjoint elements of &, contained in some fixed element

S f & -- then there exists a finite g-partition P(S) f S

of the form

»S S «sS_1.

"coo m, m+l,o- n

Proof The proof is by induction on the integer m. If m=1,
NAAAARAY
then the assertion is true by the very definition of semiring.
Assuming now its validity for mzl, suppose that @ # TcS and
intersects none of the SI,...,Sm -~ then

I‘=TnSm+‘U...UTnSn (disjoint union).
In turn, making the obvious conventions, write

TNS (1)Uu...US

m+t m+1 Y Sme m+t (T )

(disjoint union)
TnSn uSn(l) U.ow usn(rn).
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Then

{81! . ’Sm! Tl Sm+i(j)}
is an g-partition of S, thereby completing the proof. //
Lemma 2 Let $ be a semiring; let S},...,Sm be nonempty,
distinct elements of § -- then the union S, u...uS_ ~ can be

represented in the form

S}(lj U... uS,(r1) Uoos USm(l) Ueoo Usm(rm),

where the Si(j) are nonempty, pairwise disjoint, belong to &,

and

§;> Si(l),...,Si(ri) (i=1,...,m).
Proof The proof is by induction on the integer m. As the
VAAAAAY

assertion is trivially true when m=1, 1let us assume that it is

valid for mzl. Given S consider the § nSi(j). If

m+1’ m+1

each of these intersections is empty, then our contention is evi-

dent. Suppose, therefore, that S nsi(j) # @ for certain 1

m+1
and j -- then there are two possibilities:
Sm-ﬂ msj_(j) = sm-!l
Sm+1'wsi(j) ? Sm+1 *
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If the first possibility obtains, then i and j are unique.
Accordingly, in view of the definition of semiring, the difference
Si(j) -Sm+l, if not empty, can be written as a finite union of
nonempty, pairwise disjoint elements of $, 1leading, thereby,
to the desired decomposition. If the second possibility obtains,
then the Sm+1 ﬂSi(j) are proper, pairwise disjoint subsets of

Sm+1' The proof can then be completed by an appeal to Lemma 1. //

We shall leave it up to the reader to decide if Lemmas 1 and
2 admit meaningful formulations in terms of o-semirings, the
issue being, of course, countable versus finite (cf. Exer. 5).

In passing, it should be noted that the trace of a semiring

(o-semiring) is again a semiring (o-semiring).

Example Take for X a bounded, closed interval in v&n, say:

X = {x:a.l $x, Sbl,...,ansxnsbn}.
Let $ be the class consisting of the empty set and all intervals

{x:or.i§x1<61,...,ansxn<6n} (ai§ai<eisbi)

if Bi< bi for every i, but if Bi = bi for some i, then the inequality

X, <ei is to be replaced by X, sei. With this agreement, $ is a semialgebra.



3-6

By comparison, note that the class of all closed subintervals of X, while
multiplicative, is not a semiring, although the class of all finite unions

of such is a lattice.

[Note: There are, of course, numerous simple variants on this theme.]

Notes and Remarks
NP WO It s s

The notion of a semiring is frequently attributed to J. v. Neumann,

Functional Operators, Annals of Mathematics Studies, vol. 21, Princeton,

1950. This, however, is inaccurate, the priority belonging to A. Kolmogoroff,
Math. Ann., &22(1930),pp. 654-696. There one will find the term zerlegbarer
e NNt
Bereich employed in context for what we have called semiring or o-semiring.
Actually, v. Neumann (op. cit.) did not work with semirings per se but rather
with multiplicative classes satisfying the finite chain condition; they were
called by him halfrings (see p. 85 of that work). The term semiring appears

in Halmos, Measure Theory, D. Van Nostrand, New York, 1950 (see p. 22), but

still only in reference to the finite chain condition. Semirings were used

early on by V. Glivenko [B. T'zmuBenko] in his book The Stieltjes Integral

[MuTerpan Crunteeca], OHTU, MockBa-Jlenuurpan, 1936 (see pp. 175-207).
That semirings and o-semirings might be made the basis for measure theory was

suggested by N. d. Bruijn and A. Zaanen, Indag. Math., &Q(ISS&), pp. L56-466;

their perspective is quite different from that of Kolmogoroff's (op. cit.),

being didactic rather than innovative.



3-E-1

Exercises
VAAASA s

(1) Give an example of a semiring of finite cardinality which does not

satisfy the finite chain condition.

(2) Give an example of a semiring of infinite cardinality which satisfies

neither the finite chain condition nor the countable chain condition.

(3) Give an example of a semiring of infinite cardinality which does not
satisfy the finite chain condition but does satisfy the countable chain condi-

tion.

(4) Give an example of a o-semiring which is not a semiring and which

does not satisfy the countable chain condition.

(5) Take X = [0,1[ and consider the semiring $ consisting of all
left closed and right open subintervals of X -- then every 3S-partition of
X is finite or countable. Does there exist an S-partition P(X) of X
such that each [a,b[ <X (a<b) with rational endpoints is partitioned by
the components of P(X) 1lying therein?

[What is the relevance of this exercise to Lemmas 1 and 27]

(6) Let X be a set of finite cardinality n, say. In terms of n,

how many semirings does P(X) contain?

(7) By definition, a nonempty, bounded subset of ‘ﬂ? is called a convex
eolyhedron provided that it can be written as a finite intersection of open
or closed halfspaces. Show that the class consisting of the empty set and

all convex polyhedra is a semiring satisfying the finite chain condition.
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(8) Take for X the Banach space (co) of all real sequences x=={xi}
which converge to zero, the norm being given by ||x]|| = sup[x,|. Let

{ri(+)} be a sequence in such that 0< ri(+) S+, lim ri(+) >0; let

R

v ot
{ri(-)} be a sequence in ‘E' such that 0>ri(-) 2=, lim ri(-) <0 --
then by S({ri(-)}, {ri(+)}) we understand the set of all xEX such that
ri(-) $x, < ri(+) Vi. Explain why the class consisting of the empty set and
all possible S({ri(-)}, {ri(+)}) is neither a semiring nor a o-semiring.

[Note: It was claimed to the contrary by P. Maserick in Pacific J. Math.,

&1(1966), pp. 137-148, that the class in question was a o-semiring satisfying

the countable chain condition.]
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Problem
NNy

NORMAL CLASSES

Let ¥ be a multiplicative class -- then % is said to be normal if
WA
for any S€8 admitting infinite $~partitions, each element
P(S) = {Sl,...,Sm,...} in G-ParS(S) has the property that vm, there

exists a finite 3~partition

{s «»S LT ..,Tr }

1 m>i1
m

of S$. Every semiring is a normal class (cf. Lemma 1).
(1) There exist multiplicative classes which are not normal.

[Take for X a countable set {xj,xz,...}. Put 5=={¢,X,{x1},{x2},... }--

then & is multiplicative but not normal.]
(2) There exist o-semirings which are not normal classes.

[tet X be an infinite set. Let P(X) = {X ,...,Xm} be a finite parti-

1
tion of X by subsets Xi’ each of which we suppose in turn can be countably

partitioned by subsets of Xij -- then the class $ consisting of @, X, the

X, and the Xij is a o-semiring but is not normal.]
{(3) There exist normal classes which are not g-semirings.

[Take for X a countable set {x‘,x .}, Put § = {ﬂ,x,{xz},{x3},...,

g%

{xi,xi+l,...}(i=2,3,...)} -- then £ is normal but is not a o-semiring.]

tet & be a multiplicative class -- then $ 1is normal iff for any S&5
admitting infinite $-partitions and for any P(S)eParg(S), each element

{S‘,...,Sm,...} in o-Pars(S) which refines P(S) has the property that vm,
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there exists a finite S-partition

{s s ,T ..,Tr}

1""’ m’ 1°*°
m

refining P(S).

Ref  D. Procenko [I. Mpouenxol, Soobs¢. Akad. Nauk Gruzin. SSR, 40(1965),

pp. 271-278.



§4. Rings, o-Rings, G-Rings
Let X be a nonempty set; let g be a subset of P (X)

containing the empty set -- then § is said to be a ring if

S,Teg = SATES and SNTE$ .
Since

SUuT

(SAT) A (SNT)

S-T

S A (SnT),

a ring is closed under the formation of finite unions and dif-
ferences and, in fact, is characterized by these requirements.
An algebra is a ring containing X. Trivially, {@} is a ring

while {P,X} and P(X) are algebras.

Example (Kolmogoroff) Any ring is a semiring. We have seen in §3 that
every lattice gives rise in a natural manner to a semiring; in turn, every
semiring gives rise in a natural manner to a ring. Thus let $ be a semi-
ring and consider the class Xnl(g) of all sets of the form tij Si’ the

Si being elements of § which, without loss of generality, c;;Ibe taken pair-
wise disjoint (cf. Lemma 2 (§3)) -- then we claim that Kal(3) is a ring.
Indeed, if S = LTJSE’ T = LfJTj are disjoint unions of elements Si’TjES’
then so is = =

n

SnT=Lm_j

(s.nT.).
=1 j=1 '
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As for SAT, use Lemma 1 (§3) to write

r.
n i
s.= U s,omould sy,
i=1 3 k=t
(disjoint union)
r.
m J
T, = S.NT.) U T,
R
Then we have
m i n rj
sat = L (U s, 0 v T )
i=1 k=1 j=1 k=1 J

which again is a disjoint union of elements in &#. Accordingly, the class

Kal(3) is a ring.

[Note: Suppose that P(X) = {Xi:iEl} is a partition of X =-- then
the class consisting of @ and the Xi is a semiring. Therefore the class
nonempty
formed by the empty set and all_finite unions of the components of P(X) s

A

a ring.]

The justification of the term "ring of sets" lies in the

following remarks. In P(X) itself, introduce operations of

addition and multiplication via the stipulations

)
+
—
1
wn

AT

wn
=3
HI
wn

n T.

Then by an elementary if slightly tedious verification, one checks

that P(X) thus equipped is a commutative ring with zero element
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$ and multiplicative identity X. It is a point of some impor-
tance that these operations, when viewed as maps

P(X) xP(X) »2(X),
are jointly continuous, i.e., P(X) 1is a topological ring; on
the other hand, these operations, when viewed as maps

P(X) x P(X)  » P(X),
are separately continuous.

Utilizing now the customary algebraic terminology, a subring
of P(X) 1is a subset containing the zero element, i.e., @, and
closed under addition and multiplication or still, under symmetric
differences and intersections; in other words, subring of P(X) =
ring of subsets of X. In addition, a subalgebra of P(X) 1is a
subring containing the multiplicative identity, i.e., X; in other
words: subalgebra of P(X) = algebra of subsets of X.

[Note: A ring (algebra) of sets is evidently a Boolean ring
(algebra). It must be stressed, however, that a ring £ may well

admit a multiplicative identity, thus is a Boolean algebra, but is
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not an algebra, the point being that generally X¢%. Consider,
e.g., % = P(S), S a nonempty proper subset of X. Accordingly,
we shall use the term 5&2@ Eiﬁb unit to refer to a ring 3
possessing a multiplicative identity; in particular, therefore,
every algebra is a ring with unit. It is easy to check that a
ring $ 1s a ring with unit iff Uges . If UB¢$%, then the
class § consisting of all S, Uu%-S (S€%) 1is a ring with unit
containing §. Finally, it should be recalled that every Boolean
ring is of characteristic 2, hence may be regarded as an algebra
over the field vgz']

The usual algebraic notions then admit easy descriptive
interpretations. Consider, e.g., the notion of an ideal I 1in
the ring § -- then, descriptively, I can be characterized as
a nonempty subclass of § which is closed under the formation of
finite unions and is hereditary in the sense that Ie€1, S€g§,

Scl = Se€1. The corresponding quotient §/I is a Boolean ring,
elements S, Te€e$ being equivalent mod I iff SATEl or still,

iff S = (T-I)uJ (I,JeI).
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[

ng; let I # $ be an ideal -- then:

Lemma 1 Let 8 be ar
VAAAAN  \w — —_—

.

(1) I 1is contained in a maximal ideal;

(2) 1 1is maximal iff I is prime;

(3) I 1is the intersection rj B, § prime.
p=l

[There is nothing to be gained by giving the proof in extenso.
The point is this. % need not have a multiplicative identity and,
as is well-known, if a ring does not have a multiplicative iden-
tity, then, e.g., generic ideals need not be contained in maximal
ideals, maximal ideals need not be prime, prime ideals need not
be maximal, etc. But § 1is a Boolean ring, hence carries compen-
sating structure. To illustrate, consider (1). Since I # §,
35 €8, SoﬁI. Let m be any ideal in & maximal with respect to

the property that mo1I, Soﬁm (Zorn's lemma ensures the existence

of m) -- then m 1is in fact a maximal ideal, as can be checked

without difficulty (S2

0 Sol). Statement (2) is also easy, as

is (3).]

A o-ring is a ring $ which is closed under the formation of

countable unions, i.e.,
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{Si:i=1,2,...}C35=#>USi€5,
or still, % = 50. A g-algebra is a o-ring containing X. A
§-ring 1s a ring $ which is closed under the formation of
WA Py
countable intersections, i.e.,
{si:i=1,2,...} csF = ns;€s,
or still, 3§ = 56' A §-algebra is a §-ring containing X.
A o-ideal (§-ideal) is an ideal in a ring which is closed
NAA A WA A AP
under the formation of countable unions (intersections).
Example Let X be a topological space-then the class § of all subsets
VA Amsr A

of X having the Baire property is a o-algebra containing the g-ideal of all

first category subsets of X.

[Note: Recall that a set ScX is said to have the Baire property if
there exists an open set G such that S-G and G-S are of the first

category.]
A o-ring is a é6-ring. To see this, put S =USi(Sies) --
then
ns; =S -u(s-5;).
Consequently, if {Si} is a sequence of sets in a o-ring &,

then



1im Sies, lim Sieﬁ.
In particular: A o-ring is necessarily closed in P(X)s. Further-
more, due to the separate continuity of the operations
the closure in P(X)S of a ring is again a ring, thus is actually

a o-ring.

Example There are &-rings which are not o-rings. For instance, take X =v§‘

and consider the class $ of all relatively compact subsets.

Lemma 2 Let $ be a ring -- then & 1is a §-ring iff for every
VAAAMAAA —— _— ———

S,€$, the set {SESESCSO} is a o-algebra in S .

[We omit the elementary verification.]

It follows from Lemma 2 that every 6-ring which admits a
multiplicative identity is necessarily a o-ring.

A ring $ 1is said to be comglete if $ 1is closed under the
formation of arbitrary nonempty unions. A complete ring is evidently
also closed under the formation of arbitrary nonempty intersections.
If $ 1is complete, then § 1is a ring with unit u$; of course,

u$ # X in general, hence § need not be an algebra.
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Example Let X be a set of cardinality Ko; let $ be a o-ring in X --

then $ is complete.

Consider P(X), equipped with the topology of pointwise

in P(X)
convergence -- then a net {Si} is convergent with limit S,

say, iff it is order convergent, i.e.,

OU%‘UDS

i jzi i jzi J

b

the order limit being exactly S.

being
Thisl\so, suppose that § 1is a complete ring in X -- then

$ 1is closed in P(X). If $% 1is a ring but is not complete,

then the closure § of § in P(X) is a complete ring in X,

the comgletion of §. Every complete subring of P(X) containing
¢ must contain %, therefore the completion of § is the minimal
complete ring in X <containing $ or still, the complete ring

generated by $ (cf. §6).

Example Let $ be a ring in X. Suppose that VxEX, {x}€$ -- then the

completion of $ is P(X).
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Let $ be a ring -- then a nonempty set A€$ 1is said to be
an atom if, apart from the empty set, A properly contains no
other element of §. We write At($) for the class of all atoms
in 3.
If every nonempty S€$ contains an atom, then § is said
to be atomic; on the other hand, if no nonempty S€$ contains an

atom, then & 1is said to be antiatomic.

topological

Example Let X be a HausdorffA§pace, Xisol its set of isolated points --
then X can be written as a disjoint union X = Xperf U Xscat’ where xperf

is the perfect kernel of X, i.e., the union of all subsets of X which are

dense in themselves, and X X is the corresponding complement.

DX,
scat isol

is closed while XSc is open; one of them may, of course, be empty.

Xperf at

Assume now that X is in addition, lfocally compact and totally disconnected.
Consider the ring % of all open and compact subsets of X =-- then

At(8) = {{x}:xeX,

ssol}’ so

g is atomic iff X = xisol

% is antiatomic iff X = Xperf .

In this connection, note that X = xperf i ff XScat =@ but X = X: ol does

not imply that Xperf = @, as can be seen by example. It is also easy to
envision intermediate situations, a particularly transparent case being when

X is extremally disconnected.
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Any complete ring 8 1is atomic, there being an easy charac-
terization of the atoms. Thus define an equivalence relation in
U$ by requiring that x be equivalent to y 1iff every set in
$ which contains x also contains y. The equivalence class
[x] (x€eu$) belongs to &, as can be seen by noting that
[x] = ﬂ S (S€8).
x€S
The atoms of $ are just the [x] (x€U$). Every nonempty S€S8
is partitioned by the atoms which it contains.
Let now $ be an arbitrary ring in X -- then there is a
canonical map
b:8 +~ P(At(8)),
namely the rule which assigns to each S€g the class ¢(S) of
all atoms AcS. It is clear that ¢ 1is a homomorphism of rings.
Furthermore:
(1) If & is atomic, then ¢ 1is injective. Indeed, if
S, Te¢, S # T, then S - T # @, say, thus 3AcAt(8), AcS-T,

and so A€¢(S), A£e(T).
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(2) If 8 1is complete, then ¢ 1is surjective. Indeed,
if {Ai} is any class of atoms, then UAiES and ¢(UAi) ={Ai}‘

We have seen above that every complete ring is atomic.
Therefore, in this case, ¢ 1is an isomorphism of rings. We
remark that ¢ 1is then even a complete isomorphism in that it
preserves arbitrary unions and intersections.

In passing, it should be noted that the trace of a ring
(o-ring, &-ring) 1is again a ring (o-ring, S8-ring), the same

also being true of complete rings.

Notes and Bgmarks

The theory presented in this § can be approached more generally, viz. from
the point of view of abstract Boolean rings and Boolean algebras; cf. R. Sikor-

ski, Boolean Algebras, Springer-Verlag, Berlin, 1969, as well as D. Ponasse

and J-C. Carrega, Algebre et Topologie Booléennes, Masson, Paris, 1979. The

terminology, particularly in the older literature, is tangled. Specifically,
what we have termed a lattice is frequently called a ring while what we have

termed a ring is frequently called a field; cf. F. Hausdorff, Grundzuge der

Mengenlehre, Veit & Comp., Leipzig, 1914 (see pp. 14-16), the German being

Ring and 58rper, respectively. To compound the confusion, M. Fréchet, Bull.

Soc. Math. France, J&i(ISIS), pp. 248-265, refers to a o-ring as a famille

additive d'ensembles, whereas 0. Nikodym, Fund. Math., l2f1930), pp. 131-179,
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understands by corps d'ensembles a o-algebra. There are other permutations

and combinations too; e.g., R.dePossel, J. Math. Pures Appl. (9), l§}1936),
pp. 391-L409, has suggested the term tribe (tribu in French) for o-ring, a
clan then being a ring. |In the sense employed in the text, the term ring

appears in J. v. Neumann, Functional QOperators, Annals of Mathematics Studies,

vol. 21, Princeton, 1950 (see p. B4). That semirings lead naturally to rings
was pointed out by A, Kolmogoroff, Math. Ann., LQQ(ISBO), pp. 654-696. ldeals
in rings have been investigated systematically by A. Tarski, Fund. Math.,

25}1939), pp. 45-63, Fund. Math.,v§2(19h5), pp. 51-65, and Soc. Sci. Lett.

Varsovie C.R. Cl. t1l Sci. Math. Phys.,ga3(1937), pp. 151-181. The notion of
atom is generally attributed to M. Fréchet, Fund. Math.,véjISZQ), pp. 206-251,

although it can be traced back to E. Schréder, Vorlesungen Uber die Algebra

der Logik, 1 (Bd. 1), B.G. Teubner, Leipzig, 1891 (see §47). The fact that
every complete ring is isomorphic to the power set of its atoms is due to

Lindenbaum and Tarski; cf. A. Tarski, Fund. Math., 325(1935), pp. 177-198.
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Exercises
(1) Take X =~§° For n=0,1,..., let D be the class consisting of

the empty set and all nonempty finite disjoint unions of dyadic left closed

lL k+1
E
2" "

and right open intervals of order n, i.e., the [
Dn is a ring. Noting that DOC D] Cuesy put D ='UDh, the class of all

[ . Verify that
finite unions of dyadic left closed and right open intervals of any order.

Verify that D is a ring. Formulate and prove a multidimensional

generalization.

[Observe that

kK kHI[ _[_ 2k 2k+l [.u [2k+1 2k+2 [ ]
’ ’ ’

" N 2n+l 2n+l 2n+l 2n+l

(2) Let X be a topological space -~ then the class $ comprised of

all sets S <X whose boundary is nowhere dense is an algebra of subsets

of X.

(3) Let X be a nonempty set -- then the class $ comprised of all
sets S < X such that either card(S) < Na or card(X-S) < Na is an algebra

of subsets of X.
(4) Given a ring $, consider the following conditions:

(C‘) Every subset of $ consisting of nonempty, pairwise disjoint

elements is finite or countable.

(Cz) Every subset of $ consisting of nonempty, pairwise

comparable elements is finite or countable.

Show by example that there exist infinite rings which satisfy (Cl) but

not (Cz) and vice-versa.
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(5) Let 8 be a subset of P(X) containing the empty set. Suppose

that $ is multiplicative -- then the following are equivalent:
(i) The class $ 1is a semiring;

(ii) The class consisting of all sets expressible as a finite union of

pairwise disjoint sets from $ is a ring;

(iii) Given elements S‘,...,Sm of &, there exist pairwise disjoint

elements T

1,...,Tn of 8 such that each Si is a union of certain of the

T..
J

(6) Let 8 be a semiring. Consider the class of all sets of the form

o0

\“}Si' the Si being elements of % which, without loss of generality, can
i=1

be taken pairwise disjoint (cf. Lemma 2(§3)). Show by example that this class
need not be a ring.

(7) True or False? P(X)S is a topological ring, i.e., the operations

of addition and multiplication
P(X), x P(X)_ +P(X)
are jointly continuous.
[Is Exer. 10(§1) revelant here?]
(8) Let $ be a ring -- then the following are equivalent:
(i) § admits a nonprincipal prime ideal;

(ii) & admits a nonprincipal ideal;
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(iii) & is infinite.

[1f (iii) is in force, then $ must possess countably many nonempty,

pairwise disjoint elements (cf. Exer. 5(§2)).]

(9) In a ring with unit, there is a natural one-to-one correspondence
between ideals and filters, the two concepts being dual to one another; under

this correspondence, prime ideals are matched with ultrafilters.

[Let $ be a ring with unit U$ -- then the correspondence in question

is simply complementation relative to US$.]

(10) Let X be a locally compact, totally disconnected, Hausdorff space;

let $ be the ring of open and compact subsets of X. 1Is % a O-ring?

{(11) Let X and Y be nonempty sets; let f:X + Y be a map -- then
there is an induced map f~1:P(Y) + P(X). Show that if T is a ring (0-ring)
in Y, then {f '(T):T€C} is a ring (o-ring) in X, and if $ is a ring
(o-ring) in X, then ({Tc Y:f-‘(T)GS} is a ring (o-ring) in Y. Are these

assertions true if ring (o-ring) is replaced by algebra (0-algebra)?
(12) Let $ be a o-ring in X not containing X =-- then the classes

{A cX:A€E$ or X - A € $}

{AcXx:5€8 => AnSe 8§}
are o-algebras in X containing $, the latter containing the former.

(13) Prove that there does not exist an infinite o-algebra $ with

countably many members. Can g-algebra be replaced by o-ring in this assertion?

[Bear in mind Exer. 5(§2).]
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(14) Let 3§ c8,c ... be a strictly increasing chain of subsets of
P(X). Show that if the $i are algebras in X, then the union USi is again
an algebra in X but if the $i are g-~algebras in X, then the union USi

is never a g-algebra in X. What happens if, instead, the $i are rings?

[To discuss the second assertion, first show that there exists a sequence

{Si} of nonempty, pairwise disjoint sets Si:Si<ES - Si Vi (change the

j+1
indexing if necessary). This done, proceed by contradiction and assume that
USi is a o-algebra ~-- then eventually the
N, = {s cv&:u S.€8.}
jes 4

are o-algebras in N.]
yw

(15) True or False? Let N be an infinite cardinal. Let X be a set
of cardinality N; let ¥ be a ring in X which is closed under the forma-
tion of unions of cardinality sN -- then $ is complete.

(16) Let P(X) = {Xi:iel} be a partition of X == then the class

nonempty
consisting of the empty set and all possible unions of the Xi is a complete
algebra. Conversely, let § be a complete algebra -~ then there exists a
partition P(X) = {Xi:iEl} of X such that the class consisting of the empty

nonempty
set and all possible unions of the X; is 3.

[Note: The correspondence between partitions and complete algebras is

evidently one-to-one.]

(17) A ring $ such that it and all its subrings are atomic is called

superatomic,
NN NN

True or False? There exist infinite superatomic rings.
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(18) Let $ be a ring -- then the following are equivalent:
(i) There exist a prime ideal containing At(8);
(ii) There exists a proper ideal containing At{($);

(iii) There exists an infinite class {Si} < 8 of nonempty, pairwise dis-

joint sets Si and a set SE$ such that USi c S.

[What, if any, is the connection between the three conditions figuring

here and the three which appear in Exer. 87]

(19) Let $ be a ring; let N be an infinite cardinal -- then the

following are equivalent:
(i) 8 is complete and the cardinality of At(8) is N;

(ii) & is closed under the formation of unions of cardinality =N and
XN is the largest cardinal for which there exists a class X © 8 of cardinality

K comprised of nonempty, pairwise disjoint sets.
(20) Let § be a ring -- then the following are equivalent:
(i) & is complete and At($) is countable;

(ii) & is an infinite o-ring with the property that every class X c §

of nonempty, pairwise disjoint sets is finite or countable.

[What additional fact must be cited in order to make this exercise a

corollary to the preceding exercise?]
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Taking into account Exer. 16, explicate the significance of this result
for the collection of countable partitions of X.
(21) Construct an example of an atomic ring $ possessing elements which
cannot be written as a union of atoms.
(22) True or False?
(@) If & 1is an antiatomic ring, then every nonempty S € §
contains RO nonempty, pairwise disjoint sets si.e 2.
(b) tf $ is an antiatomic o-ring, then every nonempty S € §
contains R] nonempty, pairwise disjoint sets Si € 3.
(23) Let L, stand for the collection of all o-algebras on X. Given
g, 8' € Lx, write $' = &' if §' c g' - then, with this definition of
order, L, is a complete lattice with largest and smallest elements. However,

X
in general, Lx is neither distributive nor modular. If card(X) = Ng, then
Lx is isomorphic to the partition lattice on X (cf. Exer. 3 (§2)), thus is
complemented but, as can be shown, this fails if card(X) > No.
[Note: It is necessary to admit here the notion of generated O-algebra

(see §6). For the details (and additional information), see K. Bhaskara Rao

and B. Rao, Dissertationes Math.,l&Q(ISBl), pp. 1-68.]

(24) Every abstract lattice is isomorphic to a sublattice of Lx for
some X.

[Combine the theorem of Whitman (Exer. 3 (§2)) with Exer. 16.]
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Problem
VA A A AAS

TOPOLOGICAL REPRESENTATION OF BOOLEAN RINGS

Rings of sets and their quotients are the Boolean rings of primary impor-
tance in analysis. To deal with both simultaneously, it is most economical to
consider an arbitrary Boolean ring. Such rings were studied intensively by
Stone in the 1930's. The foundational results of this theory, a sketch of
which will be given below, can be regarded as but simple exercises in the
modern theory of schemes. Accordingly, the reader who is familiar with the
language of contemporary algebraic geometry should have no difficulty in filling

in the omitted details.

By a Bgolean space, we shall understand a topological space X whose to-
pology T is locally compact, totally disconnected, and Hausdorff. Open subsets
of a Boolean space are Boolean spaces, as are the closed subsets. Associated
with every Boolean space X is a ring A(X), viz. the ring of open and compact
subsets of X. The prime ideals in A(X) are parameterized by the points

XEX : p = elements of A(X) not containing x.

[Note: Owing to the Urysohn metrization theorem, a compact Boolean space

is metrizable iff the cardinality of A(X) is SNO.]

Let A be a Boolean ring -- then attached to A 1is the set Spec(A) of

all prime (= maximal) ideals of A. Given f€A, put
Ap = {pesSpec(A) : f&pl}.
Then the map

A > P(Spec(A))
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which assigns to each f in A the set Af in Spec(A) 1is an injective homo-
morphism of rings. The range of this map is a multiplicative class, hence is

a base for a topology on Spec(d) = UAf, the so-called seectral togglogy. In
the spectral topology, Spec(A) is a locally compact, totally disconnected,
Hausdorff space, i.e., is a Boolean space, the Af then being the ring of open
and compact subsets of Spec(A). Because Spec(A) is compact iff A admits a
multiplicative identity, in the noncompact case, compactifying Spec(A) by the
Alexandroff procedure is equivalent to formally passing from A to the Boolean
ring A obtained by adjunction of a unit. If A 1is infinite, then the weight
n

of Spec(A) is the cardinality of A; if A 1is finite, then A has 2

elements and therefore Spec(A) is a discrete space with n elements.

The set Spec(a), equipped with the spectral topology, is called the Stone
VAAAS
space of A. We shall denote it by the symbol ST(A). Evidently, the Stone

spaces of isomorphic Boolean rings are homeomorphic and conversely.

[Note: In reality, ST(A) comes supplied with a sheaf of rings. However,
this additional structure, while fundamental from the scheme-theoretic point of
view, plays no explicit role in the present considerations, the ring $T(A) of

open and compact subsets of ST(A) being its replacement.]

if X is a Boolean space, then the Stone space of A(X) can be identified

with X.

~

Examples (1) Let X be an infinite set, equipped with the discrete topology.
Let $ be the algebra consisting of the finite and cofinite subsets of X. Fix
a point «© which is not in X =~ then the map ¢ :$ - P(XU{»}) defined by

the rule
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3

¢(S) =S if S is finite

¢(S) = Su{=} if S is infinite

sets up an isomorphism between $ and an algebra 8, of subsets of XU {e}.
Topologize XU {x} by taking the class $ as a basis -- then XU {x}
can be viewed as the Stone space of $ or still, the Stone space of § is the

Alexandroff compactification of X.

(2) Let X be a set, equipped with the discrete topology -- then the

Stone space of P(X) has cardinality
2card(X)
2 if X is infinite
card(X) if X is finite

v
and can be identified with the Stone-Cech compactification of X.

(3) Let A be a commutative ring with unit; let I(A) be the set of

idempotents of A =-- then I(A) 1is a Boolean algebra, the operations being
f+g=f+g- 2fg
fe.g = fg.

Suppose now that A is regular in the sense of von Neumann, i.e., that every
principal ideal is idempotent. Consider X = Spec(A) -- then, topologized in
the usual way, X 1is a compact Boolean space and™ A(X) 1is isomorphic to I(A),

implying, therefore, that X can be regarded as the Stone space of I(A).

The fact that A is isomorphic to $T(A) means that purely algebraic

notions per A can be reinterpreted vis-a-vis topological properties of the
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1t

P

corresponding open and compact sets in ST(A). On the other hand, it is to be
emphasized that this correspondence may break down when it becomes a question
of infinite operations. For example, $T(A) need not be a o-ring even if A

is.

We shall write ‘Eﬁ for the category whose objects are Boolean rings
A,B,..., and whose morphisms are the ring homomorphisms ¢ :A + B such that
¢(A) £ g vqeSpec(B). Any morphism ¢ :A + B of Boolean rings induces a con-
tinuous map 1y : ST(B) + ST(A) of the corresponding Stone spaces This map is,

moreover, proper.

[Note: We remark that if A and B are both Boolean algebras, then the
condition that ¢ :A » B be a morphism of Boolean rings is equivalent to the
requirement that ¢ : A + B be a homomorphism of rings taking the multiplicative

identity of A to the multiplicative identity of B.]

We shall write ~E§ for the category whose objects are Boolean spaces
X,Y,..., and whose morphisms are the proper continuous maps ¥ : X + Y. Any
morphism ¥ :X + Y of Boolean spaces induces a morphism ¢ : A(Y) - A(X) of

Boolean rings.

géamgle Let A be a Boolean ring without a multiplicative identity, A the
Boolean ring obtained by adjunction of a unit =~ then the canonical injection
Ac»dA is not a morphism in BR. Put X = Spec(A), X = Spec(a) -~ then the

canonical injection Xe>»X is not a morphism in \Eé
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These considerations can best be interpreted functorially.

(1) 3 a contravariant functor

vers G SR B3
v
Here
A -+ ST(A)
¢E€Hom (A,B) -+ YeHom(ST(B),ST(A)).
(2) 3 a contravariant functor
wisg ¢ B3 8R.
L 4
Here
X + A(X)
peHom(X,Y) -+ ¢eHom (A(Y),A(X)).

Call "]"Bv&’ "l“§§, the identity functors in BR, BS -- then it is easy to
check that "55.5 o_ﬁws' is isomorphic to 'leB. and _E&ioi‘s‘& is isomorphic to
J s The categories BR and BS are therefore dual.

Ref The results discussed above are surveyed in M. Stone, Bull. Amer. Math.

Soc., 44(1938), pp. 807-816, the complete account being given in M. Stone,

Trans. Amer. Math. Soc., &2(]936), pp. 37-111, and Trans. Amer. Math. Soc.,

41(1937), pp. 375-481.



§5. Products and Sums
VW VAAAAAMAARE AR it
Let X and Y. be nonempty sets - then by

Ty? X xY > X

Tyt X xY~>Y,

we shall understand the projections of X x Y onto X and Y,
VA A s A s NP

respectively. Given a subset E of X x Y and points x € X,

y €Y, put
E.L = [ﬂ-l(x) n E]
X Y 'X
8 = n [rol(y) n E]
xtTy ¥ >
the
vertical
VAAAAAAAAA
horizontal
sections of E over {; . It is easy to check that
(UEi)x = U(Ei)x (nEi)X = n(Ei)X
Yy - y y - y
(uEi) U(Ei) (nEi) n(Ei)

(X xY-E), =Y-E

X - BV .

(X xY - E)Y
Let S c X, TcY -~ then the rectangle R determined by S and T

is the Cartesian product S x T ce X x Y, S and T being its sides.
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One has xg = Xg*Xp .It is clear that a rectangle is empty iff one
of its sides iQ:empty. Furthermore, if R1 = Sl x T1 and
R2 = S2 x T, are nonempty rectangles, then Ry © R, iff S1 < S,
and Tl c T2 . Consequently, two nonempty rectangles are equal iff
both of their sides are equal.

There are some simple identities governing the manipulation of
rectangles which we had best record explicitly as they will be used

tacitly in what follows.

U
(Ya) - (Yn) - Yoo

iel (i,j)eIxJ * J

[In particular:

(S1 U 82) x (Tl U Tz)

(Sl X Tl) U (Sl x Tz) U (82 x Tl) U (Sz x Tz).]

() :
(0

i€l

Si>x<£;l Tj>= (m] S. x T.

(i,j)eixy *+ J
[In particular:

(S1 N Sz) X (T1 N TZ) = (S1 X Tl) n (S2 x TZ).]
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(8; - S,) x T (S, xT) - (8, x T)

S x (T1 - Tz) (S x T - (S x TZ)

)
[(S] - Sp) x (T; N T U [8 x (T, - T,)]

(S % Tp) = (85 x Tp) = ¢

[(Sy - S,) x T;1 u [(S; n Sy) x (T; - T,)]
[In particular: The difference of two rectangles can be
written as the disjoint union of two other rectangles.]
Consider now the natural map
?(X) x P(Y) » P(X x Y),
namely the rule assigning to each pair (S, T) the rectangle
R=S8xT . As this map is evidently bilinear, it must factor

canonically

P(X) x P(Y) > P(X) & P(Y)

™.

Here, the tensor product is taken over % or still, since it

P(X x Y)

amounts to the same, over ~£2 . After a moments reflection, the

reader will agree that the vertical arrow is actually an injection,
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its range being the class consisting of those sets in X x Y
which can be wfitten~as a finite union of rectangles. Because the
image of the ring P(X) ® P(Y) contains all singletons, the
associated completion is P(X x Y).

To illustrate these remarks, suppose that § 1is a subring
of P(X) and that T is a subring of P(Y) — then, since every-

thing in sight is flat,
38 T &= P(X) & P(Y).

Accordingly, % @ T may be regarded as the class of all subsets

of X %Y of the form

m
-le(si x Ti) (Si € 8, Ti € T),
i=

it not being restrictive to suppose that any such union is even
disjoint.

Generally, if $ 1s a nonempty class of subsets of X and
if T 1is a nonempty class of subsets of Y, then we shall write
$ B T for the class of all rectangles R =S x T(S € 8, T € ¥).
In other words, $ R T is simply the image of $ x T wunder the

natural map

P(X) x P(Y) » P(X x Y).
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Observe that:

(1) 1If ﬁ: and- € are multiplicative classes, then $ K T
is a multiplicative class.

(2) If $ and T are additive classes, themn $ B T need

not be an additive class.

Lemma 1 Let $ and € be semirings — then $ B T 1is a semiring.

VAP

[We omit the elementary verification.]

Suppose that § and T are rings — then $ B T is a semi-

ring but rarely a ring. However, if we apply the Kolmogoroff

procedure to $ B € (cf. §4), the result will be a ring, viz.

3 8 T.
Suppose that $ and € are o-rings — then § 1is necessarily
closed in P(X)S and T 1is necessarily closed in P(Y)S . Never-

theless, $ ® T is not necessarily closed in P(X x Y)s, hence

ordinarily fails to be a o-ring.

Example Take X =Y of cardinality N, and let $ =T be the class of all

0

subsets of cardinality = Ry — then the diagonal D belongs to the closure

of $8 % in P(X x X)s but is certainly not in $® $ itself.
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If $§ and T are rings, then in what follows we shall write
§ ® ¢ for the closure of $ ® T in P(X x Y) . Needless to say,
$ ® T is a o-ring; of course, $ ® T # $ ® T in general, even if

both $ and T are o-rings (cf. supra).

Lemma 2 Let $ and € be o-rings; let E € $® T — then

VAAAAA

EX e T Vv x e X

BV € s Vyey
[One need only note that the class of all subsets of X x Y

with the stated property contains $ ® T and is closed in P(X x Y)s.]

Here is a corollary. Let R =S x T be a nonempty rectangle
in X xY — then Re$®8T iff Se€$ and T € T.

[Note: The converse to Lemma 2 is false as can be seen by a
slight alteration of the preceding example, namely this time take

X =Y of cardinality > N and, with § = € as there, consider

]
again the diagonal D .]
Example Take X =Y . Consider the following question: Is P(X) ® P(X)
N A i

dense in P(X x X)S ? The answer depends on the cardinality of X .
(1) Suppose that card (X) > c¢ — then P(X) ® P(X) is not dense in

P(X><X)S.
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Re (1) Proceed by contradiction — then, of necessity, the diagonal D

N A s

would belong to P(X) ® P(X) . Therefore, in view of a simple property of
the sequential modi fication (cf. §1), one could find a ring $ in X of

cardinality = R,y such that D actually belongs to $® $ . Denote by

o-Rin($) the closure of $ in P(X)S — then, thanks to Lemma 2,
Vx € X : {x} € o-Rin(8)

Let S be an enumeration of the elements of § — then we claim

]’ SZ’
that the characteristic function f: X > C of the S (cf. Prob.lVv (81)),

flx) =2+ I x (/3" (xex),
i=] i
is one-to-one, hence that <card(X) =t . Indeed, if f(x) = f(y), then
Yi,x € Si iff y € Si . But the class of all subsets S ¢ X such that

either {x,y} ¢S or {x,y} NS =¢ is a o-ring containing %, thus contains
the singletons and so x =y, as claimed.

[Note: For a somewhat different approach to this result, see Exer. 21(§6).]
Egﬂiz) There is no loss of generality in taking X to be a subset of R

If card(X) =KX then the assertion is clear. We shall therefore suppose

o ?

that card(X) = Ny . For the purposes at hand, let us agree that a curve in
N

Xx X is simply any set of the form

{(x, f(x)): x € dom(F)}, {(g(x), x): x € dom(qg)},
where

dom(f) < X, dom(g) c X

and f: dom(f) - X, g: dom(g) > X are functions. Every curve is in the closure of

P(X) ® P(X) in P(X x X)S . To see this, note that

{(x, f(x)): x € dom(f)} = (Q] Em

m=1



5-8

where
) [e0]
Em =.i£:4” Eim
with
_ i i+l i i+1
B, ={xedom(f): -5 F(x) < idxxn[4, 201

and similarly for g . To prove (2), therefore, it need only be shown that
X x X can be written as a countable union of curves. To this end, well —
order X: {xa: o < Q). Divide X X X into complementary sets E and F by

the definitions

m
]

{x,, xB): B < al}
F = {(xa, xB): o < B}.

It is clear that the vertical sections of E are finite or countable, as are
the horizontal sections of F . For each x € X, arrange Ex into a sequence
{xn}, it being understood that the sequence is to be completed in an arbitrary
way if it is finite to begin with. Define now functions fn: X =+ X by the

prescription fn(x) = x Analogous considerations apply to the horizontal

"
sections F* of F leading to functions 9,° X > X . Taken together, the
curves

{(x, fn(x)): x € X}, {(gn(x), X): x € X}

cover X x X .

[Note: The last part of the preceeding argument is virtually the same as
that needed in the first part of Prob. IV(§2).]
Re_(3) On the basis of (2), this is immediate.

[Note: Actually, one can get away with less here in that Martin's axiom
alone suffices to force the conclusion if N < card(X) = ¢ ; cf. K. Kunen,

Inaccessibility Properties of Cardinals, Ph.D. Thesis, Stanford University, 1968.]
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Partitions in X and Y are closely related to partitions

in X x Y -and vice .versa.

Lemma 3 Let R =S x T be a nonempty rectangle; let
NAAaAAAS mm—— ——

{Rk = Sk X Tk} be a class of nonempty rectangles — then the Rk
partition R 1iff
(1) R=UR.; (il) S=1US, T =UTy;

(iii) Vvk#2%

( -
S, NSy #P =T NT, =9
{ or

[We omit the elementary verification.]

Let R be a nonempty rectangle — then a partition
P(R) = {Rk: k € K} of R by rectangles is said to be a network
on R if
the ﬂX(Rk) partition ﬂX(R)
and
the nY(Rk) partition nY(R)

[Note: Here we are admitting a small solecism in that
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repetitions may, of course, be present in the classes

(R, Ty(Ry) ]

Lemma 4 Let & c P(X), T < P(Y) be multiplicative classes; let
o 2¢

R=8xT¢€ %K T be anonempty rectangle. Suppose that P(R)

is a finite 3§ M T-partition of R - then there exists a partition

in Pars & E(R) which refines P(R) and is a network on R.

gaggf It can be assumed that P(R) is not a network on R .
Denoting the components of P(R) by Rk , let Sk = wX(Rk),
Tk = ﬂY(Rk) — then S = USk , T = UTk . Consider the Sk'
Define an equivalence relation on X by stipulating that Xq be
equivalent to X, iff

vy €Y, (xg, ¥y) ~ (x5, ¥),
the latter equivalence being that corresponding to P(R) . Given
x € X , the equivalence class [x] determined by x is simply the
intersection of the Sk containing x . All told, therefore, this
procedure produces a finite $-partition P(S) = {Si: iel}l of S.
Work with the Ty in an analogous fashion to produce a finite

€-partition P(T) = {Tj: j €J} of T . The Si x Tj then
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constitute a finite $ B € partition of R , refining P(R) and

forming a network on R . //

Retaining the notation of Lemma 4, suppose that P(R) is a
countable $ B T-partition of R . We then ask: Does there exist
a partition in o - Pars & E(R) which refines P(R) and is a net-
work on R? Unfortunately, even after imposing about as much
additional structure on $ and T as can be reasonably expected,

the answer will in general be negative.

Examples (1) Take X = [<1, 1 [, ¥Yy=1[0, +[ . Let $ be the class
consisting of all left closed and right open subintervals of X ; let T = P(Y)~-

then 8 is a semiring and T is a complete ring. Consider the countable
$ B T-partition of X x Y by the rectangles
(-1, 10 x[o, ¥

1
=0 xIn-1,nl

] 1
{—_7'ﬁ[x[n-])n[ (n>])~
[0 0 xIn-1,nl

n! -4

Because 0 € [- %-, %-{ ¥n, it is impossible to find a countable $ R T -
network on X x Y which refines this partition.

(2) Take X =110, 1[ , Y =]o, ][r]Q; Let $ = P(X), T =P(Y) - then
both $ and T are complete rings. Consider the countable £ M T-partition of

X x Y by the rectangles
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10, qf x {q}
(0<g<1,q€0).

g, 1[ x {q}

Suppose that the S, X Tj (i €1, j €J) refine this partition and form a

network on X x Y — then, of necessity,
>
card(1) Ny
card(J) = Ry
so | X J must be uncountable.

Up until this point, the discussion has dealt exclusively
with products involving two factors. The extension of the theory
to n > 2 (n E‘E) factors is purely formal, hence need not be
considered in detail. We remark only that tacitly one makes
throughout the usual conventions as regards the associativity
of the relevant operations.

The situation for products involving an arbitrary number of
factors is only slightly more complicated, it being a matter of
setting up the definitions in a succinct fashion. Let, then,

{Xi: i € I} be a class of nonempty sets X4 indexed by an infinite

set I — then we shall agree that a rectangle in l lxi is any
NAAAAAAA AN

set of the form ! lSi , where S, ¢ X; Yy

i and Si = Xi for all
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but a finite set of i . If S = l |Si and if

st =T Ts!
sv= | Ts;
are nonempty rectangles, then S = S' u 8" with S' n 8" = ¢ iff

there exists a unique index i0 such that

1]
wn
I
wn

ii‘iO=>Si

i i
- s _ ' " 1 "=
i=1i, ===>-Si = S1 U Si s Si n Si g .
Consider now the tensor product @P(Xi) - then, Vi , 3 a

canonical homomorphism

1 P(X;) — 8P(X;),

namely the rule which assigns to each S; ¢ X the tensor whose

ith entry is S. and whose jth entry 1is Xj(j # i) . The sub-

i

algebra of ®PkXi) generated by the 1i(P(Xi)) is composed of
all finite sums of elements of the form @!;i, where Si = Xi
except for a finite number of indices. Algebraists customarily
refer to this subalgebra of eP(Xi) as the tensor product gf the
algebras P(Xi) . We shall denote it by G*P(Xi). Since the

index set I is infinite, it differs in general from SP(Xi).

[Note: Consideration of ®*P(Xi) is, of course, necessary
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from the categorical point of view.]

- . %
Denote by~ I'I; P(X;) that subset of ! l P(X;) consisting

of the (Si) such that Si = Xi for all but a finite set of 1

There is a commutative triangle

*

[ exy) —— 8™p(X))

\ P (TlTXi)

The vertical arrow is an injection, its range being the class of
those sets in—T_T-Xi which can be written as a finite union of
rectangles.

Finally, we come to the one big difference between infinite
as opposed to finite products, namely this: It 1s necessary to
consider algebras $; ¢ P(Xi) rather than just rings. The reason
is easy enough to see. Indeed, if we proceed as above to form
®*si , then each of the $.'s must at least be rings with unit
and to ensure compatibility, it is best to assume that they are
actually algebras. Under these circumstances,

* %

*

meaning, therefore, that @ 3, can be thought of as sitting
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inside P(T——rxi), the characterization reading as in the finite
case, 1i.e., théfclass of all finite disjoint unions of rectangles
—T_Tgi , where Si € 8. ¥i . This being so, we shall then write
é*si for the closure of @*si in P(T__rki)s . Evidently,

é*si is a o-algebra.
Keeping to the preceding notation, put X = l IXi , § = 8*8;.

Llet I =1, U1 be a partition of I . Let X; = [ I X. ,
1 2 1 I1 i

X, = l | X; ; let $ = §;f' , 8, = 5;

= 8. — then X may
i
2
be identified with Xl x X2 and, when this is done, we have

§ = 51 ) 52 . Therefore, in a certain sense, we are right back

at the beginning.

Example Let {Xi: i €1} be a class of compact Hausdorff spaces Xi indexed
by an infinite set 1. Take for Si the algebra of open and compact subsets
of Xi — then eﬂgi is the algebra of open and compact subsets of l | Xi

[Let us consider an important special case. Equip {0,1} with the discrete
topology. Given any i =1,2,..., put X, = {0,1} — then, in the product
N . .
topology, 2w = I IXi is a compact, totally disconnected, Hausdorff space of

weight N the so-called Cantor space. O0f course, the terminology arises from

0 H]
the fact that Zu— is homeomorphic to C , viz. (cf. Prob.IV(81)):

(fe2d) — (2 - Z: fu)/f €c) .
i=1

Let 5i be the algebra of all subsets of X, — then ®*5i is the algebra of
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open and compact subsets of 2ﬂ. and é*si is the o-algebra of Borel subsets
of 2% (cf. §6).1"-

Let {Xi: i € I} be a class of nonempty sets X; indexed by
a nonempty set I (finite of infinite), the Xi being, in addition,
pairwise disjoint. Write @& P(Xi) for the direct sum of the P(Xi).
Suppose that Vi, Si is a ring in Xi — then the direct sum & 5i
of the 35 is a subring of ® P(Xi). The elements in & $; may
be viewed as those subsets S of L,J Xi with the property that
S n Xi € Si for all i, or still, as the class of all unions
n Si , Where S; € 8, (vi). If each of the 35 is a o-ring,

then so is @ 51

[Note: If the Xi are not initially pairwise disjoint, then

this may always be arranged by looking instead at the Xi x {i}.]

Example Let $ be a o-ring in X . Fix a countable partition
e

P(X) = {Xi: i €1} of X, where X, €8 Vi . Put 8, = try (8) — then
i
3 =8 3,

Notes and Remarks
Just who was the first to consider products in abstracto is not completely

clear. The following papers are relevant: H. Hahn, Ann. Scuola Norm. Sup. Pisa,

2(1933), pp. 429-452; F. Maeda, TShoku Math. J., 37(1933), pp. Lh6-453;
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Z. Lomnicki and S. Ulam, Fund. Math., 32(193#), pp. 237-278 (see too Ulam's
paper in the proceedings of the 1932 International Congress); J. Ridder,

Fund. Math., 24(1934), pp. 72-117; W. Feller, Bull. Int. Acad. Youg., 28(1934),

pp. 30-45; B. Jessen, Acta Math., éé(lSBh), pp. 249-323.
The question of the density of P(X) ® P(X) in P(X x X)S is an old problem of

Ulam and has been considered by a number of authors; cf. B. Rao, Acta Math. Acad.

Sci. Hungar., 33(1971), pp. 197-198. Lemma L4 is a variation on a well known theme;
it is explicitly stated and proved in D. Goguadze [[J. Toryanze], Kolmogoroff

Integrals and Some of their Applications [06 UnTerpanax Kormoroposa U Mix

Hexoropbix IMpunoxenusx}, Meuuuepeba, Téwmicu, 1979 (see pp. 152-153). This author
goes on to claim (statement 13.8, p. 154) that if $ and € are semirings, then
Lemma 4 is true when ''finite' is replaced by ''countable'. As we have seen in the
text, this is false. It may have occurred to the reader that the language of
category theory might be helpful at certain points in this §; some comments in

this direction may be found in L. Auslander and C. Moore, Mem. Amer. Math. Soc.,

62(1966), pp.1-199.
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Exercises
L Ve

(1) True or False?
(a) There exists a nonempty set E such that E x E C E ;

(b) There exists a nonempty set E such that E C E x E .

(2) Discuss the continuity of the natural maps
{P(X) x P(Y) - P(XxY)

P(X)S X P(Y)S - P(X><Y)s .

(3) Let Xual(?) be the ring obtained from the semiring ? via the Kolmogoroff
procedure {(cf. 84).
True or False? If $ 1is a semiring in X and if T is a semiring in
Y (so that $B T is a semiring in X x Y), then

Kol($) ® Kal(¥) = Kal($ B €) .

(4) Let $ and T be o-rings; let E € $® T — then there exist S ¢ § ,

T €€ such that E< §S x T,

(5) Let X and Y be nonempty sets — then

P(X x Y) = P(X) ® P(Y)

card(X)

A
x

(or even = under Martin's axiom),

card(Y)

A
=

but
P(X x Y) # P(X) ® P(Y)

if both X and Y are uncountable and at least one of them has cardinality > ¢ .



(6) Suppose that P(X) = {X;: i€l} is a partition of X ; suppose that
P(y) = {Yj: jed} is a partition of Y — then the product of P(X) and P(Y)
is that partition P(X) x P(Y) of X x Y whose components are the X, x Yj

Check that a product is a network and that, conversely, a network is a product.

(7) Suppose that there is attached to each i in an uncountable set |
a nonempty set X. and a nontrivial o-algebra §, ?(Xi) — then éXSi is
antiatomic.

[Note: This need not be true, of course, if | is countable.]

(8) Given a class of nonempty, pairwise disjoint sets X, let 8, be

an atomic ring in Xi ~- then eSi is an atomic ring in UXi
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ngblgm

PROJECTIONS

Llet X and Y be nonempty sets — then by Broiection onto X we under-

stand the map from P(X x Y) onto P{(X) defined by the rule
Prox(E) = {x € X: E# o} .

Verify that

ProX(UEI) = U Prox(Ei)

Prox(ﬂEi) cn Prox(Ei) ,

the second containment being strict in general, even for a decreasing sequence,

although for rectangles it is true that
Proy (S, x T)) N (S, x T,)N...) =5, Ns,N ...

if T, NT,N0 ... 0.
Let § be a nonempty class of subsets of X ; let ¥ be a nonempty class

of subsets of Y — then, for any nonempty E ,

E e (88 T), = Proy(E) €5,
E € (8RBT, => Pro,(E) €3,
Ee (3BT => Pro,(E) €38
Eec (BRT), = Pro, (E) ¢ $s
E € (3R T); =>Proy(E) ersss
E € (8K T), = Proy(E) €5,

What can be said about the other operations, e.qg., 56 , 06 etc.?

Example Take X =Y = [0, 1]. Let $ be the class comprised of all closed

subintervals of X ; let T = P(Y) — then
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Proy ((5 B ©) ) = 2(X) .

So, the moral is that some assumptions will have to be imposed if a
positive result is to be obtained.
This said, prove that if T 1is countably compact (Prob.VIil (§1)), then

for any nonempty E ,

E¢ ($H E)SG = ProX(E) € 556 .

[Recall that the countable compactness of T implies the countable
compactness of Ty = Ty (cf. op. cit.). With this in mind, establish the
following lemma. If E, 2 E 2 ... (Ei C X xY Vi) , and if V x € X, the

class {(Ei)x :i=1,2, ...} is countably compact, then
Prox(ﬂEi) = ﬂProX(Ei). ]
Maintaining the above hypothesis on T , it can also be shown that
E € (88T 3 => Prog(E) €5, .

Here, the sub-A refers to operation A (cf. §8).
[Note: SA ) 506 but the result cannot be improved to read ProX(E) € 506 R

as may be seen by example.]

Ref E. Marczewski and C. Ryll-Nardzewski, Fund. Math., 40(1953), pp.160-164.



égg Extension 33§ Generation
Let X be a nonempty set. Let ¥ Dbe a property of certain

nonempty classes of subsets of X -- then % 1is said to be
extensionally attainable if for every subset § of P(X), there
exists a subset *($) of P(X) which

(a) contains §

(b) possesses %
and, in addition, in minimal with respect to (a) and (b). % (8),

if it exists, is said to be the +*-class generated by §.
VAAAAAAY

Lemma 1 Propert is extensionally attainable iff P(X
VAAAAANY froperty &« 1S y (X)

has property o and the intersection of any nonempty collection

of classes having propercy % also has property x,

[We omit the elementary verification.]

Suppose that % 1is extensionally attainable -- then, for

any 3%,

*(5) = ns; ,



the Si running over all those classes which contain § and
which possess % .

Here are some typical examples of extensionally attainable
properties:
([ § has property ¥ iff § 1is a lattice

$ has property &« iff $§ 1is

o}

ring (algebra)

< $ has property <« iff § is

o}

o-ring (o-algebra)

[+4]

$ has property % iff § is §-ring (6-algebra)

\ § has property <« iff $ 1is

o]

complete ring.
On the other hand, the stipulations that

$ has property % iff $ is a ring with unit
$ has property % 1iff § 1is a semiring

are not extensionally attainable.

Examples (1) The intersection of two rings with unit need not be a ring
Vv VA AN

with unit.
[Take Xx = [0,3]. |If i is the class of all subsets of E?’;%
which are either finite or have a finite complement per {E?’g} , then

both $ and T are rings with unit, buttheir intersection $NT consists



of all finite subsets of [1,2], hence is not a ring with unit.]

(2) The intersection of two semirings need not be a semiring.

[Take X = {1,2,3} =-- then

$=1{s, {1}, {2,3}, (1,2,3}}
{g, {1}, {2}, {3}, {1,2,3}}

(&)
]

are both semirings, but their intersection
snt = {g, {1}, {1,2,3}}
is not.]
Suppose that % is extensionally attainable -- then «%
determines a map
M*.:P(P(X)) ~ P(P(X)),
namely the rule which assigns to each § 1its s-class w%($). The
fixed points for this map are exactly those classes $ having
property <% . The central question to be considered now is this:
Given &, describe »(§). Naturally, the description itself will
depend on % . In terms of M*., there is a variant in that

typically a generic nonempty fiber bf;jso) is fixed in advance,

the point being that each § 1in this fiber generates the Xx-class
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$ i.e., £(8) = 8 implying, therefore, that $ can be

o’ 0’ o

studied in a variety of ways.

[Note: In what follows, we shall leave it up to the reader
to struggle with the empty class.]

Let us begin with a simple illustration. Take % to be the
property: ? is a lattice. Given a nonempty $, we then call
%*(8) the lattice generated by $ and denote it by fat(g). In
terms of $, Eat(s) is the class Ssd(= sds) with, if necessary,
the empty set adjoined.

A slightly more complicated situation arises when we take
to be the property: ? 1is a ring. Given any nonempty %, we
then call *($) the ring generated by § and denote it‘by Rin(8).
Viewed abstractly, Rin($) 1is simply the intersection of all
rings in X containing $. Thus, an algebraic grounds, Rin($)
can be described as the class of all finite symmetric differences
S A...ASm, each Si being in turn a finite intersection of sets
belonging to $. Consequently, if § 1is finite (countable), then

so is Rin($).
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[Note: Other characterizations of Rin(g) may be found in
Exer. 3. Trivially, every element of Rin($) is contained in
some element of SS (cf. Exer. 8).]

Example Let § be a semiring -- then
Rin(8) = Knl(3).

Take now for ¥ the property :? is a o-ring (8-ring). Given
any nonempty &, we then call %(8) the o-ring (8-ring) generated
by & and denote it by o-Rin($) (8-Rin(3)). Observe that the
notation is unambiguous in that the o-ring (8-ring) generated by
$ 1is in fact the same as the o-ring (8-ring) generated by Rin(8).
Obviously,

§-Rin(8) « o-Rin(g),
o-Rin(8) being in fact the class of all countable unions of
elements from &-Rin(g), i.e.,

o-Rin(g) = [s-Rin(S)]o.

Examples (1) tet X be a topological space -- then the o-ring generated
by the open (or, equivalently, closed) subsets of X is called the o~ring of

Borel sets in X and is denoted by Bo(X).
Wrnng NN
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(2) Let X be a Hausdorff topological space -- then the §-ring
generated by the compact subsets of X is called the -ring of bounded
VAAAANS

Borel sets in X and is denoted by Bno, (X).
VAR NAAN b

[Note: X is taken to be Hausdorff here in order to ensure that every
compact subset of X is a Borel set (all compacta then being closed, of
course). By comparison, observe that if X 1is equipped with the indiscrete
topology, then the Borel sets are @ and X, but every subset of X is

compact. ]

One cannot, in general describe the o-ring generated by a
class of sets in purely algebraic terms. There are, however, use-
ful alternative procedures, essentially transfinite in nature.

We have already encountered one such. Indeed, given 3§,
o-Rin($) 1is simply the closure of Rin(8) in P(X), (cf. §4)
or still (cf. §1),

o-Rin(g) = U ua(Rin(S))-

o<$}

In this connection, let us recall that ua(Rin(ﬁ)) is the class

comprised of those sets S <X for which there exists a sequence
{Si}<: k‘)uB(Rin(ﬁ)) such that 1lim Si = §. The ua(Rin(s)] are
B<a

rings which increase with o. Consequently, inside o-Rin(g) is

a transfinite sequence of rings



Rin(8)c ...c ua(Rin(ﬁ))c ee. (a<),
whose union is precisely o-Rin($) itself.
Example Let $ be aring in X; let T be aring in Y =-- then
o-Rin($87) = $8¢T.
More generally, let $i be an algebra in Xi(iEI, | infinite) -- then
o-Rin(@'s,) = 8'5..

Starting from %, we shall now define by transfinite recur-

sion a class E for each ordinal number a<Q. Thus putting

5, = (U)sg) . (a<9).

Observe that the sa increase with «a.

Lemma 2 We have
VAAAANS T T T

o-Rin(8) = L.) $on

a<Q
To see what the rationale behind the construction is, replace

c by s -- then &, =8, $ = $%__, 52 = $

o 1 rs the ring

rsrs?

generated by $ (cf. Exer. 3).
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[Note: Trivially, every element of o-Rin($%) is contained

in some element of 50 (cf. Exer. 8).]

Proof of Lemma 2 There are two steps in the argument.
M’\MMW

(1) ijﬁa is contained in o-Rin(g).
a<f

(2) L~)$a is a o-ring.

a<fl

= $c o-Rin($); in addition, Qc§

Re (1) By definition, £, .
VAAAAY 1

Proceeding by transfinite induction, assume that Sefz o-Rin(3)
for every g<a and consider a typical element SESQ -- then S
is a countable union, say Usi’ where each Si has the form A

or A. - B., with
i i

A{,B; eUsB < o-Rin($).

B<a

Thus Si €o0-Rin(g) and so S = USi €g-Rin(8$), which implies that
sacz o-Rin(8). This completes the proof of (1).
Re (2) Let {Si} be a sequence in kujga -- then we claim that

a<f

USi ekhjsa. To prove it, note that for each 1 there is an o
a<gl

such that Si esa . Select, as is possible, an a<@ such that
i

ai<avi -- then



Usi E(E;gsai)rocz sa(: l“—)sm’

a<f

as claimed. In an entirely analogous manner, one can show that if
S,T‘Ek_)ﬁa, then S -T ELdjﬁa. This completes the proof of (2).

o<Q o<

Hence the lemma. //

The transfinite description of o-Rin(8) provided by Lemma 2
carries with it an added bonus in that an estimate for the cardi-

nality of o-Rin($) can be easily obtained. To this end, we can

suppose that «card($) z 2 since

{s,p} if S # ¢
o-Rin({S})

{p} if s = 9.

Our estimate then reads:

N
card(o-Rin(S)) £ card(8§) 0

Indeed, the assumption that «card($) 2 2, in conjunction with
consideration of the ways in which the sets USi €%, can be

formed (at most card(S)2 choices for each Si)’ leads at once

N N

0 - card(8) °,

to the conclusion that card(ﬁ‘) < (card(s)z)

Utilizing now transfinite induction, suppose that
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N
card(SB) < card(8) ° for all B such that 1 £ B < a, where

1l <a < -- then

N N
0 0
card(%?zss) S Ny - card(8) = card(8)
Ro
and so, arguing as above, it follows that card(sa) < card(g) .
%o
Consequently, for every o with 0 £ a < @, card(sa) < card(g) .

All told, therefore,

card(o-Rin(8))

N
card(k_)sa) < N, e+ card($) 0
a<f
N N N

2 % .card(s) © = card(s) °.

IIA

[Note: If & is finite, then, of course, o-Rin($) is

finite, there being the estimate

#(8)
#(o-Rin(8)) s 2°

which is even attainable under the obvious conditions.]

Example Let X be a topological space with weight No -- then the car-

dinality of the class of Borel sets in X cannot exceed the cardinality of

the continuum. In fact, the cardinality in question is the same as that

N
of the o-ring generated by the open sets and this cannot exceed = ° - c.

Specialize and suppose in addition that X is a metric space which is com-

plete and perfect, so that card(X) = ¢. Because there are then C open



6-11

sets, the cardinality of the class of Borel sets in X 1is exactly rC, thus

is < Zt, the cardinality of P(X).

Let % be the property : ? = s and ? = ?6' It is clear
that % is extensionally attainable. Given any nonempty §, we

then write $p for (%) and refer to M¥ as operation B.
SANAAAAAA A

Obviously, SB = SBB and

55C %3 $p = Fps = %5B

1]
It

$sC 3y #p = #ps = %5

The topological interpretation of SB is very simple. Indeed,
2 is nothing more nor less than the closure in P(X)S of
$sa T Bas° thus, in particular, is the closure of fat($) in
P(X)s if Pes.
[Note: The reader will agree that the closure of 3 itself
in P(X)s will, in general, be a proper subset of 5B.]
There is an equally straightforward transfinite description
of $y. Namely, put B(o)(S) = 8, B(o)(S) = ¢ and define via

transfinite recursion the classes B(a)(S), B(a)(S) by writing



6-12

808y = (\_Js gy 901,
pea (a<q)
. (8)
B o) (5) [Buas (91

The B(a)(S), B(a)(S) evidently increase with a and for gfi

(8(*) (5)1, = 8(®) ()
¢

B(®) (5),

L18(%) ()1,

[B(d)($)16 = B(G)(s)

[B(a)(s)]s = B(Q)(S)'

In addition, if
B($:0) = 8(¥(8) n B, (8
(a) ¢
then
3(%) (5) By (8) © B(5:a+1).

Our hierarchy may be visualized as follows:

. 3 s - 8(2) (g
$c B($:1) o B($:2)

C C
NG B gy (5)

Lemma 3 We have
VAAAANA —_—
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’

U (%) (5)

a<f
S, = ﬁ

U B o) ()

L o<

[One need only imitate the argument used in the proof of

Lemma 2.]

There is a variant on the preceding definitions which is
frequently encountered in the literature. To describe it, let
us recall that any ordinal o can be written uniquely in the
form o = A+n, where A is a limit ordinal or zero and n is
a nonnegative integer (a then being termed odd or even according
to the parity of n). This being so, put B[O](S) = g, B[O](S) = 8,

and define via transfinite recursion the classes B[a](s), B

](5)

[a

by writing

(@) (5) if o is odd
slel(g) = (a<f)

B(a)(s) if o is even,

B(a)(S) if a 1is even
B[a] (8) = . . (a<Q)
B(a)(s) if o is odd.
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Then it is again the case that

U slo](g)

a<fl

k_) B[a](s).

a<fl

g =

Note too that if for some a2l, B[a](s) = B[a+1](s) (or

= [a] - -
Bra1(8) = Bry417(8)), then B 71(8) = 55 (or B (8) = 55).

[a] [a+1]

For of the two classes B ($) and B (8) (or B[a](5)
and B[a+1](s))’ one is closed under countable unions while the
other is closed under countable intersections, hence, when they
coincide, B[a](S) (or B[a](SD must give $p.
Example By the Kolmogoroff number K($) of $, we understand the smallest
ordinal o such that B[a](S) = SB. The apparent asymmetry in the definition
is, of course, essentially illusory. There are initial and terminal possi-
bilities, namely, if $ =8, to begin with, then K($) = 0, whereas, if

B[a](ﬁ) # $g Va<Q, then we agree to take K($) = Q. Two problems can then

be posed.

(1) Given §, determine K(%).

(2) Given a, find an $ such that K(8) = a.

Here, we shall deal with the second, setting aside systematic consideration of

the first for now. Let us mention in passing, however, that examples for which
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K(8) = 2 do in fact abound, the simplest instance being the case when $ s
the class of all open (or closed) subintervals of the line. In Exer. 14 (§1),
it was pointed out that there exist easy examples of classes $ such that
K(8) = 0, 1, and 2, but to get an example when K($) = 3 turned out to be
surprisingly difficult, at least if one works on the line, the point being
that the classical solution utilizes the continuum hypothesis ( but see the paper
of MalyZev referenced below ). Actually, operating within ZFC alone, it

is possible to give a complete answer to (2) in that va<fl, there exists a
nonempty set X and a nonempty class $ contained in P(X) such that

K(8) = a. While interesting, we shall forgo the details, settling instead

for an indication. To begin with, it is best to generalize the problem,
replacing P(X) by a complete Boolean algebra A and then introducing a
notion of Kolmogoroff number K(A) for A. This done, the crucial step in
the argument consists in proving that Vo<, there exists a complete Boolean
algebra A satisfying the countable chain condition with K(A) = a. Thanks
to the Loomis-Sikorski theorem, any o-complete Boolean algebra is isomorphic
to a o-algebra of subsets of some set X modulo a g-ideal. Accordingly, A
can be represented as a certain quotient per a certain X and finally, using
the fact that K(A) = a, one produces without difficulty a subset § of

P(X) with the property that K($) = a.

[This result is due to Kunen; cf. A. Miller, Ann. Math. Logic, &£(1979),

pp. 233-267.]

For a fairly simple example of a class $ such that K($) =3 (and not
involving the continuum hypothesis), see V. MalySev [B. Mambmesn ], Vestnik

Moskov. Univ. Ser.l Mat. Meh., 1965(no.6), pp.8-10.
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On the basis of the definitions,
$p © o-Rin(8),
the containment being strict in general. Indeed, o-Rin(g) = 5.8
but it need not be true that SrB = SBr’ say. For example, take
X ={1,2,3} and let & = {{1}, {1,2}, {1,2,3}} ~-- then
(1,3} € 8.5 - Sp;-
[Note: It can even happen that all the classes SB’ 5Br’

$prys - - - are distinct.]

Lemma 4 SB = o-Rin(8) iff 5rC3 SB‘

[The necessity is clear. As for the sufficiency, observe

that
Spc 8y = S8.p c $pp = 55
= o-Rin(8) < SB']
Examplg Let X be a topological space -- then, traditionally, one writes
F = closed subsets of X
G = open subsets of X,

the classical resolutions
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UILICE

o<

6, = ky,}B[u](e)

o<

n
)

i
(4

then being

FCFOCF06'°'

Gc 6.6

$ §6 T °

The associated o-rings (actually o-algebras)

o-Rin(F)

o-Rin (&)

are equal, yielding, by definition, the Borel subsets of X. We then ask: |Is

\.ﬂ
(]

o-Rin(F)?

&
]

o-Rin(&)?
Thanks to Lemma 4, these questions are equivalent, i.e.,
Fg = 0-Rin(F) < 6, = o-Rin(6).

To be specific, we shall work with & -- then, in decreasing order of strength,

the relation

GB = g-Rin(6)

is forced by the following conditions.
(C]) Every closed subset of X is in 6.

(Cz) Every closed subset of X is in 6 for some fixed a.

(C3) Every closed subset of X is in some Ga for some «, but no
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fixed a suffices.

Are there topological spaces X satisfying these conditions? It is
easy to meet (C]): Simply require that X be perfectly normal (in particular,
a metric space); Exer. 28 is also relevant. Turning to (CZ)’ we claim that
va (1<a<2) there exists a topological space X, such that o s the smallest
ordinal for which every closed subset of Xa is in Ga. Here is the con-
struction. Fix a, I<a<QQ =-- then, as a consequence of certain generalities
established in § , there exists a subset Su of X ==£L (usual topology) which
is in Ga but is not in GB for any B<a. This being so, take for our space
Xa the real line topologized by specifying that the open sets are to be all
sets of the form UUV, where U is open in the usual topology and V is any
subset of Xa - Sa' It is not difficult to see that Xa is normal and Haus-
dorff, and has the required properties. As for (C3), it is in fact possible
to construct an example having the requisite property, at least if the con-

tinuum hypothesis is admitted (cf. Problem. (§ )). There is one final point

to be considered: Do there exist examples of topological spaces X such that
Gy # o-Rin(g)?

The answer is an emphatic ''yes''! Consider

>
H

[0,02] in the order topology

or

>
]

[0,1][0’]] in the product topology.

In the first case, {Q}, while closed, is not in GB; in the second case,
{c} (¢ a constant), while closed, is not in Gg. Note that in both cases, X

is a compact Hausdorff space.
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Let $ be a nonempty subset of P(X) -- then by Ssd(ﬁod)

nonempty
we understand the class of subsets of X comprised of all _finite

(finite or countable) disjoint unions of sets in $§.

Example Let $ be a semiring -- then
VAAAAAYS

Rin(S) = SS ’
d

but SO need not be a ring (cf. Exer. 6 (§4)).
d

Given any nonempty &, the notions of generated algebra and

o-algebra are clear, as are the notations Alg($) and o-Alg(s).

We have
Rin(8) < Alg(8)
o-Rin(8) ¢ o-Alg(8),
with
A1g(8) = {S:S€ERiIn(8) or X-S€ERin(3)}
0-A1g(8) = {S:S€0-Rin(g) or X -S €o-Rin(3)},
that is,

Alg(8) Rin(3,{X})

o-Alg($) = o-Rin($,{X}).
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On algebraic grounds alone, it is plain that
Alg(®) = [8 U 8_1,4,-
Actually, slightly more is true, viz.

ALg($) = [5 U S lg,
Topologically, o0-Alg(8) <can be viewed as the closure of
Alg(3) 1in P(X)s. On the other hand, thanks to Lemma 4,
[$ U 81y = o-ALB(S),
leading, thereby, to the attendent transfinite descriptions.
Let % be the property :? =?5. and ? = ?,. It is clear
d

that % 1is extensionally attainable. Given any nonempty &,

we then write $ for (%) and refer to M as operation
B
d » VAAA A ALA A
B,. Obviously, $ = § and
d Bd BdBd
5 < 3 3 = 3 = 3
°a “Bag Ba  "Ba%  "9%Bg
3, ¢ 3 3 = 3 = 8
8 Bd Bd BdG GBd ’
with
En & $q,
Bd B

the containment being strict in general, as can be seen by taking

X = {1,2,3} and letting $ = {{1}, {1,2}, {1,3}}. We shall leave
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it up to the reader to discuss the transfinite aspects of opera-

tion Bd.

Lemma 5 SB = g-Alg(8) iff §_ c SB .
VAAAA AN d e c d

[The necessity is clear. As for the sufficiency, observe

that
3. B

o Bd

= [$, N S, Jg =8, N3

# [s U 5C]BC SBd

=> 0-A13(8) < $; .]

d

Exameie Let X be a topological space -- then by a zero set in X we
mean any set of the form F_‘(O), where f:X-+JL is continuous. In this

connection, observe that it is not restrictive to suppose that f(X) < [0,1].
The complements in X of the zero sets are called the cozero sets. Agreeing

to write
£ = zero sets in X,

we have Z c F, the containment being strict in general (cf. Exer. 30), but

there being coincidence if, e.g., X 1is perfectly normal. Note that

(N #, X € 2z, {(2) z=2
(3) 2= Zgo (&) E.c Z .



In addition, given disjoint Z , Z_, € Z, there exist disjoint U

1’ "2 1’ 72 c

such that

This said, the gaire sets in X are by definition the elements of the g-alge-
bra Ba(X) generated by Z. Every Baire set is a Borel set but, in general,

not vice-versa (cf. Exer. 32). Owing to Lemma 4 and property (4) supra,
Zy = Ba(Xx).
Because

Z CZ  iff ZCZ
[of C

o 8’

it follows from Lemma 5 that

(ZC)Bd = Ba(X).
It is also true that

Z, = Ba(x),

Bd

although this is not immediate. On the basis of Lemma 5 again, our assertion

is equivalent to the statement that Zc c ZB .
d

Claim Take X = R -- then
VAAANY —_ vy _—

Z C 2 .
c cdéod

[To appreciate the subtlety of this point, the reader may find it instruc-

tive to prove directly that Ja,b[ (a<b) does not belong to ZG 6!]
d



Admit the claim -~ then, for any topological space X,

Zczoéo
¢ d%%4

and, consequently, Zc(: ZB , as desired. Indeed, if UEEZC, then there
d

exists a continuous function f:X + [0,1] such that
U= {xeX:f(x) €lo,1[}.
Now, in view of the claim, ]O,I[EZ0 60d (perJy, and so

d

-1
u=f "(Jo,1[) ez .
cddcd

Proof of Claim Let UEZ_ =-- then U is open, hence is a finite or
VAAANY VAN A NANAS [od

countable union of open, pairwise disjoint intervals. Accordingly, there is
no loss of generality in supposing that U = la,b[ (a<b). Let {Im} be a

sequence of closed, pairwise disjoint intervals in \5v whose union is dense

in Ja,bl[.
Put

S = J]a,b[ - ut_.

Then the closure S of S in 5~ is a closed, nowhere dense subset of [a,b

and S-S is a countable set {xn} consisting of a,b and the endpoints of

the | . Since Ja,b[ is

SUL UL, « . .,

the union being countable and disjoint, and

23

1,
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s = n(S -{xl,...,xn}),

it will be enough to prove that S -{x',...,xn}EZc . However, because S s
d

nowhere dense, thus O-dimensional, one can certainly write S -{xI,...,xn} as

a countable disjoint union of sets which are closed in §, and so too in Jb

[Note: Suppose that X is a perfectly normal topological space -- then,

of course,

F = gc c GG = GBd = g-Alg(%).

Furthermore, in this case,

6=F =2 CZ =F
c c oddod odéod

= Fy = 0-Alg(F).
d

Here, therefore,

We remark, in passing, that perfect normality, while sufficient, is not necessary
in order to draw these conclusions (cf. Exer. 33).]
Suppose that $ 1s a o-lattice containing X. Put
I,(8) = 8, M (8) = 5,

and define via transfinite recursion the classes Za(ﬁ), na(s) by
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writing

(U g1,

B<a

I, (%)
(a<q)
I, (8) = \J 2g(5)]

B<a
If RB<a, then
Do(8) © T (8)
Ma(8) < £,(5),
and if a>1 and B<a, then
ZB(S) c Za(ﬁ)

I,(8) < 1,(5).

Therefore

U I ($) = U . E

a<f a<fl

the o-algebra generated by $. Note too that
ZG(S) is a o-lattice
Ha(s) is a &8-lattice

with

£, (8) = (M (8)],

,($) = [2,(9)]..
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It is customary to refer to the sets in

Za(ﬁ) additive of class a
as

HG(S) multiglicative of class a,

the sets in the intersection
AQ(S) = Za(S) n Ha(S)

then being ambiguous of class a. Evidently, Aa(s) is an algebra.
VAAAAA A A IS et st s Nt

Our hierarchy may be visualized as follows:

L) L, ()
A, (8) L8208
s I, ($)

[Note: It need not be true, of course, that
ZO(S)C Z](S)
Ho(ﬁ)c: HI(S)
However, the assumption § c Sco would guarantee this.]
Examples (1) Let X be a topological space -- then the preceding consider-
ations are applicable with $ = 6, the associated o-algebra being Bn(X).

(2) Let X be a topological space -- then the preceding considerations

are applicable with 3 = ZC, the associated og-algebra being Ba(X).
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For each a<@, put

A (B) = u, (5).

Lemma 6 Suppose that & C Scd -- then
Azn(S) = Ezn(ﬁ) (n =0,1,2,...)
Mpne () =T, L (8)  (n=0,1,2,...)

and

Ay (8) = & §)  (wsa<Q).

aer
[Note: There is also a dual result whereby, working with SC
(instead of $), one picks off Zodd[S) and I (8), the con-

even

tention as regards the A $) being unchanged.]

C&+l(

The proof, while not difficult, is a bit lengthy.

We shall deal first with the case of finite n. If n = 0,
then, by definition, AO(S] = g = 20(5). On the other hand, if
SEA,(8), then S = lim Si’ where {Si} is a sequence in §.

In particular:

s =Tim S, = /m\ (Lj} S ).

i=t m=1i
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Because $ 1s a o-lattice, k_) SmES vi, hence S EHI(S). To

m=1i
go the other way, take an S €T (8) -- then
S = nsi = 1im(sln...nsi) (sies)
belongs to A,(8). Proceeding by induction, suppose now that
n20 and that our assertion is true for n -- then it must be
shown that
Aon+2(8) = Tpps, (8)
A -

an+3(8) = I, . (8).
Let us consider the first of these relations, the argument for the
second being similar. If S€A2n+2(5), then S = lim Si’ where
{Si} is a sequence in
Ay (SIU...UA,  (8)
= A2n+](5) = H2n+l(s) (by induction).

In particular:

i=1 m=i

$ = lim S, = k_) (NS

Because I %) 1is a &§-lattice, [ ) Sm EH2n+2(5) vi, hence

(
2n+1 =i

S 622n+|(5). To go the other way, take an S EZZ (8) -- then

n+2



S = usi = 1im(SIu...uSi),

where

S. € ‘k,j n.(8)

1 j<an+2 )

= H2n+1(5) = A2n+l(5) (by induction),
that is, S belongs to A2n+2(5).
Passing to the transfinite assertion, suppose initially that
o = w. If SEAw(S), then S = 1lim Si’ where SigAmi(s), say.

The claim is that

SEL (8)

wtt

[, ($)1,

sen ,,(8) = [z,(8)];

This, however, is immediate provided we take into account the

relations
hpn(®) = I,n(8) c Ty, (5)

A (8) =1

2n+1 an+1 (8) = T

2n+2 (%)

and the fact that here

M sy =-\U (M) sy

i=1 m=1 i=t m=i

The other direction is slightly more complicated. Take an



S€A ,,(8) -- then there exist sequences {Si,j}’ {s;’j} with
Si’jezo(S) uz, (8)
such that
s- UM,
i j 1,)
s-(VU sy
i J 1:]

Evidently, without loss of generality, it can be assumed that

s! .o 8!

"
1,)] l’j+1’ 53 SY

i,] i, j+1

Consequently (cf. Prob. I (§1)),

=1im((S! .NS" .)U(S! .NS" .NS" .)U...U(S! .NS" .n...nS" .)).
Im((8y 508y, 5)V(5; 508y 5083 5) (S5, ))

|
J JTN,3 3]

b

Each term inside the limit sign belongs to AO(S) UA,(S) U.oow,

implying, therefore, that SEAw(s). Proceeding by transfinite

induction, suppose now that o 1is >w and <Q and that our

assertion is true for wsp<a. If SEAQ(S), then S = 1lim Si’
a

where Si eEA .(S), say (wgai<a). Because
i

A .(5) = A (8) (by induction),
i

a o.+1
1
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and ai+1§a, each Si belongs to Aa(S), so the usual lim,lim



representation forces S into Aa+1(5).

SEAa+1(5) -- then, as above, there exist sequences

{Sg .} with

»J
St .
1,]
S . el
1,] ns

such that

UM
i j ’J
MU s
i j 1,)

it not being restrictive to assume that

S =

c SV

1 1"
S! . > S! St T

i,] i,j+1? i,]

Let us distinguish two cases.

(A) a 1is an ordinal of the first kind, i.e., o

an immediate predecessor, say o = B+1 -- then

wsgE. . =B
1,]
1 1"
= 8i,j0 51,5 €% (8

wsn, 3 <B
—
S! .nS" Ju(S! .ns" .nNSY JuU...Uu(S! .nSYT .n...Nn8V .)€
( I’J I’J) ( Z’J I’J Z’J) ( J’J I’J J’J)
But

Aa(ﬁ) = AB+1($) = AB(S) (by induction),
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To finish up, take an

{s: .},

1,)

possesses

Boyy(5).



and so SeEAa(S), as desired.
(B) o 1is an ordinal of the second kind, i.e., o possesses
no immediate predecessor, thus is a 1limit ordinal, say a = ).

Put

»]7 35
. = su
CJ P
nI,J, ,nj,J
Then Cj<x vj
=
St .nS8" Ju(S! .nSY .nSY .ju...u(S! .nSY .n...nSY .)EA .
(83,3M8Y,5)U(8; 508y 3053 5) (83,5087 5 5,5) Cj+'(5)

However, as XA 1is a limit ordinal, §j+1<l vj, hence

(8) = AC-(S) (by induction)
J

from which it follows that SeAa(ﬁ), as desired.

A
L+
CJ

The proof of Lemma 6 is therefore complete.

[Note: It must be stressed that the assumption § < $eo is
crucial for the validity of this result.]

Suppose still that § < $co then, thanks to Lemma 5,

5B = O"AIQ(S).
d



Furthermore, Vva>0:

80 (4 (5)) = 1 (8
B gy (8, (8)) = I (5).
We shall conclude this 8 with a brief discussion of rela-
tivization and localization.
Suppose that % is extensionally attainable. Let X be

0

a subset of X -- then, given any nonempty 38, we ask: Is
*(try (8)) = try (%(8))7
0 o
Generally, this need not be the case. But it will be true under
the following assumptions:
(1) *(try (#($))) = try (*($));
V] 0
(2) {S<:X:Sr1Xo€E ’l-(trX (8))} 1is a H-class.
0
Indeed, from (1) we get that
try (*(5)) > *(try (5))
0] o]
whereas from (2) we get that
try (*(8)) < *¥(try (5)).

Evidently, the properties



? 1s a lattice
? 1s a ring (o-ring, 6-ring)

are instances where conditions (1) and (2) are met.

Example Borel sets relativize. Thus, suppose that X is a topological space
with ambient topology ¥. Let X0 be a subset of X =-- then, by definition,

the class trx (¢) is the relative topology on XO’ and, by the above, we have
0

tr, (Ba(x)) = o-Rin(tr, (T)) = Ba(x)).
X X ]
] 0
E§§mele Baire sets need not relativize. To produce an example, we shall
v
work within the Stone-Cech compactification Q& of N. Choose, as is possible,

a class {Si} of £ infinite subsets of N, such that
cmﬂ@iﬂ%)<+w Vi # j.

This done, call S. the closure of S. in BN =-- then the S, -N are pair-
i i w i wv
wise disjoint, open and closed subsets of BN-N. Put
w vw
S=U (§.-N)
. I w
i
and consider the subspace X = NUS of BN. Since BN~-N is a zero set in
W Y W oWy
Qu, S is a zero set, hence a Baire set in X. Now

N
card(Ba(x)) 2 °

X being separable. On the other hand, it is clear that



N
card(Ba(s)) z 22 © .

Accordingly, not every Baire set of S 1is a Baire set of X, and so here

Baire sets do not relativize.

Under certain conditions, however, Baire sets will relativize. Thus,

suppose that X 1is a topological space -- then a subspace Xo of X s said
to be Z-embedded in X if Vv zero set Z0 in X0 J a zero set Z in X such
NVAAAAAAAN
that Z0 =7Zn XO’ i.e., if, in an obvious notation,
tr, (2) = Z_.
Xo 0
But then

trXO(Ba(X)) = o-Rin(trXo(Z)) = Ba(Xo).

For orientation, let us consider some specific instances of Z-embeddings.

(n Let X be a completely regular, Hausdorff topological space -- then
v
X is Z-embedded in its Stone-Cech compactification BX.

[This follows from the definitions.]

(2) Let X be a normal topological space -- then every closed subset

X0 of X 1is Z-embedded in X.

[Bear in mind the Tietze extension theorem.]

(3) Let X be a compact Hausdorff space -- then every Baire set X

of X is Z-embedded in X.

[In fact, Xo is necessarily Lindelof.]
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[Note: A systematic discussion of Z-embedding may be found in R. Blair

and A. Hager, Math. Z., lég(197h), pp. 41-52.]

Let $ be a nonempty subset of P(X) -- then by the localiza-
NAAAAAANY
tion $ of $ we mean the class consisting of all X_ < X for
A loc 0
which

tr, (8) < 8.
Xy

Obviously, Xe€$ SO is nonempty. In addition, if §

loc? gloc

is multiplicative, then §c $10c

Suppose that § is a ring (o-ring, §-ring) -- then 510c is
an algebra (o-algebra, S§-algebra).
Example Let X be a Hausdorff topological space. Let K be the class of
all compact subsets of X -- then it is easy to see that

se[Bnb(x)]]oc iff SNKEBu(K) VKEK .
Consequently,

Ba(x) < [Bo, (X)), . >

the containment being strict in general (cf. Exer. 40), but there being coin-

cidence if, e.g., X is O-compact.
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Localization need not commute with generation.

Example In general,

o—Rin(SIOC) # [o-Rin(S)]]oc .

Thus, take X =N and let $ = {{n}:nEN} -- then § = {X}, hence, in
o W

loc

this case,

U"Rin(gloc) = {ﬂ,X}

#P(X) = [o-Rin($)], .

Notes and Remarks

The term “extensionally attainable'' has been borrowed from T. Hildebrandt,

Introduction to the Theory of Integration, Academic Press, New York, 1963 (see

p. 148). If % is an extensionally attainable property, then some authors
would refer to ¥ ($) as the »-stabilization of $. The generation of lat-
NAAACAAA s s ot

tices and rings was discussed already by F. Hausdorff, Grundziige der Mengenlehre,

Veit & Comp., Leipzig, 1914 (see pp. 14~16). The transfinite approach to

operation B has its origins in E. Borel's Lecons sur la Théorie des Fonctions,

Gauthier-Villars, Paris, 1898 (see pp. 46-48), although this author evidently
did not believe in transfinite numbers. The general formulation is due to

F. Hausdorff (op. cit. pp. 304-306), further details and refinements being
presented by him in Math. Ann.,'zz(1916), pp. 430-437 and later on in his
famous Mengenlehre, Walter de Gruyter, Berlin, 1927 (see pp. 85-90). The

axiomatic approach to Borel sets in terms of a generated o-ring was stressed
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by W. Sierpinski, Bull. Acad. S;i.Cracovie,J&(!9l8), pp. 29-34. Lemmas L

and 5 are results of Sierpifiski; cf., respectively, Annales Soc. Polon. Math.,

£41927), pp. 50-53 and Fund. Math, lg(]928), pp. 206-210. For an excellent
account of the theory as it stood around 1930 and which is still very readable

even now, consult H. Hahn, Reelle Funktionen, Akademische Verlagsgesellschaft

M.B.H., Leipzig, 1932 (see pp. 258-276). Given a(l<a<), the existence of a
topological space Xa such that F < Ga was first noted by S. Willard, Fund.
Math., 14(1971), pp. 187-191. The definition in the text of a Baire set is
apparently due to E. Hewitt, Fund. Math.,iéZ(ISSO), pp. 161-187. The reader
is warned that while we consider the definitions in the text of Borel set and
Baire set to be the most natural, other writers might use these terms for very
different entities. Eg: In some treatments, the Borel sets in a Hausdorff
topological space are taken to be the O-ring generated by the compact sets,
the Baire sets then being the O-ring generated by the compact Ga's. The fact
that Ba(X) can be produced from Z by operation Bd was established by

J. Jayne, Mathematika, 3&31977), pp. 241-256, in this connection, it should
be kept in mind that there is a theorem in general topology which says that

no nonempty, open subset of a connected compact Hausdorff space X can be
written as a countable disjoint union of nonempty, closed subsets of X; cf.
K. Kuratowski, Topology, Vol. Il, Academic Press, New York, 1968 (see p. 173).
The origin of the notation Ea(S)’ Ha(ﬁ) lies in recursive function theory;
it was introduced by J. Addison, Fund. Math., Jﬂ§(1959), pp. 123-135. The
procedure itself, however, can be traced back to F. Hausdorff, Math. Z.,‘gv
(1919), pp. 292-309. Emphasis on the Aa(S) was placed by Ch. de la Vallée

Poussin, Intégrales de Lebesgue, Fonctions d'Ensemble, Classes de Baire,
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Gauthier-Villars, Paris, 1916 (see p. 37). The connection between the two,
i.e., Lemma 6, was found by W. Sierpifiski, Fund. Math.,vlg(1932), pp. 257-264;

see also J. Albuquerque, Portugual. Nath.,V&51943-1945), pp. 161-198, pp. 217-

224k. The notion of localization appears explicitly in |. Segal, Amer. J. Math.,

Jg(ISSI), pp. 275-313, although it is implicit in earlier writings. N. Dinculeanu,

Vector Measures, Pergamon Press, London, 1967, defines the Borel sets in a

locally compact Hausdorff space as the localization of the §-ring generated by
the compact sets, Baire sets being defined similarly as the localization of the

8-ring generated by the compact 66'5.
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(1) Let +% be the property :? is a topology. Verify that ¥ is exten-
sionally attainable. Given any nonempty $, *($) is called the topology
generated by $ and is denoted by Tap($). Verify that Tup(g) = $4z With,

if necessary, @ and X adjoined.
(2) Givena ring $, a ring with unit containing $ 1is the class
$ = Rin(8,{us}).

If T is aring with unit containing %, then UT > U$. Nevertheless, show

by example that there exists a ring $ and a ring with unit T such that

To$
T 8.

[Take X = [0,2]. Let $ be the class consisting of all first category

subsets of [0,1]. Consider
T = Rin(ﬁ,{ [0’2]}) -]
(3) Let $ be nonempty -- then we have:

(i) Rin(g) = $rds = Brog’

(ii) Rin(g) = % = §

dsrs sdrs;
(iii) Rin(g) = srsrs'
Show by example that srsrs # srsr in general.

[Take X = {1,2,3,4,5} and let $ = {{2,4}, {1,2,3}, {1,4,5}.]
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(4) Let X be the property: 17 = ?r and 7 = ?Z' Verify that X is

extensionally attainable. Given any nonempty £, show that

x(8) = sr}:rz‘
[It is enough to prove that

3 =3

rxrr rer

Incidentally, observe that I cannot, in general, be replaced by o here; on
the other hand, in view of Exer. 3(iii), the substitution of s for I does

lead to a true statement.]

(5) True or False? Suppose that @<$, $ =8 and 55 = Rin(8) -- then

d’

3 is a semiring.
[Compare with Exer. 5 (§4).]

(6) Let X be a topological space -- then the ring generated by the open
subsets of X is called the class of constructible sets in X. Verify that
. NVAAAAAAANAAAS  VAAAN
SCX is constructible iff S can be written as a finite union of locally closed

subsets of X.

(7) Let $ be nonempty -- then Rin($) (o-Rin($)) is the union of the

rings (o-rings) generated by the subsets of $ of cardinality <N (éNo).

(8) Let $ be nonempty -- then every set in Rin($) (o-Rin($)) can be

covered by a finite (countable) union of sets in $.

[The class of all sets which can be covered by a finite (countable) union

of sets in $ is a ring (o-ring).]
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(9) Let X be a nonempty set. Suppose that $ is a g-algebra in X
admitting a generating subclass 50 of cardinality gNO with the property that
for all x # y there exists an 506550 such that either xES0 and yﬁES0 or
xESo and yESo. Under these conditions, prove that X can be equipped with the
structure of a separable metric space in which the Borel sets are precisely the

elements of $§.

[Let 50 = {S‘,Sz,...} be an enumeration of 50' Consider the metric d

defined by the rule
dx,y) = Zlxg () - xg (N 1/21).]
! |

(10) Let X = [0,0], equipped with the order topology -- then the Borel sets
in X consist of those subsets S of X such that either S or X-S contains

an unbounded, closed subset of [0,Q[. |Is every subset of X a Borel set?

[The class of unbounded, closed subsets of [0,Q[ is closed under countable
intersections; accordingly, the class in question is a g-ring containing the Borel
sets. To obtain equality, let S be an unbounded, closed subset of [0,Q[ --
then it need only be shown that every subset T of X-S s Borel. There is
no loss of generality in supposing that O0€&S, Q#T. Given acS, let a' be the
first successor to o in S. Define a set-valued function f on S by the

prescription
fla) = {BET : a<B<a'}.

Then f(S) = T. For each a such that f(a) # @, fix an enumeration {f(a)n}

of the elements of f(a). Write
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T = L-J {f{a) 1.
" aes n

The T are Borel and T = UTn.]

(11) Let X be a topological space -- then every Borel set in X has the

property of Baire.

(12) Let X be a metric space -- then X is separable iff Vve>0, Ba(X),
is generated by the open balls of radius se. Show by example that there exists

a nonseparable metric space X in which the open balls

do generate Bua(X)

do not generate Bu(X).

(13) Let X be a topological space, all of whose points are closed; let

S be a discrete subspace of X -- then S is a Borel subset of X.
[In fact, S is constructible.]

(14) Let X be a Hausdorff topological space -- then the o-ring generated
by the compact subsets of X is, by definition, the class of g-bounded Borel
sets in X. Justify this terminology by proving that a Borel set in X s

o-bounded iff it is contained in a countable union of compact sets. Hence or

otherwise, infer that if X is

g-compact

compact,

then



Ba (X)

[Ba, (X)]

Bu(x) Bub(x).

(15) Let X = [0,2[, equipped with the order topology. Characterize

explicitly the elements of the §-ring of bounded Borel sets in X.

(16) Let X be a Hausdorff topological space. Give a transfinite descrip-

tion of Bub(x).

(17) Let X be a Hausdorff topological space. Let X0 be a compact subset
of X =-- then the bounded Borel sets in X, when relativized to Xo, give the

bounded Borel sets in X

0’ i.e.,

trxo(Bnb(x)) = Bub(xo).

ls this true if X0 is not compact?

(18) Let X be a Hausdorff topological space. Let K = {K} be a class of

compact subsets of X such that

K, < K
VK‘,KZEK, HKBEK st

v compact € <X, IK €K st C < K.
Then

Bnb(x) = \ujBnb(K).
KeK

[Show that the union in question is a §-ring.]
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(19) True or False? Let X be a Hausdorff topological space -- then the

bounded Borel sets in X are precisely the relatively compact Borel sets in X.

(20) Let $ be ao-ring in X; let T be a o-ring in Y =-- then any

EESéE has at most ¢ distinct horizontal or vertical sections.

[Fix EE$§E -- then there exist O-rings SECS and EEC T such
that EESEézE and such that both SE and IE are generated by no more than

N, elements (cf. Exer. 7). Owing to Lemma 2 (§5),
E €T YXEX
X E
Y
EY €3, VYEY .
On the other hand,
card(SE) <c

card(EE) st .]

(21) Let $ be a o-ring in X. Suppose that card(X) > ¢ -- then the

diagonal D in XxX does not belong to $0 §.
[This follows from Exer. 20.]
(22) Let X and Y be topological spaces -- then
Ba(X) @ Ba(Y)  Bo(XxY),

the containment being strict in general, but there being coincidence if the weights

of X and Y are both éNo. Does coincidence obtain if X and Y are arbi-

trary Lindelof spaces?



[Note: Do Baire sets "multiply''? While the answer is, of course, ''no' in
general, an important sufficient condition is this. Suppose that X and Y are
completely regular, Hausdorff topological spaces for which XxY is Z-embedded

v
in BXxRY, the product of the Stone-Cech compactifications of X and Y -- then
Ba(X) @ Ba(Y) = Ba(xxY).

For the details and further results, see R. Blair and A. Hager, Set-Theoretic

Topology, Academic Press, New York, 1977, pp. 47-72.]

(23) Let X and Y be Hausdorff topological spaces -- then

[Bu, (X)]; & [Ba (V)] <= [Bm, (Xxx¥)],

the containment being strict in general, but there being coincidence if the

weights of X and Y are both éNo. Does coincidence obtain if X and Y

are arbitrary metric spaces?

(24) Take for X the Sorgenfrey line E, i.e., E is the real line

L o

equipped with the topology generated by the [a,b[ -- then
Buﬁi) = Bnﬁ&)

but

hand

Ba(ExE) # Ba(RxR).

[To establish the second point, consider the line L:x+y = 0 =-- then, in

the relative topology per JEXJE’ L is discrete. Use now the fact that Borel

sets relativize.]
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Ba(E) = Ba(R)?

33(5".5) = Ba(&xy?

(25) Give an example of an infinite class § of subsets of Ji such that

\565 and 3-‘-’53

but such that $ is not a g-algebra.
(26) Estimate the cardinality of SB' Can the same be done of 58 ?
d
(27) True or False? Let $ be a ring. Suppose that for some limit ordinal
A<,
5, - sl s).
a<A

Then there is an a<i such that
- slel(s).

(28) There exists a completely regular, nonnormal, Hausdorff topological

space X for which Fc« G@'

[The classical example is the so-called Moorg Elaneyg, i.e., JL is the
closed upper half-plane {(x,y)éﬁ&? :y 20}, topologized by specifying local open
neighborhoods: The open neighborhoods of (x,y) (y>0) are to be the usual open

neighborhoods but the open neighborhoods of (x,0) are to be the sets {x}ul,
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where U is an open disk in the upper half-plane tangent to the x-axis at x.]

(29) Let % be the property: ?7=7 and ? = ?C. Verify that ¥ is

o
d
extensionally attainable. Given any nonempty $, we then write $B for
c
*(8) and refer to rg$ as operation Bc. Determine the properties of this
Wanny)

operation. Show by example that 58 need not coincide with 0-Alg($). Prove
c
that

Pff

[So, in particular, if X 1is a topological space, then

g
c
Ba(X) = .1
GB
c
(30) Let X be a nonnormal, Hausdorff topological space -- then 2 is

properly contained in F.

(31) A compact Hausdorff space X is O-dimensional iff Zo = ZG .
d
(32) Let X = [0,0], equipped with the order topology -- then the Baire

sets in X consist of those subsets S such that either

card(S) SN, or card(X -S) SR -

Thus, in this case, Ba(X) is strictly contained in Ba(X) (cf. Exer. 10).
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(33) Take for X the real line topologized by specifying that the open sets

are to be all sets of the form UUV, where U 1is open in the usual topology

and V is any subset of kﬁ = X-J& -- then
F
By
Ba(X) =
2] .
By

However, X, while normal and Hausdorff, is not perfectly normal. |Is
Ba(Xx) = Ba(Xx)?

(34) There exists a compact Hausdorff space X for which FB #F
d

B
[Let A =DU {=} be the Alexandroff compactification of an uncountable

discrete set D. Form the product AxN and let S be the set obtained by

identifying the ({w},n)(ngu). Equip S with the quotient topology -- then

S is a completely regular, o-compact, Hausdorff topological space. Let

v
X = BS, the Stone-Cech compactification of § == then SEFB but SéFB |
d

(35) Consider X = [O,I][O"] in the product topology. Is the subspace

of all continuous f : [0,1] - [0,1] a Borel (Baire) set in X?
(36) Take X =R, -- then
PEF .
v oddodé
(37) Let $ be nonempty -- then we have:

(i) 85 = o-Alg(s) iff §_c 35;

(ii) S5 = o-Rin(g) iff $.c $g -
d d
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[Compare these statements with Lemmas 4 and 5.]
(38) Let $ be nonempty -- then
s-rins) = \J  tr(o-Rin(s).
Serin(g)

(39) True or False? Let $ be a O-ring in X; let T be a o-ring in

Y -- then
sloc ® Eloc =Gey
Retaining the given hypotheses, determine the validity of the relation

tr ($8T) = tr, () ® tr, (T).
XO XYO X0 Y0

(40) Let X = [0,Q[, equipped with the order topology -- then

[Bnb(X)] = P(X).

loc

Therefore, in this case, Bua(X) 1is strictly contained in [Bnb(X)] (cf.

loc
Exer. 10 and 15).

[For a somewhat different example, discuss X = RxR, where, in the first

factor, R, has the usual topology and, in the second factor, R, has the dis-

crete topology.]
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Problems
1. DYNKIN CLASSES
Let X be a nonempty set; let § be a nonempty subset of P(X) -- then
$ is said to be a Bgﬂﬁlﬁ'ﬁliii if §= Scd and

S,TES, SOT => S -TES.

Take ¥ to be the property: ? is a Dynkin class. It is clear that *
is extensionally attainable. Given any nonempty $, we then call ¥($) the

Dynkin class generated by § and denote it by Dyn($).

Every o-ring is a Dynkin class but a Dynkin class is a o-ring iff it is

closed under the formation of finite intersections.

[For a simple example of a class which is a Dynkin class but is not a o-ring,

take X = {1,2,3,4} and consider

W
[

= {9,{1,2},{1,3},{2,4},{3,4},{1,2,3,4}}.]
If g = 5d, then

o-Rin(8) = pyn(g).

Bgf E. Dynkin, Die Grundlagen der Theorie der Markoffschen Prozesse, Springer-

Verlag, Berlin, 1961 {(see pp. 1-2).
[Note: Results substantially the same as these were obtained many years

earlier by W. Sierpifiski, Fund. Math., 12(1928), pp. 206-210.]



There is a variant on the preceding theme which is sometimes useful.

sider the following properties of a nonempty $:

(1) s = Ssd;
(2) vSes: vS. €8:
I s T nsJ. =@ (i#j)
= Us; €8;

Let % be the conjunction of (1), (2), and (3)

-- then %
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Con-

is extensionally

attainable and the above results on Dynkin classes can be carried over to this

setting in the obvious way.

is simply &-Rin($).

. STABILITY OF SECTIONS

I f
$ < P(X)
$ c P(Y)
both contain @, then

x:8 () ($%T) B (@) (g)  and

v, B (a) (se)Y gl ($) and

In particular, observe that if $ =3

B(OL) (5m)x c B(O!.) (E)

(a<Q)
B (4) (sm)y < By (8).

d’

then %($)
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[This follows by an easy transfinite induction on a.]

Take now $ = P(X) and suppose that card(T) SNj. Let E be a nonempty

subset of XxY -- then, given a{0<a<Q),
eesl® e Y iff EXEB[a](C) (vx€m,(E)).
[To discuss the nontrivial point, viz. that
Exes[“] (¥) (vx€m (E)) = el 2 rY),

one can argue by transfinite induction on a, treating first the case when
o =1 and then looking at the cases when o is odd or even separately. Here

is the proof for a=1. Let T = {TI’TZ""} be an enumeration of T. Put
= . [
S {xETrX(E).Ti Ex}.
Then

E = u(si xfi) eB['](P(x) KT).]

Ref, R. Bing, W. Bledsoe, and R. Mauldin, Pacific J. Math.,\gL(197h), pp. 27-36.

1. SETS GENERATED BY RECTANGLES

Let X be a nonempty set -- then, in §5, we discussed the question: |Is
P(X) ® P(X) dense in P(X)(X)s? As has been seen there, the answer depends on

the cardinality of X, the case of mystery being when N, < card(X) < c.

If card(X) < N, then it is actually true that
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p(xxx) = 8.2 (p(x) B 2(X),

i.e., each subset of XxX can be generated from the rectangles in just two steps.

Assuming Martin's axiom, this conclusion remains in force if only card(X) < c.

On the other hand, the density of P(X) ® P(X) in P(XXX)s or still,

the relation
P(xxX) = P(X) ® P(X),
is equivalent to the existence of a countable ordinal a 2 2 such that

p(xxx) = 8 () 8 2X).

Ref R. Bing, W. Bledsoe, and R. Mauldin, Pacific J. Math.,‘gl(l974), pp. 27-36.

[Note: One could ask: Does
P(XxX) = P(X) ® P(X)
=

p(xxx) = 82 (2(x) B P(X)?

For a discussion of this question, see A. Miller, Ann. Math. Logic, léjl979),

pp. 233-267. Consequences and implications may be found in R. Mauldin, Fund.
Math., 22(1977), pp. 129-139.]
iv. POINT-FINITE CLASSES

Let X be a nonempty set. Fix a subset $ of P(X) containing @ and X.

A nonempty class X < P(X) is said to be point finite if each point of X

belongs to at most a finite number of elements of X.
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(H)  Suppose that X is a point-finite class in X such that XZ c SB --
o 153 in Such that

then, for some o < Q,

x csl*l(g).
It will be simplest to examine first a special case.

(P)  Suppose that X is a disjoint class in X such that X < 85 --
Wy

then, for some o < ,

x c 8l (5.

[Proceed by contradiction -- then there exist R1 disjoint subclasses
XB of X such that for all a,8 < §, XB'¢ B[a](ﬁ). Because XZ o SB, there is
a function f :[0,0[ » [0, such that UXBGEB[F(B)](S) (R<f(B)). Choose
XBEEXB, XB ¢ B[f(ﬁ)](S). Put A = (_jX -- then, for some a, AEEB[G](S). But
B<

now X, = A(wuxaezaif(“)}(s), a contradiction.]

Ref ~ D. Preiss, Comment. Math. Univ. Carolinae, 355(1972), pp. 341-344,

[The above proof is due to W. Fleissner, Trans. Amer. Math. Soc., 251(1979),

pp. 309-328.]

In order to deduce (H) from (P), the following artifice will be needed.

&S@Q% Let Y be a separable metric space with topology T. Suppose that

{(X(y) : yeY} is a point-finite class in X such that

{X{y) : yEY}E C:SB.



6-P-6
Then
{x{y) x{y} : yev}; = (% B T)g.

[Choose, as is possible, a basis Nn(ngﬁ) for Y satisfying the
diameter condition, i.e., diam(Nn) + 0 and with the property that each point
of Y belongs to Nn for arbitrarily large values of n. Given a nonempty

subset Yo of Y, put

Mn = U{X(y) :yENnrﬁYo}.

Then
U{X(y) x {y} : yeY } = Tim (M_xN),

hence is in ($ K E)B.]

Proof of QQ Proceed by contradiction -- then

X stB[a] (%) Vo < Q.

Accordingly, one may select sets

Xaex-(Bhlﬁ)U~UB:e<aD (a<Q).

Viewing Y = {a :a<Q} as a subspace of R, statement (P), in conjunction with

the lemma supra, allows one to conclude that
A= ulx x{a} sa<a) e (s g @)

for some B>1, Since



6-P-7

xx{a}eal?(s g ¥),
it follows that
An(Xx{a}) = x x{ates® (s 80,
However (cf. Prob. Il), this implies that XG<EB[B+1](S) Ya<, a contradic-

tion. //

It can be easily shown by example that statement (H) is no longer true if

"point-finite' is replaced by 'point-countable' (defined in the obvious way).

Ref R. Hansell, Proc. Amer. Math. Soc.,\§2x198l), pp. 375-378.

V. THEOREMS OF MILLER AND KUNEN

Suppose that X is a topological space for which Bua(X) = P(X). Does 3

an o< such that
Ba(X) = Za(G)?

The answer, in general, is unknown. However, if X 1is a metric space, then the

response is positive.

Theorem (Miller) Suppose that X is a separable metric space for which
MAAAAAA ——
Ba(X) = P(X) -- then 3 an a<Q such that

Ba(X) = Za(G)-

[First note that the cardinality of X 1is necessarily <cr. For otherwise,
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card(Ba(X)) 2 2% > ¢,

which is impossible as there can be at most L Borel sets in a separable metric

space. If card(X) =N then the assertion is clear. Let us consider the

0’

simplest nontrivial case, viz. when card(X) = X referring the reader to the

l’
paper infra for the details when X, < card(X) <c. Write X = {xa <} and

proceed by contradiction. For each a<Q, let A €1 (6) - Za(G) and put

a+1

A = {(xa,a) :aEAa} -- then it need only be shown that AGEZB(G x ) for some

R<Q as this would entail

A = AN ({x

8+1 } xX) GZB(G).

B+1

But, in view of the fact that X 1is of cardinality R, and of weight K we

0’

have

it

P(X) ® P(X) P(X xX)
fl It il

Ba(X) ® Ba(X) = Ba(X xX),

making the contention plain enough.]

Ref A. Miller, Ann. Math. Logic, 16(1979), pp. 233-267.
VW VW

[Note: Observe that the continuum hypothesis denies the existence of an
uncountable separable metric space all of whose subsets are Borel. On the other
hand, in the presence of Martin's axiom and the negation of the continuum hypothesis,

it can be shown that there exists an uncountable set X C&L in which every subset

is an F0 (or, equivalently, GG); cf. F. Tall, Dissertationes Math., 148(1977),

pp. 1-57.]
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Theorem (Kunen) Suppose that X is a metric space for which
VAN O
Ba(X) = P(X) -- then 3 an a<Q such that

Ba(X) = Za(G).

[Kunen's proof is given in the paper of Miller cited above. 1t runs as
follows. Because X is a metric space, X admits a o-discrete basis
N = U{Nn :n%ﬁ}. For each NeN, let a(N) be the smallest ordinal o such that

P(N) =% (tr (8)). Given néEN and a<Q, let
o N v

Cn,a = {NENn :a(N) <al.

Claim: vn3oa(n) such that
card(Nn - Cn,a(n)) < N,
Indeed, if not, then for some n it would be possible to find Aa’Na(a'<Q) with:
(1) NaeNn;

(2) N, # Ng (vo#B) ;

(3) Ay ET (trNa(G)) - Za(trN (6)).

o

o+

Since the union LJAQ cannot be Borel under these circumstances, we have a contra-

diction. The claim established, let a* = sup{a{(n)}. Put

x0 = X - U{NeN : a(N) <a*}.

Thanks to the claim, Xo is a separable subspace of X, so, by Miller’s theorem,

3a0-<Q such that Bu(xo) = ZQO(GO). If now &==sup{ao,a*+l}, then

Ba(Xx) = za(s).]
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Vi, POINT-FINITE CLASSES (BIS)

As in Prob. IV, let X be a nonempty set. Fix a subset $ of P(X) con-

taining ©® and X.

Suppose that X is a point-finite class in X such that XZCZSB ==~ then,
as has been seen above, X is contained in B[“](g) for some & <. We now

ask: Does there exist an o <§] such that chzB[a](S)?

To give an answer, write X = {Xi :i€1} -- then there will be an o with

the stated property if 3 an uncountable set J such that
P(1xJ) =P(1) 8 PJ).

[The proof is similar to that of statement (H) in Prob. 1V, modulo an

appropriate variant of the lemma appearing there.]
The question of the equality
P(1xJ) =2(1) ® P(J)

has been considered in Exer. 5 (85). Recall that it will hold if both card(i)

and card(J) are gNI (or even £ ¢ if Martin's axiom is assumed). Consequently,

the answer to the question supra is affirmative if card(1)s Nl'
There is another condition on J which will force the equality
P(1xJ) =2(1) ® P(J),
namely that P(J) be generated as a og-algebra by a set of cardinality <N_.

[Use Exer. 9, Prob,, V, and Prob. 11.]
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Example Let X be a metric space. Take,in this context, & =&. Suppose
wvwwAaAAN
that X = {{x} : xex}. |If ch:5B, then Ba(X) = P(X), so in this case we are

back in the setting of Prob. V. Assume now that X is, in addition, separable.

Let X be a point-finite class in X such that XZC:sB -- then there exists an
o< such that XZCZB[Q](S). This, of course, is obvious if card(l) éNo. On
the other hand, if card(l)> L fix a point X, in each Xo == then

X, = {xi :i€l} is an uncountable separable metric space all of whose subsets are

Borel, hence

P(1xX,) =2(1) 8 P(X,).

&25 R. Hansell, General Topology and Modern Analysis, 1981, pp. 405-416.

Vit. ZERO SETS IN UNIFORM SPACES

Let X be a uniform space -- then the class 2% of zero sets of the bounded

uniformly continuous functions f : X-+J& has the following properties:

(1) @,xez, (2) Z=2_,

(3) zZ =%, (&) Z.C 2.

In addition, given disjoint Z‘,ZZEZ, there exist disjoint U],UZEZC such that

One has:

ZB = g-Alg(Z2).
d

[This can be seen by repeating the argument for its topological analogue

virtually word-for-word.]
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Ref J. Jayne, Proc. Prague Symp. General Topology, Part B, 1976, pp. 187-194.
(v

Let X be a nonempty set; let Z be a class of subsets of X possessing
the five properties supra -- then X can be equipped with the structure of a

uniform space with respect to which % is precisely the class of zero sets of
the bounded uniformly continuous functions f :X +~§; Consequently,
2, = o-Alg(Z).
d
[In this connection, recall that a topology T on X is the uniform
topology for some uniformity on X iff the topological space (X,T) is com-

pletely regular.]

&gi H. Gordon, Pacific J. Math.,\zé(l97l), pp. 133-157.

VLT, DISJOINT GENERATION

Let X be a nonempty set; let $ be a nonempty class of subsets of X

such that

=3, 3.3 .

Cc g

Suppose in addition that given disjoint SI’SZES’ there exist disjoint

C‘,CZESC such that

Then

$g = o-Alg(8).
d



[According to Lemma 5, it suffices to prove that SCC:SB .

pose, show by a direct set-theoretic construction that

8 Cc8
c GUdGGd

Ref J. Jayne, Mathematika,\%ﬁ}l977), pp. 241-256.

IX. INCREASING AND DECREASING LIMITS
Let $ cP(X) be nonempty. Write
(1) (8)

(+) (8)

d

for the class of all subsets of X which are the limit of an

increasing

decreasing
sequence of sets in $.

Suppose now that $ is a lattice. Put

22(8) = (D (8), 5,(8) = (1) (3
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For this pur-

and define via transfinite recursion the classes :5%(%), Ea(S) by writing

=@ = 0 (U,
B<a
= ® = Lo,

B<a

(a < Q)
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Iinvestigate these classes.

555 W. Sierpinski, Fund. Math., J§£l932), pp. 1-22,

X. N-OPERATIONS
Let X be an infinite cardinal. Consider a map
M:P(R(X) » P(P(X))
with the following properties:
(1) 1f f:X~+ X is a function and if & < P(X) is a class, then
£ Ms) e mMiF 1 (9));

(2) If $',8" < P(X) are classes, if M($') < M(§"), and if S"eM(§"),

then
M(8' u{s"}) « M(g").

Under these circumstances, M is said to be an X-operation if for every initial
ordinal ¢ with card(g) s X and if for any increasing transfinite z-sequence
{Sa <}, the inclusions

Ms) = M) <) = v\ 5) < nis).
a<g
Il1iustrate this concept by examining the various set-theoretic operations

which have been discussed in this §.

If % is extensionally attainable, then is it necessarily true that M

»*

is an N-operation?
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Ref M. Ershov, SLN, 794(1980), pp. 105-111.
WA T www

[Here also may be found a number of selection theorems of substantial

generality.]



