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Suppose that G is a compact group. Denote by Rep G the category whose

objects are the continuous finite dimensional unitary representations of G and
whose morphisms are the intertwining operators —- then Rep G is a monoidal
x-category with certain properties PyiPyy el Conversely, if C is a monoidal
*-category possessing properties Pl'Pz' ..., can ore find a compact group G,

unique up to isomorphism, such that Rep G "is" C? The central conclusion of

reconstruction theory is that the answer is affirmative.
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§1. MONOTIDAL CATEGORTES

Given categories C,D, their product is the category C x D defined by

Ob(C x D)

Ob C x Ob D

Il

Mor ((X,Y), (X',¥")) = Mor(X,X') x Mor(Y,Y')

idx x Y idx * idY"
with composition
(£',9") o (£,9) = (f' o £,9' ° g).

Now take C = D —— then a monoidal category is a category C equipped with a

functor &:C x C ~ C (the multiplication) and an object e € Ob C (the unit), together

with natural isomorphisms R, L, and A, where
- Re:X®e > X
Lx:e &@X~>X

and

AX,Y,Z:X R(YQz > Xy 2,

subject to the following assumptions.

(MC;) The diagram

A A
XR (YR (ZAW) ~(XQY) 2 (2aW) ~»{((XQY)Q2 QW
idQAl IA@id
X2 ((Y&2Z) awW > X {(Yyez) aw
A

camutes.



(MCZ) The diagram

A
Xg{eQY) > (XQe) QY
idﬁLl lRQid
XY e — X QY

commutes.
[Note: The "coherency" principle then asserts that "all" diagrams built up
from instances of R, L, A (or their inversesg), and id by repeated application of &

necessarily commite. In particular, the diagrams

A A
e XQY) > (e®X)RY X (YRe) » XQY) Re
Ll lLQid id@Rl lR
Xy X8y XY — XRY

commute and Le £ Re:e Re>e.l

N.B. Technically, the categories

Cx (CxQ)
€ xQ) x¢C

are not the same so it doesn't quite make sense to say that the functors

(X,(¥,2)) X2 (YQ7Z)
Cx(ExQC ~C

(£,(g,h)) ~ £ (g@h)



(X, v),2) (XY @72
(CxQ) xc~g

((f,9),h) » (fRqg) & h

are naturally isomorphic. However, there is an obvious isomorphism
1
Cx(CxQ > (CxQ xC
and the assuamption is that A:F - G o 1 is a natural isomorphism, where

F
CxicxQ ~¢

R
€xQ xg >
G

Accordingly,

vV (X,(Y,2)) € Ob C x (C xC)

v (f:(g:h)) EM:!I’Q X (g Xg),

the sguare

AX,Y,Z

X (YR 2Z) — > (XRY) 2 2

£@ (g&h) l J (f@g) @h

X' @' R2) — X'y') 2

Br e,z

commutes.

Interchange Principle If

f € Mor(X,X")

g € Mor(y,Y"),



then
(fﬁid)°(idX®g)=f®g=(id @g)o(f@idy).
Y X!

[Note: Since 8:C x C > C is a functor, in general

(Eof'YR (geg')=(£R9g) o (f' R g").]

1.1 EXAMPIE Given a field k, let VE_C_] be the category whose objects are the

vector spaces over k and whose morphisms are the linear transformations —- then

VEG is momoidal: Take X @ Y to be the algebraic tersor product and let e be k.

[Note: If
£:X - X

g:¥Y ~Y',

R (f,9) =fR@g:XQY>X'QY'

serds x R v to £(x) & g(y).]
Iet H and K be complex Hilbert spaces —— then their algebraic tensor product
H @ K can be equipped with an inrer product given on elementary tensors by
X) BY) Xy BYp> = Xy h X2V 0¥p”

ard its camwpletion H @ K is a camplex Hilbert space.

A€ B(Hl’Hz)

B € B(Kl,Kz) '



then

A&B:HlﬁKl +H2®K2.
exterds by continuity to a bounded linear operator

AR B, &K > H, @K,

Denote by HILB the category whose cbjects are the complex Hilbert spaces and

whose morphisms are the bounded linear operators.

1.2 EXAMPLE HIIB is a mornoidal category.

PROOF Defire a functor

Q:HITR x HILB - HILB

by
ard
A B
a(H; » H, Ky »K) =ARB

and let e be C.

1.3 REMARK Both Vec, and HILB admit a secord moroidal structure: Take for

the multiplication the direct sum ® and take for the unit the zero obiject {0}.

M(C) = Mor(e,e).

Then M(C) is a moroid with categorical composition as monoid multiplication.



Then

1.4 IEMMA The monoid M(C) is commutative.

PROOF Take s,t € M(C) and consider the commutative diagram

0
4

e —m—>efle ———— efe ——— efe———- e
A A 4
t id 8| t s R lde
e >e R e sf& t efRe e
s s R lde lde@t
e ——>efe —— efRe — e fle —mm e,
Rlo(sot) oR =R Y o (tos)oR
e e e e

8 ot=t%t o s,

Given f € Mor(X,Y) ard s € M(C), define s-f to be the composition

.t s@f L
X > a @ X >e QY —> Y.
1.5 ILEMMA We have
- ig -f = f
e
S+ (t-f) = (s o t)-f
(t-g) © (s-f) = (£t ° 8)-(g o f)
(s«f) & (teg) = (s o £)-(£ R g).




A monoidal category C is said to be strict if R, L, and A are identities.

So, if C is strict, then

X2 ((¥yez) = XY 72
ard
XRe =X
e 8 X =X,

[Note: While momidal, reither VEQ ror HILB is strict monoidal.]

N.B. Take C strict and consider M(C) -~ then V £,g € M(C),

fRg=fog=gef=gact.

1.6 EXAMPLE Iet 3 be the category whose objects are the nonregative integers

and whose morphisms are specified by the rule

gifn=m

Mor(n,m) =

5nifn=m,

composition in Mor(n,n) being group multiplication in Sn. Define

R:3 x 3 >3
on objects by

2(n,m) = n+m
and on morphisms by

o T
Q(n > n, m ~m) = pn'm(O,T),



where

is the canonical map, i.e.,

1 2 n n+1 n+ 2 eee N4+ m

pn,m(om) =

“0'(1) a(2) e g{n) n + t(l) n+ 12 ... n+ T(m)__

and let e = 0 —-- then with these choices, % is a strict monoidal category.

[Note: § is equivalent to the category whose objects are the finite sets and

whose morphisms are the bijective maps. ]

1.7 EXAMPIE Iet MAT, be the category whose objects are the positive integers

and whose morphisms are specified by the rule

Mor (n,m) = Mn'm(lg) '

the n-by-m matrices with coefficients in k. Here id :n +n is the unit diagonal
n-by-n matrix and composition

o:Mor (n,m) x Mor(m,p) -+ Mor(n,p)
is
B o A= AB,

the product on the right being ordinary multiplication of matrices. Define

@:MAT; x MAT; + MAT;



on objects by
@(n,m) = rm
ard on morphisms by

A B
2(n->m, p > q

allB . almB
= : € Mor (rp,mq)
i anlB e a B B

ard let e = 1 -~ then with these choices, MAT, is a strict mompidal category.

[Note: Write FDVEC, for the full subcategory of VEC, whose objects are

finite dimensional -- then there is an equivalence MAT, - FDVEC, . Thus assign

A
to each object n the vector space En ard to each morphism n -+ m the linear map

from k" to k' that serds (x,...,x) €K to (y),...,y) €k, where y; is the

ith entry of the l-by-m matrix [xl, ves ,xn] A.]

1.8 EXAMPLE Given a C*-algebra A, let End A be the category whose objects
are the unital *-homomorphisms ¢:A > A ard whose arrows ¢ +~ ¥ are the intertwirers,
i.e.,

Mor(¢,¥) = {T € A:T®(n) = Y(A)T V A € A}
Here, the composition of arrows, when defined, is given by the product in A and
lA € Mor(®,9) is lq). Define

R:End A x End A ~ End A



10.

on objects by
2(%,0') =9 o '
and on morphisms by
T T'
(0 > VY, &' — ¥

= TO(T') (= Y(T')T) € Mor(d o &', ¥ o ¥')

and let e = id A then with these choices, End A is a strict monoidal category.

[Note: v A € A, we have

TO(T') (@ o &') (A)

Il

TO(T') (3" (A))

TO(T'd' (A))

¥(T'o' (A))T

I

Y(¥r(aT)T
= ¥(¥' (A))Y(T")T

= (¥ o ¥")(A)TO(T").]

1.9 EXAMPLE Giwven a category C, let [C,C] be the metacategory whose objects
are the functors F:C > C and whose morphisms are the natural transformations =
from F to G. Define

e: [C,C] - [C,C]
on objects by

Q(F,F') =F o F'



11.

ard on morphisms by

®&{(F > G, F' - G")
=5 @E'",
where
by = ¥
(E@cE )X
= = o FPE! (= GE! o = ),
G'X X X Fix

ard let e = idC (the identity functor) -- then with these choices, [C,C] is a

strict monoidal category.

[Note: If

[11

€ Nat(F,G)
2t € Nat(F',G"),

then
v X,YE€ObC T v £ € Mor(X,Y)
ard
_ ¥YX',¥Y' €dbC _ v £ € Mor(X',Y"),

there are comutative diagrams




12.

Xl
F'X' —— G'X
F'f‘ l J Glf'
Y —— G'Y'.
23'5‘
In particular: The diagram
F'X
FFP'X ——> GF'X
= =1
= =
FG'X ——> GG'X
h‘f“lX

comutes. This said, the claim is that

ZEQF' €ENat(F o F', G o G"),

i.e., that the diagram

= el
(@ E )X
FF'X > GG'X
E‘F'fl l@@‘f
FF'Y > GG'Y
(Z @ E*)Y

commites. In fact,

I

GG'fOGE}'{O =



13.

G(G'f o B!} o =
X F'X

G(E! o F'f) o =
¥ F'Y

GE! o GF'f o B
X F'X

(& E')Y o FF'f.]

1.10 LEMMA Suppose that C is monoidal and let e,e' be units -- then e and
e' are isomorphic.

[There is an isomorphian ¢:e + e' for which the diagrams

id & ¢ ¢ @ id
Xfe —s> X R e' e@X — > e' @x
L ]
Ry Ry + Ik Iy
X X X X
commute, viz.
=L @ (R('a)_l e reQe' »>e').]

e!



§2. MONOTDAL FUNCTORS

Let C, C' be monoidal categories —- then a monoidal functor is a triple

(F,£,8), where F:C -~ C' is a functor, £:e' + Fe is an isomorphism, and the

= - ¥
_.X'Y.FX R FY = F(X QYY)

are isomorphisms, nmatural in X,Y, subject to the following assumptions.

(MFl) The diagram

ide = =
FX @' (FY ' FZ) ———> FX Q' F(Y R 2) > F(XQ (Y Q7))
A FAa
FXR'IY) & Fz ——— F(XQY) @' Fg > F{({(XQY) & 7)
=@ id g
commutes.
(ME‘Z) The diagrams
X ' e —o> FTX e' & X ————> FX
ide l T FR, E®id l T FL,
FX Q' Fe > F{X Q e) Fe Q' FX > Fle @ X)

{1}

commute.

N.B. A monoidal functor is said to be strict if £ and Z are identities.

2.1 EXAMPLE Write FDHIIB for the full subcategory of HILB whose objects

are finite dimensional -- then the forgetful furctor

U:FDHILB ~ FDVEC.




is strict monoidal.
[Take for

:X,Y:UX RUY »UX Y)

the identity idX Qv and let & = idc.]

[Note: A forgetful functor need not be moroidal, let alone strict mornoidal.
E.g.: Give AB its monoidal structure per the tensor product, give SET its mon-
oidal structure per the cartesian product, and consider U:AB - SET -- then the
canonical maps

UA x UB - U{(A QZ B)
*} 71 (+~>0)

are not isamorphisms. ]

(Fr E,E)
(G,6,0)

be monoidal functors —— then a monoidal natural transformation

{FlglE) > (G;@,@)

is a natural transformation o:F - G such that the diagrams

¢4 -
e ot
Fe — —> Ge FX®' FY — > F(X @ Y)
ET Te O‘x@'o‘yl lo‘ng
' e, X R GY ——> G(XQY)
]

commute.



Write [g,(_:']Q for the metacategory whose objects are the monoidal functors
C + C' and whose morphisms are the monoidal natural transformations.

N.B. A monoidal natural transformation is a monoidal natural isomorphism

if o is a natural isomorphism.

2.2 REMARK Some authorities assume outright that Fe = e', the rationale

being that this can always be achieved by replacing F € Ob [g,g']g by an isomorphic

F' € Ob [_C'_,(_Z']Q such that F'e = e' (on dbjects X # ¢, F'X = FX).

2.3 ILEMMA ILet
(F,2,5) (FiC > C")

(F*,E',g') (Fr :gv - gl |)

be moroidal fumctors — then their composition F' ¢ F is a monoidal functor.

g' F'g

[Consider the arrows e'! > F'e! > F'Fe and

[2¢]

1 4 F'E
FIFX @'' F'FY — 5Py popy gt py) XY pipx @ v). ]

Write MONCAT for the metacategory whose objects are the monoidal categories

arnd whose morphisms are the morpidal functors.

2.4 RAPPEL Let C, D be categories -~ then a functor F:C » D is said to be
an equivalence if there exists a functor G:D > C such that G o F = idc arnd

FeG= idD, the symbol = standing for matural isomorphisn.



2.5 LEMMA A functor F:C = D is an equivalence iff it is full, faithful,
and has a representative image (i.e., for any Y € Ob D, there exists an X € Ob C

such that FX is isomorphic to Y).

N.B. Categories C, D are said to be equivalent provided there is an equiv-
alence F:C >~ D. The object isomorphism types of equivalent categories are in a

one-to-one correspordernce.

e T F:C D
2.6 RAPPEL Given categories , functors " are said to be an
_ D _ GD~>C
Mor o (FOP x idD)
adjoint pair if the functors from (_JOP X D to SET are naturally
Mor o (id op x G)
_ ¢
XeObC
isomorphic, i.e., if it is possible to assign to each ordered pair
YE0ObD

a bijective map =

< Y:l\br(FX,Y) - Mor (X,GY) which is functorial in X and ¥. When
!

this is so, F is a left adjoint for G and G is a right adjoint for F. 2Any two

left (right) adjoints for G (F) are maturally isomorphic. In order that (F,G)

be an adjoint pair, it is necessary and sufficient that there exist natural trans-

idp

il

W € Nat(id., G o F)  (VF) o (Fu)
formations - subject to
v € Nat(F o G, id,) @) e (G)

i

ldG’

The data (F,G,u,v) is referred to as an adjoint situation, the natural trans-




u:idg +GoF

formations being the arrows of adjunction. BAn adjoint equiv-

\):F°G+idD

alence of categories is an adjoint situation (F,G,u,v) in which both y and v are

mtural isomorphisms.

2.7 LEMMA A functor F:C ~ D is an equivalence iff ¥ is part of an adjoint

equivalence.

Let C, C' be monoidal categories — then C, C' are monoidally equivalent

if there are monoidal functors

and monoidal natural isomorphisms

2.8 LEMMA Suppose that F:C + C' is a monoidal functor. Assume:

equivalence -- then F is a monoidal equivalence.

2.9 REMARK Embed F in an adjoint situation (F,F',u,u'), where

u:idc > F' o F

u':F o Ft > id
C'

F is an



are the arrows of adjunction (cf. 2.7) —- then one can equip F' with the structure
of a monoidal functor in such a way that the natural isomorphisms y, u' are
monoidal natural isomorphisms. Thus first specify £':e > F'e' by taking it to

-1

F't
> Fle', As for

H
be the composition e — & F'Fe
g' sF'X' @ F'Y' - F' (X' @' YY),
XI 'Yl

build it in three stages:

¥
1. F'X' @ F'Y' > F'F(F'X' @ F'Y');

pret
2. F'F(F'X' @ F'Y'") — s F'(FF'X' Q' FF'Y");

— H
HX'

3. FF'X' s X!
T
UY'

FF'yY! > Y!

p' & u' (FF'X' ' FF'Y' - X' @ ' Y
X' y!

F'(p' @u' ):F'(FF'X' &' FF'Y') > F' (X' &' ¥Y").
X' y!

If C is monoidal, then QOP is monoidal when equipped with the same @ and e,

taking
- ROP - R—l
LlOP - L—l
20P _ -1



§3. STRICTIFICATION

A strictification of a moroidal category C is a strict momoidal category

which is monoidally equivalent to C.

3.1 EXAMPIE MAT, is a strictification of @Ek

[The equivalence MAT, - FDVEC, constructed in 1.7 is a monoidal functor,

hence is a monoidal equivalence (cf. 2.8).]

3.2 THEOREM Every monoidal category C is monoidally equivalent to a strict

monoidal category (_:S e

thu—

The proof is constructive and best broken up into steps.
Step 1: Iet S be the class of all finite sequences S = (Xl,. ..,xn) of objects

of C, including the empty sequence ff. Given nonempty
S = (X ,...,Xn)

T = (Yl,...,Ym),

let

S % T= (Xl,...,Xn,Yl,...,Ym)

and write

S xd

S=g % S.

Step 2: The claim is that S is the object class of a strict monoidal



category gstr’ i.e., S=0b (—:str’ In any event, the multiplication

#:8 X8 > S
is associative, so we can take A to be the identity. BAlso, @ serves as the unit
and

- RS:S*ﬂ-*S

LS:,Q* 5+85

are the identities.
Step 3: Given S, T, we need to specify Mor(S,T). For this purpose, define

amp I:S>-0bCby T8 =¢e, T({X)) =X, and T(S x (X)) = Ts @ X, thus
I’(Xl,...,xn)

= e E X)) 8. R X,

2)

where all opening parentheses are to the left of X, - Definition:

Mor (S,T) = Mor(rs,IT).

This prescription then gives rise to a category C str with Ob -C-str = S.

——— ——

Step 4: We shall now defire a functor *:gstr x -(;str -> c—:str that serves to

render C_, strict monoidal, the issue being the meaning of

ua u'
uxu' =%(S 7T, 8" > T

€ Mor(S % S', T « T')

=Mor(T(s = S'), T(T x T')).



Bearing in mind that
Mor{S,T) = Mor{I's,TT)

u<—> f

Mor(s',T') = Mor(I's',I'T')

ul S fl'
let u * u' be the camposite

fRr"
T(S+8S') »TSRTS' —> TTRIT > T (T« T"),

where the outer arrows are the obwvious canonical morphisms in C. Accordingly,

with this agreement, gstr

is strict monoidal.

Step 5: It is clear from its very construction that T:C_

+ C is a functor
which, moreover, is full, faithful, and is isomorphism dense. But I'# = e and

there are iscmorphisms

ES,'I‘:FS @TT>T(S » T),

natural in S, T and satisfying MI'y MI‘2 of §2. Therefore I' is monoidal. To finish,

it remains only to quote 2.8.

[Note: It is not necessary to quote 2.8: Simply cbserve that there is an

inclusion functor y:C - gstr and

103




Detail: From

Mor (yI's,8) = Mor(Is,Ts),

let

ag <> idpg,

thus oaS:yFS > S and a:y o I' ~» idC is a monoidal natural isomorphism. ]
-str

3.3 REMARK ILet C, C' be monoidal categories -- then each monoidal functor

) ' . . . : .
F:C » C' induces a strict monoidal functor ForrCotr € gpy ad there is a

commmutative diagram

1Q

=<
100 ~—

Here, on an object S,
FStIS= (EX ,-..'Exn)'

while on a morphism u:S -+ T,

FS tru

> (F‘Yl, ces ,FYm)

(FX ,...,F'Xn)

ig that element of Mor (I'FS,IFT) defined by requiring commitativity of the square

TFS > TFT
FI's > FI'T,

Ff




where £ € Mor ('S, T'T) corresponds to u.

[Note: Composition of monoidal functors is preserved by this construction.]

There are five ingredients figuring in the definition of a monoidal category:
8, e, R, L, A. Reeping track of R, L, A in calculations can be annoying and one

way out is to pass fram C to C_, .. But this too has its downside since C_ tr 18

a more complicated entity than C. So, in what follows, we shall stick with C and
determine to what extent R, L, A can be eliminated fram consideration {(i.e., are
identities).

Suppose that

(ﬁf E’ RI LI A)

(', e', R'", L', A")
are monoidal structures on C —— then these structures are deemed isomorphic if 3 a
monoidal equivalence of the form (idC,E,E) between them.

N.B. Therefore £:e' - e is an isomorphism and the

-

- . 1
HX,Y.XQ Y-XQY

are isomorphisms, subject to the coherence conditions of §2.

3.4 REMARK The philosophy is that replacing a given monoidal structure on C

by another isomorphic to it is of no consequence for the underlying mathematics.

3.5 ILEMMA Iet (®, e, R, L, A) be a monoidal structure on C. Suppose given

amap &':0b C x Ob C~0ObC, an object e' € Ob C, an isomorphism £':e » e', and




isomorphisms

XY X R Y,

X, Y

Then there is a unique monoidal structure (®', e', R', L', A') on C such that

(id., &', E'):(C, @', €', R', L', A") » (C, 8, &, R, L, A)

is an isomorphisnm.

PROOF Extend &' to a functor &':C x C » C by the prescription

Y
(X,Y) > ' (X,Y)
2 (£,q) l la' (£,9)
f(xX',Y") . R (X',Y'),
Hxi ,Y'

so R 2R (via Z' € Nat(®,8')).

R'
X' e' — > X

[
—
o)

XQe' <
ide &'

X' (Y& 7)

]

Xe (Yya' 2

(1]

idQE'T

Xe (YR 2)

A!

A

This done, define R',L', A' by the diagrams

Ll
e' ' X > X
E‘T TL
e' X < e ®X
£ @ id

—_— (X' Y) 8 2

e

i
(XR'Y) &2

TE'Qid

> (XQY) @ Z.



3.6 THEOREM ILet (®, e, R, L, A) be a monoidal structure on C. Suppose that
e' is an object isomorphic to e, say £:e' » e — then there is an isomorphic
monoidal structure (', e', R', L', A') on C in which R', L' are identities.

PROOF Bearing in mind 3.5, put

X ¥Y=XRYifX=ze' 2 Y

and
YifX=¢e'
X'y =
_ Xify=e'.
Define
fodt ] - 1]
_le.x RY X8R Y
by stipulating that E)'{ v is to be the identity if X = e' z Y, otherwise let
r
o= = o (id, R &)
M Sl

2} ‘,Y=LY° (gﬁldy).

e

To establish consistency, i.e., that

R o(id @& =1L o {(£8id ),
e! e! e! et

set £' = g"l -- then

ghet

e®Re ——M— > ' 8 e

is an isomorphism and due to the naturality of R, L, the diagrams



R L
e e
e®e —— e efe > g
i 2 1 . 1
E;Qldel lg ldeﬁil l&’
ef e ——— ! e®Re ——> !
R L
e! al

commute. Therefore

R o (id ®¢&) o (' @¢th)
e! e’

R '@ id
e'o(i 1e)

It

1 - Y -
' o R, =¢t' oL (R, =1L)

L' ° (ideﬁg')
=]

=L o (E®id ) o (E£' & &)
e! e’

from which the contention. Finally, by construction (cf. 3.5), R', L' are

identities. E.g.:

R

X,e'

or still,

Ry ® By o (dy @ 8) o idy @ £ = Ry

or still,
Ry © Ry = Ry = Ry = idy.

[Note: If A is the identity and e' is not in the image of ®, then A' is



also the identity. Proof:
e' € {X,Y,Z2} => Ab'(YZ = id

e' ¢ {X,¥,Z} &' £ ImQ = A}'(YZ = AXYZ‘]
3.7 REMARK Take e' = e — then the preceding result implies that by passing
to an isomorphic monoidal structure, it is always possible to arrange that

VXeEObC,

XRe=X=¢e 8 X.

The situation for the associativity constraint is more complicated and it will
be necessary to impose some conditions on C.

Definition: A construct is a pair (C,U), where
U:C > SET

is a faithful functor.

3.8 EXAMPIE Define a functor Q:‘S}E:“I":’P -+ SET as follows: On objects, QX = ZX

£
and on morphisms, Q(A -~ B):0A + OB sends X ¢ A to the inverse image f-l(X) cB., In

this connection, recall that
£
A > B € Mor SETF

means that

id
B >~ A € Mor SET.

Therefore (SETOP,Q) is a construct.
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Let (C,U) be a construct —— then (C,U) is amnestic if a C~isomorphism f is
a C-identity whenever Uf is a SET-identity, i.e., if X,Y € Ob C, if £:X + Y is
an isomorphism, if Uf = id, then X = Y and f = id.

Iet (C,U) be a construct —- then (C,U) is transportable if v C-object X

¢
and every bijection UX +~ S, 3 a C-object Y with UY = S and an isomorphism ¢:X + ¥

such that U® = ¢.

3.9 IEMA If (C,U) is ammestic and transportable, then the pair (Y¥,9) is
wmique.

PROCF Say we have

@Il o,
Yl e G Y2.
Then ¢, © @Il is an iscmorphism and
-1 -1 -1 _ .
Ud, © &7) = US, © UG," = ¢ o ¢ ~ = id.
_ _ e N _
Therefore by ammesticity, ¥, =Y, and @2 ° &" = id => <I>2 = <I>l.

3.10 EXAMPLE The construct %{ is amnestic and transportable but the

full subcategory of FDVEC, whose objects are the ]_c_n, while ammestic, is not trans-—

portable.

3.11 LIEMMA If 7:SET - SET is an isomorphism and if (C,U) is amestic and

transportable, then (C,z ¢ U) is amestic and transportable.
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3.12 THEOREM Suppose that (C,U) is ammestic and transportable. Let
(®, e, R, L, A) be a monoidal structure on C -- then there is an isomorphic strict

monoidal structure (', e, R', L', A') on C.

The proof is lengthy, the point of departure being 3.2:

I1:951::1: > <

Y:g * gstrl

where

10

-str

Step 1: Given S € Ob C r? consider

{s} x UT'S € Ob SET.
Then the projection

s

{s} x urs > Uur's

is bijective, so there exists a unique [S] € Ob C with U[S] = {S} x UI'S and a

umnique isomorphism HS: [8] = TS such that UI{S = Tge

Step 2: There is a functor Ezgstr + C which on cbjects is the prescription

TS = [s]

and on morphisms is dictated by requiring that 1 € Nat(f,I‘) :
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s > 'S
fu l J Tu
fT > ',
HT

Step 3: fzgstr > C is an equivalence of categories (I:T » T being a natural

isomorphism). In addition, T is injective on objects.

Step 4: Define a functor y:C - Cpp On Objects by taking YX = vX if X is

not in the image of T and letting v[S] = S otherwise. Next, define
\)X:WX + X
by

H[YX}
[yX] ————> TyX = X

if X is not in the image of T and let Vg = idx if X = [8] for some S. Since T is

fully faithful, we can then define Y on morphisms by requiring that v:T o y > id,
be a natural iscomorphism.

Step 5: The arrow

=31

u = id:idc + Y o
=str

is a natural isomorphism.

Step 6: The data (T,y,u,v) is an ad-joint situation:

(V) o (Tp) = id_
T (cf. 2.6).

id_

Y

I

(Yo ° (uy)



Fxplicated:
T v e fus = id_
I's s
?vx ey =1id .
_ X X
Claim:
T v =id_ T Tug=id
s s s
&
?vxf id_ u_ o=1id .
. YX . ¥X YX
But
Ts=[8] =>v_ =id_ (= Tug) -
Ts I's

As for the relation

Y =id_ (E ),
XX

since T is faithful, it suffices to show that

Tyv, = id_
X X

for all X € Ob C. But from the definitions, v £ € Mor(TyX,X), there is a

commuitative diagram

e _
IyI'yX > T'vyX
v v
X l l X
W ————> X .
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Now take £ = v, to get

TYX
or still,
Tyv, = v_
X TYX
or still,
Tyv, = id_ ,
X TYX
as desired.

Step 7: The adjoint situation (T,Y,u,v) is an adjoint equivalence of cate-
gories (u and v are natural isomorphisms).

Step 8: Put

Xe'y

TEX = YY)
and let e' = T@ -- then

Y(X &' Y) = YT(YX * YY)

YX % YY

and
Ye' = YTg = 4.

Step 9: We have

XQ (Y& 2) = T(YX » Y(Y & 7))

T(YX * YY % YZ)

il

T(Y(X &' Y) * YZ)

1

X &' Y ' 2,
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so A' = id will work.

Step 10: I1et

-

TYX + X.

Then this makes sense:

XQ' e =THX = YyIB) = THX » #) = TyX
e' @' X' =T(JT8 » ¥X) = T(# * YX) = TYyX.
Furthermore, the diagram
A' = id
XQ' e' 8 Y XR'e' 8 Y
id &' L' l lR‘ f' id
Xe'yY X Q'Y

commites. To see this, note first that
X@' e' @ Y =T(YX * ye' * YY)

=T(YX * § * YY)

T(X * ¥Y)

X'y,

And the arrows

XR'e' @'Y >XQ' Y

¥

T R @' id,

idXQ'LJI.XQ' e'RTY>Xe'y
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are identities. E.qg.:
R, @' id, = T(yv, * ¥ id)

T(id = id )
%4 YY

=T@Ea_ )
YX * yY

= id_ _ _
' (yX * vY)

=id .
Xe'y

Step 11: It is clear that
y:(C,@'e' ,R',L',A") > (Cy s*/¥,R,L,A)
is a monoidal equivalence {(cf. 2.8), thus the same is true of

Ty: (c,8',e',R",L',A") > (C,2,e,R,L,A) (cf. 2.3).

But there is a monoidal natural isomorphism Ty = idcz v X €0bC,

n:1 Y
ox X o mx X k.

Therefore the monoidal structure (8',e',R',L',A") is isomorphic to (8,e,R,L,A).

Step 12: To complete the proof, it is necessary to fine tune (®',e',R',L',A'")
by an application of 3.6:
(Q' ,e| ,R! ,L' ’AI) = (@! ¥ ’e| 1 ,R' ¥ ,L‘ ¥ ,A‘ l) .
choosing e'' = e (cf. 1.10). So, R'', L'' are identities. However, by construction,
A' is the identity, thus if e is not in the image of &', then A'' is also the

identity. To ensure that e is not in the image of f', it is enough that e is not
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in the image of T. Suppose it were —- then

Ue = {S} xUI'S (3 S€0bC, ).

Now use 3.1l and replace U by U, where ¢ has the property that ¢Ue is not a

cartesian product of two sets.

3.13 EXAMPLE Consider the construct %{ — then the failure of the

tensor product to be associative "on the nose" is an artifact of its definition
by a universal property which determines it only up to isomorphism. While the
usual procedures do not lead to an associative tensor product, the lesson to be

drawn from 3.12 is that it is possible to find a tensor product on FDVEC, such that

T X® k=X

k® X=X



§84. SYMMETRY

A symmetry for a monoidal category C is a natural isomorphism v, where

TX,Y=X RY»YRX,

such that

T ° T XY >XRQY

¥, X 'X,Y

is the identity, = e 7, , and the diagram
X,e

A T
X8Q (Y R7Z) > (XQY)R2Z > Z8 (XRY)

meTl lA

X (ZY) > XRZ)RY > (2 QX)) 8Y
A T & id

commutes. A symmetric monoidal category is a monoidal category C endowed with a

symretry 7. A nmonoidal category can have more than one symmetry (or none at all).
[Note: The "coherency" principle then asserts that "all" diagrams built up
from instances of R, I, A, T (or their inverses), and id by repeated application
of ® necessarily cammite. ]
N.B. ILet

£:CxC>CxC

be the interchange — then T is an isamorphism and 7:2 > & o T is a natural iso-
morphism.

E.g.: VEC, and HILB are symmetric monoidal.

4.1 EXAMPLE Let C*ALG be the category whose objects are the C*-algebras




and whose morphisms are the *~homomorphisms -~ then under the minimal tensor

product or the maximal tensor product, C*ALG is a symmetric monoidal category.

4.2 EXAMPLE Let CHX be the category of chain complexes of abelian groups
and chain maps — then CHX is monoidal: Take X 8 Y to be the tensor product and

lete={en}bethechajncomplexdefinedbye0=_z_anden=0 (n # 0). Further-

X = {X - X
{p} X € X,
more, if and if , then the assignment
Y= 1Y ey
{q} y q

XY->¥YRX

is a symmetry for CHX.
Xy ~> (—1)pq (v & x)

4.3 REMARK In the strict situation, matters reduce to the relations

T -

xev,z- Ux,z®id)eGdg @71, ).
[Note: Therefore

xev,z" vezx°® Tzexy - idl

4.4 EXAMPLE Iet $ be the permutation category introduced in 1.6 -- then $

is symmetric monoidal. To establish this, one must exhibit isamorphisms

Tn’m EMorin®m, m&n)

= P



fulfilling the various conditions. Definition:

with the understanding that Tn’0 = ldn = Torn, thus
T o T = 1d .
m,n n,m n8m

As for the remaining details, it is simplest to work with permutation matrices,

so take n > 0, m > 0, and note that

0 I
m
T = .
n,m
T 0
— n —
Then
(Tn,p e J.dm)o(ldn [+ Tm’p)
0 I 0o oI 0 0o
P n
= I 0 0 0 0 I
n P
0 0 I 0 T 0
-0 0 T
P
- In 0 0 - Tn f m,p.
0 I 0
m




[Note:
VGESn
VTESm,
0 Im s) 0 0 T
In 0 B ‘0 T o) 0
ToT 0 -0 I
m
0 o} I 0 .

Therefore naturality is manifest, i.e.,

Tnmo (foQ7T) = (1t @) OTnm.l

r H

Iet C, C' be symmetric monoidal categories —- then a symmetric monoidal

functor is a monoidal functor (F,&,E5) such that the diagram

“X,Y
FXQ FY — S F(XQY)
4
TFX,FY Fry v
FY &' FX — > F(Y @ X)
%y, %

cammutes.
N.B. The monoidal natural transformations between symmetric monoidal functors

are, by definition, "symmetric monoidal" (i.e., no further conditions are imposed



that reflect the presence of a symmetry).

8,71

[Note: Therefore the subcategory [C,C'] of [_(_I,L_‘:‘]Q whose objects are the

symmetric monoidal natural transformations is, by definition, a full subcategory.]

4.5 EXAMPIE Recall that $n has the following presentation: It is generated

by 0ys...,0 _; subject to the relations

2 —“-“- —— — . -
0; = 1r 030,105 = 05903057+ 9305 = 040; (|i-3[ > 1).

Suppose now that C is symmetric strict monoidal and fix X € Ob C. Define auto-
morphisms Hl,...,ﬂn—l of XQl by

i, ,
I = ldxﬂ(i—«l) 5] TX'X [+ ldxﬂ(n-i~l) .

Then there exists a unique homomorphism

I[Xn:Sn - Aut Xﬁl

of groups such that

i

Hﬁ(csi) =1

(i = l,...,n*l).

Caombining the Hr}f then leads to a symmetric monoidal functor F:$ -~ C such that

Fn = X,

4.6 ILEMMA Iet F:C - C' be a monoidal equivalence. Assume: C is symmetric —
then the symmetry T on C can be transferred to a symmetry 7' on C' in such a way
as to render F symretric monoidal.

[Define TFX,FY by
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FX®" FY —» FX2Y) —> F(Y 2 X) —— FY &' FX

and recall that F has a representative image (cf. 2.5).]

4.7 EXAMPIE If C is symmwetric monoidal, then C, . is symmetric monoidal

——

and y:C » g’st.r is a symmetric monoidal equivalence.

4.8 LEMMA Let C, C' be symmetric monoidal and let (F,F',yu,u') be an adjoint
equivalence. Assume: F is symmetric monoidal -- then F' is symmetric monoidal

(cf. 2.9).




85. DUALITY

Let C be a monoidal category — then each X € Ob C defines functors
— 8 X:C > C
X8 —C~C.

Definition: C is

left closed

right closed

if vX€0Obg,

— ® X admits a right adjoint, denoted lhom(X,—)

X 8 — admits a right adjoint, denoted rhom (X,—).

[Note: C is closed if it is both left closed and right closed.]
So:

C left closed => Mor(Y f X,Z) = Mor(Y,lhom(X,2))

C right closed => Mor(X ® Y,2) = Mor(Y,rhom(X,Z2))

for all Y¥,Z2 € Ob C.

N.B. The functor

l'w 1hom(X,—)
rhom(X,~—)

~ left

is called the internal hom functor attached o X.

_ right



5.1 REMARK If C is symmetric monoidal, then left and right internal homs

are naturally isomorphic and if C is left or right closed, then C is closed.

5.2 EXAMPLE Given a commutative ring k, let MOD, be the category whose
objects are the left k-modules and whose morphisms are the k-linear maps -- then

4@3( is symmetric monoidal. Moreover, MOD, is closed and

Yhom(X,2) = Homk (X,2)
rhom(X,2) = Homk (X,2).
5.3 LEMMA Suppose that C is left closed — then v X € Ob C, the functor

— @ X preserves colimits (being a left adjoint) and the functor lhom(X,—)

preserves limits (being a right adjoint).

5.4 LEMMA Suppose that C is left closed —- then V Z € b C, the cofunctor

lhom{—,2) converts colimits to limits.

PROOF Iet I be a small category, A:I - C a diagram for which c:r.;limI Ai

exists —— then VY € Ob C,
Mor (Y,lhcxn(oolhnI Ai,z})
~ Mor(Y colim__[ Ai,z)

-~ Bbr(coliml (Y & Ai) ,Z)
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llm;[_ Mor(y @ Ai,Z)

u

lJ'mI Mor(Y,ll’mn(Ai,Z))

13

Mor(Y,limI llm(Ai,Z))
=

ll'x:m(colimI Ai,z) = ZLJ'_rnI Hm(Ai,Z).

Iet C be a monoidal category. Given X € Ob C, an object X € ob C is said

to be a left dual of X if 3 morphisms

exzvx 2X+>e

_ nX:e+X@VX

and commutative diagrams

L—l nX@;Ld .
>e X — s, (X2 X)X

-

Xe«—— x8 ('x2X).
R id@ex

R id 8 n
v sVxge—— X V%9 xa 'y

|

e X<«— ('x2x 2 'x
L EXQid




N.B. When C is strict, these diagrams reduce to the relations
(14, & €4) o (ny @ id.) = idy

(e, ®id ) o (id, @ny) =id, .
X VX VX TIX VX

5.5 LEMMA Suppose that YX is a left dual of X — then the functor — @ 'X

is a right adjoint for the functor — & X and the functor VX @ — is a left

adjoint for the functor X & —.

In brief: v ¥,z € Ob C,

Mor(Y & X,Z) ~ Mor(Y,Z & 'X)

Mor (YX @ ¥,2) = Mor(Y,X & Z).

PROOF It will be enough to show that — @ X is a right adjoint for — @ X,

the proof that YX @ — is a left adjoint for X @ — being similar. 5o let
F=—8X

(cf. 2.6)

G=—@a 'X

ard to simplify the writing, take C strict. Define
e Nat(idC,G o F)

Vv € Nat(F o G,idc)



by
n EMr@Wexe Yx)
Mg = 1d; 8 ny
vy € Mor (W @ VX 2 X,W)
_ \)W = idw Q Ex
Consider
(VF) o (Fu).
Thus
((VF) o (Fu))w = (vF)W ° (Fu)w.
And
~ Py € Nat(F,FGF)
()
_ (Fu)W:FW -+~ FGFW
or still,
idw =] My 5] :'LdX
(Fu) W @ X SWRX® 'XeX.
VF € Nat(FGF,F)
(V)
. (\)F)W:F‘GEW -+ W
or still,

idwaidxﬁax

(\)F)wzwaxg"xgx > W e X.




Therefore

(\}F)W o (Fu)w EMriWR X,WweXx
is the conmposition

(id, @ id, @¢e) ° (i, 2n, @ idx)

il

(idg ° id) @ ((id, R ) o (ng & id)))

= idw =] iéx
= id; g x
= idgy
= (dg) -
I.e
(VF) o (Fu) = idF.
The verification that
Gv) o (UG) = idG

is analogous.

5.6 IFMMA A left dual of X, if it exists, is unique up to isomorphism.

PROOF Suppose that

are two left duals of X -~ then the functors



___@vxz

are naturally isomorphic (both being right adjoints for — 2 X), so VW € 0b C,

\
We Xl

13

We 'x,.
Now specialize and take W = e to get

e Xl:eﬁ X

=2

e
1R
3

[Note: Explicated,

. 2
:Ldﬁnx
\'2 \'2
> XlQ(XQ X2)

A

>(v}<:l 2 X @ vx2

slﬂid
X v
———————>eQX2

2-}



5.7 REMARK Suppose that (Vx,ex,nx) is a left dual of X. ILet ¢:'X + 'X'

be an isamorphism and put

ex = £y o ' e id,)

n}'{= (idxﬁcb) ° Ny.

Then the triple (VX',E}’{,nl;{) is a left dual of X.

[Consider first the case when C is strict, thus, e.g.,

(id, @ ef) o (0 @ id))

it

id, @ (g, o (47 @id)) o ((id, @ ¢) ° ny @ id,

idxgexoidxﬂ(d)-lﬁidx) ° (id, @ ¢) @ id, ° n, @ id.

(idxﬁ(b) QidX=idXQ ((bﬁidx)

id, @ e id) o (id, @ ¢) @ id,

i

id, @ (67 @ id) o id @ (o @ idy)

id, @ (47 @id) o (§ @idy)

-id eid,

= id v
X2 XX
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0y 8 o © ny @ iy

= (idX 5] EX) ° (nX ] idx) = idx.
In general, the claim is that idx equals

Ro (id, @e) oA o (nf @id) o L

or still,

Roid @ (e o (47 @id)) o A" o ((id, 8 ¢) o n) @id o L

or still,

Roid e, oid, ® (cp"l@idx) N (id, @ ¢) @idxonxaidxoz,"l.

Here
Atl.xe'x)ex-x0 ('x' 2 %).

So, to complete the verification, one has only to show that the composition

v (id & ¢) @ id y
xe X) X > (X @ 'X') @ax

sX@ ('X' 23%)

ide (o7t e id) .
> X8 (X8X)

is

xe'x) 8x >X e ('X8X.

However, due to the naturality of the associativity constraint, there is a
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comutative diagram

-1
v A v
Xe'x)ex — > x8 (X2 X
(idﬁ(b)ﬁidl Jidgmgid)
X 'x)ex— s x8 (X' 2Xx).
A1

And

ide (b @id) T =id @ (6 F @ id).]

i

A monoidal category C is said to be left autonamous if each object in C

admits a left dual.

N.B. Suppose that C is left autonomous. Given f € Mor (X,Y), define

Yf e mor (Vy,"X) by

id &
nx A" V.
> Y8 (X& X)
A
> (‘vyeax) e 'x
(id @ f) @ id
> ('vey & 'x
€Y®ld y
>e @ 'X
L
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Then the assignment

defines a cofunctor C -+ C.

[Note: The specific form of Ve depends on the choices of VX and VY.]

5.8 REMARK If C is left autonomous and if X,Y € Ob C, then ' (X 8 ¥) is
s . A V.
isomorphic to Y & X.

[We have

Mr('(X 2 Y) 2 W,2) = Mor(W, (X 2 Y) @ )
= Mor(W,X @ (¥ 8 7))
=~ Mor('X @ W,Y @ 2Z)
=Mr('y @ ('x 2 W),2)

Mor ((y @ Vx) @ W,2)

134

=>

Yxey) = Vv e Vx.]

n

5.9 IEMMA Suppose that C is left autonamous — then C is left closed.

PROOF In fact, ¥ X € Cb C,

lhom(X,—) = — @ 'X.

One can also introduce the notion of a right dual X’ of X, where this time
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ey iX B x' > e

g > X' X
subject to the obvious commutativity conditions. Here the functor — 8 X’ is a
left adjoint for the functor — & X and the functor x' @ —is a right adjoint
for the functor X & —.

[Note: If X admits a left dual 'X and a right dual Xv, then in general Yx

and X’ are not isamorphic. On the other hand, it is true that
x)Y = x 2 VX)),
E.g.:

Mor(Y @ ('x)V,2) = Mor(Y,Z & 'X) =~ Mor(Y @ X,7)

“x)Y = x.]

The definition of "right autonomous" is clear and we shall term C autonomous

if it is both left and right autonomous.

5.10 ILEMMA Suppose that C is right autonamous —- then C is right closed.

PROOF In fact, V X € Ob C,

rhan(X,—) = X' 8 — .

5.11 REMARK If C is autonomous, then — 8 — preserves colimits in both

variables.
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Suppose that F:C +~ C' is a monoidal functor. Assume: x' is a right dual

of X — then FX' is a right dual of FX. Proof: Consider the arrows

y = . Fex g-—-l
> F(X R X7) > Fe > e!

FX @' FX

£ an E"l

e' —> Fe > F(X' 8 X) ——— > FX' @' FX.

[Note: Assume that C, C' are right autonamous — then there is an isamorphism
AGFX > (FR),

namely the composition

L
FXV > e' & X'
n & id v v
> ((FX) &' FX) &' FX
A-l \'2 v
—> (FX} Q' (FX ' FX)
ide & v v
_— (FX) ' FX 8 X))
id @ Fe v
> (FX) 8' Fe
ideg T
—_——> (FX} &' e'
R
> (FX) Y,

and the diagram
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idQAX

FX &' FX > FX &' (FX)"

4]
M

FXRX) — 5 et

commites. |

N.B. One can, of course, work equally well with left duals.

5.12 ILEMA et
(F,&,5)
(G,9,0)
be monoidal functors and let a:F -+ G be a monoidal natural transformation. Assume:
The source C of F and G is autonomous — then o is a monoidal natural isomorphism.

PROOF The claim is that v X € Ob C,

O(X:FX+G}{

is an isomorphism. Fram the above, Fx' (GXV) is a right dual of FX (GX) or still,
FX (GX) is a left dual of FX’ (GXV) . This said, form

o V:FXV -> GXV
X

and consider

V(oc V) :GX » FX.
X
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[Note: Accordingly, if C is autonomous, then the metacategory [(_2‘,(_:']ﬁ is

a groupoid.]

Suppose that C is symmetric monoidal and left autonomous -~- then C is right
autonomous, hence C is autonomous. Proof: Given X € Ob C, take x' = 'X and

define morphisms

XX +e

e>XxX @X%

5.13 EXAaMPLE FDVECT, is autonomous. In fact, FDVECT, is symmetric monoidal,

so it suffices to set up a left duality. Thus given X, let 'X be its dual and define

et X R X >k

e (Arx) = Ax).
On the other hand, there is a canonical isomorphism

$:Hom(X,X) - Hom(k, X @ X)

and we let

Ny = d>(idX) .
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[Note: An object X in @k admits a left dual iff it is finite dimensional.]

5.14 EXAMPLE The full subcategory of MoD, whose objects are finitely

generated projective is autonomous (cf. 5.2).
Assume still that C is symmetric monoidal and left autonamous.

5.15 LEMMA There is a monoidal natural isomorphism

xe ('xa ''x

v

xe 'x) e 'x

v

T & id
Mxex e "'x

'

e & id
YWy

VA

N.B. Iet

8,:X » vvX
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be the arrow constructed above — then

-~

O

St
I

(S

But here X' = 'X, so

S (cf. 5.12).

[Note: To make sense of this, recall that

"

X is a left dual of X

W% is a left dual of

=>

\A'%

x’y.



§6. TWISTS

Let C be symmetric monoidal and left autonomous — then a twist Q is a

monoidal natural isomorphism of the identity functor idc such that v X € 0b C,

(ngidv)on)(: (idXQQV) ° Ny-
X X

[Note: Tacitly, idC is taken to be strict (§ = id, £ = id), thus from the
definitions
QX@‘irf:%(Qgﬁc“_’mdﬂezlde’]
To consolidate the terminology, a symmetric monoidal C which is left autono-

mous and has a twist Q will be referred to as a ribbon category.

N.B. The choice QX = 1dx is permissible, in which case C is said to be even.

It was pointed out near the end of §5 that an even ribbon category is right
autonomous. This fact is true in general. Proof: Given X € Ob C, take x'="'x

and define morphisms
—_ \'
XX e

e >X 88X



6.1 ILEMMA In the presence of a twist @,

X~ ' ("x).

PROOF Consider the composition

R—l
X >X8e
2n
Q’x VX A\ Vv,V
>XR (X8 (X))
A
> xe 'x) e ('
TX VXQJ.d
¥
> ('xex e ('x)
exﬁld Yy
>e® (X)
L
SV (V%)
E.g.:
Ve: ve@e zveﬁv(ve) = V(Veﬁe) z\'l(ve)z e.

6.2 LEMMA In the presence of a twist (2, the left and right dual of every

morphism £:X > Y agree: VE= £,

1et C be a ribbon category. Given f € Mor(X,X), define the trace of f by



tr (f) = ¢, 0T 6 & id o {(fRid ) o n..
X X x,Vx QX VX VX X

[Note:

tr (f) € Mor(e,e) (= M(Q)).]

6.3 LEMMA We have

v
1. trx(f) = trvx( £);

2. trx(g o f) = trY(f o g) (£:X Y, g:¥Y » X);

3. (fl 2 f2) = t:r_‘x (fl) trx (f

tr. ).
X X, 1 5 2

dim X = trx(idx),
the dimension of X.
S0, on the basis of 6.3,
dim X = dim 'X
and

dim (X 8 ¥) = (dim X) (dim Y).

N.B. Take Q = id —- then the categorical dimension of X is the arrow

6.4 EXAMPLE Consider FDVEC, (viewed as an even ribbon category (cf. 5.13)) —

then the trace of f:X » X is the composition



f & id T €
Yx %,'x X

>XQ X — > X@'Xx— > Vxex

§ > k.

Therefore the abstract definition of trx(f) is the usual one. In particular:

dim X = (dj.mk X)]'k‘

B.g.:

dim k" = nl,

the distinction between n € N and nlk being potentially essential if k has non-

zero characteristic.

6.5 REMARK While evident, it is important to keep in mind that the defin-
itions of trace and dimension depend on all the underlying assumptions, viz. that

our monoidal C is symmetric, left autonamous, and has a twist Q.

Suppose that C, C' are ribbon categories with respective twists @, Q' —-

then a symmetric monoidal functor F:C -+ C' is twist preserving if v X € Ob C,

Fy = Q-

6.6 LEMMA If F:C »C' is twist preserving, then v f € Mor(X,X), the diagram

g
e! — ——> Fe
£r (FE) l l Ftr, (£)
e' — 5 Fe
£

commites.



Matters are invariably simpler if C is a strict ribbon category, which will
be the underlying supposition in 6.7 - 6.9 below.

6.7 IFMMA The arrows

e »+ e
ne

v
£ s e>re

are mutually inverse isomorphisms.

PROOF Take X = e in the relation

(idxﬁex) a (nxﬁidx) =idX
to see that

o = id .
€e ° e T Y%

Now fix an isomorphism ¢:e - Ve — then

ong o (eg e ¢) = (e ) o (@"l °on,)  (cf. 1.4)

:geone=ld



6.8 LEMMA V s € M(C),

PROOF In fact,

tr, (s)

It

[Note: Therefore

6.9 LEMMA V X € Ob C,

PROOF The compositions

°(s®idv) ° 7

€
e e
e

(ide ® ee) (s & :I.de ® 1dve) (J_de [+ ne)

s 8 (ee ° ne)
s@lde

s.

dim e

i

tr, (ide) = ide.]

>sX@'x— . xa'x

>XQ'X— . xe'Xx



are equal, thus the compositions

id & n id@ﬂxﬁid
Vv \ X Vv A2 A\ v
X= Xe —e> X X B X > XQXRKR X
id@nx id @ id @ @,
_ Yx="x@e_— s Yxexe'x X, xeaxe'x
are equal. Postcompose with ey id, - then the first line gives VQX, while
X

the second line is

e, ® id oid @id, Q0 o id: @ n
X VX VX dX VX VX X
or still,
e, R id o id /O oid &n
X vVx k@ x  'x vy X
or still,
(id &8 ) o (e, Rid ) o id 8 n
e VX X VX vX X
or still,

6.10 REMARK ILet C be a ribbon category -- then this structure can be

transferred to gstr' That the symmetry 7 passes to a symmetry Totr of gstr was
noted already in 4.6. As for the left duality, a generic element of gstr is a
finite seguence (Xl,. .e 'Xn) and

v v v
(X ,...,Xn) = (Xn,“., Xl),

where € and n are defined in the obvious way. It is also clear that the twist



on C can be brought over to a twist on gstr‘ Accordingly, v:C ~+ gstr is a

symretric monoidal equivalence which is twist preserving, i.e., y:C - gstr is

a ribbon equivalence.



§7. *-CATEGORIES

Iet k be a commutative ring -- then a category C is k-enriched if v X,Y € Ob C,

Mor (X,Y) is a k-module and if the composition of morphisms is k-bilinear. A

functor F between k-enriched categories is k-linear if the induced maps

Mor(X,Y) - Mor (FX,FY}
are homomorphisms of k-modules.
[Note: If C is k-enriched and monoidal, then C x C is k-enriched and the
functor 8:C x C ~ C is assumed to be k-bilinear.]

N.B. BAn object X in a k-enriched category C is irreducible if Mor(X,X) = kid,.

7.1 EXAMPLE Suppose that C is Z-enriched and monoidal. Put

k= M(©).

Then k is a unital commtative ring (cf. 1.4) and C is k-enriched as a monoidal
category (cf. 1.5).

[Note: Suppose in addition that C is a ribbon category —— then vV X € Ob C,
trX:IVbr(X,X) +k

is k-linear and v X,Y € Ob C, the map
T Mor(X,Y) 2 Mor (Y,X) » k

I f®g+trx(g°f)

is k-bilinear.]



A x—category is a pair (C,*}, where C is a category enriched over the field
of complex numbers and
#:C > C
is an involutive, identity on objects, positive cofunctor. Spelled out:
v X,Y € Cb C, Mor{X,Y) is a complex vector space, composition
Mor (X,Y) % Mor(Y,%} - Mor(X,7)

is complex bilinear,

*:Mor (X,Y) - Mor (Y,X)
subject to

(zf + wg)* = zf* + wg*

and

f** = £

(g e £)* = £* o g*.
Finally, the requirement that * be positive means:
f* o £ =0 =>£f = 0.

[Note: v X € Gb C, we have

1dy

It

id, o idx
idg* o idx
(id, o id%)*
= iagt

id,.]

il



N.B. A monoidal *-category is a *-category which is monoidal with

(fERg)* = £* @ g*
for all f,q.

[Note: A symmetric monoidal *-category is a monoidal *-category such that

vV X,Y € Ob C,
g,y XRY Y @X

is unitary (see below).]

7.2 EXAMPLE FDHILB is a symmetric monoidal *—-category.

[Note: For the record, FDHIIB is a construct. As such, it is ammestic and
transportable, thus there is no loss of generality in assuming that its monoidal

structure is strict (cf. 3.12).]

7.3 REMARK Iet A be a complex *—-algebra -- then the involution is positive

ifA* o A=0=>A=0 (A € AY. To illustrate, take A=M2(C) and consider the

involutions
_ — _ _
a a 1 a a.
11 12 11 21
*
A l = =
_ % %2 _ % %22
_ %, _ -
a1 212 ) 215
*
a2-= =
a3 ) a1 a1




Then *y is positive but * is not positive since
— —_ % . — — —
0 1 |2 0 1 0 0
0 0 0 0 0 0 .

[Note: It is wellknown that if A is finite dimensional and if the involution

is positive, then A is a semisimple algebra, hence "is" a multimatrix algebra.]

Let £:X +~ Y be a morphism in a *—category C —— then f is an isometry if

f*of=idxandfisunitaxyifbothfandf*amiscmetries.

Iet F be a C-linear functor between *-categories ~— then F is x-preserving

if v £, F(f*) = (FE)*.
N.B. Suppose that F is a x—preserving monoidal functor between monoidal

*-categories — then F is unitary if the isomorphisms f:e' - Fe and

= . 1
“X,Y'Fx ' FY + F(X R Y)

are unitary.

Let p:X -+ X be a morphism in a *—-category C -- then p is a projection if
p=p*andp °p=p.

[Note: If g:Y + X is an isametry, then g o g*:X + X is a projection.]

Iet C be a *—category and let X,Y € Ob C —— then X is a subobject of Y if
3 an isometry £ € Mor(X,Y).

Definition: C has subobjects if for any Y € Ob C and any projection

q € Mor(Y,Y), 3 X € Ob C and an isametry £ € Mor(X,Y) such that £ o £* = q.

Definition: C has direct sums if for all X,Y € b C, 3 Z € Gb C and isometries

f € Mor({X,2), g € Mr(Y,2) such that £ ¢ £* + g o g* = idz.



5.

E.g.: FDHILB has subobjects and direct sums.

7.4 RAPPEL A category C is essentially small if C is equivalent to a small

category.

Suppose that C is a *-category which is essentially small -- then C is
semisimple if the following conditions are met:

$8;: VXY € ObC

dim Mor(X,Y) < .

SS,: C has subobjects and direct sums.
C has a zero object.

N.B. A monoidal x-category is semisimple if it is semisimple as a *—category

and if in addition, e is irreducible.

7.5 EXAMPLE FDHILB is a semisimple strict monoidal *—category (cf. 7.2).

7.6 LEMMA Suppose that C is a semisimple *—category —- then every nonzero
object in C is a finite direct sum of irreducible objects.

[VX€ObC, Mr(X,X) is a finite dimensional complex *-algebra and the
involution *:Mor(X,X) = Mor(X,X) is positive (cf. 7.3).]

[Note: Conventionally, zero objects are not irreducible.]

Therefore a semisimple *—category is abelian.
Given a semisimple *—category C, denote its set of isamorphism classes of

irreducible dbjects by I, and let {Xi:i € IC} be a set of representatives — then



izg=> Mor(Xi,Xj) = {0}
and V X € Ob C, 3 a finite number of i such that
Mor (X, ,X) = {0},

thereby defining Ix c IC'

7.7 REMARK Vv i € Ix' Mor (Xi,x} ig a finite dimensional Hilbert space with

inner product

<> id, = 9% o Y.
1

7.8 LEMMA Iet C, C' be semisimple *—categories and suppose that F:C - C'
ig C-linear —— then F is faithful if FX is nonzero for every irreducible X.

PROOF Consider an f€ Mor(X,Y):Ff = 0, the claim being that f = 0. Fix
orthonormal bases

Sik € Mor(Xi,X) tkk =1,...,dim I\fbr(xi,x))

tjf, £ Mm"(Yj,Y) £=1,...,dm bbr(Yj,Y))

such that
T ¥ s., o s* =i
5 Sik © Sik dy
¥ t., o t*, = id_.
Y jL L dy
Write
f:

idY°foidX



P

* *
S5t 'KOthOfbs'os
r

ik =~ Tik

L c, t., o 8* (Jc.,., €0).
M:lkﬁ:b@ ik ikt

Then for indices m,u,v,

oD
i

F(t;‘w) o Ff « F(Snm)

o ¢

L c, F(t* ., 0 8% og )
M:tkﬂ oV if ik il

—_ * *
l}iﬁ Skt Ty © tme © Stk ° S

= ¢ F(<t_,t_,> i o <g . ,5 > id, )
kenﬂc,ﬁ v’ mé dxm mk " “myp de

v F(idxm)
= S idFXm'
But by assumption, idFXm # 0, thus the cmu\) vanish, so £ = 0.
7.9 LEMA Iet C, C' be semisimple *-categories and suppose that F:C + C'
is C-linear and faithful -- then F is full iff (a) X € Ob C irreducible =>

FX € Ob C' irreducible and (b) X,Y € Ob C irreducible and nonisomorphic =>

FX,FY € Ob C' irreducible and nonisomorphic.



§8. NATURAL TRANSFORMATIONS

et C, C' be *-categories and let F:C ~ C' be a x—preserving functor.

8.1 IFMMA Nat(F,F) is a wmital *~algebra under the following operations:

(ac + bB)y = aoy, + bBy

(@ o By = oy © Byg

(%) 4 = (a)*

Iy = idpy-
[To check the *-condition, observe that v £ € Mor(X,Y),

Ff o (a*)x= Ff o (OLX)*

I

(FEX)* o (og)*

= (o, o FE¥)*

(F£* o aY) *

= (o) * o (PE*)*

I

(OL*)Y o Ff.]

8.2 EXAMPLE Take C' = FDHILB, put Nat, = Nat(F,F), and let Rep_. Na
e = T === =Pgq

be the category whose objects are the finite dimensional *-representations of



NatF and whose morphisms are the intertwining operators. Define a *-preserving
functor
¢:C » Rep £a NatF

as follows:

X = (r,FX) (X€0bQ

¢f = Pf (f Mor(X,Y)).

Here
TI'X(C‘) = OL}('
thus the diagram
Trx(ot)
FX > FX
| E
FY > FY
TrY(oc)

commites, so Ff is an intertwining operator.
[Note: If

U:Rep, Nat F - FDHILB

is the forgetful functor, i.e., U(n,H) = H, then U e & = F.]

8.3 THEOREM Iet C, C' be *—categories and let F:C > C' be a *-preserving

functor. Assume: C is semisimple -- then there is an isomorphism
l}*’F:Nat(F,F) > "{T Mor(FXi,FXi)
leIc

of unital *-algebras.



PROOF The definition of ‘PF is the obvious one:

o %

WF(a)

Yo is injective:

o =O0vieI,=>a =0VXeobC.
1 =

To see this, choose the s,, € Mor(Xi,X) as in the proof of 7.8 — then

ik

Oy = oy o Fidy

]

% o F(s., o g% )

ik Oy ik ° Sik

=3 o F(s..) o F(s* ).
ik %% ik ik

But the diagram

%%,
1
FX, > FX
i i
F(Slk) F(Slk)
FX > FX
Oy

commites, hence

23
il

X F(s ) o o P(s¥ )
ik OcX’i ik

il
[}
.

‘i’F is surjective:

v {o; € Mor(FX;,FX;):i € IC}, 3 o € Nat(F,F) :¥,(a) = Tl" a; .
= i€T,



Thus define o, € Mor (FX,FX) by
Oy = JZJ( F(Si_k) ° oy ° F(s}‘k)
and define oy € Mor (FY,FY) by
= Flt. o ., © * 3.

Then v £ € Mor(X,Y),

Ff o ux=§kF(f o S:Lk) ° 0y °F(Sﬁ:)
= *
iijE F(tj£ o tjf, o fo Sjk) ° a; © F(S?_k)
= l]iﬂ F(tif, ° (t;z o f o SJ'J()) ° oy © F(s}.‘k)
= ﬂiﬁ F(tiﬁ) o F(tig o f o Sik) o Oci o F(S;‘_k)
= 1}§,€ F(til) ° o ° F(t&, o f o Sik) ° F(sik)
= j_k%jﬁ F(tjﬁ) ° aj ° }F‘(tgfZ o f o Six °© s;!’k)
= Zﬁ F(tjf_) o Otj ° F(t;‘z o f)
J
=0y © Ff.
Accordingly, the diagram
Ox
F——7M M > FX
< e
N — s FY

%y



commites, meaning that o € Nat(F,F). And, by construction, Op = 04, SO
i
Yola) = T o,.
F ier, *

[Note: The isomorphism ‘PF depends on the choice of the xi.]

8.4 EXAMPIE Take C' = C and let F = idc (the identity functor) -~ then

Nat(idc,idc) = ']T C.
= - J.EIC

8.5 EXAMPIE Suppose that C is a semisimple monoidal x-category -- then

C x C is a semisimple *-category with

IQ % 9 = If__l X IQ'
And
X. 8X. 2 @&
i 37 ker ljxk’
C
where
N?j = dim Ivbr(Xk,Xi [=] Xj) ,
sO

Mor{(X.  X.,X,.  X,.) = & M 0.
r( 5 5% j) o “( )
ij

10

This said, let

Nat(®,8) = Ivbr(@(Xi,X,), ] (Xi,X.))
et 3 j
1,06l



2

T Mor(x; @ XX @X,)

1,jEIC
= 1T M, (C).
i,j,kEIC N];j
N].(. =z 0
1]

Suppose that C is a semisimple *-category, let F:C - FDHIIB be *-preserving

and put

Ap = ©® B(FX;)
i€ty

which, of course, can be embedded in

B(FX.) (= Nat(F,F)).

Needless to say, AF is a =-algebra, unital iff I is finite. The projections

¢
pi:AF > B(in) are finite dimensional irreducible *-representations. Moreover,

any finite dimensional nondegenerate x-representation of AF is a direct sum of

finite dimensional irreducible *-representations and every finite dimensional

irreducible *-representation is unitarily equivalent to a p; -
Define now a *-preserving functor
2:C ~ Repey Ap

as in 8.2 —— then ¢ is an equivalence of categories iff F is faithful. In fact,

since © and F agree on morphisms, it is clear that

® faithful <=> F faithful.



Assume therefore that F is faithful. From the definitions, Ty, = P; (or still,
i

Voo €A, oy =P; (1)), which is a finite dimensional irreducible *-representation
i

of AF Given an irreducible X € b C, 3 1 € I, and an isomorphism o, X, > X.

C

Since the diagram

P; (o)

E’Xl > FXl
F; Fo;
FX > FX
% (o)

commutes, Ty is also a finite dimensional irreducible x—representation of AF

If 1 2 j, then
Mor (p; ,p4) = {o},
so if X,Y € Ob C are irreducible and nonzero, then
Mor (T, T,) = {o}.
Because ¢ is faithful (and Rep £3 AF is a semisimple *-category), the foregoing

considerations imply that ¢ is full (cf. 7.9). Finally, ¢ has a representative image.
Indeed, as mentioned above, every finite dimensional irreducible *-repregsentation

of AF is unitarily equivalent to a p;.

To recapitulate:

8.6 THEOREM ILet C be a semisimple *-category and let F:C - FDHILB be a

*-preserving functor. Put

iEIC



and define
0:C > Repey Ap

by

il

X = (m,FX) (X €0bC)

of = Ff (f € Mor({X,Y)).

Then & is an equivalence of categories iff F is faithful.

ILet C be a semisimple strict monoidal *-category.

Definition: An embedding functor (for C) is a faithful unitary functor

F:C - FDHILB.

[Note: Recall from §7 that in this context, "wnitary" means that F is a

*-preserving monoidal functor for which the isomorphisms £:e + Fe and

B y'FXRFY > F(X@Y)

are unitary (e = standard unit in FDHILB, & = strict monoidal structure in FDHILB

(c£. 7.5)).]

8.7 LFvMA There is an isomorphism

‘PF:Nat(F,F) > TT B(in)
ier,

of unital *-algebras {cf. 8.3).

8.8 I1EMMA The map

eF:Nat(F,F) + Mor (Fe,Fe) = C



that sends
o = {OLX} to O

is a unital *-homomorphism.

8.9 SCHOLIM The map

EF:]T B(FXi) + C
ieT
¢
that sends
T to e © \y;l(fr)

is a wnital *-homomorphism.

et
£ = EF[AF

Then € is a unital *~homomorphism, the counit.

8.10 LEMMA There is an isomorphism

b4 :Nat(F o &,F °o Q) —— _ﬂ' B(FXi) 2 C B(ij) '

Feg i,jEIC

of unital =-algebras.
PROOF In fact,

Nat(F o &,F ¢ 8)

1

T BEFE, X)) (cf. 8.3)
i, 3T, J

23

T B(EX. &' FX.)
igjer, T J
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1T B(FX;) ®. B(FX.).
ijer, ¢ 3

8.11 LEMMA The map
AF:Nat(F,F) > Nat(F o &,F o R)
that sends

o= {o} © {oy g o)

is a unital *-homomorphism.

8.12 SCHOLIUM The map

A: ] B&FX.) » T BEFX.) 2. BFX.)
r i€l oo, ¢ 3

that sends

-1
T to wF o@® AF ° ?F (T)

is a unital *~homomorphism.

Let
A= AnlAg.
Then A is a unital *-homomorphism, the coproduct.
Iet
- ™y tAn > B(H))
Ty iAn > BlH,)

be nondegenerate *-representations of AF on finite dimensional Hilbert spaces



11.

(the zero representation is a possibility) - then we can form

T Q Tr2:AF QC AF > B(Hl) QC B(Hz) = B(Hl e Hz) .
Since

An B A = i,e;EICB(EXi) 8¢ B(FX),

it follows that m, & 7, admits a wnique extension to a unital *-homomorphism

1 2

T @, |1 BEX,) & B(FX,) > By 8 H,).
1,3€IC

This being so, put
TrlXTr2=TrlQ172 o A,

Then m, X 7

1 5 is a nondegenerate *-representation of % on the finite dimensional

Hilbert space #; 8 H,.
8.13 IEvMMA The data (x,g,...) is a monoidal structure on Repfd AF

Therefore Rep. 4 AF is a semisimple monoidal x-category (the counit € is the

irreducible unit).

8.14 THEOREM Iet C be a semisimple strict monoidal *—category and let

F:C - FDHTLB



12,

be an embedding functor. Put

AF= ® B(FXi)
iEIg

and define
:C > Repey Ap
by

X

i

(TrX,FX) (X € 0b C)

of

Ff (f € Mor(X,Y)).

Then ¢ is a monoidal equivalence.
PROOF By hypothesis, F is faithful, hence ¢ is an equivalence of categories
(cf. 8.6). So, in view of 2.8, it suffices to show that ¢ is monoidal. There

are two points. First

de = (ﬂe,Fe)
andVaEAF, the diagram
e (a)
C —> €
T}
Fe —————> Fe
Tre(a)

commutes, i.e., £ intertwines ¢ and LA Next, given X,Y € Ob C, consider

X x §Y = (TrXXTr

gr FX @ FY)

PXayY) = (WX@Y’ FXRY)).

1

B yFX@FY > FX8Y)
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is an intertwining operator: V o € AF,

°X,Y () o

o (my x m,) ()

T Tx ey “X,Y

The interchange O:AF QC AF > AF QC AF (o(x 8 B) = B R 0) is a nondegenerate
*»~homomorphism, thus has a unique extension to an involutive *—automorphism

o: T[ B(FX;) & B(FX,) > T BEX,) & B(FX,) .

J'.,jEIC i,.jEIC
Iet
AP = 5 o A
Then AF is said to be cocommutative if A = AOP.

8.15 IEMMA Suppose that AF is cocommutative -- then

v € Ob Repey A
_ (1T2,H2)
the diagram
N
H. H
172
@i, > Hy @ H)
Tl'l X T]"2 l l "ﬂ'z X ’ﬂ'l
H}_ 2 H2 > H'2 e Hl
HoH
172

commites.
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to T and note that

PROOF Abbreviate T
—_— 1,2

Hy o H

172

vTe [[ B(FX) &
lJEI

CB(FX D

we have
(m Q Ty Yo (T) = 2,1 (1T > )(T)Tl 5°

So, Vo € AFr
Tlrz(ﬂl x 1,) (a)
= Tl,Z(W) (8(a))
=1, 8y 0¥ )
- Tl,z(m) (G (A ())
=Ty oTp,1(my 8T (M) Ty
= (1, @ ™)) BTy ,

= (’ﬂ'z % ‘Hl) (a:)‘rl’z.

Thus, if AF is cocommitative, then AF is a semisimple symmetric monoidal

*~Category.

8.16 REMARK Assume further that the category C is symmetric and that the
embedding functor

F:C - FDHILB



15.

is symretric monoidal —- then A is cocommutative and ¢:C -+ Rep. AF is a symmetric

monoidal equivalence.



§9. CONJUGATES

Suppose that C is a strict monoidal *-category which is left autonomous.

put X' = X — then
exz"x 2X e

nxze ~>XQVX

e§:e—>vxax

*:X Q@ 'X » e

S

n}’E:X 2 X »e
cke » xv ® X.
X

And
(idx 2 EX) ° (nx e idX) = idX

(8X ] idv ) o (idv 2 nx) = idv

X X X

(n}’& 2 idx) ° (idX ® E}‘E) = idX

(id @ n*) o (ex g id )} = id .
Xv X X Xv Xv

I.e.: The left duality (VX,e ) automatically leads to a right duality

x' %

v
(X fn;{r E;E) .



Now assume in addition that C is symmetric (hence that the Ty¢ y are unitary)
’

then the left duality ('X,e,,ny

) gives rise to another right duality, viz.
(Xv,e o T T °

P ).
%% x,Yx

Ny

9.1 COHERENCY HYPOTHESIS V X € Ob C,

[Note: The asymmetry is only apparent. For

Ny = v X

In the presence of 9.1, let




thus
- reie > Xex
_ Exze +X QX
and
- (}E,r;;,?:x) is a left duality
()?,??i,rx) is a right duality.
Therefore
— . N - . Iy
(1dX %] rX) ° (rx 2 J.dX) = 1dx
(rx@id ) o (id_ @r ) = id_
2R x X %
R "‘* ) 3 = .
(rX 2] ldX) ° {1dX ® rx) ].dX
(id_ R r¥) o (r, ® id ) = id_.
_ g X X X X
The relations
— 3 * o - . = *
(:.dX 5] rx) (1:‘X R :de) ldX
(id__ Qr*) o (r, 8 id ) = id_
X X X X X

are called the conjugate equations, the triple

N.B. The conjugate equations imply that

(f}"& L] idX) ° (idx 4 rx)

(r*@id ) o (id ® r.)

()?,rx,fx) being a conjugate for X.

idy

id .

e



Having made these points, matters can be turned around. So start with a

symmetric strict monoidal *—category C -— then C has conjugates if one can assign

to each X € Ob C an object X and a morphism

rx:eéiﬁx

such that the triple (;(,rxfx) satisfies the conjugate equations (here, of course,

Y. =T °or.).
X %,X X

E.g.: FDHILB has conjugates.

9.2 REMARK If C has conjugates, then C is left autonomous (consider ()?,r;(,?x))

and right autonomous (consider (i,f}’g,rx) ). Moreover, the coherency hypothesis is

3 - *y % — 3
in force: (rx) rx, while

9.3 LEMMA Suppose that C has conjugates.
e Under the identification

Mor(X f Y,Z) = Mor(Y,X ® 2),
the arrows

f+ld§®f°rxﬁldY

-* * o 3
~ g—rrxﬁldz 1dXQg
are mutually inverse.
e Under the identification

Mor (Y 8 X,2) = Mor(Y,z @ X),



the arrows
f**f@ld}_zo:l.dyﬁrx

g ~id, @1k o g®id

are mutually inverse.

E.g.: VXEObC,

Mor (X,X) = Mor(e,X & X).

9.4 ILEMA If
(X,rx,rx)

X! ,r}'(,f}'()

are conjugates for X, then

r*@id o id @ r! € Mor(X,X")
X }‘-(' }—{ X

is unitary.
PROOF Put

U=r*x@id o id @ r!
X 3 3 X

(=id_ @r* e r!' @id ...).
X' X X X

Then the claim is that

U o U* = id
}-('
U* o U= 1id .

b




And for this,

it will be enough to consider U o U*.

UoUt=rt@id o id_@
X X

So write

- .
rXOU

=r*@id o (id @ r! o U* @ id )
= X e

X X' X
—- : * oy |
rxﬁld}_z‘oU @rx
=r§®id_ o {U* @ id _ o id_
X! X e X X'
= r* @ id
X )-Z,
o (rp*@id_ o id ®r @id _
X X! XeXx
o id @ r!
g X
=r* @ id
X }'E'
o (rp*@id_oid er @id _
X X' X e X'
oid @ r!
}'{'v
=r* @ id
X 2t
o (rp*@id_@id _ oid er,eid
X X QX X!
oid ®@r!
}-(9

- . 'x . .
rxﬁld_ orx ® id 2 1id

X"

X XeX



oid er,®id _ oid @r,
X X® X' X!

— % o 2 VE o s
id, @ (rXQ 1d_.) °re* @ id

X Xexex
cid er @id _ oid_ er)
X' X R X' X'
= pt%k * i
ry @rxﬁldi‘
°id_ er, @id oid_ er)
X' X QX' X
=rg*®id_ o id_ @ rf 8 id_
X' Xrex X'
°id_ @r, @id °id_  @ry
X XeXx X
=r)* 8 id
X b
o (id_ @ryeid_  cid_ er,eid _)
X'ex X X X QX
id er!
o )_{' e
= r'* @ id
X i'

o (id @ (id, @r*) &id ¢ id & (r, @id,) @ id )
L R S 2

: g |
o id @ Ty



°(id_ °id_ @ ((dy ®@r}) ®id_ o (r, @ id) @ id_)

xl Xl Xl X'
oid Q1!
g X
=r!* & id
X >_<'

o (id_ ® (U4, @x}) ° (ry ®id)) @ id_ o id_

e X X!
oid ®Qr!
R

=r'* @i o (id @ id, & id oid @r!

X Z 3t dX }"(-) 3 X
= re* @id_ e id_ _ °id er;

X! X*exeXx X!

=r!'*@id o id & r!

X }—{, 3 X

= id .
}'El

[Note: Evidently,

(U@ idX) ° Iy

all
I

(id, @ U) © Ex.]

Conjugates are therefore determined up to "unitary equivalence".

Put

Qx=r§@i,dx<>id§®TX'Xch@idx.



S?.X € Mor (X,X)
is unitary and it can be verified by computation that the assignment X - Qx

defines a twist Q. This fact, however, is a trivial consequence of the following
resul t.

9.5 ILEMA vV X € Ob C,
O = idx.
PROCF We have
(r} @ idy) o (id, @ ry) = id,.
On the other hand, there is a commtative diagram

T

e,X
X=egX > X Qe =X
rxﬁldx J.dxﬁrx
XRXeX >XQXeX,
T-—-
XX, X
SO
-.* . .
(rxﬁldx) ° (1dX®rX)
=E*Qi o T o r, 8 i
x ® % Texx X %
==_'* . - - 3
erldXOT_ @ldxold—QTX,XorxgldX‘
X, X X
And

rieid o 7_ @id,

X,X
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= (TX,X °o ry)* @ idX ° T}-(,x ? id,
= r)’z ° Tx,i 4 idX ° T}_(’X 2 ldx

= r}’i ° TX,}? ° T}_{'x 2 idx ° idx

= r}"& 2 idx.

[Note: Therefore, in the terminology of §6, C is an even ribbon category.]

9.6 REMARK VvV f € Mor(X,X), the diagram

XX > X 8 X
ia & £ feid_
X X
XQX = >X8X
X, X
commites. Therefore
f;OfQid__oEX
X
= (7 or,)* o £f®id_ o (7 o r.)
Zx X x  xx =
= r% o T o fRid o T °or
X X,X X X,X X

r§°id__®for.



11.

Maintaining the supposition that C has conjugates, recall that C is left

autonomous with left duality (i,r}’é,fx) (cf. 9.2), thus by definition the cate-

gorical dimension of X is the arrow

- - *
x XX X
e > X @X >X8X > e {cf. §6).
But
T o= T_ °r ,
X %,X X

so the categorical dimension of X is the composition

r¥ o T °oT °or
X %% #x X

= r}’z ° ry € Mor(e,e)

= dim X.

[Note: Since = id, Vv £ € Mor(X,X),

tro(f) =rkter _oQ ®id_eo (fRid) o
X X X,% Gy 3 3 X
=r§°T_°id _o(fRid) o T_ ° Ty
X,X X8 X X X,X
=rkoeT _o(f@id) e T_ o«
X %X e zx =
=r§oidgﬁf ° Iy (cf. 9.6).1]

N.B. dim X does not depend on the choice of a conjugate for X. Indeed, if
U:X > X' is unitary, then

(U idy) o r)* o ((URidy) © ry)

=r§°U*®idX°UQidX°rX



12,

%
=r¥* o id o
X Tex <X
ek

rxorx.

9.7 1IEMRA If

(}-(,rx,fx) is a conjugate for X

('ﬁ_f,rY,fY) is a conjugate for Y,

—

Y RXry oviTx gy

is a conijugate for X 2 Y, where

rXQY=1d§®rX@ldY°rY
vygy- Wy 8r, 81id_ e r,.

X

[The proof that
Ay gy RBIF gy) © Iy gy ®idggy) =idy gy

(id Q r* ) o (

: ® id ) =id
Tex X8Y

i o
Xey Tex TamX

will be left to the reader but we shall provide the verification that

Thus write
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=T_ _°T_ _ °r (cf. 4.3).
ITxeve¥ v,xexey *8%
Then

T °or

f,Xaxeay =8Y

= id QT o T or
XeX Y,Y ¥, XeXx 1ay

= id 2T °o T o id & r, 6 & i °or
Tex 3Y,Yy I,Xex ¥ X % ° Ty
= id_ T °(r,®id_eT1_ )Rid, °or
XTex ¥,v X ¥ g,e & ° Ty
= id_ RT A or ® id_ ° Xy
X QX Y,Y YRyY
= id T o r R 1id o id @ r
Tex v,y X Tev e ¥
= id & T o id_ 8 r, °ry
Xex Y, X8 X
= id QT or, or, = id Rr., or,.
X QX Y,Y Y X XeX Y X
Therefore
T o T
TeIXxey X8y

=T ° id QT or

TXQY QY Teax Y X

= T_ _° 1d_ R ldX [ rY o rX

X, XeYRQY X



For all X,Y

14.

°r

=idX®fY@i -

X

€ Ob C, the map

Mor (X,Y) - Mor(¥,X)

that sends f to 'f is a linear bijection.

“Ixev

]

N.B. Here, as will be recalled from 85,
YF=rieid_°id @fe@id_ oid @7,
X Y X Y
Now put
£ = (Vy*,
thus
£ =id_@rfcid @f*@id_or, @id_
Y Y X X
and
+ P
f € Mor(X,Y).
Properties:
e .
1. id, = id ;
% X
2. (EHx= (g7
3. (Feqt=rf.gqgh.
9.8 IFEMMA Given f € Mor(X,Y), we have
ff@id or.=id @ f* o r
dX X o Y*

Y



But

15.

PROOF Start with the IHS and write
+ ,
f 8 ldX ° rX

= (id_Q@r*oid @ f* @ id_o

Y

Il

(id_ &
b4

H

Y

id @ f*@id_®@1i

X

r* o i
X

Ty

Y X

d_ef*@id_o
Y X

Y

g id_ @i
X

rY (%] :Ld}_z) [*] :LdX o rX

rYQid}_{) ] (idx ° idX o idX) ° ry

. -* 13 = * - * » »
id 2rye@id -id &f Qld_@ldxc’rYQld_ﬁldx"rx.

X X

dy ° ry

=1, & id_ o id, & ry,

It

Y

- . . * o 1
1d_91dXQrX°1d_®f Qldeo

XX

id_ & rX o

Y

X

Y

f+®idxorx

=o —* » » ] a *
1d§@rxﬁldxo1d_91dxﬁrx°ld_ﬁf ° Iy

=1 - N » * o
ld§9(r§ﬁldX°1dxﬁrX°f) .

Y

id,_ 2 idY R Iy

e I

d,°id_@id, @ry °ox,

Y

I
7 Y

Y

Y
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I

id§9idX°f*°rY

id & f* o r_..
% Y

9.9 REMARK Suppose that T € Mor (X,Y) satisfies the equation

. - s x
T@ldxorx 1d_ R f* o r,.

7 Y
Then
T= £,
Proof:
£ =1d_@rfoid @f*@id_or, @ id_
v 7 % %

= id @r;(Oid_Qf*orYQid_Oid_
Y X X

i1

= id Qr}*(OT@idXorxﬁid}_{.

K

On the other hand,

+3
il

T o id_
X

=Toid Qrkor &id
x X X gz

I

» * -* -
TRid cid_ Qrfer, R1

X X
=id_erfoTeid _eor ®@id
Y X8e X X
=id r¥ecTRid, Qid o r, & id
T X e T
=id_@rfe TRid °r,@id_° id_

Y X X
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ml —* 3 3
ld§QrX0T@1dX°rX@1d§.

[Note: It is thus a corollary that if

id_ @ f* o r, =0,
v Y
then £ = 0, so

(fv)* = J => (fv)** = 0 => fv = => f = 0.]

9.10 SCHOLIUM £ is the unique element of Mor(X,Y¥) such that

+ o _ *
£ @J.dxorx—ld§ﬁf orY.

[Note: 'f is the unique element of Mor(Y,X) such that

id, @ "o T, =f@id o F,
X

S0 f+ is the unique element of Mor (X,Y) such that

E§oidyaf+=f§°f*ﬁid}_§.]

9.11 ILEMMA Suppose that

F:C - FDHIIB

is symmetric and unitary. Given X € Cb C, put

- I -] o
rFx - (-—-_ ) ° E‘rx g

I
-
-]
M

r .
FX© pgopx FX

Then the triple (F}—('rFX’EFX) is a conjugate for FX.
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PROOF What we know is that

(id, @ rf) o (r, @ idy) = idy
(id_@r¥ o (r, @id ) = id ,
x X X% %

hence
F(id, @ r§) o F(Ex @ idy) = idg,

id _,

il

F(id_ @ r}) o F(r, @ id )
g X X X

<

and what we want to prove is that
(idpy & Tiy) © (Tpy 2 idpy) = idpy

(id _®r*) o (r,Rid ) =id _.
FX - X FX =

2

The LHS of the first of these is the composition

idpy 8 £ o Frf o E_

X, X
ot _ ° (3_ )-lo}?rxoggj_d_?x'
FX,FX %,X
F being unitary. Write
— -1 .
T_ o (E_ ) T oeFr g Rid,

= ... @id °id, °id_ o id
. -1
=7 _ @id_ o (5 ) @id_ °Fr, @id_ ° £ Qid_.

FX, r
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Taking into account the commutative diagrams

e=e8FX FX
Fe @ FX > Fle 8 X)
“a,X
Ee,X
Fe & FX : > Fle 8 X)
FrX 4 ldFX l F(rx R 1dX)
F(X ® X) 8 FX >FXQXeX,
XXX
we have
Fry @ idpy © £ 2 1dpy
= )T e F(r @id) o B, o £ @id,
X XX !
= (5_ )L e Flr, @ idy) o dd.
X & X, X
This leaves
- -1 . - -1 . .
T _ 2 i o (E_ ) 781 o (E_ ) 7 o F(r, 8 id,) o id,.
FX,FX A %% dpx Z @ X,X X dy dpx
Next
‘F(rx (2] J.dx) = F(7_ ° ry 2 :LdX)
X,X
= F(T

X,

® id,) o F(r, & id.).
L B o Pl e id
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Since F is symmetric, there is a commtative diagram

- top -
FX @ FX 8 FX >FX QX QX)
T Q:n.dFx F(t
FX,FX { X,
FX ® FX 8 FX > F(XeXeX).
bttm
Here "top" is the composition
g 2 i
— glx— dF'X el
FX 8 FX 8 FX > P(X 8 X) & FX
% 8 X,X _
> F(X 8 X8 X)
and "bttm" is the composition
5 @idFX
— X'X_ —
FX @ FX @ FX > F(X 8 X) & FX
X 8 X,X

Therefore

>SFXRXQX).

2 idX)
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-1 -1 .
= (& ) @i o (B ) T o F(r ® id,)
XX 7 “rx X 8 X,X X, X %
=>
T eidg e (5 ) teddg e (5 )l eFr eid) oidy
FX,FX X, X X8 X, X
= Jleig e @ ) Ther(. eid) o Fr,@id) o id
X,% X @ X,X %,x
= Jteia o @ _ )l eorE,eid) oid,.
X, X X 8 X,X
Analogously,
id, @£ ° Frfo 3
- X gx
= id__ o F(id, @ r¥) o E oid_@E_ .
%rx % % X,X 8 X “rx 2 %,X

So, in summary,

(id, @ rf) o (g, 8 id.,)
= id,, © F(idy & ry)

o = o id , @ = o (2 ) TR i o (%
X,% @ X O %,X X,X % X 8 %,X

B

Q F(:EX & ldx) c ld-FX:

thus to finish, it need only be shown that

E _ edd @5 o (2 ) eid o (8 _ )
® X X, X X, X X8 X, X

-1

B

= id .
FXRX8X)

This, however, follows from the comutative diagram
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!@
E’é‘I
R
®
R
]
R

E Qlde idFXQE}E'X
F(X®2X) @ FX FX 8 F(X 8 X)

Exe:»‘i,x Ex,i@x
FXQX®QX) FXQ X8 X).

9.12 REMARK We have

In fact, the RHS equals

and there is a camwtative diagram

R
2

> F(X 2 X)

X,X

sl

.-|
%
7 3
®w <~ B
e
_‘
I

> F(X R X).




§10. TANNAKTAN CATEGORIES

Let C be a symmetric strict monoidal *—-category which is essentially small —

then C is said to be tannakian if the following conditions are met:
Tl: v X,Y € Ob C,

dim Mor(X,Y) < .

: C has subobjects, direct sums, and conjugates.

[Ny

<]

3¢ C has a zero object.

e is irreducible.

|7

10.1 REMARK A tannakian category is necessarily semisimple, hence is abelian.

10.2 EXAMPIE Let CPTGRP be the category whose objects are the compact
Hausdorff topological groups (in brief, the "compact groups") and whose morphisms
are the continuous homomorphisms. Given an object G in this category, let Rep G
be the category whose objects are the finite dimensional continuous unitary repre-
sentations of G and whose morphisms are the intertwining operators ~- then Rep G

is tannakian (define r and r by

(xeC (=e)),

where {e.} c H is an orthonommal basis for the representation space and {éi} c His



its conjugate). In particular: FDHILB is tannakian (take G = {*}).
[Note: The construct Rep G is amnestic and transportable, so we can and will

assume that its monoidal structure is strict (cf. 3.12).]

10.3 RAPPEL An additive functor F:A - B between abelian categories A and

B is exact if it preserves finite limits and finite colimits.

Accordingly, since a tannakian category is not only abelian but also autonomous,

VX € 0b C, the functors
— R xl m(xl—)
X 8 —, rhom(X,—)

are exact.

If C is tannakian, then e is irreducible and

dim:0b 9 d Nk)r(ele)
has the following properties.
1. dim X = dim X.

2, dim(X QYY)

(dim X) (dim Y).

dim X + dim Y.

3. dim(X & Y)

4, dime=1, dim 0 = 0.

10.4 IEMMA If X is not a zero object, then dim X (= r;( ) rX) > 1.

PROOF First, from the positivity of the involution, dim X > 0. But X 2 X

contains e as a direct summand, thus

(dimx)2 >1=>dimX = 1.



[Note: IfdimX=1, then X8 X ~e = X 8 X.]

Given X # 0 in Ob C, define

][‘ :$ - Aut X@n
n
as in 4.5.

N.B. Hil( is a homomorphism from 5n to the unitary group of Mor(X,X).

Put
X _ .
Sym0 = lde
0,
X _ .
_ Alto = lde’
and for n € N, put
sy = - T I (o)
=
n
ALY = -:-L—,- I (sgn G)HX(G).
n n! n
oES
_ n
Then
SW%{
ALY
n

are projections.



10.5 IEMMA We have

X
tr (Altn)

X

=i—,(d§mX)(dﬁmX—l)...(dimX-—n+l).

PROOF The key preliminary is the observation that

(o)) = (@im 0",

T

where #0 is the number of cycles into which o decamposes, thus

X 1 . %o
tr o (Alt) = =— I (sgn o) (dim X)"".
X@n n n! OESn
But for every complex number z,
z (sgnc)z#0=z{z-l)...(z-—n+l).
0€$n

10.6 THEOREM V nonzero X in Ob C,

dim X € N.
. X&l s X .
PROOF Iet An (X) be the subobject of corresponding to Altn. Fix an
. &0 P {
iscmetry f:An(X) > such that £ o £* = Altn -— then
X
(ALt))

yn

= tr (f o f¥)

X

= trAn(X) (£* o £) (cf. 6.3)



=ty (x) Uy
n

n

x)’

it

dimAn(X) 21 (cf. 10.4).

On the other hand, thanks to 10.5,

X
(Alt)

an

is negative for some n € N unless dim X € N,

10.7 IEMMA Iet d = dim X —- then

. _ X _dat _
dJ.mAd(X) ~tr}(m1\ltd—-a~!—— 1.

The isomorphism class of Ad (X} is called the determinant of X (written det (X)).
Properties:
1, det(X) =~ det(X);

2. det(X®Y)

n

det(X) R det(Y);

3. det(X®X) = e.




§11. FIBER FUNCTORS

Let C be a tannakian category —-- then a symmetric embedding functor

¥:C ~» FDHILB

is called a fiber functor.

E.g.: Take C = Rep G (cf. 10.2) — then the forgetful functor
U:Rep G > FDHILB
is a fiber functor.

N.B. It is a nontrivial result that every tannakian category admits a fiber

functor (proof omitted).

11.1 REMARK Iet
F:C ~+ FDHILB
be a fiber functor. Consider

A= ® B(FX.),
¥ i€T, 1

viewed as a subset of Nat(F,F) -- then the coinverse is the map S:A}. > A}, defined

by
S(a)y = F(idy @ r¥) o id_, @ a}_{ @ idg, o Flr, @ id)),
matters being slightly imprecise in that the identification
FXeXeX =FXQFXRQFX

has been suppressed. It is not difficult to see that the equation defining S(OL)X

is independent of the choice (§,rX,fX) of a conjugate for X and v £ € Mor(X,Y),



the diagram
S(a)x
FX > FX
Ff Ff
FY > FY
S(a)Y

commites. Algebraically, S is linear and antimultiplicative. Moreover,

S°*°S°*=ldAF'
hence S is invertible.

[Note: fThere are various relations among A,e,S which, however, need not be
detailed. Still, despite appearances, in general (A}:,A,E,S) is not a Hopf
*-algebra but rather in the jargon of the trade is a "cocommtative discrete

algebraic quantum group".]

Write ff(C) for the full subcategory of

[, ForrLs] "

whose objects are the fiber functors -- then ff(C) is a groupoid (cf. 5.12).

11.2 THEOREM ff(C) is a transitive groupoid, i.e., if J-“l,;Fz are fiber
functors, then Fl,Fz are isomorphic.

Definition: Given fiber functors 3’1,1-'2, a unitary monoidal natural trans-

formation aFy > F, is a monoidal natural transformation such that v X € Ob C,



aX:?lX + FZX
is unitary.
Write ff*(C) for the category whose objects are the fiber functors and

whose morphisms are the unitary monoidal natural transformations —- then ff*(C)

is a subcategory of If(C).

11.3 THEOREM ff*(C) is a transitive groupoid, i.e., if Fy/F, are fiber

functors, then 3’1,3’2 are unitarily isomorphic.

Obviously,
11.3 => 11.2.
As for the proof of 11.3, there will be three steps.

Step 1: Construct a commutative unital *-algebra A(fl,?z) whose dual space
is in a one-to-one correspondence with the natural transformations 3‘-‘1 +~F, , to wit:
— *
Step 2: Under this bijection, prove that the monoidal natural transformations
correspond to the nonzero multiplicative linear functionals on A(Fl,}‘z) and the

umitary monoidal natural transformations correspond to the *-preserving mualti-

plicative linear functionals on AFy.F5) .
Step 3: Establish that A(?l,Fz) admits a C*-norm, thus is a pre-C*-algebra.
Therefore, since the structure space A('A'(Fl,rz)) of the C*-completion
E(;Fl,?z) of A(F,F,) is not empty, it follows that Mor(F;,F,) is also not empty,

from which 11.3.



[Note: Here, of course, Mor is computed in ££*(C).]
To fix notation, bear in mind that there are isomorphisms

1 1

£ e > Fle ‘“X,Y’ylx 2 FlY > Fq xXey

2.0 > Fe 2 FXQ@FY>F.(XQY)
e > ¥, v By T XRFY T,

subject to the compatibility conditions enumerated in §2.

let AO (Fl,}’z} be the complex vector space

® Mor (F,X,FX) .
XEObC

Given X € Ob C and ¢ € I\’br(sz,}’lX) , Write [X,q;]o for the element of AO(Fl,Fz)
that is ¢ at X and is zero elsewhere —— then AO (T—l,}’z) is simply the complex
linear span of the [X,¢]0. Define a product in AO (I—‘l,}'z) by stipulating that

[Xf(;b]o ¢ [qu}]o = [X 2 Y,U]O;

where u is the composition

2 -1
(“X,Y)
F,(X V) > F,X @ F ¥
b8y
> F1X @ Fi¥
-1
X, Y
> FLXRY).

11.4 1EMMA AO(FI,FZ) is associative.



1.5 LEMB A, (F),5,) is wnital.
PROCF ILet

1%=m€w(ﬁd%.

Then 1A is the unit. E.g.: Consider
0

X,01, - le,65 o (B, = [X,ul,,

the claim being that the composite

2 -1
(“X,e)
F2X = F2 (X 2 e) > F2X e er
1 2, -
b8 (£ o (97

> F1X R Fle

-1

X,e
> Fl(X Re) = FlX

reduces to ¢ itself. To see this, recall that the composition

id
le “X,e

lxgg >FX®Fe-———>F1(X®e)=F

F.X=F

is the identity morphism of F X and the composition

. 1
id R g =2
FZX X,e

FX=FX@e >FX@Fe —> F,(X@e) = FX

is the identity morphism of F2X. Now write

-1 1 2,-1 =2 =1
Exe 02 (E o (E7) 7)o (:X'e)

_ . o 1,-1 L, 271 . 2 .
= ldle 1d5_.lX 2 (&) b (g €)M lclj_-2X ¢ ld,,-zx



. . . -1 -1 1 - )
= ldflx o (ld}._.lx o ¢ o 3_d}_2x g (£ ) o (£ o (gz) 1 R 52) o 1dF2X

- id?-'lx °¢8id, e idfzx = idrlx ° ¢ idrzx =9

let IO(J’l,Fz) be the complex linear span of the
[X,a o sz]G - [Y,:Flf o a]o,
where

f € Mor{X,¥Y), a € I\rbr(FzY,le) .
Then IO(Fl,J-'z) is an ideal in AO (Fl,?'z).
Denote by A(Fl,in) the quotient algebra
let

01" 2
be the projection, and put

X,¢] = pr(X,d] 0*

11.6 EXAMPLE ILet f:X - X be an iscmorphism -- then

1

I

[X,$] = [X,F £ o Fif ~ o ¢l

-1
= X,F, £ o ¢ o Ffl.

11.7 EXAMPIE Iet

= Fbr(?’z(}_i R X) ,flc?% 2 X)) .



Then

- ) .
X ® X,Flrx I-‘lrx o &]

- *
[e,Fer o § o Fzrx].
{Note: We also have

% *
X ® X,Fl(rX ° rx) o 9]

= X@X,0 0 Folry o 81,1

11.8 REMARK Every A € A(Fl,Fz) can be written as [X,¢] for a suitable

choice of X and ¢. Thus suppose that A= I [Xi,¢i] r PUut X =6 Xi’ and choose
i i

. \ . % — i .
isometries V:i.'Xi -+ X such that E vi o v¥ :de then

a, = ¢i o szi € M:sr(FZX,lei)

A=Z [Xl!¢l]

=% [X.,0. o id 1

i R
= i [Xl'd)i ° ?:2(v§ ° Vi)]
= I o

[le ¢l ?ZVI Q szl]

= L [Xi,ai ° sz-]

= 7 [X'flvl @ al]



LIXFvy o 0y 0 Fpvfl

[X ZF . oq) onvi]

= [XI ¢] ’
where

<
Il

z Fiv; ° 93 © F,vi € Mor (F X, FiX) .

11.9 1FEMMA A(:Fl,Fz) is commtative.
PROOF Iet

[X, 1, ($:F,X > F1X)

[y,y] (Y:F.Y > F.Y)
0 2 1

be elements of AO(Fl,Fz) ~— then

_ =1 =2 -1
[de)]o * [Ylw]o - [X Q YI“X,Y ° ¢ g w ° (-—X,Y) ]
On the other hand,
_ =1 =2 -1
[Ylw]o ° [XI¢]0 [Y Q XI"Y,X ° w Q ¢ o (-—-Y,X) ]
and there is a commutative diagram
T
FzY,sz
FoY & F X > sz 2 F,Y
V¢ Y
FY @ F1X - > F1X @ F,Y.
F.Y,F.X

1771




Thus
1 2 -1
rx o890 Gy
-1 2
= E °T °odpRYoT o (E
Y,X FlX,FlY ?ZY,TZX Y,X

But there are also commutative diagrams

=1
"X, Y
FIXRFY > F,xay)
T F.1
FIX,F Y 1'%,y
FlY 8 FiX > F (¥ 2 X)
=1
“Y,X
and
=2
°Y,X
FoY @ FoX > Fo (Y @ X)
TFZY,sz FaTy,x
FXRFY > F X RY).
=2
"X, Y
Thus
1 2 -1
°o T pRYorT ° (5, )
TY,X O F X R Y - Fo¥,FoX Y,X



10.

Iet £ = TX’Yandput

a=iyy 0By (5)2(,35)"1 ° Foly,x
Then
feMrXgyY,YyQXx)
and
a € Mor(F,(Y  X),F; (X 2Y)).
Moreover
oaply « X015 = [Y @ X,F f o al,.
Meanwhile
Fav,x ° TaTx,y
=% 0y x ° Tx, Y
=704 oy
=% xew
S0
[X,0], - [¥,0], = [X& Y,a o F,f],.
Therefore

[Xr(rb]o * [er]a - [YlU)]O * [qu)]o € 10(3:1:}'.2)

=>

[Ag (F1rFp) rAg(F1Fp) 1 < Ty (F),F,).

And this implies that A(fl,fz) is commtative.



Given [x,q;]o, choose a

where ¢ is the composition

11.

conjugate (X,r

x’EX) for X and let

[de)]g = [§p$]gl

_ _ teid _
FZX =e R FZX > Fle 2 3’2X
Flrx  id _ _
> F X2 X 8 FX
et ) e
X,X _ _
> FXeFXerFX
id R ¢* @ id _ _
> J’lX 2 F2X R 3’2‘
id e 8 _
X,X _ _
>FRef,xeX
: ot
id 8 J’Erx _
> ?lX e er
id g (£ _ _
FiXge=FX
N.B. We have
& ylegia _eFr,@id _of@id _
%,X X F,X F,X
=@t )t o Firy © eleia _
X,X FX
=r g id _  (cf. 9.10)
FIX¥ 5%




12.

and
id _® ™ o ia _ @ Fr¥ o id __gsz__
Fl FiX FIX T XX
- 2,- =
=id @ (E°) " o F.r¥ o E
F.X z'X X
l 1 4
=id _@rf, (cf. 9.11).
F 2
1
Therefore
b=1id @Trt_oid _R@¢*®id or. @ id .
5 = F.X = - s “F.X-= =
FiX 2 FiX F,X 1 F X
[Note: By definition, ¢ € Mor (F,X,F;X), so Vo € mr(fli,fzi) , where, as in
§5,
v N . . s
M T S R S
2 1 2 1
or still,
\" - * N . -
¢ ryxgld _°id _@¢Qid _ o id _ 8 F X
1 F X FiX F X FiX 2
Therefore
3= )

Replacing (fi,rx,fx) by (}—{',rgi,z?;{) and using 9.4, one finds that
Sy v Y

Therefore the image of [X,@]g in A(Fl,le is independent of the choice of a

canjugate for X.




13.

11.10 IEMMA IO(Fl,Fz) is *—invariant.
Consequently, *:AO(J’l,FZ) > A0 (3’1,3‘-'2) induces a map *:A(Fl,}'z) > A(Fl,?'z}.
11.11 1EMMA A(Fl,fz) is a *-algebra.

Surmary: A(Fl,l’z) is a commutative unital *-algebra.

Accordingly, to complete Step 1, it remains to construct an isomorphism

between A(Fl,}"z)* and Nat(}'l,?'z) .
On general grounds,
An(F ,F)* = T Mor(F X, F.X)*,
012 XE0b € 27771
But the pairing
IVbr(FZX,FlX) b Ebr(FlX,FZX) - C
that sends ¢ x ¢ to tr{(é o ¢¥) is nondegenerate, thus

AF F)*= ] Mr(F,X,F.X).
oY1 2 XE0b C 1 2

On the other hand, Nat(Fl,Fg) congists of those elements

a€ T Mor(FiX,FX)
Xe0b C

such that v f € Mor(X,Y),

szou}{:ayoflf'

and the dual of A(Fl,F2) is the subspace of AO(Fl,fz)* comprised of those elements

that vanish identically on IO(Fl,Fz) . To characterize the latter, take an



14.

a€ [  Mor(FX,F,X)
Xeob C

and suppose that v A € IO(Fl,Fz) ’
<A,a> = 0
or still,
<[X,a o 3-'2f]0 - [Y,Flf o a.]O,cx> =
for all
feMr{X,Y), ac¢ Ivbr(i’zY,FlX) .
T.e.

trrlx(a o Fpfooay) = trle(Flf °ac° o).

From the nondegeneracy of the trace, it then follows that

3’2f © Oy = Oy © ZFlf,

implying thereby that

o € Nat(:Fl,Fz) .

11.12 IEMMA Under the bijection
Nat(Fl’FZ) <—> A(}:lf}:'z)*f

the monoidal natural transformations correspond to the nonzero multiplicative

linear functionals on A(Fl,:FZ) .
PROOF To say that a linear functional on A(}‘l,}“z) corresponding to an
o € Nat (3’1,}’2) is multiplicative amounts to saying that

<[X,¢] - [¥,9],0>



15.

= <[Xr¢)] PO " <[Y;\P] 0>
for all

(X1, [¥,4] € A(F|,F,))-

Since < —,0> is null on IO(Fl,}'Z) , it suffices to work upstairs, hence explicated

we have
Tr ey (Ezji,Y co 8y (E>2<,Y)-l ° O gy
= trflx(¢ ° oy) tr;—'lyw ° Oy
=t g rx (00 ) 8 W o)
= trflxg?ly(‘p 2V ooy 8oyl
Therefore

P
Yev Xy &%2%° Vxy o

the condition that o be monoidal.
[Note: Tacitly,
<1, ,o> =1
AO
or still,
2. -1
<le,gh o )TN0 = 1
or still,

1 2.-1 _
trp o8 0 B 00 = 1,

fram which the commutativity of the diagram



le.

F.e >er

i—l

11.13 IEMMA Under the bijection
Nat(F,,F,) <— A(Fl,}'z}*r
the unitary monoidal natural transformations correspond to the *-preserving non-
zero multiplicative linear functionals on A(Fl,Fz) .
PROOF Given [X,4] € A(Fl,}'z), the claim is that

<[X,9]*%,0> = <[X,¢] ,0> (= <[X,¢],a>* ...)

LEF of = a;l.

From the definitions,

<[xl¢] P> = trle(d) ° Ofax)

T, = trp (6% o o).

In the other direction,

<[Xr¢] *,0> = <[§1‘(5] 1002

H]

tr (¢ o a)

le X
= ¥ _ o 1d @ (a -3 a_) o -
7 X FX % 71X



17.

=;* ° id g(&;o(x_)o]?

FiX FiX % FiX
But
r*k o ¢*Qq or
=rX o¢*@id _oid. Qo or
F X - 7% FIX =g TFX
=rx oi ¢ o i Qo_or (cf. 9.10)
FiX drlx dle 5 X
=rk_°i 2 (ea) or, ..
Fx 19 x 2 TFX
I.e.:
tr _(@oa)=rk_o¢*Ra or_..
FIX z FoX g 5X
Proceeding, write
Xk o ¢*@a or
sz - )—( F].X
=Ep o (oot ¢ B et ) o E
2 X FIX 1
=Yk oo, R0 °0, o¢*Rid _or. ..
F X ' 2 Oy X FiX
W then claim that
rx o g,R 0 =rk
?2X K - z le

implying thereby that

_ -1
tr (dpoa ) =tr. .l ° ¢*)
2 leo‘x

F lX

which, when combined with the initial observation, renders the contention of the



lemma manifest.

18.

From the commutative diagram

=1
X,X
?lX 2 Fl > I’l(x 2 X)
8 o o
=% J X @ %
:sz e FZX " > 3:2 Xxex
,)‘—{
we see that
axgoc_=(52 L. e Eh
X X, X X8 X .4
and from the commutative diagram
o
- XeXx _
Fl(X@X) >3-'2(X®X)
i Tk
F1T% Forx
Fle > ;er
o
e
we see that
F.r¥ o o =q_ o F.rk.
27X x e X 1™X
Recalling now that
- 1 - 1
r = (8 o F.xr, o
FlX X% 1
{(cf. 9.12)
- 2 - 2
r = (57 _ e F.r, o £
F2X % 2




19.

we have
*
Trx °Ox 8o
X
=(£2)—1°F25§O: o (82 ) o a 051__
IX rX X & X ‘,.X
=@ e RFr e _egh
XX XX
=) oo o FEs e
X, X
G IR - -
Xx,X
=%
?lX
as claimed.

The results embodied in 11.12 and 11.13 finish Step 2 of the program, which
leaves Step 3 to be dealt with.

Put

A = ® Mr{F.X,,F.X.).
Fl,Fz iGIC 2717715

11.14 1FMMA The linear map

Y: A

- A(F{,F,)
Fl'FQ 2

that sends
¢i € M:)r(}’zxi,lei)

to [Xi,¢i] is an isomorphism of vector spaces.



20.

PROOF Every A € A(F;,F,) is an [X,¢] (cf. 11.8) and every [X,¢] is a sum
of elements [Xi,q;i] with X, irreducible. Therefore Y is surjective. That Y is
injective is a consequence of the fact that

Put
A; = dMor (F X, ,F1X,)).

Then there is a direct sum decomposition

AF,,F.) = @& A..
172 jer, 1

10

Define a linear functional

w:A(Fl,FZ) + C

by taking it to be zero on Ai if i does not correspond to e but on Ae' let

w(le,d]) = N o g o £2 €.

11.15 IEMMA V A = 0, w{(A*n) > 0.
PROCF Write

A= Z [X1’¢i]'
1

where the Xi are irreducible and distinct —- then
i= j=> U}([Xir(bi]* * [Xjrd)j]) = 0.
In fact,

Mor(e,ﬁi ﬁxj) ~ Mor(Xi,Xj) = {0} (cf. 9.3),



21,

S0 e is not a subobject of )-ii R X One can therefore assume that A = [X,¢] = 0

with X irreducible. Recall now that
* o i -] 1
I"XOIX dim X nxld (nXEN).

This said, let

Thenp§=pxand

Py € Mor (X  X,X 8 X)

is a projection. Write

A*A = [X,¢1* - [X,¢]
= IX,3] - [X,¢]
= Xex,5 oF@¢° (B2 )7
%, X %,X
=EeXF @ o= F80c 2 )7



22.

+IRQXF (A -p) oE o384 (52 )Y
Xex X,X X,X
= [R@XF (o) o5 ©°58¢0° (52 )7
X, X XX
1 -1 - 2 -1
== [e,frXo (B2 o8 Q¢ o (B2 ) " oFr]l (cf. 11.7)
1 1.-1 -1 - =2 -1 2 1 2.-1
= — ((£7) o ForX o (22 e ¢ R¢ o (BT ) 7) e For, o £%)[e, £ o (£7) 7]
Ny I"x %,X %,X X
1 - 1 2,~1
== (rx e ¢ Q¢ or. Jle,& o () 7]
nX J-'lX - sz
1 . 1 2.~1
== (rx o id _ @ ($ o ¢*) o r_ e, & o (£7) ]
ny FX F X FiX
1 1 2. =1
= (9% o ®)[e,E” o (E7) 71,
Ny
where
d = id R ¢* o r_ _.
FIR FiX
Then

* o d:e » e,

when viewed as a constant, is nonnegative. But ¢ # 0 => & = 0. Proof: ¢ is
the unique element of Mor (Fz)-(,?'l)?) such that
5@3‘, °oxr =id _@¢* o r (cf. 9.10),
dfzx F2X 7. flx
sod=0=>¢=0

v

=> (Vq))*=0=> (V¢)**=0=> ¢=Q=>¢=0.



23.

[Note: To justify the equation

b@por, ,=id _ @ (¢ o ¢*) or. .,
O rx FiX
write
$2¢=1d _@¢ ° ¢ @id; ..
FIX d”zx
Then
¢bRpor. ,=id _R¢ o ¢ Qi or
SIS %% FX
=id _@¢ecid _@é*or,
F X 71X 1

= id o id _@(cpo(p*)orflx

FIR FR
—id B (9o 6% or, ]
F. FiX

Given A,B € A(Fl,fz) . let

<A,B> = p(A*B).

Then < , > equips A(}-‘l,}:g) with the structure of a pre-Hilbert space w.r.t.
vwhich the left multiplication operators
are continuous. Denoting by H(?l,}'z) the Hilbert space completion of A(J‘—'l,Fz) ’

it thus follows that A(Fllfz

) admits a faithful *-representation
L:A(Fl,}'z) > B(H(Fl,Fz)) v

hence A(}—'l,Fz) admits a C*-nom as claimed in Step 3.



§12. THE INTRINSIC GROUP

Let C be a tannakian category and suppose that
F:C - FDHILB

is a fiber functor — then its intrinsic group Gy is the group of unitary monoidal

natural transformations o:¥ - F, i.e., in the notation of §l11,

szmr(?i?)l

where Mor (F,F) is computed in ££*(C).

So
GJ: < Tr LI(?X) 7
Xelb C
U(FX) the compact group of unitary operators FX - FX. And GrEF is closed if
7T U(FX)
XeOb C

is equipped with the product topology, thus GF is a compact group.
N.B. Define

TYX:GF + U(FX)

by 'n'x(cz} =0y = then

(14,FX) € Ob Rep Gr.

12.1 IEMMA 3 a faithful symmetric monoidal *-preserving functor

9:C ~ Rep Gy such that U o ¢ = ¥, where

U:Rep GF - FDHILB

is the forgetful functor.



PROOF Define ¢ on objects by
PX = (ﬂX,FX)

and on morphisms f:X »~ Y by ¢f = Ff (cf. 8.2) and take for &, E the corresponding
entities per F. To see that this makes sense for Z say, one must check that
EXY is a morphism in Rep G_., viz.:

, =P

-

By, Y ° (WX(oz) 2 TTY(O‘.)) =Ty o Y(oz) o EX,Y'

But this is obvious since the diagram

5,y
FX 8 FY > F(XRY)
O‘x@"‘yl l“xgy
FX @ FY > F(X @ Y)
°X,Y

commates. That ¢ is symetric is equally clear.

More is true: ¢ is an equivalence of categories. Because ¢ is faithful, it

remains to establish that ¢ is full and has a representative image (details below).

12.2 REMARK The category Rep, A}. is a semisimple symmetric monoidal

*~category which can be shown to have conjugates, thus Rep ca A37 is "almost"

tannakian. Specializing 8.14, it was pointed out in 8.16 that the "9¢" defined
there is a symmetric monoidal equivalence C - RepEd A}.. Dencte now by RepEd GF

the category whose objects are the finite dimensional continuous representations



of G}, and whose morphisms are the intertwining operators — then the inclusion

functor
Bep G > RePeg G

is an equivalence. On the other hand, there is a canonical functor

Repeq Ap > Repgy Gp

and it too is an equivalence (a nontrivial fact).

12.3 LEMMA If X € Ob C is irreducible, then the complex linear span of

the Wx(oa) (o € G}:) is dense in B{FX).

12.4 I1EMMA TIf X,Y € Cb C are irreducible and nonisomorphic, then the complex

linear span of the wx(u) ® TTY(OL) (o € GF) is dense in B(FX) @ B(FY).

12.5 REMARK If X ""'Xn are distinct elements of 1., then the complex

CI

linear span of the

T, {a) & =+ & 7, (o) (o € G)
xl Xn ¥

is dense in

B(ﬂ(l) ﬂ) b 6 B(;:Xn).

To prove that ¢ is full, we shall appeal © 7.9.
(a) X irreducible => ¢X irreducible. In fact, thanks to 12.3, the only

T € B(FX) that intertwine the m,(a) (o € G]_,) are the scalar multiples of the identity.

(b) X,Y irreducible and nonisomorphic => ¢X,9dY irreducible and nonisomorphic.



For suppose that T:FX - FY intertwines Ty and 7, thus 'I‘wx(oe) = 'rTY(oc)T (o € G:F) .

But then Tu = vT for all u € B(FX), v € B(FY) (cf. 12.4). Nowtake u=0, v=1
to conclude that T = 0, hence ¢%,9%Y are nonisomorphic.

The final claim is that & has a representative image. To see this, consider
the map

F C Rep G

defined by the rule

Then Yr is injective.

12.6 IEMA Y§ is surjective.

PROOF The complex linear span of the matrix elements of the Ty as i ranges
i

over IC is a unital x—-subalgebra of C(G}.) which separates the points of G., thus

is dense in C(GF) . Accordingly, there can be no irreducible object in Rep GF

which is not unitarily equivalent to a Ty for same i, so Yp is surjective.
i

Therefore Yy is bijective and ¢ has a representative image.

12.7 REMARK Suppose that
F,:C ~ FDHILB
F,:C > FDHILB

are fiber functors —— then as objects of ff*(C) 1F1:F, are isomorphic (cf. 11.3),



so Gy ,Gp are isomorphic (in the category CPTGRP).
1 T2 —

let G be a compact group ~- then the forgetful functor

U:Rep G ~ FDHILB
is a fiber functor. Define a map I':G - GU by sending o € G to the string
{m(a): (m,H ) € Ob Rep G}.

That this is meaningful follows upon noting that if

T (g H_)
lTTl

€ Cb Rep G,

(4 ,H )
2'772

v Te& I‘"br((ﬂerﬂl) ’ (Trer,n_z))

there is a commutative diagram

ﬂl(a)
HTr > Hﬂ
1 1
T T
T > H'rr !
2 T, ) 2

thus the string
{7 (o) : (W,H,}T) € Cb Rep G}

defines an element

o(o) € Mox(U,U),



where technically

a (o) (TT:H,H.) = mw{0),

12.8 IEMA T is a continuous inijective homomorphian.

[This is immediate from the definitions.]

In fact, T is surjective, hence G and GU are isomorphic.
[If T were not surjective, replace G by I'G and think of G as a proper closed

subgroup of GU ~— then there would b2 an irreducible representation of GU that

contains a nonzero vecior invariant under G but not under GU This, however, is
inpossible:
Yui'rep 6 7 TRep G

is bi-jective.]

12.9 THEOREM Up to isomorphism in CPTGRP, G is the "“intrinsic group" of
Rep G.
[1f
FiRep G ~ FDHILB

is a fiber functor, then G}, = GU {cf. 12.7).]

12.10 REMARK Compact groups G,G' are said to be isocategorical if Rep G,

Rep G' are equivalent as monoidal categories. In general, this does not mean
that Rep G,Rep G' are equivalent as symmetric monoidal categories and G,G' may

very well be isocategorical but not isomorphic.




§13. CLASSICAL THEORY

A character of a commutative unital C*-algebra A is a nonzero hamomorphism

w:A - C of algebras. The set of all characters of A is called the structure space

of A and is denoted by A(A).

N.B. We have
A(A) =g (A= {0})

AA) =8 (A= {0}).

13.1 ILEMMA Iet w € A(A) — then w is necessarily bounded. In fact,

[lw|] =1 = w(ly).

N.B. The elements of A(A) are the pure states of A, hence, in particular,

are x~homomorphisms: Vv A € A,

wl{A*) = w(d).
Given A € A, define
A:A(A) > C
by
Alw) = w(@).

Equip A(A) with the initial topology determined by the A, i.e., equip A(A) with
the relativised weak* topology.

13.2 IEMMA A(A) is a compact Hausdorff space.



If X is a compact Hausdorff space, then C(X) equipped with the supremum norm

| 1£]] = sup |£(x) |
xeX

and involution
f*(x) = £(x)
is a commtative unital C*-algebra. Moreover, V x € X, the Dirac measure

ch € A(C(X)) and the arrow

X =+ AC(X))

x =+ 8§
X

is a homecmorphism.

13.3 IEMMA 3’2 € C(A(A)) and the arrow
A > C(A(A))

A~-A

is a wnital *-isomorphism.

N.B. If A = {0}, then A(A) = # and there is exactly one map # + C, namely
the empty function (f = @ x ), which we shall take to be 8

Notation: Iet CPTSP be the category whose objects are the compact Hausdorff
spaces and whose morphisms are the continuous functions.

Notation: Let COMUNC*AIG be the category whose objects are the commutative
unital C*-algebras and whose morphisms are the unital #*-homomorphisms.

Iet X and Y be compact Hausdorff spaces. Suppose that ¢:X - Y is a continuous
function — then ¢ induces a unital *-homomorphism

¢*:C(Y) > C(X),



viz. ¢*(f) = £ o ¢. Therefore the association that sends X to C(X) defines a

cofunctor

C:CPTSP + COMUNC*ALG.

Iet A and B be commutative unital C*~algebras. Suppose that ¢:A - B is a

unital *-homomorphism —- then ¢ induces a continuous function

o*:A(B) > A(A),
viz. o*{w) = w o &, Therefore the association that sends A to A(A) defines a

cofunctor

A:COMUNC*ALG ~ CPTSP.

13.4 THEOREM The category CPTSP is coequivalent to the category COMUNC*AIG.

PROCF Define
EgiX > ACX)

by the rule Ex(x) = (SX — then =, is a homecmorphism and there is a commutative

X
EX

X > A(C(X))

e

Y — > A(C(Y)).

Sy
Define

EA:A + C{A(A))

by the rule = A(A) = A -— then = A is a unital *-isomorphism and there is a commtative



diagram
EA
A e 5 C(A(A))
(I) l l @**
B > C(A(BY).
“B
Therefore
T id=z Ao C
id = C o Al

The category CPTSP has finite products with final object {*}. Therefore the
category COMUNC*ALG has finite coproducts with initial object C. To explicate

the latter, invoke the nuclearity of the objects of COMUNC*AIG, thus

AQmaxB:-AgminB'

call it A @ B -— then

Al|B=AgB
and there are arrows
A>AQB T~ B->A@B
A-*AQ].B, B+1A@B.

13.5 EXAMPLE We have

c({*}) = C and CEX xY) = C(X) & C(Y)

u

A(C) = {#} and A(A R B)

Q

A(A) x A(B).




13.6 REMARK Let A be a commtative unital C*~algebra —— then the algebraic
tensor product A @ A can be viewed as an involutive subalgebra of A 8 A. Another
point is this: Since A 8 A is the coproduct, there is a canonical arrow

m

ARA >A with m(A € B) = AB, i.e., the restriction of mto A & A is the

multiplication in A.
[Note: If Al,A2,8 are commutative unital C*-algebras and if

q)E:Al -~ B
_ @2:A2 -+ B

are unital *-homomorphisms, then the diagram

admits a wnique filler
R o :A. & A, ~ B

such that

(0, 8 8,) (&) @A) = & ()0, A,) (B € A, A, € A).]

13.7 RAPPEL Iet C be a category with finite products and final object T —-

then a group object in C consists of an object G and morphisms

WG xG~>G, i:T > G, 1:G6 >+ G

such that the following diagrams commite:



uxidG
GxXGXG > G X G
G X G > G,
u
iden n><idG
GxT > G x G T X G > G X G
prll lu przl lu
G G: G Gl
! !
G > T G > T
(idG,U l ln (hidG} l ln
G xG G, G X G G.
U Hu

There are obvious definitions of internal group homomorphism G ~ G', composition
of internal group homomorphisms G > G', G' ~ G'', and the identity internal group

homomorphism :i.dG:G + G. Accordingly, there is a category GRP(C) whose objects are

the group objects in C and whose morphisms are the internal group homomorphisms.
[Note: If instead C is a category with finite coproducts and initial object
I, then we put

cocre(©) = are ()P

and call the objects the cogroup objects in C and the morphisms the internal co-

group homomorphisms. ]

13.8 EXAMPLE Take C = SET —— then

GRP (SET) = GRP.




13.9 IFMMA Ve have

GRP (CPTSP) = CPTGRP.

13.10 RFMARK The forgetful functor

CPTGRP - SET

has a left adpint. Proof: Given a set X, equip it with the discrete topology,
form the associated free topological group Fgr (X), and consider its Bohr compact-

ification.

A commutative Hopf C*-algebra is commutative unital C*-algebra H together

with unital *-homomorphisms

A:H>H®QH, e:tH~>C, S:H~>H

for which the following diagrams commute:

A
>H@H
Al lidH@A
H®H >HQHRH,
A @ id
H H H H
H®QH >H@C, H®H > C Q H,



H&H < H, H@Hc< H.
A A

[Note: Such an H is not necessarily a Hopf algebra (in general, A takes
values in H @ H rather than H & H).]

N.B. C(onsider, e.d., (idH,S) -- then in terms of the coproduct diagram

in, in,
>H@&H <—H,

the arrow

(i4.,8):H @ H > H

is characterized by the condition that
(id,,8) ° in; = mH

B (idH,S) ° ;'m2

On the other hand, there is an arrow

i
»

id, @S:HesH>HQH

characterized by the condition that

- idHQSOinl in1°idH

il

(cf. 13.6).

i
5
N
o
wn

idHQS<>iI12

And

meo j_ngS= (idH;S).



Proof:

moid @S in) =mo iny o id = id o id = id

mOidH§S°in2=m0inch=idHOS=S.

Denote by COMHOPFC*ALG the category whose objects are the commutative Hopf

C*-algebras and whose morphisns £:H > H' are the unital *-homomorphisms such that

fRfo A=A o f,e=¢"0of, fog=35"of,

13.11 IEMMA We have

COGRP (COMUNC*ALG) = COMHOPFC*AIG.

Iet G be a compact group — then the group operations in G induce operations
A, €, 8 in C(G) w.r.t. which C(G) acquires the structure of a commitative Hopf
C*-algebra. And the association that sends G to C(G) defines a cofunctor

C:CPTGRP ~ COMHOPFC*ALIG.

Iet H be a commutative Hopf C*-algebra —— then the cogroup operations in H
induce operations u, n, 1 in A(H) w.r.t. which A(H) acquires the structure of a
compact group. 2nd the association that sends H to A(H) defines a cofunctor

A:COMHOPFC*ALG ~ CPTGRP.

13.12 THEOREM The category CPTGRP is coequivalent to the category

COMHOPFC*ALG (cf. 13.4).

13.13 RAPPEL Given a compact group G, let A(G) be its set of representative
functions — then A(G) is a unital *-subalgebra of C(G) and when endowed with the




10.

restrictions of A, €, S forms a commutative Hopf *-algebra.

[Note: Recall that A(G) is dense in C(G).]

* Iet A(A(G)) be the st of nonzero multiplicative linear functionals
on A(G).
* Iet A*(A(G)) be the set of *-preserving nonzero multiplicative linear
functicnals on A(G).
Then
A*(AG)) <« ARG)
and the containment is proper in general.
BEquip A(A(G)) (and hence A*(A(G))) with the topology of pointwise convergence

and introduce the following operations:

) (w) = (o 8w oA (D) 1, o = (i) w™ = wes.

(G)

Then A(A(G)) is a group containing A*(A(G)) as a subgroup (in this connection,
note that A(f*) = A(£)* and S(f*) = S(f)*).

13.14 IEMA A*(A(G)) is a compact group.

13.15 THEOREM Define
ev:G >~ A*(A(G))
by

ev(o) = 8 (8,(F) = £(0)).

Then ev is an isomorphism in CPTGRP.




11.

Iet

U:Rep G ~ FDHILB

be the forgetful functor.

13.16 I1EMMA The arrow

p:A(U,U) - A(G)
that sends [Hw,cp] (cb:HTr -+ Hﬂ) to the representative function
g>tr(n(o)¢) (o €QG)
is a linear bijection.
[Note: This can be sharpened in that A(U,U) carries a canonical Hopf algebra

structure which is preserved by p, i.e., p is an isomorphism of Hopf algebras.]
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