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Suppose that G is a canpact group. Denote by Rep G the category whose 

objects are the continuous fini te d~nsional unitary representations of G am 

whose ItOrphisns are the intertv.rining operators -- then Rep G is a ItOnoidal 

*-category with certain properties Pl,P2' ... . Conversely, if C is a ItOnoidal 

*-category possessing properties Pl ,P2, ..• I can ore find a canpact group G, 

unique up to isarorphisn, such that Rep G "is" £? The central conclusion of 

reconstruction theory is that the answer is affirmative. 
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1. 

§l. MONOIVAL CATEGORIES 

Given categories ~,~, their product is the category ~ x ~ defhed by 

Ob(~ x ~) = Ob ~ x Ob ~ 

MorUX,Y), (X' ,Y'» = Mor(X,X') x Mor(Y,Y') 

with composition 

(f' ,gIl 0 (f,g) = (f' 0 f,g' 0 g). 

Now take ~ = ~ -- then a nonoidal category is a category ~ equipped with a 

nmctor e:~ x £ -+ ~ (the multiplication) and an object e E Ob £ (the unit), together 

with natural isorrorphisms R, L, and A, where 

~:X e e -+ X 

Ix:e e X -+ X 

and 

Ax,y,z:X e (Y e z) -+ (X e Y) Q Z, 

subject to the following assumptions. 

cannutes. 

A A 
X e (Y & (Z Q W» -+ (X & Y) & (Z & W) -+ «X & Y) & Z) & W 

id III A 1 
X & {(Y & Z) & W) 

r Alii id 

----------'> {X & (Y & Z» & W 
A 
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A 
X Q (e Q Y) -+ (X Q e) Q Y 

id 9 L 1 1 R 9 id 

XQY XQY 

corcm:utes. 

[Note: The "coherency" principle then asserts that "all" diagrams built up 

fran instances of R, L, A (or their inverses), and id by repeated application of Q 

necessarily carn:nute. In particular, the diagrams 

A 
e Q (X Q Y) -+ (e Q X) Q Y 

Ll lL Q id 

XQY XQY 

connute and L = R :e ~ e -+ e.] e e 

N .B. Technically, the categories 

(~ x~) x ~ 

A 
X Q (Y Q e) -+ (X Q Y) Q e 

id ~ Rl lR 
X~Y X~Y 

are not the same so it doesn't quite make sense to say that the functors 

- (x,(Y,Z» -+ X ~ (y ~ Z) 

c x (~ x~) -+ C 

(f,(g,h» -+ f ~ (g Q h) 
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«X,Y),Z) -+ (X ~ Y) ~ Z 

(C x C) x C -+ C 

«f,g),h) -+ (f ~ g) ~ h 

are naturally isooorphic. However, there is an obvious is::m::>rphism 

1 
C x (C x C) -+ (C x C) x C - - - - -

am the assumption is that A:F -+ G 0 1 is a natural iSClf1Orphisn, where 

F 
C x (C x C) -+ C - - -

It 
(g x g) x c -+ c. 

G -

Accordingly, 

v (X,(Y,Z» E Ob C x (g x g) 

and 

v (f,(g,h}) E Mor C x (g X g), 

the square 

Ax,y,Z 
x~ (Y ~ Z) )0 (X ~ Y) ~ Z 

f ~ (g ~ h) 1 1 (f ~ g) ~h 

x' ~ (Y' ~ Z') )0 (X' ~ Y') ~ Z' 

Ax',Y',z' 

comnutes. 

Interchange Prin:::iple If 

f E Mor(X,XI) 

g E Mor(Y,Y') , 
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then 

(f fib id ) 0 (i~ fi1I g) = f fib 9 = (id fi1I g) 0 (f fib i<\) . 
Y' X' 

[Note: Since fib: g x g -+ g is a functor, in general 

(f 0 f') fib (g 0 g') = (f fib g) 0 (f' e g').] 

1.1 EXN1PLE Given a field!!, let ~ be the category woose objects are the 

vector spaces over !! am whose rrorphisms are the linaar transfonnations -- then 

~ is rromidal: Take X e Y to be the algebraic tensor product am let e be !!. 

[Note: If 

f:X -+ X' 

g:Y-+Y', 

then 

fib (f,g) = f fib g:X fib Y -+ X' fib Y' 

sends x fib y to f(x) fib g(y).] 

let H am K be canplex Hilbert spaces - then their algebraic tensor product 

H fib K can be ~pped with an innar product given on elementary tensors by 

am its canpletion H fib K is a COIl"q?lex Hilbert space. 

N.B. If 
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then 

exterrls by continuity to a bounded linear operator 

Denote by HILB the category whose objects are the ca:nplex Hilbert spaces and 

whose rrorphisms are the bourrled linear operators. 

1. 2 EXAMPLE HILB is a rroroidal category. 

PR(X)F Defire a fu:r:ctor 

9:HILB x HILB + HILB 

by 

9(H,K) = H 9 K 

am 

A B 
a(Hl + H2,Kl + K2) = A 9 B 

arrl let e be C. 

1. 3 REMARK Both am HILB admit a secom rroroidal structure: Take for 

too multiplication tOO direct sum (9 and take for the unit the zero object {oL 

Put 

~(S) = Mor(e,e) . 

Toon ~(9 is a rroroid with categorical ca:nposition as rroroid multiplication. 



Then 

6. 

1.4 LEMMA The m::moid M(C) is ccmnutative. 

PROOF Take S,t E ~(£) and consider the ccmnutative diagram 

;::; ~ 

e >e~e e~e e ~ e '> e 

t I 
~ 

ide III t S II ride I s 

e > e ~ e s t e~e e 

5 I 
;::; 

5 11\ ide ide \11 t 

~ 

\ t 

e '> e ~ e e~e e~e '> e. 

-1 o (s 0 t) 0 R = R-1 o (t 0 s) 0 R R e e e e 

==> 

sot = t 0 s. 

Given f E Mor(X,Y) an:1 s E ~(~) I define s·f to be the ca:nposition 

1.5 LEMMA We have 

-1 
L s ~ f L 

X --> e ~ X --> e ~ Y -> Y. 

id ·f = f 
e 

s· (tof) ::: (s o t).f 

(t·g) 0 (s· f) (t o s). (g 0 f) 

(s· f) ~ (tog) == (s o t).(f ~ g). 
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A monoidal category g is said to be strict if R, L, and. A are identities. 

So, if C is strict, then 

x ~ (y ~ Z) = (x ~ y) ~ Z 

am 

X~e=X 

e ~ x = X. 

[Note: While momidal, reither ~ mr HIlB is strict monoida1.] 

N.B. Take C strict am corsider ~(g) then V f,g E ~(g), 

f ~ g = fog = 9 0 f = g ~ f. 

1.6 EXAMPIE Let $ be the category whose objects are the nonregative integers 

am whose morphisms are specified by the rule 

% if n ~ m 

Mer (n,m) = 
$n if n = m, 

romposi tion in Mer (n, n) being group multiplication in $. Define 
n 

on objects by 

~(n,m) = n + m 

and on mo:rphisms by 

a L 

~ (n -+ n, m -+ m) = P (O,L), n,m 
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is the canonical map, i. e. , 

- 1 2 n n + 1 n + 2 n+m 

p (cr,"r) = n,m 

<1(1) <1 (2) <1 (n) n + T (1) n + T(2) n + T(m) 

and let e = 0 -- then with these choices, $ is a strict rroroidal category. 

[Note: $ is equivalent to the category whose objects are the finite sets and 

whose rrorphisms are the bijective maps.] 

, 

1. 7 EXAMPLE let MAT]c be the category whose objects are the :positive integers 

and 'Whose rrorphisms are specified by the rule 

1Vbr (n,m) = M (k) , 
n,m -

the n-by-m matrices with coefficients in k. Here idn:n -+ n is the unit diagonal 

n-by-n matrix and composition 

o:1Vbr(n,m) x 1Vbr(m,p) -+ 1Vbr(n,p) 

is 

BoA = AB, 

the product on the right being ordinary multiplication of matrices. Define 



9. 

on objects by 

QI(n,m) = rm 

am on rrorphisms by 

= 

A B 
QI (n -+ m, p -+ q) 

a B 
rm 

E Mar (rp,rrq) 

am let e = I -- then with these cmices, .MAT]c is a strict rroroidal category. 

[NOte: Wri te FDVECk for the full subcategory of ~ wmse objects are 

finite dimensional -- tren there is an equivalen:e .MATk -+ F'DVE<1i'.': Thus assign 

A 
to each object n the vector space ~n am to each IIDrphisu n -+ m the linear map 

fran k
n 

to k
m 

that sems (xI' ••• ,x ) E k
n 

to (YI'.'.'Y. ) E k_m, where y. is the - - n - m ~ 

i th entry of the l-by-m matrix Ixl , ... ,Xn]A. ] 

1.8 EXAMPLE Given a C*-algebra A, let End A be the category wrose objects 

are tre unital *-h::mJn:nrphisms <p:A -+ A am whose arrows <P -+ ':I' are the intertwiffirs, 

i.e., 

Mor(¢,':I') = {T E A:T¢(A) = ':I'(A)T V A E A}. 

Here, the ccmposition of arrows, wren defined, given by the product in A and 

QI:Em A x End A -+ End A 
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on objects by 

and on norphisms by 

T T' 
~(1? -)- '¥, 1?' -> '¥') 

= T1?(T') (= '¥(T')T) E Mbr(1? 0 1?', 'I' 0 ,¥I) 

and let e = idA -- then with these choices, Ehd A is a strict m::moida1 category. 

[Note: V A E A, we have 

T1? (T') (1? 0 1?') (A) 

= T1?{T') 1? ( 1?' (A» 

= T1? (T'1?' (A» 

= 'I' (T' 1?' (A) ) T 

= 'I' ('I" (A)T'}T 

= '¥('¥' (A) )'¥(T'}T 

= ('I' 0 ,¥I) (A)T1?(T').] 

1. 9 EXAMPLE Given a category C, let [C,C] be the rretacategory 'Whose objects - - -
are the functors F: ~ -)- ~ and whose norphisms are the natural transfonnations ::: 

from F to G. Define 

on objects by 

2(F,F') = F 0 F' 
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ani on rrorpbisns by 

~, 

& (F -+ G, F' -+ G' ) 

wrere 

= 
G'X 

ani let e = ide (tre identi ty fun:::tor) tren with trere choices, [s:,S:1 is a 

strict rroroidal category. 

[Note: If 

::: E Nat(F,G) 

~. E Nat(F',G'), 

tren 

v X,Y E Ob s: V f E MDr(X,Y) 

ani 

V X' ,Y' E Ob e V f' E Mor(X',Y'), 

there are commutative diagrams 

FX 
-X 

::> GX 

Ff 1 1 Gf 

IT ';::: >GY 
-y 
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;:;0' 

~X' 

F'X' ::> G'XI 

F'f' 1 1 G'f' 

F'Y' > G'Y'. 

In particular: The diagram 
H 

F'X 
FF'X ::> GF'X 

FOxl 1 Gox 
FG'X ::> GG'X 

~ 

G'X 

camnites. This said, too claim is Hat 

~ ~;:;O' E Nat(F Q F', G Q GI), 

i. e., that too diagram 

(~ G ~')X 

FF'X ::> GG'X 

FF'fl IGG'f 
FF'Y '> GG'Y 

(~ G ~')Y 

corrmutes. In fact, 

= GG'f Q 0 F;:;O' - ~X 

G'X 

= GG'f Q G;:;O' 0 .... -x FiX 
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= G(G'f 0 ~X) 0 ~ 
F'X 

= G{~y 0 F'f) 0 _ 

F'X 

= G~y 0 GF'f 0 H 

F'X 

= G;::;' 0 H -Y o FF'f 
F'Y 

G'Y 
o F~y 0 FF'f = -

= (~ ~ ~')Y 0 FF'f.l 

1.10 LEMMA Suppose that S is :rronoidal and let e,e' be units -- thm e am 

e' are i SJITOrphic. 

[T1:Ere is an i SJITOrphi s:n ¢: e -+ e' for which t1:E diagrams 

id 9 ¢ ¢ 9 id 
Xge > X 9 e' e9X > e' 

R,cl 

X 

comnute, viz. 

<P = L 
e' 

lRX 
, 

X 

o {R,)-l 
e 

rxl 
X 

(e -+ e 9 e' -+ e') .] 

9X 

1'1( 

X 
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§2. MONOIVAL FUNCTORS 

Let ~, ~' be rronoida1 categories -- then a rronoida1 functor is a triple 

(F, t;, =:), wrere F: C -'>- c' is a functor, t; : e I -'>- Fe is an i ::orrorphi su, and tl:e 

=X y:FX ~t FY -'>- F(X ~ y) , 

are iSJIl'Orphisns, natural in X,Y, subject to tre fo11()"".N'ing- assumptions. 

(MF 1) Tre diagram 

id ~ = ~ 

FX \21' (FY ~, FZ) > FX ~I F (Y ~ Z) F(X ~ (Y ~ Z» 

A 1 1 FA 

(FX ~, FY) ~, FZ > F{X ~ Y) ~I FZ F ({X ~ Y) ~ Z) 
=: \21 id ~ 

carmutes. 

(MF 2) Tre diagrams 

~ LFx 
FX ~' e' >FX e' ~, FX ----' > FX 

id ~ t; 1 !~ t; ~ id 1 !FIx 
FX ~' Fe > F{X ~ e) Fe~' FX ---' > F{e ~ X) 

~ -
cormrute. 

N.B. A rroroida1 fur:ctor is said to be strict 1;; am =: are identities. 

2.1 EXAMPLE Write FDHILB for tre full subcategory of HILB whore objects 

are finite dimensional -- then the forgetful fur:ctor 



2. 

is strict rronoidal. 

[Take for 

tffi identi ty i~ & y and let t; = ide'] 

[Note: A forgetful functor need not be rroroidal, let alone strict rroroidal. 

E.g.: Give AB its rronoidal structure per the tensor proouct, give SET its rron­

oidal structure :per the cartesian proouct, and consider U:AB + SET -- then tm 

canonical maps 

'(]A x DB + U(A &z B) 

are not iSOIDrphisrns.] 

Let 

(F , ~,:::) 

(G,e,G) 

be rronoidal functors -- tmn a rronoidal natural transformation 

(F,~,~) + (G,e,G) 

is a natural transfonnation a:F + G such that tm diagrams 

ae -
Fe >Ge FX &1 FY > F{X & Y) 

~ i i e ~ Q.I CYyl 1 ax & y 

e' e l
, GX 9. 1 GY > G{X Q. Y) 

G 

carmute. 
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ViTrite [g,g']~ for the netacategor:y whose objects are the m::noidal ftmcmrs 

g -+ g' and whose rrorphisms are the m::noidal natural transfonnations. 

N.B. A m::noidal natural transfonnation is a m::noidal natural isorrorphism 

if a is a natural ia::m::>rphism. 

2.2 REMARK Sane authorities assmne outright that Fe = e', t1:e rationale 

being that this can always be achieved by replacing F E Ob [g,g']~ by an ia::m::>rphic 

F' E Ob [g,g']~ such that F'e = e' (on objects X ";!: e, F'X = FX). 

2. 3 I..EMt-1A Let 

(F, 3,1;) 

(F I ,3' , 1;' ) (F':g I -+ C' , ) 

be rroroidal fun::::tors -- t.1:en treir comp::>si tion F' 0 F is a rronoidal functor. 

1;' F'I; 
[Consider the arrc:JINs e I I --~> FIe' -----> FIFe and 

~I F'-
F'FX ~I I F'FY - FX,FY> F' (FX ~I FY) __ -_X-'-,_y::> F'F(X ~ y).] 

wri te ~4:NCAT for tre metacategory wInse objects are tre monoidal categories 

and wInse morphians are tre moroidal fuoctors. 

2.4 RAPPEL Let g, 12 be categories -- then a fun::::tor F:g -+ 12 is ::aid to be 

an equivalence if there exists a functor G:12 -+ g such that G 0 F ~ idc and 

FOG :::: i~, the symbol:::: starrling for natural iEOlrorphian. 
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2.5 LEMMA A furr:tor F:g -+ ~ is an equivalence iff it is full, faithful, 

and res a representative ima.ge (Le., for any Y E Db ~, tlere eKists an X E Ob C 

such tret FX is iEa1X)rpm.c to y) . 

N.B. Categories g, ~ are said to be equivalent provided ther-e is an e::ruiv­

aleoce F:C -+ D. The abject is:ttOrphisn types of equivalent cate:.:rories are in a 

one-to-one corresfOrrlerr:e. 

C F:C -+ D 
2.6 RAPPEL Given categories , functors are said to be an 

D G:D -+ C 

Mor 0 (FOP x i~) 

adjoint pair if the functors from cOP x 12 to SET are :naturally 

Mor 0 (id OP x ~) 
C 

X E Db C 
isonorphic, i.e., if it is possible to assign to each ordered pair 

Y E Db D 

a bijective nap E!x,y:M::>r{FX,y) -+ M::>r{X,GY) which is functorial in X and y. When 

this is so, F is a left for G and G is a right adjoint for F. Any UNo ---"""'----
left (right) adjoints for G (F) are raturally isarorphic. In order that (F ,G) 

be an adjoint pair, it is recessary am sufficient that there exist natural trans-

~ E Nat(idc, G 0 F) (VF) 0 (FV) = i~ 
formations subject to 

v E Nat(F 0 G, i~) (Gv) 0 (~G) = idG• 

The data (F ,G,~, v) is referred to as an adjoint situation, the natural trans-' 



5. 

fonnations being the arrOW'S of adjunction. An adjoint eg;uiv-

v:F 0 G -+ i~ 

alence of categories is an adjJint si tllation (F ,G,l1, v) in which roth 11 and v are 

ffi tural isorrorphisrns. 

2.7 W1MA A ftlllctor F:C -+ D is an equivalence iff F is prrt of an adjoint 

eg;ui valer:ce. 

Let g, g' be rronoidal categories then g, C' are rroroidally equivalent 

if there are moroidal functors 

and rroroidal natural isorrorphisms 

F:C -+ C' 

F' :C' -+ C 

F 0 F' - id 
C' 

2.8 LEMMA Suppose that F:g -r~' is a rroroidal fuoctor. AsSUIllE!: F is an 

equivalence -- then F is a rronoidal equivaler:ce. 

2. 9 REMARK Embe:i F in an adjoint si tlla tion CF, F' ,11,11 '), where 

l1':F 0 F' -+ id 
C' 
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are the arrows of adjunction (cf. 2.7) -- then one can equip F' with the structure 

of a nnnoidal functor in such a way that the natural isonorphisms 'fl, 'fl' are 

nnnoidal natural isonorphisms. Thus first specify ~':e -+ F'e' by taking it to 

F,~-l 
be the composition e F'Fe ----'> F'e'. As for 

~, :F'X' ~ Fly' -+ FleX' ~' Y'}, 
x' ,yl 

build it in three stages: 

'fl 
1. FIX' ~ Fly' -+ F'F(F'X' ~ F'Y'}; 

2. F'F(F'X I ~ F'Y'} --------> FI(FFIX' ~' FF'Y'}; 

'fl' 
Xl 

3. FF'X' ---~ X' 

=> 

=> 

'fl' 
y' 

FF'Y' > y' 

'fll ~ 'fl' :FF'X' ~' FF'Y' -+ X' ~ , Y' 
X' Y' 

F' ('fl' 
X' 

~ 'fl' ) :F' (FF'X' ~' FF'Y') -+ F' (X' ~' Y'). 
Y' 

If C is m::moidal, then ~OP is m::moidal when equipped with the sane ~ and e, 

taking 
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§3. STRICTIFICATI0N 

A strictification of a rroroidal category ~ is a strict rroroidal category 

which is rroroidally equivalent to ~. 

3.1 EXAMPLE MATJc is a strictification of F'DVE<1c' 
- -

[Tte equivalence MATk -+ FOVE'.C1c constructed in 1. 7 is a ItDIlJidal functor, 

h:mce is a rronoidal equivalence (cf . 2. 8) • ] 

3.2 THEOREM Every :rronoidal category ~ is :rronoidally equivalent to a strict 

:rronoidal category C tr' -s 

The proof is constructive and bes t broken up into steps. 

Step 1: let ~ be the class of all finite sequences S "" (Xl"" ,Xn) of objects 

of ~, including the empty sequence fiJ. Given nonempty 

let 

and write 

S * fiJ = S = fiJ * s. 

Step 2: The claim is that ~ is the object class of a strict :rronoidal 
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category ~str' Le., §. = Ob ~str' In any event, tl:e mUltiplication 

*:S x S + S - - -
is asrociative, OC) we can take A to be the identity. Aloo, Ii ::erves as the unit 

and 

~:S * Ii + S 

are the identities. 

Step 3: Given S, T, we rned to specify Mor(S,T}. For this pu:r.p:>re, define 

a map f:§ + Ob ~ by fli = e, f«X» = X, and f(S * (X» = fS ~ X, thus 

wl:ere all opening parentheses are to the left of Xl' Definition: 

Hor (S , T) = Hor (fS , fT) • 

This pres:ription then gives ri::e to a category ~str with Ob ~str = S. 

Step 4: We shall nON defi rn a fuoctor *: C tr x C tr + C tr t1:at serves to -s -s -s 

render C tr strict rronoidal, tl:e issue being t1::e meanirg of -s 

u u' 
u * u' =*(S +T, S· + TI) 

EMar(S * S', T * TI) 

= Mar ( f (S * S'), r (T * T'}). 
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Bearin;r in mind that 

Mor(S,T) = Mor(rS,rT) 

U <-> f 

Mor (5 I ,T I) = Mor (rs I ,fT' ) 

u' <-> f', 

let u * u' be tre canposi te 

fl9f' 
r(S * 5') + rs 9 rs' --> fT 9 fT' + r(T * T'), 

where the outer arrows are tre obvious canonical ItO:rphisms in g. Accordin;rly, 

with this agreement, e tr is strict ItOnoidal. -s 

Step 5: It is clear from its very construction that r:e tr + e is a fmctor -s -

which, ItOreover, is full, faithful, and is isarro:rphism dense. But r~ = e and 

there are isaro:rphisrns 

natural in 5, T and satisfying Mr l' Mr 2 of §2. 'Iherefore r is m:moidal. 'lb finish, 

it remains only to quote 2.8. 

[Note: It is not necessary to quote 2.8: Simply observe that there is an 

inclusion fmctor y:g + gstr and 

roy = ide 
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Detail: From 

Mbr(yfS,S) = Mbr(fS,fS), 

let 

Cts <-> idfS ' 

thus Cts:yfS -+ S and Ct:y 0 f -+ idC is a rronoidal na'blral is:JIIDrpbism.] 
-str 

3.3 REMARK let £, £' be rronoidal categories -- then each rronoidal functor 

F:C -+ C' induces a strict rronoidal functor F tr:C tr -+ C'str and there is a s -8 -

corrmutati ve diagram 

F 
C > C' -

y 1 ly' 

£str 
Fstr 

::> £'str· 

Here, on an object S, 

while on a rrorpbism u: S -+ T, 

is that elenent of Mbr(fFS,fFT) defined by requiring ccm:nutativity of the square 

fFS > fFT 

~ 1 1 ~ 
Frs > FfT, 

Ff 
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where f E Mer (rS, rT) corresponds to u. 

[Note: COJ:tposi tion of Il.Dl1oidal fl.IDctors is preEerved by this construction.] 

There are five ingredients figuring in the definition of a Il.Dl1oidal categor.y: 

S, e, R, L, A. Keeping track of R, L, A in calculations can be annoying and one 

way out is to pass from £: to £:str' But this too has its downside since ~tr is 

a IIDre complicated entity than g. So, in what follows, 'We shall stick with £: and 

detennine to what extent R, L, A can be eliminated from consideration (Le., are 

identi ties) • 

Suppose that 

(S, E, R, L, A) 

(S', e', R', L', A') 

are IIDnoidal structures on £ -- then these structures are deem::d isorrorphic if :I a 

Il.Dl1oidal equivalence of the fonn (idc'~'~) between them. 

N.B. Therefore t;::e' -+ e is an isorrorphism and the 

~X,y:X 9' Y -+ X S Y 

are isorrorphisms, subject to the coherence conditions of §2. 

3.4 REMARK The philosophy is that replacing a given Il.Dl1oidal structure on £ 

by another isorrorphic to it is of no consequence for the l.IDderlying ma.thematics. 

3.5 LEMMA let (S, e, R, L, A) be a Il.Dl1oidal structure on g. Suppose given 

a ma.p S' :Ob g x Ob g -+ Ob g, an object e' E Ob £:, an iSOllOrphism t;:':e -+ e', and 

~~- ... -----
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isarorphisrns 

Then there is a unique rronoidal structure (~', e', R', L', AI) on C such that 

(idC' ~', E'):(£, ~I, e ' , R', L', A') -+ (£,~, e, R, L, A) 

is an iEOJ.rorphisn. 

PR(X)F Extend~' to a functor ~':C x £ -+ £ by the prescription 

;::;1 

-X,Y 
~(X,Y) > ~' (X,Y) 

~(f,g) 1 1 ~I (f,g) 

~(X' ,Y') > ~' (X' , y' ) , 
;:;1 

x' ,Y' 

s:> ~ ::;::~' (via;::;' E Nat(~,~'». This done, define R', L', AI by the diagrams 

R' L' 
X ~' e' > X e l ~' X > X 

E' r r R 
;::;. I I L 

X ~ e' < X~e e l ~X < e~X 

id ~ ~' ~I ~ id 

A' 
X ~. (Y~' Z) > (X~' Y) ~' Z 

3' r i E' 
I 

X~ (Y~' Z) (X ~' Y) ~ Z 

id ~ E' r r E' ~ id 

X~ (Y ~ Z) > (X ~ Y) ~ Z. 
A 
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3.6 THEOREM let (~, e, R, L, A) be a rronoidal structure on C. Suppose that 

e 1 is an object is::xrorphic to e, say ';:e' -+ e - then there is an isorrorphic 

rronoidal s tructure (~', e t, R', L t, A') on g in which R', L t are identities. 

PRl:X>F Bearing in mind 3.5, put 

X~' Y = X ~ Y if X ~ e' ~ Y 

and 

- Y if X = e 1 

X~' Y = 

XifY=e'. 

Define 

by stipulating that EX,y is to be the identity if X ~ e' ~ Y, otherwise let 

-~, = ~ 0 (i<ix ~ .;) 
X,e' 

;:;, = Ly 0 (.; ~ idyl . 
el,Y 

'Ib establish consistency, i. e., that 

R 0 (id ~.;) = L 0 (.; ~ id ), 
e' e' e' e' 

e ~ e -----:> e' ~ e' 

is an isorrorphism and due to the naturality of R, L, the diagrams 



R 
e 

e~e 

~' ~ ide 1 
e' ~ e 

R 
e' 

corrmute. Therefore 

8. 

~ e e~e 

1 ~' id ~ ~' 1 e 

~ e' e ~ e' 

R 0 (id ~~) 0 (~' ~ ~') 
e' e' 

=R 
e' 

o (~' ~ id ) e 

= 1:" 0 R = 1:" 0 L (R = L ) 
'" e '" e e e 

=L 
e' 

o (id ~~') 
e 

= L 0 (~~ id 
e' e' 

L e 
~ e 

1 ~' 
~ e' 

L 
e' 

o (~' ~ ~) 

from which the contention. Finally, by consttuction (cf. 3.5), R', L' are 

identities. E.g.: 

or still, 

or still, 

R:X 0 ';:;' 

x,e' 

[Note: If A is the identity and e' is not in the image of ~, t.h:m A' is 
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also the identity. Prcx:>f: 

e' E {X,Y,Z} => AXYz = id 

e' ~ {X,Y,Z} & e' ~ Im ~ => AXYz = ~z.l 

3.7 REMARK Take e' = e - then the preceding result irrplies that by passing 

to an isonorphic IIOIloidal structure, it is always possible to arrange that 

v X E Ob ~, 

X ~ e = X = e ~ X. 

The situation for the associativity constraint is nore complicated and it will 

be necessary to irrpose sane conditions on c. 

Definition: A construct is a pair (~,u), where 

U:C + SET 

is a faithful functor. 

3.8 EXAMPLE Define a functor Q:SETOP 
+ SET as follows: en objects, OX = 2X 

f 
and on norphisns, Q(A + B) :QA + QB sends X c A to the inwrse image f-l(X) c B. In 

this connection, recall that 

f 
A + B E MDr SETOP 

neans that 

f 
B + A E MDr SET. 

Therefore (SETOP,Q) is a construct. 
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let (g,U) be a construct - then (g,U) is amnestic if a g-isonorphisn f is 

a g-identity whenever Uf is a SET-identity, i.e., if X,Y E Ob g, if f:X + Y is 

an isarorphisrn, if Uf = id I then X = Y and f = id. 

let (g,U) be a construct -- then (g,U) is transportable if V g-object X 

cp 
and every bijection ux + S, 3 a £-object Y with UY = S and an isonorphisrn tP:X + Y 

such that UtP = cp. 

3. 9 LEMMA If (g I U) is amnestic and trans];X)rtab1e I then the pair (Y I tP) is 

mique. 

PRCX)F Say WE! have 

'Ihen tP2 0 tP~l is an isonorphisrn and 

-1 
'Iherefore by amnesticity, Y1 = Y2 and 1>2 0 tPl = id => tP2 :::: tP1 · 

3.10 EXAMPLE '!he construct F'1?VEC1c is amnestic and trans];X)rtab1e but the 

full subcategory of F'1?VEC1c whose objects are the ~n I while amnestic I is not trans­

];X)rtab1e. 

3.11 LEMo1A If I';:SET + SET is an isorrorphisrn and if (g,U) is amnestic and 

trans];X)rtable , then (g,l'; 0 U) is annestic and transportable. 
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3.12 THEOREM Suppose that (£, U) is amnestic and transportable. let 

(~, e, R, L, A) be a :rronoidal structure on £ -- then there is an isarorphic strict 

:rronoidal structure (~t, e, R', L', A') on C. 

The proof is lengthy, the point of departure being 3.2: 

where 

Step 1: 

r:c tr -+ c -s -

y:c -+ C tr' - -s 

roy = id 
C 

y 0 r :::: idc . 
-str 

Given S E Ob C tr' consider -s 

{S} x urs E db SET. 

'!hen the projection 

'IT 
{S} x urs ___ s_> urs 

is bijective, so there exists a tmique [S] E db £ with u [S] = {S} x urs and a 

tmique isarorphism TIs: [S] -+ rs such that UTIs = 'ITs' 

Step 2: 
-

'!here is a ftmctor r:c t -+ C which on objects is the prescription -s r -

rs = [S] 

-
and on norphisms is dictated by requiring that TI E Nat (r ,r) : 
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ITs 
fS ;;> fS 

ru 1 1 ru 
-
fT > fT. 

TIT 

Step 3: r : e tr -+ e is an equivalence of categories (II: r -+ f being a natural -s -

isorrorphism) . In addition, r is injective on objects. 

Step 4: Define a functor y:e -+ e tr on objects by taking yx = yX if X is - -s 

not in the .ima.ge of r and letting y [S] = S otherwise. Next, define 

by 

TI[yX] 
[yX] -------~ fyX = X 

if X is not in the .ima.ge of r and let Vx = i~ if X = [S] for some S. Since r is 

fully faithful, v.e can then define y on rrorphisms by requiring that v:r 0 y -+ ide 

be a natural iSOlIOrphism. 

Step 5: The arrow 

-
~ = id:id

e 
-+ y 0 r 

-str 

is a natural isorrorphism. 

Step 6: The data (r, y , ~ , v ) is an ad joint situation: 

(vF) 0 (r~) = id 
r (cf. 2.6) • 

(Yv) 0 (~y) = id 
y 
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Explica ted: 

v 0 r11 = id 
rs s rs 

-yvx 0 11_ = id 
yX yX 

Claim: 

v = id 
rs rs 

& 

But 

rs = [S] => v_ = id_ (= r11s )' 
rs rs 

As for the relation 

since r is faithful, it suffices to show that 

for all X E Ob C. But from the definitions, V f E M:>r(ryx,X), there is a 

ccmnutati ve diagram 

ryryx 
ryf 

:> ryx 

Vryx 1 1 Vx 
--ryx :> X • 

f 
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Now take f = Vx to get 

or still, 

or still, 

as desired. 

Step 7: '!he adjoint situation (r,Y,lJ,v) is an adjoint equivalence of cate-

gories (lJ and v are natural isarr:orphisms) . 

Step 8: Put 

X~' Y = r(yX * yY) 

and let e ' = r¢ -- then 

= yX * yY 

and 

ye ' = yr¢ = ¢. 

Step 9: We have 

X ~' (Y ~' Z) = r(yx * y(Y 9' Z» 

r(y(X ~' Y) * yZ) 

= (X~' Y) ~' Z, 
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so A I = id will work. 

Step 10: let 

ryx -+ X. 

'Ihen this makes sense: 

x ~' e l = r(yX * yr~) = r(yX * ~) = ryx 

e' ~' XI = r(yr~ * yX) = r(~ * yX) = fYX. 

Furtherrn:::>re, the diagram. 

AI = id 
X ~I e l Qly X ~I e l Q' 

id ~I 

COImnlteS. 'Ib see this, 

And the arrows 

L' 1 lR' ~I 

X ~' Y X~' Y 

note first that 

X 2' e' ~' Y = f(yx * yet * yY) 

= r(yx * ~ * yY) 

= rCyx * yY) 

= X Q' Y. 

RX ~'i~ x~' e' ~. Y -+ X~' Y 

i~ ~'r.y. X Q' e' Q' Y -+ X ~' Y 

Y 

id 



16. 

are identities. E.g.: 

= reid * id ) 
yX yY 

= reid ) 
yX * yY 

= id 
r(yx * yy) 

= id 
X Q' Y 

Step 11: It is clear that 

y: (~,9' ,e' ,R' ,L' ,A') -+ (~str,*,~,R,L,A) 

is a nnnoidal equivalence (cf. 2.8), thus the sane is true of 

fy: (~,9' ,e' ,R' ,L' ,A') -+ (~,9,e,R,L,A) (cf. 2.3). 

But there is a nnnoidal natural isarrorphism fy :::: ide: v X E Ob ~, 

II-I 

fyX yX > ryX _V_X----'> x. 

Therefore the nnnoidal structure (9',e' ,R' ,L' ,A') is isarrorphic to (9,e,R,L,A). 

Step 12: 'It:> complete the proof, it is necessru:y to fine tune (9' ,e' ,R' ,L' ,A') 

by an application of 3.6: 

(Q' ,e' ,R' ,L' ,AI) -+ (Q" ,e" ,R" ,L' I ,A' '), 

c1:Kx>sing e" = e (cf. 1.10). So, R", L" are identities. However, by construction, 

A' is the identity, thus if e is not in the image of Q', then A" is also the 

identity. 'It:> ensure that e is not in the image of 9', it is enough that e is not 
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in the image of r. Supp:>se it were -- then 

Ue = {S} x urs (j S E Ob C tr) • -s 

Now use 3.11 and replace U by I;U, where I; has the property that I;Ue is not a 

cartesian product of two sets. 

3.13 EXAMPLE Consider the construct FI?VE:Ck - then the failure of the 

tensor product to be associative "an the nose" is an artifact of its definition 

by a universal property which determines it only up to isarorphism. While the 

usual procedures do not lead to an associative tensor product, the lesson to be 

drawn from 3.12 is that it is possible to find a tensor product on FI?VE:Ck such that 

and 

x ~ ~ = X 

~~ X = X 

(X ~ Y) ~ Z = X ~ (Y ~ Z) = X ~ Y ~ Z. 
- - - - --



1. 

§4. SYMMETRY 

A synnetry for a nonoida1 category £ is a natural isarorphism T, where 

such that 

is the identity, Rx = Ix 0 Tx,e' and the diagram 

A T 
X e (Y e Z) --> (X e Y) e Z :> Z e (X e Y) 

id e T 1 lA 
X e (Z e Y) --> (X e Z) e Y > (Z e X) e Y 

A T e id 

COIIm..ltes. A syrmetric rronoida1 category is a rronoida1 category £ endowed with a 

synnetry T. A nonoidal category can have nore than one syIIJnEtry (or none at all) . 

[Note: '!be "coherency" principle then asserts that "all" diagrams built up 

fran instances of R, L, A, T (or their inverses), and id by repeated application 

of e necessarily carnmute.] 

N.B. let 

f:C x C -+ C x C - - - -
be the interchange - then f is an isarorphism and T: e -+ e 0 f is a natural iso-

rrorphism. 

E.g.: ~ and HIIB are sy:rmetric nonoida1. 

4.1 EXAMPLE let C*AI.G be the category whose objects are the C*-a1gebras 
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and whose norphisms are the *-hc:m::lrorphisms -- then under the minimal tensor 

product or the maximal tensor product, ·C*AI.G is a syrrmetric rronoidal category. 

4.2 EXAMPLE let CHX be the category of chain complexes of abelian groups 

and chain naps - then CHX is nonoidal: Take X ~ Y to be the tensor product and 

let e = {e } be the chain complex defined by eO = Z and e = 0 (n 7. 0). Further-
n - n 

- X = {Xp} x E Xp 

nore, if and if , then the assigrnrent 

Y = {Y } 
q 

X~Y-+Y~X 

x ~ y -+ (-l)pq (y ~ x) 

yEY 
q 

is a syrr:netry for CHX. 

4.3 REMARK In the strict situation, natters reduce to the relations 

T = T = icl .. and e,X X,e ){ 

[liIote: Therefore 

TX ~ Y,Z 0 Ty ~ Z,X 0 TZ ~ X,Y = id.] 

4.4 EXAMPLE Let $ be the :pennutation category introduced in 1.6 -- then $ 

is syrr:netric nonoidal. 'Ib establish this, one must exhibit isan:orphisms 

T E MJr (n ~ m, m ~ n) n,m 
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fulfilling the various rondi tions. Definition: 

1 2 

T = n,m 

m+l m+2 

with the understanding that T n,O 

n n + 1 

m+n 1 

= id = TO ' thus n ,n 

ToT = id n • m,n n,m n ~ m 

n + 2 n+m 

2 m 

As for the remaining details, it is sirrplest to work with permutation matrices, 

so take n > 0, m > 0, and note that 

'Ihen 

= 

= 

T = n,m 

o I m 

I 0 
n 

(T ~ id )o(id ~ T ) n,p m n m,p 

0 I 0 p 

I 0 0 n 

0 0 I m 

0 0 I 
P 

I 0 0 
n 

0 I 0 m 

I 0 0 n 

0 0 I p 

0 I 0 m 

= T n ~ m,p. 



[Note: 

o cr o 

o T 

4. 

'If cr E $ 
n 

'If T E $ , 
m 

o 

= 
cr 

T 

= 
o 

T 

o 

o 

cr 

'Iherefore naturali ty is manifest, i. e. , 

T 0 (cr ~ T) = (T ~ cr) 0 T .1 n,m n,m 

o I m 

I 0 
n 

let g, g I be syrmetric n:onoidal categories -- then a syrmetric n:onoidal 

functor is a n:onoidal functor (F, ~, B) such that the diagram 

M 

~X,Y 

FX ~' FY > F(X ~ Y) 

TFx,EY 1 IFTx,y 

FY 2' FX > F{Y 2 X) 
... 
'"Y,X 

ccmnutes. 

N.B. The nonoidal natural transfo:r:ma.tions between syrmetric n:onoidal functors 

are, by definition, "syrmetric n:onoidal lt (Le., no further conditions are imposed 
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that reflect the presence of a synJlEtry) • 

[Note: ~ T ~ Therefore the su1::x::atego:ry [g,g'] , of [g,g'] whose objects are the 

SynJlEtric nonoidal natural transfo:rma.tions is, by definition, a full su1::x::atego:ry.] 

4.5 EXAMPLE Recall that ~n has the following presentation: It is generated 

by 0
1
,." ,0

n
_

l 
subject to the relations 

0~ = 1,0,0'+10. = 0'+10,0'+1,0.0. = 0,0. <Ii-j\ > 1). 
111 1 111 1 J J 1 

Suppose now that g is synJlEtric strict lIDnoidal and fix X E Ob g. Define auto-

1 ~-l Qn 
lIDrphisms II , ••• , II of X-- by 

Then there exists a unique horrorrorphism 

of groups such that 

(i = I, ... ,n-l). 

Combining the rrx then leads to a synJlEtric nonoidal functor F:~ -+ C such that 
n 

4. 6 LEMMA let F: g -+ g' be a nonoidal equivalence. Assl.lIIe: g is SynJlEtric 

then the sy.rmet:ry T on g can be transferred to a sy.rmet:ry T' on c' in such a way 

as to render F sy.rmetric nonoidal. 

[Define TFX,FY by 



6. 

M FT 
FX ~' FY -> F (X ~ Y) -> F (Y ~ X) -> FY ~' FX 

and recall that F has a representative image (cf. 2.5).] 

4 • 7 EXAMPLE If ~ is syt.l1:'OOtric rronoidal, then ~str is syr:t:1lIetric rronoidal 

and y: C -+ C tr is a symnetric IIDnoidal equivalence. - -s 

4.8 LEMMA ret C, C' be symnetric nonoidal and let (F,F' ,fl,fl') be an adjoint - ... 
equivalence. Assurre: F is sy:rmetric IIDnoidal - then F' is syrmetric rronoidal 

(cf. 2.9). 
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§5. VUALITY 

let g be a oonoidal category - then each X E Ob g defines flIDctors 

- e x:c -+ C 

x e -:c -+ c. - -
Definition: C is 

left closed 

righ t cloSErl 

if v X E Ob g, 

- e X admits a right adjoint, denoted lham(X,-) 

X e -. admits a right adjoint, denoted rhom (X,-). 

[Note: g is closed if it is berth. left closed and right closed.] 

So: 

g left closed ==> M::>r (Y ex, Z) :::: M::>r (Y , Than (X, Z» 

g right closed => M::>r(X 9 Y,Z) :: M::>r(Y ,rhom(X,Z» 

for all Y,Z E db C. 

N . B • The f'lIDctor 

is called the 

lhom(X,-) 

rham(X,-) 

-left 
internal hom functor attached to X. 

right 
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5.1 REMARK If g is syIl'll'!etric rronoidal, then left and right internal hans 

are naturally isomorphic and if g is left or right closed, then C is closed. 

5.2 EXAMPLE Given a ccmnutative ring !S, let MOl\. be the category whose 

objects are the left !s-m::xlules and whose norphisms are the !s-linear maps - then 

~ is symretric nonoidal. M::>reover, 14:)1\. is closed and 

lhomeX,Z} :::: ~ eX,Z) 

rhom(X,Z) :::: ~ (X,Z). 

5.3 I..ll~ Suppose that g is left closed - then V X E Cb g, the flIDctor 

- ~ X preserves colimits (being a left adjoint) and the flIDctor lhomeX,-) 

preserves limits (being a right adjoint) . 

5.4 LEMMA Suppose that g is left closed -- then V Z E Cb g, the cofl.IDctor 

Thorn (-, Z) converts colimi ts to limits. 

PRCX)F let! be a small category, I'J.:! -+ g a diagram for which col~ l'J.i 

exists -- then V Y E Cb g, 

:::: Mor(Y ~ col~ l'J.i,Z} 

::::: M::>recol~ (Y ~ l'J.i ) ,Z) 
-
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=> 

Let g be a m:m.oidal category. Given X E Ob g, an object Vx E Ob g is said 

to be a left dual of X if :3 IlDrphism.s 

and corrmutati ve diagrams 

L-l nx 6b id 

X --'> e 6b X ------''> (X 6b v X) 6b X 

X< X6be<---- X 6b ( v X 6b X) • 
R id 6b E:x 

-1 
v id 6b nx R 

Vx e ex 6b vX) Vx '> X6be > 

II lA 
Vx < __ v 

e 6b X < (vX 6b X) 6b vx• 
L E:x 6b id 
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N.B. When £ is strict, these diagrams reduce to the relations 

5.5 LEMMA SUppose that Vx is a left dual of X -- HEn the functor - 6a Vx 

is a right adjoint for the fun::tor - 9 X a:rrl tte functor Vx 6a - is a left 

adjoint for the fwrtor X 6a -. 

In brief: V Y,Z E Ob g, 

v 
M:::>r (y 6a X, Z) ;:::.Mer (y I Z 6a X) 

v 
.Mer ( X 6a Y I Z) ::::.Mer (y I X 6a Z) • 

PR(X)F It will be enough to sh:::M' that - 6a Vx is a right adjoint for 6a X, 

the proof that Vx 6a - is a left adjoint for X 9 - being similar. So let 

F=-6aX 

v 
G=-6a X 

(cf. 2.6) 

am to simplify the writirg, take g strict. Define 

v E Nat(F 0 Glide) 



by 

Consider 

Thus 

And 

or still, 

or still, 

(V) 

5. 

v Pw E M:>r(W,W ~ X ~ X) 

v 
Vw E M:>r(W ~ X ~ X,W) 

(vF) 0 (F~). 

«vF) 0 (~»W = (VF)W 0 (~)W' 

~ E Nat(F,FGF) 

i<\7 ~ Tlx ~ i~ 
(F~)W:W ~ X :> W ~ X ~ Vx ~ X. 

vF E Nat(FGF,F) 

v 
(vF)W:W ~ X ~ X ~ X --------':> W ~ X. 



Therefore 

is the cauposition 

I.e. : 

The verification that 

is analogous. 

6. 

(i~ 9 i~ 9 EX) 0 (i~ 9 nX 9 i~) 

= (i~ 0 i~) 9 «i~ 9 EX) 0 (nx 9 i~)) 

=i~9i~ 

= i~9X 

=i~ 

= (i~)W· 

(vF) 0 (Fp) = i~. 

(Gv) 0 (pG) = id
G 

5.6 LEMMA A left dual of X, if it exists, is unique up to isorrorphisrn. 

PR.CXJF suppose that 

are two left duals of X -- then the ftmctors 
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_9v~ 

are naturally isarorphic (roth being right adjoints for - 9 X), so 'if W E Ob f, 

NOw specialize and take W = e to get 

=> 

[Note: Explicated, 

L 

Vx ~ vX'.... 
1 ~ -""2 

V 
--> X

2
o] 
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be an isarcorphism and put 

[Consider first the case when £ is strict, thus, e. g. , 

But 

=> 
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=> 

In. general, the claim is that i<lx equals 

-1 -1 
R 0 (i<lx ~ ex) 0 A 0 (nX ~ i<lx) 0 L 

or still, 

or still, 

Here 

-1 v v 
A : (X ~ X') ~ X -+ X ~ ( X' ~ X) • 

So, to canplete the verification, one has only to show that the composition 

(id ~ tj» ~ id 
(X ~ vX) ~ X :> (X ~ vX ') ~ X 

-1 
A 

(vX' ~ X) >X~ 

id ~ (tj>-l ~ id) 
> X ~ (vX ~ X) 

is 

-1 
A 

(X ~ vX) ~ X v > X ~ ( X ~ X). 

However, due to the naturality of the associativity constraint, there is a 
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conmutati ve diagram 

-1 

(X a vX) 
A 

ax ::> X a (vX a X) 

(id a <1» aid 1 1 id II (~ II id) 

(X a VX ') ax > X a (vX' a X) • 
-1 

A 

And 

(id a (<I> a id»-l = id a (<1>-1 aid).] 

A rronoidal catego:ry ~ is said to be left aut.onorrous if each object in ~ 

admits a left dual. 

N.B. Suppose that ~ is left autoncm:::>us. Given f E M:>r(X,y), define 

-1 
R 

id a fix 

A 

(id a f) a id 

V 
-------::> e 9 X 

L v 
--.....;> X. 
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'Iben the assignnent 

defines a cofunctor C -+ C. 

[Note: The specific form of v f depends on the choices of Vx and vY.] 

5.8 REMARK If C is left autonarrous and if X, Y E Ob g, then v eX 9 Y) is 

[We have 

M::>r(V (X 9 Y) 9 W,Z) :::: M:>r(W, (X 9 Y) 9 Z) 

:::: M:>r(W,X 9 (Y 9 Z» 

v 
:::: Mor( X 9 W, Y 9 Z) 

v v 
:::: M:>r e Y 9 ( X 9 W) , Z) 

v v 
:::: Mor« Y 9 X) 9 W,Z) 

=> 

5.9 ~ SUpp:>se that g is left autonarrous - then C is left closed. 

PRCX>F In fact, V X E Ob g, 

lhan(X,-) = v 
9 X. 

(he can also introduce the notion of a right dual X v of X, where this t.ine 
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subject to the obvious aJIllllUtativity conditions. Here the functor -- ~ XV is a 

left adjoint for the functor -~ X and the functor XV e - is a right adjoint 

for the functor X e -. 

[Note: If X admits a left dual Vx and a right dual xv, then in general Vx 

and X V are not isarrorphic. On the other hand, it is true that 

E.g.: 

=> 

The definition of ttright autonOODus" is clear and 'WI9 shall tenn C autonooous 

if it is roth left and right autOllOIIOUS. 

5.10 LEMMA Suppose that g is right autonOODUS -- then g is right closed. 

PRIX)F In fact, V X E Db g, 

rham(X,-) = XV e -- . 

5.11 REMARK If g is autonarrous, then -- e - preserves colirnits in roth 

variables. 
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Suppose that F:£ -+- £' is a rronoida1 ftmctor. Assurre: X v is a right dual 

v 
of X - then FX is a right dual of FX. Proof: Consider the arrows 

t; 
-1 

---\> Fe ---> e' 

e' -\> Fe 

[Note: Assurre that ~, ~' are right autonc:m::ms - then there is an iSCJIDrphisn 

v v 
~:FX -+- (FX) I 

n.anely the canposition 

L v 
FX

v 
---\> e' 0' FX 

and the diagram 

n 0 id 
___ \> «FX) v 0' FX) 0' FXv 

A-I 
___ > (FX) v 0' (FX 0' FXv) 

id 0 :=:: 
__ ----'> (FX) v 0' F{X 0 Xv) 

id 0 Fe: 
___ \> (FX) v 0' Fe 

id 0 t;-1 
___ \> (FX) v 0 1 e' 

R 
V 

---> (FX) , 
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FX
v 

id 9 ~ 

FX 9' :> FX 9' (FX) v 

" 1 1 EFX 

F(X 9 Xv) > e' 
FEX 

ccmnutes.] 

N.B. Che can, of course, work equally well with left duals. 

5.12 LEMMA Let 

(F ,~,::n 

(G,8,G) 

be rronoidal functors and let o.:F -+ G be a nonoidal natural transfonnation. AsS\.lrlE: 

'!he source C of F and G is autonarrous - then 0. is a nonoidal natural isarorphism. 

PRCX>F '!he claim is that 'If X E Ob g, 

~:FX -+ GX 

is an isarorphism. Fran the above, FX
v 

(GX
v

) is a right dual of FX (GX) or still, 

FX (GX) is a left dual of FX
v 

(GX
v
). 'Ihis said, fo:rm 

and consider 

v 
(0. ) :GX -+ FX. 

X 
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[Note: Accordingly, g is autoncm::>us, then the rretacategory [g,gr]9 is 

a groupoid.] 

Suppose that C is syrt"Il'etric rocmoidal and left autoncm::>us - then C is right - -
autoncm:ms, hence C is autonooous. Proof: Given X E Ob g, take XV = Vx and 

define rrorphisms 

by 

V 
e-+X 9X 

£ 0 T 
X X,VX 

T 0 nx. 
x,vx 

5.13 EXAMPLE FDVECT
k 

is autonorrous. In fact, FDVECTk is syrmetric rronoidal, 

so it suffices to set up a left duality. 'rhus given X, let Vx be its dual and define 

V 
~: X 9 X -+ !! 

by 

~(A'X) = A (x) • 

en the other hand, there is a canonical isoonrphism 

and we let 
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[Note: An object X in ~ admits a left dual iff it is finite d.irrensional. J 

5.14 EXAMPIE The full su.1:::lcategory of ~ whose objects are finitely 

generated projective is autonarous (cf. 5.2). 

Assurre still that £ is syrm:etric rronoidal and left autoncm:>us. 

5.15 LEMMA There is a rronoidal natural isorrorphism 

ide -+ VV (_). 

[To see this, consider the composition 

N.B. Let 

-1 
R 

X -----e> X Q e 

id Q n 
-----e> (X Q (vX Q vvX ) 

A 
_____ > (X Q vX ) Q vVx 

T Q id 
_____ ;> (vX Q X) Q VVX 

E: Q id VV 
-----e> e Q X 

L 

-----e> VVX.] 
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be the arrow constructed al:x::>ve - then 

(cf. 5.12). 

v v 
But here X = X, so 

[Note: To make sense of this, recall that 

X is a left dual of XV 

vv . vv v 
X lS a left dual of (X) • 

And 

=> 

v vv 
(6 ): X -+ X.] 

XV 
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§6. TWISTS 

let g be syrmetric rronoidal and left autonan:ous - then a twist n is a 

nonoidal natural isan:orphism of the identity functor ide such that v x E Ob g, 

[Note: Tacitly, ide is taken to be strict (~ = id, E! = id), tlms from the 

definitions 

'Ib consolidate the tenninology, a syrmetric rronoidal g which is left autono­

nous and has a twist n will be referred to as a ribbon category. 

N .B. '!he choice ~ == ~ is pennissible, in which case g is said to be even. 

It was pointed out near the end of §5 that an even ribbon category is right 

autonan:ous. 'Ibis fact is true in general. Proof: 

and define norphisms 

v e -+ X 9 X 

by 

v v 
Given X E Ob g, take X = X 
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6.1 I...EM.I1A In the presence of a twist Q, 

PRCOF Consider the canposi tion 

A 
_____ --,> (X ~ v X) ~ v (v X) 

T ~ id 
x,vX 
_____ -'? (vX ~ X) ~ v (vX) 

_____ > e ~ v (vX) 

v v --__ > ( X). 
L 

E.g.: 

v v v v v v v v v e:::: e ~ e:::: e ~ (e):::: (e ~ e):::: (e):::: e. 

6.2 LEMMA In the presence of a twist Q, the left and right dual of every 

hi f vf -_ fV. rrorp sm :X -+ Y agree: 

let g be a ribbon category. Given f E Mor(X,X) I define the trace of f by 
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[Note: 

6.3 LEMMA We have 

1. 

2. trX(g 0 f) = try(f 0 g) (f:X -+ Y, g:Y -+ X): 

3. 

Put 

the dinension of X. 

So, on the basis of 6.3, 

dim X = dim Vx 

and 

dim (X ~ Y) = (dim X) (dim Y) • 

N .B. Take!J = id -- then the categorical dimension of X is the arrow 

T 
nX x,Vx EX 

e > X ~ Vx ----> Vx ~ X --.....,> e. 

6.4 EXA1\1PLE consider F'IJVF.Sc (viewed as an even ribbon catego:ry (cf. 5.13» -

then the trace of f:X -+ X is the cartl[JOsi tion 
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f ~ id T 
Vx X,VX 

k --;:> X ~ Vx -----;:> X ~ Vx -------:;:> Vx ~ X --;:> k. 

'Iherefore the abstract definition of trx(f) is the usual one. In particular: 

dim X = (~X)~. 

E.g.: 

dim ~n = n~, 

the distinction between n E N and n~ being potentially essential if k has non­

zero characteristic. 

6.5 REMARK While evident, it is important to keep in mind that the defin-

itions of trace and d..imension depend on all the lmderlying assumptions, viz. that 

our m::moidal g is syrmetric, left autoncm:ms, and has a twist n. 

Suppose that g, g' are rib1x>n categories wi th respective twists n, n' -­

then a syrmetric m::moidal flmctor F:g + g' is twist preserving if V X E Ob g, 

F~= ~. 

6.6 LEl-1MA If F:C + C' is twist preserving, then V f E Mor(X,X), the diagram 

1; 
e' ;:> Fe 

trFX(Ff) 1 1 Ftrx(f) 

e' ;:> Fe 
1; 

carmutes. 
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Matters are invariably simpler if £: is a strict ribbon category, which will 

be the underlying supposition in 6. 7 - 6.9 belOW'. 

6. 7 LEM1A '!he arrows 

are mutually inverse isarorphisrns. 

PRCOF Take X = e in the relation 

to see that 

£ 0 n = id . e e e 

NOW' fix an isarrorphism <p:e -+ ve - then 

- -1 
<p o ne 

E ~(£:) 

£ o <p 
e 

=> 

(cf. 1.4) 

=£ on =id 
e e e 

=> 

n o£ =id. e e e 



6.8 LEMMA V s E ~(~), 

PR.(X)F In fact, 

tr (s) = e 

6. 

tre (S) = s. 

Ee 0 T V 
e, e 

o n ~ id 
e v e 

o (s ~ id ) 0 T) 
v e e 

:: o id 
v e 

o id 
v e 

o (s ~ id 
v e 

o T) 
e 

[Note: Therefore 

= s 0 (E 0 T) ) e e 

= s 0 id 
e 

= s. 

o T) 
e 

dim e = tr (id ) = ide'] e e 

6.9 LEMMA V X E Ob ~, 

n = Vx v~. 

PR.(X)F The COll.'pOsitians 

T)X n.x ~ id 

e :> X ~ Vx :> X ~ Vx 

T)X 
id ~ n 

Vx 
e :> X 0 Vx :> X 0 Vx 
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are equal, thus the compositions 

id~nx id~~~id 

Vx = Vx ~ e > Vx ~ X ~ Vx ;;. Vx ~ X ~ Vx 

id ~ nx id ~ id ~ Qv 
Vx = Vx ~ e ____ > Vx ~ X ~ Vx _______ X_> Vx ~ X ~ Vx 

are equal. Postcompose with EX ~ idv X - then the first line gives v~, while 

the second line is 

or still, 

or still, 

(id ~ Qv ) 0 (EX ~ id ) 0 idv ~ nx 
e X Vx X 

or still, 

Q oid =n V ~bV' 
Vx X X 

6.10 REMARK let ~ be a ribbon category -- then this structure can be 

transferred to £str' 'Ihat the synItl2!try T passes to a synmetry Tstr of £str was 

noted already in 4.6. As for the left duality, a generic element of £str is a 

where E and n are defined in the obvious way. It is also clear that the twist 
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on £ can be brought over to a twist on £str" Accordingly, y:C -+ C tr is a - -s 

syrmetric rronoidal equivalence which is twist preserving, i.e., y:C -+ C tr is - -s 

a riboon equivalence" 
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§7. *-CATEGORIES 

let :Js be a ccmnutative ring -- then a category £ is ~-enriched if V X, Y E Ob £, 

r-t">r (X, Y) is a ~-m:.:xlule and if the composition of norphisns is ~-bilinear. A 

functor F bebJeen :Js-enriched categories is ~-linear if the induced maps 

r-t">r (X, Y) + r-t">r (FX,FY) 

arehoIrom:::>rphisns of ~-m:x1ules. 

[Note: If £ is :Js-enriched and nonoidal, then £ x £ is :Js-enriched and the 

functor ~:£ x £ + £ is assuned to be ~-bilinear.] 

N.B. An object X in a ~-enriched category £ is irreducible if !-br(X,X) = ~~. 

7.1 EXAMPLE Suppose that £ is Z -enriched and m::::noidal. Put 

:Js = ~(£) • 

'Ihen :Js is a unital ccmnutative ring (cf. 1.4) and £ is ~-enriched as a m::::noidal 

category (cf. 1.5). 

[Note: Suppose in addition that £ is a ribl:::x::n category - then V X E Ob £, 

trx:M:Jr(X,x) + k 

is ~-linear and V X,Y E Ob ~, the map 

M:Jr(x,Y) ~ M:Jr(Y,X) + k 

1_ f ~ g + trX(g 0 f) 

is ~-bilinear.] 
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A *-category is a pair (g,*), where g is a category enriched over the field 

of corrplex numbers and 

is an involutive, identity on objects, positive cofunctor. Spelled out: 

V X,Y E Ob C, t-br(X,Y) is a canplex vector space, composition 

t-br(X,Y) x t-br(Y,Z) -+ t-br(X,Z) 

is corrplex bilinear, 

*:t-br(X,Y) -+ t-br(Y,X) 

subject to 

(zf + wg) * = zf* + wg* 

and 

f** = f 

(g Q f)* = f* 0 g*. 

Finally, the requirerrent that * be positive means: 

f* 0 f = 0 => f = O. 

[Note: V X E Ob g, we have 

i<1X = i~ 0 i<1X 

= i<1X* 0 i<1X 

= (i~ Q i<1X>* 

= i<1X* 

= i~.] 
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N.B. A nonoida1 *-category is a *-category which is nonoidal with 

(f ~ g)* = f* ~ g* 

for all f,g. 

[Note: A syrm:etric m::noidal *-categ-ory is a m::moida1 *-category such that 

v X,Y E Ob g, 

is unitary (see be10irl) .] 

7.2 EXAMPLE FDHILB is a ~tric m:m.oida1 *-category. 

[Note: For the record, FDHILB is a construct. As such, it is annestic and 

transportable, thus there is no loss of generality in assmning that its rronoidal 

strucblre is strict (cf. 3.12).] 

7.3 REMARK Let A be a corrp1ex *-algebra -- then the involution is IX>sitive 

if A* 0 A = 0 => A = 0 (A E A). 'lb illustrate, take A = ~ (e) and consider the 

involutions 

* 
A1= 

* 1 

-;* 
2 

= 

= 



4. 

Then *1 is };X>sitive but *2 is not };X>si ti ve since 

-* 
0 1 2 

0 1 o 0 

= 

0 0 0 0 o 0 

[Note: It is 'Wellknown that if A is finite dimensional and if the involution 

is };X>sitive, then A is a semisirnple algebra, hence "is" a multirra.trix algebra.] 

let f: X -+ Y be a rrorphism in a *-category £ -- then f is an isometry if 

f* 0 f = i~ and f is unitary if both f and f* are isametries. 

let F be a C-linear functor between *-categories -- then F is *-preserving 

if V f, F(f*) = (Ff)*. 

N.B. Suppose that F is a *-preserving m:::m.oidal functor between nonoidal 

*-categories - then F is unitary if the isorrorphisms ~: e ' -+ Fe and 

are unitary. 

let p:X -+ X be a rrorphism in a *-category £ -- then p is a projection if 

p = p* and pop = p. 

[Note: If g:Y -+ X is an isometry, then g 0 g*:X -+ X is a projection.] 

let £ be a *-category and let X,Y E Db £ -- then X is a subobject of Y if 

3 an isametry f E M:>r (X, Y) • 

~finition: £ has subobjects if for any Y E Ob £ and any projection 

q E M:>r (Y, Y), 3 X E Db £ and an isometry f E M:>r (X, Y) such that f 0 f* = q. 

Definition: £ has direct sums if for all X, Y E Ob £, :3 Z E Ob C and isometries 

f E M:>r(X,Z), g E M:>r(Y,Z) such_ that f 0 f* + g 0 g* = idz• 
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E.g.: FDHIIB has subobjects and direct sums. 

7.4 RAPPEL A category £ is essentially sma.ll if £ is equivalent to a SIl:\3l.l 

category. 

SUppJ5e that £ is a *-category which is essentially small -- then e is 

semisimple if the following conditions are net: 

SSl: V X,Y E Ob £, 

dim MJr (X, Y) < ro. 

SS2: C has subobjects and direct sums. 

SS3: £ has a zero object. 

N.B. A 1I'ClIloidal *-category is semisimple if it is semisimple as a *-category 

and if in addition, e is irreducible. 

7.5 EXAMPLE FDHILB is a semisimple strict nonoidal *-category (cf. 7.2). 

7.6 LEMMA SuppJse that £ is a semi simple *-category -- then every nonzero 

object in £ is a finite direct sum of irreducible objects. 

[V X E Ob £, MJr (X,X) is a finite dinen.sional corrplex *-algebra and the 

involution *:Mor(X,X) +MJr(X,x) is positive (cf. 7.3).] 

[Note: Conventionally I zero objects are not irreducible.] 

Therefore a semisimple *-category is abelian. 

Given a semisimple *-category S I denote its set of iSClllPrphism classes of 

irreducible objects by Ie and let {Xi:i E Ie} be a set of representatives - then 
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i ~ j => fur (X. ,X.) = {o} 
1 J 

and V X E Ob C, 3 a finite mmiber of i such that 

7.7 REMARK ViE IX' fur (Xi ,X) is a finite d.in:ensional Hilbert space with 

imler product 

<~,~> i~. = ~* 0 ~. 
1 

7.8 I..EM-1A let g, g' be semi simple *-categories and supp:>se that F:g + g' 

is C-linear -- then F is faithful if FX is nonzero for every irreducible X. 

PR(X)F Consider an fE :Mor(X,Y) :Ff = 0, the claim being that f = O. Fix 

orthononna.l bases 

t.{) E fur(Y.,Y) (i = 1, ••• ,di.m:Mor(Y.,Y» 
J~ J J 

such that 

Write 
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Then for indices m,~,v, 

o = F(t* ) 0 Ff 0 F(S ) 
Ill\) Inll 

= c v F(i~ ) 
lTIjl m 

= c i~. 
lTIjlV m 

But by assumption, i~ ~ 0, thus the c vanish, so f = O. 
m lTIjlV 

7.9 :r..:EMMA let g, g' be sem:isirople *-categories and supfOse that F:g + g' 

is C-linear and faithful -- then F is full iff (a) X E Ob g irreducible => 

FX E Ob g' irreducible and (b) X, Y E Db g irreducible and nonison:orphic => 

FX,FY E Ob g' irreducible and nonison:orphic. 
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§8. NATURAL TRANSFO~~ATIONS 

let g, C' be *-categories and let F:C -+ C' be a *-preserving functor. 

8.1 LEMMA Nat(F ,F) is a unital *-algebra under the follO'lll7ing operations: 

(a 0 B) = a.... 0 !3 Xx X 

[To check the *-condition, observe that \;/ f E M::>r(X(Y), 

Ff 0 (a*)x = Ff 0 (~)* 

= (Ff*) * 0 (~)* 

= (~ 0 Ff*) * 

= (Ff* 0 ely) * 

= (ely) * 0 (Ff*) * 

= (a*)y 0 Ff.} 

8.2 EXAMPLE Take S' = FDHILB, put Na~ = Nat(F ,F), and let RePfd Natp 

be the category whose objects are the finite dirtensional *-representations of 
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Na ~ and whose norphisms are the intertwining operators. Define a *-preserving 

functor 

as follows: 

(X E Ob £) 

cpf = Ff (f M:>r(X,Y}). 

Here 

thus the diagram 

FX ----------~~ FX 

FY -----..... > FY 

conmu tes, so Ff is an intertwining operator. 

[Note: If 

U:RePfd Nat F -+ FDHILB 

is the forgetful functor, i.e., U(TI,H) = H, then U 0 cP = F.] 

8. 3 THEOREM let £, g I be *-categories and let F: g -+ g I be a *-preserving 

functor. Assl.lIle: g is semisirople -- then there is an isarorphism 

IfF:Nat(F,F) -+ 1T M:>r(FX. ,FX.} 
iEIc 1 1 

of 'lIDi tal *-algebras. 
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PRCX)F The definition of 'l'F is the obvious one: 

= 1T 'l'F (a) . EI ~ .• 
~ e ~ 

'l'F is injective: 

~. = 0 ViE Ie => ~ = 0 V X E db g. 
~ -

To see this, chaos:! the Sik E Ivbr (Xi'X) as in the proof of 7.8 -- then 

~=~oFi~ 

Bu t the diagram 

~. 
~ 

FX. > FX. 
~ ~ 

F (Sik) 

1 1 F(Sik) 

FX >FX 

~ 

conmu tes, hence 

= o. 

'l'F is surjective: 

V {a. E Mor(FX.,FX.):i E Ie}' 3 a E Nat(F,F):'l'F(a) = TT a .• 
~ ~ ~ ~ 

iEIe 
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Thus define ~ E Mer (FX,FX) by 

and define Ciy E Mer (FY ,FY) by 

Then 'V f E Mer (X, Y) , 

= E F(t. o 0 t~o 0 f 0 sik) 
ik, jl J-t- J-t-

= E F(t. o ) 0 a
J
, 0 F(t*J' o 0 f 0 sik 0 sik~ ) 

ik, jl J-t- -t-

= ~ 0 Ff. 

Accordingly, the diagram 

FX --------'> FX 

FY --------'> FY 
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cortm1tes, rreaning that a. E Nat(F,F}. And, by construction, ~. = (li' so 
1 

IPF(a.) = IT a. .• 
iE1C 1 

[Note: The isorrorphisn IPF depends on the choice of the Xi.] 

8.4 EXAMPLE Take C' = g and let F = idc (the identity functor) -- then 

8.5 EXAMPLE Suppose that s: is a semisirnple nonoidal *-category -- then 

g x g is a semisirnple *-category with 

And 

where 

so 

This said, let 

Then 

X. 9 X.:::; E9 J:-.x., 
1 J kEI 1J-K 

C 

J:-. = dim M:>r (XL' X. 9 X.) , 1J K 1 J 

Mer (X. 9 X. ,X. 9 X.) ::::: E9 MNJ: (e). 
1 J 1 J k EIC .. _ 1J 

F = 9:C x C -+ c. - - -

Nat (9,9) ::::: TT M:>r(9(X.,X.),9 (X.,X.» 
• ]E' I 1 J 1 J 
1, C 



6. 

:::: 1T Mor(X. ~ X. ,X. ~ X.) 
. 'EI 1) 1 ) 
1,) C 

:::: 1T M (e) • 
i , j , kEIe Ii:. _ 1) 

rf.. "#. 0 
1) 

Suppose that ~ is a semisinple *-category, let F:C -+ FDHIIB be *-preserving 

and put 

A = e B(FX.) 
'F . I 1 

1E e 

which, of course, can be embedded in 

JT B(FXi ) (z Nat(F,F». 
i'Erc 

Needless to say, .4y is a *-algebra, 1.IDital iff Ie is finite. '!he projections 

Pi:.4y -+ B(FXi ) are finite d.irrensional irreducible *-representations. Moreover, 

any finite dimansional nondegenerate *-representatian of t).. is a direct sum of 

finite di:rrensional irreducible *-representations and every finite dirrensional 

irreducible *-representation is 1.IDitarily equivalent to a Pi' 

Define now a *-preserving f1.IDctor 

as in 8.2 -- then <l> is an equivalence of categories iff F is faithful. In fact, 

since <l> and F agree on JID:rphisms, it is clear that 

<l> faithful <=> F faithful. 
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Assume therefore that F is faithful. From the definitions, 'ITX = p. (or still, . ]. 
]. 

'if a E A, <lx. ::: Pi (a}), which is a finite dimmsional irreducible *-representation 
]. 

of Ap. Given an irreducible X E Ob g, :3 i E Ie and an isarorpbism <Pi :Xi -+ X. 

Since the diagram 

Pi (a) 

FX. 
]. 

;::. FX. 
]. 

F$i 1 1 F$i 

FX ;::.FX 
TIx (a) 

corcmures, TIX is also a finite dimensional irreducible *-representation of \.. 

If i ;t j, then 

M:>r (p. , p .) ::: {O}, 
]. J 

so if X, Y E Ch S. are irreducible and nonzero, then 

B2!cause <I> is faithful (and RePfd \. is a semisimple *-category), the foregoing 

considerations imply that <I> is full (cf . 7.9). Finally, <I> has a representative image. 

Indeed, as nEntioned a}:x)ve, every finite dimmsional irreducible *-representation 

of ~ is uni tarily equivalent to a Pi' 

'lb recapi tula te: 

8.6 THEOREM: let e be a semisimple *-category and let F:g -+ FDHILB be a 

*-preserving functor. Put 
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and define 

by 

(X E (i:) g) 

\pf = Ff (f E Mor(X, Y» . 

'!hen \P is an equivalence of categories iff F is faithful. 

let ~ be a semis:irrple strict rronoidal *-category. 

Definition: An embedding ftmctor (for g) is a faithful tmitary ftmctor 

F:C -+ FDHIIB. 

[Note: Recall fram §7 that in this context, "tmitary" rreans that F is a 

*-preserving m:noidal ftmctor for which the iscm:::)]::phisms ~:~ -+ Fe and 

=x y:FX @ FY -+ F(X ~ Y) , 

are tmitary (~= standard tmit in FDHILB, Q = strict rconoidal structure in FDHIIB 

(cf. 7.5».J 

8. 7 :LEMMA There is an isorrorphism 

IJi
F 

:Nat (F ,F) -+ TI B (FX. ) 
iEIC ~ 

of tmital *-algebras (cf. 8.3). 

8. 8 I..EM1A The map 

SF:Nat(F,F) -+ Mor(Fe,Fe) ~ C 
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that sends 

is a uni tal *-haro.rrorphism. 

8. 9 SC'HOLIUM The map 

that sends 

is a unital *-haro.rrorphism. 

Let 

'Ihen E is a unital *-hom::morphism, the counit. 

8.10 I..EM-1A There is an ison:orphism 

of unital *-algebras. 

PR{X)F In fact, 

Nat(F 0 ~,F 0 ~) 

:::;: TT B (F (X, ~ X,) ) 
']E'r 1 J 
1, C 

(cf. 8.3) 
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8.11 LEM-1A The map 

~:Nat(F,F) ~ Nat(F 0 e,F 0 e) 

iilat sends 

is a unital *-harrorrorphisn. 

8.12 SCHOLIUM The map 

-
~: B (FX

1
·) ~ 1T B (FX.) GC B (FX].) 

. jE'I 1 
1, C 

that s:mds 

is a unital *-hom:::lrrorphisn. 

let 

Then /:" is a unital *-harrorrorphism, the coproduct. 

let 

be nondegenerate *-representations of ~ on finite dimensional Hilbert spaces 
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(the zero reprerentation is a possibility) -- then \..e can fonn 

Since 

it follows that TI 1 ~ TI 2 admits a unique extension to a 'lIDi tal *-horrorrorphism 

This being 00, put 

Then TIl x TI2 is a nondegenerate *-representation of ~ on the finite dirrensianal 

8.13 LEMMA 'I1.1e data (x, £ , ••• ) is a rnonoidal structure on Rep fd ~. 

Therefore Rep fd ~ is a sanisimple rronoidal *-category (the couni t £ is the 

irreducible unit) • 

8.14 THEOREM let £ be a semisimple strict rronoidal *-category and let 

F:C -+ FDHILB 



l:e an embedding functor. Pu t 

and define 

by 

<1>f = Ff 

Then <1> is a rronoidal equivalence. 

12. 

e B(FX.) 
iE1C 1 

(X E Ob g) 

(f E Mor (X, Y» • 

PROOF By hyp:::>thesis, F is faithful, hence <1> is an equivalence of categories 

(cf. 8.6). So, in view of 2.8, it suffices to shJw' that <I> is rronoidal. There 

are two points. First 

and \;f a E A:r' the diagram 

e: (a) 
c ;;:. C 

1 s 

Fe > Fe 
'!fe(a) 

corrmutes, Le., E; intertwines e: and '!fe • Next, given X,Y E Ob g, consider 

<I> (X e Y) = ('!fx e Y' F(X e Y». 

Then 

~X,y:FX ! FY + F(X e Y) 
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is an intertwining operator: V ex E ~, 

The interchange o:~ ~C ~ -+ ~ ~C ~ (0 (ex ~ (3) = (3 ~ ex) is a nondegenerate 

*-hon:ortorphism, fuus has a unique extension to an invo1utive *-autorrorphism 

0: TT B(FX
1
,) ~C B(FX).) -+ TT B(FX,) 9 C B(FX),). 

i, JEIe i, JEIe 1 

Let 

tJ.
0P = a 0 tJ.. 

'!hen ~ is said to be cocorrmutati ve if tJ. = tJ. op. 

8.15 LEMMA Suppose that ~ is cocomnutative -- then 

the diagram 

corrrou tes. 

HI ~ 1-12 

TIl x TI21 

HI ! H2 

E Ob RePfd ~, 

T 
H1'H2 

-----;> H2 ~ HI 

1 TI2 x TIl 

-----;> H2! HI 
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PR(X)F Abbreviate TH H to T1 2 and note that 
l' 2 ' 

~ have 

So, V C!. E ~, 

Thus, if ~ is cocarrmutative, then RePfd ~ is a semisirrp1e symretric rronoidal 

*-ca tegory. 

8.16 RENARK Ass..me further tha.t the category 9 is symretric and that the 

embedding functor 

F:C + FDHILB ,... ., 
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is syrmetric rronoidal -- then ~ is cocanmutative and 4>:£ -+ PePfd '\. is a syrrnetric 

rronoidal equivalence. 
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§9. CONJUGATES 

Suppose that £ is a strict rconoidal *-category which is left autonorrous. 

Put XV = Vx -- then 

=> 

=> 

And 

==> 

V nx:e -+ X ~ X 

V 
~:e -+ X ~ X 

V 
nX:X ~ X -+ e 

V 
EX:e -+ X ~ X. 

(EX ~ id ) 0 (idv ~ nx) == id 
Vx X Vx 

(id ~ n*) 0 (EX* ~ id ) == id • 
XV X XV XV 

I.e. : 
V 

The left duality ( x,Ex,nx) automatically leads to a right duality 

( V * *) X ,nx,Ex . 
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Now' assurre in addition that s: is syrrrr:etric (hence that the TX,y are unitary) 

then the left dualiW (vX,E
X

,I1
X

) gives rise to another right duality, viz. 

v 
(X ,EX 0 T , T 0 I1

X
). 

x,vx x,vx 

9.1 COHERENCY HYPOI'HESIS 'if X E Db S:' 

E* = TO ..... 
X 'IX' 

X, Vx 

[Note: 'rhe asyrrnetry is only apparent. For 

-1 
11 = T 0 E* 

X X, Vx X 

o E* 
X 

=> 

11* = EX 0 T* 
X vX,X 

-1 = EX 0 T 
vx,x 

= EX 0 T 
X,vX 

In the presence of 9.1, let 

r = E* X X 

. ] 
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thus 

and 

(x,r~,rX) is a left duality 

(x,r~,rX) is a right duality. 

'lherefore 

(r~ ~ idJ 0 (id_ ~ rx) = id 
X X X 

'lhe relations 

(id_ ~ r~) 0 (rx ~ id_) = id 
X X X 

are called the conjugatE equations, the triple (x,rx,rx ) be!ing a conjugatE for x. 

N.B. 'I'J:e conjugatE equations imply that 
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Having made these points, matters can 00 turned around. So start with a 

syrmetric strict nonoidal *-category £ - then £ has conjugates if one can assign 

to each X E Ob £ an object X and a norphism 

such that the triple (x,rx,rx ) satisfies the conjugate equations (here, of course, 

r = T 0 r x)' 
X X,X 

E.g.: FDHILB has conjugates. 

9.2 REMARK If £ has conjugates, then £ is left autonarrous (consider (x,rx,rx » 

and right autoncm::ms (consider (x,rx,rx»' M:>reover, the coherency hypothesis is 

in force: (rx ) * = r X' while 

T 

X,X 
o r = T X X,X 

9.3 LEMMA Suppose that £ has conjugates • 

• Under the identification 

M:>r(X ~ Y,Z) ~ M:>r{Y,X ~ Z), 

the arrows 

are mutually inverse. 

• Under the identification 

Mor(Y Q X,Z) ~ MDr(Y(z Q X) , 
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the arrows 

are mu tuall y inverse. 

E.g. : V X E Ob g, 

Mbr(X,X) ~ Mor(e,X ~ X). 

9.4 LEMMA If 

are conjugates for X, then 

r~ ~ id_ 0 id_ ~ rx E Mor{X,x') 
X' X 

is unitary. 

PROOF Put 

Then the claim is that 

U = r~ ~ id _ 0 id _ ~ rx 
X' X 

= id 
X' 

~ r* 0 r' ~ id ••• ). 
X X X 

- UoU*=id 
X' 

U* 0 U = id • 
X 



6. 

And for this, it will be enough to consider U 0 U*. So write 

U 0 U* = rx ~ id_ 
X, 

o id ~ r' 0 U* X X 

= r* ~ id 0 (id_ ~ rx' 0 U* ~ id ) 
X X' X e 

o U* ~ r' 
X 

= rx ~ id_ 0 (U* ~ id 
X, X ~ Xl 

= rx G id_ 
X' 

o (r'* ~ id 0 id ~ rX ~ id ) 
X X X, X e X' 

o id 
X' 

O (r '* n;d o;d n - n 'd 'd) w • ~ w rX w ~ _ 0 ~ 

X X X, X e Xl X ~ X' 

= rx ~ id_ 
X, 

o id 
X' 

o (r ' * e id ~ id 0 id ~ rx ~ id _) 
X X X ~ X' X' X e X, 

o id 
Xl 

o r'* ~ id ~ id 
X X X ~ Xl 



7. 

o id 
Xl 

o id 
Xl 

= r'* ~ r* ~ id 
X X XI 

= rl * ~ id 
X Xl 

0 id 
X' 

= r'* ~ id 
X XI 

= r l * ~ id 
X X' 

= r'* ~ id 
X Xl 

o id 
XI 

o id ~ rX ~ id_ 
X' ~ X X' 

~ rX ~ id _ 
X ~ XI 

o id 
Xl 

o id 
XI 

0 id ~ rl 
X' 

X 

o id ~ rX ~ id _) 
XI X ~ Xl 



o (id 
X, 

= r'* ~ id 
X X' 

o id 
X, 

o id 
X, 

8. 

= r'* ~ id 0 (id ~ i~ ~ id 
X X' X' X' 

= r'* ~ id 0 id 
X X, X' ~ X ~ X' 

= r'* Q id 0 id Q r' 
X X' X' X 

= id 
X' 

[Note: Evidently, 

r' = 
X 

o id 
X' 

o id 
X' 

Conjugates are therefore detennined up to "unitary equivalence". 

Put 
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~ E MJr(X,X) 

is unitary and it can be verified. by computation that the assignrrent X + ~ 

defines a twist Q. This fact, however, is a trivial consequence of the following 

result. 

9.5 !...EMMA V X E Ob g, 

PRCX:>F We have 

On the other hand, there is a conmutative diagram 

so 

And 

X=e~X 

X~X~X 

T e,X 
---------:> X ~ e = X 

----------~> X ~ X ~ X, 
T 

X ~ X,X 

= rx ~ i~ 0 T _ 0 rX ~ i~ 
X ~ X,X 

rx ~ i~ 0 T _ ~ i~ 
X,X 
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= r* 0 T ~ in 0 T ~ in x - -x - -x x,x X,X 

= r* 0 X T 0 T_ ~ i~ 0 i~ 
x,X X,X 

[Note: Therefore, in the tenninology of §6, C is an even ribbon category.] 

9.6 REMARK V f E M::>r(X,X) , the diagram 

T 

X,X 
X~X ;>X~X 

id ~ f 1 1£9 id 
X X 

x~x 
T 

;>x~x 

x,x 

ccmru.tes. 'Iherefore 

-r* 0 f ~ id 0 rx 
X X 

= rx 0 T 0 f ~ id 0 T 0 rx 
x,x X x,x 

= r* 0 id ~ f 0 r x . 
X X 
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Maintaining the supposition that g has conjugates, recall that g is left 

autonom:ms with left duality (x,rx,rx ) (cf. 9.2), thus by definition the cate-

gorical dirrension of X is the arrow 

But 

-
rX 

T 

X,X 
r* 

X 
e > X QX--->XeX---i>e 

S) the categorical dirrension of X is the carposition 

r* 0 T 
X X,X 

o T 

X,X 
o r 

X 

= rx 0 rx E Mer(e/e) 

~ dim x. 

[Note: Since Q = id, V f E Mer (X,X) , 

= r* 0 T 0 id 0 (f ~ id ) 
X X,X X ~ X X 

(cf. §6). 

-o r 
X 

o T 
X,X 

o r 
X 

= r* 0 T 
X 

o T 
X,X 

o r 
X X,X 

= r* 0 id ~ for 
X - X 

X 
(cf. 9.6).] 

N.B. dim X does not depend on the choice of a conjugate for X. Indeed, if 

U:X -+ XI is unitary, then 



= r* 0 
X 

9. 7 J:».1MA If 

then 

is a conjugate for X ~ Y, where 

[The proof that 

12. 

id 
YBX 

will be left to the reader but ~ shall provide the verification that 

-r = Tor X ~ Y X 6) Y· Y B X,x 9 Y 

'!hus write 

T 0 rX 9 Y 
Y ~ X,X ~ Y 



Therefore 
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= TOT 0 rX ~ Y 
X,X ~ Y ~ 'l Y,X ~ X ~ Y 

(cf. 4.3). 

T 0 rX ~ Y 
Y,X ~ X ~ Y 

= id ~ TOT 0 rX ~ Y 
X ~ X Y, Y Y,X ~ X 

= id ~ T 0 (r
X 
~ id_ 0 T ) ~ i~ 0 r 

X ~ X Y,Y Y 'l,e Y 

= id ~ T o rX ~ id_ o r 
X~X Y,Y Y~Y 

Y 

= id ~ T o rX ~ id_ o ide ~ ry 
X~X Y,Y Y~Y 

= id ~ T o id_ ~ ry o rx 
XSX Y,Y X~X 

= id ~ T oro r = id_ ~ ry 
X~X Y,Y Y X 

X~X 

= T 0 id 9 r 0 rX 
X,X ~ Y ~ Y X ~ X Y 

o r 
X 

o r
x

• 
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For all X,Y E Ob g, the map 

Mor{X,Y) -+ Mor{Y,X) 

v 
that sends f to f is a linear bijection. 

thus 

and 

N.B. Here, as will re recalled fran §5, 

Vf = r* ~ id 0 id ~ f ~ id 
Y X Y X 

NCIW" put 

f+ = id ~ r* 0 id ~ f* ~ id 
Y X Y X 

+ - -f E Mor{X,Y) • 

Pro]?8rties: 

1. 

2. 

3. 

9.8 

+ + + (f 0 g) = fog . 

LEMMA Given f E Mor{X,Y), we have 
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PROOF Start wi th the IRS and write 

= id ~ r* ~ in 0 id _ ~ f* ~ id _ ~ in 0 ry ~ id _ ~ in 0 r
x

• 
y x -x y x -x X-X 

But 

o r 
X 

=> 

= id_ ~ in ~ rx Q id ~ f* Q id 0 ry 
y -x y e 

=> 

= id_ ~ rx* ~ in 0 id ~ in . ~ r 0 id ~ f* 0 r 
y -x y -x x y y 

o r y 



= id 9 f* 0 r y . 
y 

16. 

9.9 REMARK Suppose that T E MJr (X, Y) satisfies the equation 

Proof: 

+ -f = id ~ r* 0 id ~ f* ~ id 
Y X Y X 

= id ~ r* 0 id ~ f* 0 ry ~ id_ 0 id 
Y X y X X 

en the other hand, 

T= To id 
X 

= T 0 id ~ r* 0 rx ~ id_ 
X X X 

= T ~ id 0 id_ ~ r~ 0 rx ~ id_ e 
X X 

= id_ ~ rx 0 T ~ id 0 rx ~ id_ 
y X~X X 

= id ~ r* 0 T ~ i~ ~ id_ o rx ~ id_ 
- X Y X X 

= id_ ~ rx 0 T.6;O i~ 0 rX ~ id_ 0 id ..-y X X 
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[Note: It is thus a corollary that if 

+ then f = 0, so 

id G f* 0 ry = 0, 
y 

v v a => (f )** = 0 => f = 0 => f = 0.] 

9.10 SCHOLIUM f+ is the unique elerrent of 1-br (X, Y) such that 

f+ G id 0 r = id G f* 0 r . 
. -X X Y Y 

[Note: v f is the unique elerrent of IVIor (y,X) such that 

so f+ is the unique elerrent of Mor(X,Y) such that 

- + -r* 0 id G f = r* 0 f* G id_o] 
y -y X X 

9.11 LEMMA Sup];X)!'3e that 

F : C -+ FDHIIB 

is symretric and unitary ° Given X E Ob £, put 

r = (~ )-1 0 Frx 0 ~ 
FX X,X 

-r = Tor 
FX FXo 

FX,FX 

Then the triple (FX,rFX,rFX) is a conjugate for FX. 
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PR(X)F What we know is that 

hence 

F(id_ e r~) 0 F(rx e id) = id _, 
X X FX 

and what we want to prove that 

(id _ e rFX* ) 0 (rFX ! id _) = id . 
FX- FX FX 

The UIS of the first of these is the canposition 

F being unitary. Write 

o Fr~ 0 ~ 
X,X 

o (:::: ) -1 Fr l': ..... (l _ o T _ 0 X 0 s ~ 1~, 
FX,FX X,X 

T 

FX,FX 

= 

o (:e: ) -1 0 Frx 0 i; ~ i~ 
X,X 

= T _ ~ i~ 0 (::... ) -1 ~ i~ 0 Frx @ i~ 0 i; ~ i~. 
FX,FX X,X 
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Taking into aca:Junt the corrmutati ve diagrams 

e == e ~ FX ----- FX 

Fe ~ FX -----> F(e ~ X) 

,X 

Fe ~ FX ----------'> F (e ~ X) 

FrX !! ~ 1 1 F (rx II lllx) 

F (X ~ X) ~ FX - > F (X ~ X ~ X) , 

X ~ x,x 

'fNe have 

This leaves 

Next 
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Since F is syrmetric, there is a corrrnutative diagram 

FX~FX~FX 

top 
-----------------> F(X 9 X ~ X) - -

1 F{TX,X II i,\l 

FX ~ FX ~ FX -------------------:> F (X ~ X ~ X) • 
bttm 

Here "top" is the COI'!'IfX)sitian 

=_ ~ i~ 
x,x 

FX ~ FX ~ FX --------------------,> F (x ~ X) ~ FX 

X ~ x,x 
----------------~> F(X ~ X ~ X) 

and "bttm" is the composition 

= _ ~ i~ 
X,X 

FX ~ FX ~ FX ----------> F (X ~ X) ~ FX 

X ~ x,X 
----------------...,> F (X ~ X ~ X) • 

Therefore 

o = _! i~ 
X ~ X,X x,x 

o T _ ! i~ 
FX,FX 

=> 

T _ ~ i~ 0 (=_ )-1 ~ i~ 0 (=_ 
FX,FX X,X X ~ X,X 

-1 ) 
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=> 

Analogously, 

id ~ ~-l 0 Fr* 0 H 

-:FX- X-X,X 

i~ 0 F(i~ ~ r~) 0 H 0 i~ ~ E_ • 
X,X 9 X X,X 

So, in sumna:ry, 

o E _ 0 i~ ~ E_ 0 (E _) -1 ~ i~ 0 (E )-1 
X,X 9 X X,X X,X X 9 X,X 

thus tn finish, it need only be shown that 

= id 
F(X ~ X ~ X) 

'lhis, however, follOtN'S from the carrmutative diagram 
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FX~FX~FX FX~FX~FX - - - -

F(X ~ X) ~ FX FX ~ F(X ~ X) 

x ~ X,X 1 1 E x,x 111 X 

F (X ~ X ~ X) ============ F(X ~ x ~ X). 

9.12 REMARK We have 

-r = FX (E )-1 0 FrX 0 ~. 
X,X 

In fact, the RHS eq:ua1s 

(E _)-1 0 FT 0 Frx 0 ~ 
X,X X,X 

and there is a carmutati ve diagram 

X,X 
FX ~ FX -----------> F (x ~ X) 

T 

FX,FX 
FT 

X,X 

FX ~ FX -----------> F (X ~ X). 

X,X 
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§10. TANNAKIAN CATEGORIES 

let s:: be a sym:retric strict ITDnoidal *-category which is essentially small -

then s:: is said to be tannakian. if the following conditions are net: 

dim M:>r (X, Y) < 00. 

T
2

: s:: has sul::x:>bjects, direct sums, and conjugates. 

T3: s:: has a zero object. 

T
4

: e is irreducible. 

10.1 RE'MARK A tannakian category is necessarily semisimple, hence is abelian. 

10.2 EXAMPLE let CP'IGRl? be the category whose objects are the carpact 

Hausdorff topological groups (in brief, the "conpact groups") and whose ITDrphisms 

are the continuous ham::m::>rphisms. Given an object G in this category, let Rep G 

be the category whose objects are the finite d.inensional continuous mitary repre-

senta tions of G and whose ITDrphisms are the intertwining operators - then G 

is tarmakian (define r and r by 

where {e.} c H 
~ 

rA = ALe. ~ e. 
i ~ ~ 

rA = ALe. ~ e. . ~ ~ 
~ 

(A E C (= e)), 

an orthonorm.al basis for the representation space and {e.} cHis 
~ 
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its conjugate). In particular: FDHIIB is tannakian (take G = {*}). 

[Note: The construct Rep G is annestic and transportable, so we can and will 

ass1..lllE that its nonoidal structure is strict (cf. 3.12).] 

10.3 RAPPEL An additive functor F:A + B between abelian categories A and 

B is exact if it preserves finite limits and finite colimits. 

Accordingly, since a tarmaJdan category is not only abelian but also autonorrous, 

V X E Ob g, the functors 

- §II X, lham(X,-) 

X §II -, rham(X,-) 

are exact. 

If C is tannaJdan, then e is irreducible and 

dim:Ob g + MDr (e,e) 

has the following properties. 

l. dim X = dim X. 

2. dim(X §II Y) = (dim X) (dim Y) • 

3. dim(X e Y) = dim X + dim Y. 

4. dim e = 1, dim 0 = O. 

10.4 LEMMA If X is not a zero object, then dim X (= rx 0 rx) ~ 1. 

PRCX)F First, from the positivity of the involution, dim X > O. But X §II X 

contains e as a direct sumnand, thus 

(dim X) 2 ~ 1 => dim X ~ 1. 
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[Note: If dim X = 1, then X Q X ~ e :::: X Q X.] 

Given X ;J! 0 in Ob g, define 

as in 4.5. 

N.B. ~ is a homJrrorphism from Sn to the unitary group of Mor(X,X) • 

Put 

.po = e, 

and for n E ~, put 

X 1 -X 
SYID: = - L Hn-- (0') 

n n! cC; 
O'cpn 

Then 

S~ 

are projections. 
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10.5 lEMMA We have 

= 4 (dim X) (dim X - 1) ••• (dim X - n + 1). n. 

PR.CX)F The key preliminary is the observation that 

tr ~ (~(O» = (dim X) #0, 

where #0 is the ntnnber of cycles into which 0 decarrposes, thus 

Bu t for every complex ntnnber z, 

L (sgn O)z#O = z(z - 1) ••• (z - n + 1). 
0E$ 

n 

10.6 THEOREM 'if nonzero X in Ob ~, 

dim X E N. 

PR.CX)F Let An (X) be the sul::x:>bject of ~ corresponding to Al t~. Fix an 

i~try f:A (X) -+ ~ such that f 0 f* = Al t X -- then n n 

tr ~(Alt~) 

= tr (f 0 f*) 
~ 

= trA (X) (f* 0 f) 
n· 

(cf. 6.3) 
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= trA (X) (idA (X» 
n n 

= dim An (X) ~ 1 (cf. 10.4). 

en the other hand, thanks to 10.5, 

tr ~ (Alt~) 

is negative for same n E N unless dim X E N. 

10. 7 LEM-1A Let d dim X -- then 

The lsorrorphism class of Ad (X) is called the detenninant of X (written det (X». 

Properties: 

1. det (X) ::::: det (X) ; 

2. det(X E9 Y) ::::: det(X) ~ det(Y) i 

3. det (X ED X) ;: e. 
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§ll. FIBER FUNCTORS 

let C re a tarmaldan category -- then a syrmetric embedding functor 

f: C -+ FDHILB 

is called a fiber functor. 

E.g.: Take £ = Rep G (cf. 10.2) - then the forgetful functor 

U: Rep G -+ FDHILB 

is a firer functor. 

N.B. It is a nontrivial result that every tannakian category admits a fiber 

functor (proof omitted) • 

11.1 REMARK let 

f : C -+ FDHILB 

re a fiber func tor • Consider 

A~ = e B(fX.), 
;1 iEIC ~ 

vie\lied as a subset of Nat(f ,f) -- then the coinverse is the map S:Af -+ Af defined 

by 

matters reing slightly imprecise in that the identification 

f (X ~ X ~ X) :: fX ~ r.X ~ fX 

has reen suppressed. It is not difficult to see that the equation defining S (a)x 

is independent of the choice (x,rx,rx ) of a conjugate for X and V f E MJr(X,Y), 
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the diagram 

~~------------~> fX 

----------------~> fY 

cormutes. Algebraically, S is linear and antimultiplicative. Moreover, 

hence S is invertible. 

S 0 * 0 S 0 * = idA ' 
F 

[Note: There are various relations arrong lI,£,S which, hoI;..iever, need not be 

detailed. Still, despite appearances, in general (AF,lI,£,S) is not a Hopf 

*-algebra but rather in the jargon of the trade is a "COCOImnltative discrete 

algebraic quantum group".] 

Write ff (£) for the full subcategory of 

"Whos:= objects are the fiber functors -- then ff(9 is a groupoid (cf. 5.12). 

11.2 THEOREM ff(£} is a transitive groupoid, i.e., if Fl ,F2 are fiber 

functors, then F l' F 2 are isarrorphic. 

~fini tian: Given fiber functors F 1 f F 2 f a uni~ rronoidal natural trans-

fonnation a: F 1 -+ F 2 is a rronoidal natural transfor.mation such that V X E Ob £, 
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is illli tary . 

W'ri te ff* (9 for the category whoa: objects are the filler filllctors and 

whoEE norphisms are the illlitary rronoidal natural transfonnations -- then ff* (£) 

is a subcategory of ff (£). 

11.3 THEOREM'. ff*(9 is a transitive gro'l.J±X)id, i.e., if Fl ,F2 are filler 

fimctors, then Fl'F2 are illlitarily iSOlIDrphic. 

Obviously, 

11.3 => 11.2. 

As for the pr<:X)f of 11. 3, there will be three steps. 

Step 1: Construct a comnutative illlital *-algebra A(Fl'F2) whose dual space 

is in a one-to-one correspondence with the natural transfonnations Fl + F2 , to wit: 

Nat (Fl ,F2) <--> A(Fl ,F2>*· 

Step 2: Under this bi jection, prove that the rronoidal natllral transfonna tions 

correspond to the nonzero nn.ll tiplicati ve linear filllctianals on A (F l' F 2) and the 

illli tary rronoidal natllral transfonnations correspond to the *-preserving multi­

plicative linear functianals on A (Fl'F2) • 

Step 3: Establish that A(Fl ,F2) admits a C*-norm, thus is a pre-C*-algebra. 

Therefore, since tl:lE:! structure space IJ. (A (F l' F 2» of the C*-coIr!Pletion 

A(Fl ,F2) of A(Fl ,F2) is not empty, it follows that Mor(Fl ,F2) is also not empty, 

from which 11. 3. 
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[Note: Here, of course, Mor is crnputed in ff* (g>.] 

'lb fix notation, bear in mind that there are isarn::>rphisms 

subject to the compatibility conditions enl..llterated in §2. 

Let AO (F I' F 2) be the complex vector space 

e Mor(F2X,FIX}. 
X E Ob C 

that is <p at X and is zero elsewhere -- then AO (F1'F2> is simply the cornplex 

where u is the cc:mposition 

{=2 }-l 
~X,Y 

---------'> Fl (X ~ Y). 
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PRCX)F let 

1 [ c-l (c-2 )-1]O. A = e,,,, 0 '" 

o 

Then lA is the mit. E.g.: Consider 
o 

[ A..] [C-l (C-2 ) -1] X,'I' O· e,,,, 0 '" 0 = 

the claim being that the cornposi te 

(~2 )-1 
X,e 

0;:;1 
-X,e 

[X, u] 0' 

reduces to ¢ itself. 'Ib see this, recall that the composition 

is the identity rrorphisn of fIX and the composition 

is the identi ty rro:rphism of f 2X. NCM write 
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"d_ ("d "d_ ( -1 -1 (1 (2 -1 2 = ~-r x 0 ~ f x 0 ¢ 0 ~-F X! ~) 0 ~ 0 ~) 0 ~ ) 0 idf X 
112 2 

where 

let 

be the projection, and put 

[x,¢] = pr{x,¢]O. 

11. 6 EXAHI?IE let f:X -+ X be an isarorphism -- then 

11. 7EXAMl?IE let 
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Then 

[NOte: We also have 

11.8 REMlillK EveIy A E A(fl'f2) can be written as rX,<pJ for a suitable 

choice of X and <p. Thus suppose that A = E [X. ,<p. J, put X = e x. I and choose 
i 1 1 i 1 

isometries Vi :Xi -+- X such that l: Vi 0 vi = i~ - then 
i 

=> 

A = l: [x., <p. J 
i 1 1 

= L: [X. I <p. 0 id
f2xi

J 
i 1 1 

= E [X. I <p. 0 f 2 (vi 
i 1 1 

= l: IX. I <p. 0 f 2vi i 1 1 

= L: IX. ,a. o f 2vi 1 
i 1 1 

= E [X,flVi 0 aiJ 
i 

0 

0 

v.) J 
1 

f 2vi J 



where 

PROOF let 

8. 

= ~ [X,flv. 0 ¢. 0 f2v~] 
.11 1 
1 

= [X, ~ flv. 0 ¢. 0 f2V~] 
.11 1 
1 

= [X,¢], 

¢ = ~ flvi 0 ¢i 0 f2Vi E r~r(f2x,flX) . 
1 

be elements of AO (f 1 ' f 2) -- then 

en the other hand, 

and there is a corrmutative diagram 

------------.> f 2X ~ f
2

Y 

1 ~ ~ w 
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'!hus 

_1 ,I, n ~ (~2 )-1 
~,X 0 't' ~ 't' 0 ~Y,X 

But there are also comnutative diagrams 

and 

'!hus 

F1X ~ FlY 

T"lX,flY 1 
FlY ~ F1X 

F2Y ~ F2X 

T"2y ,f2X 1 
F2X @ F2Y 

~l 
~X,Y 

--------::> 1'1 (X ~ Y) 

--------> 1'1 (Y ~ X) 

~l 
~Y,X 

--------> 1'2 (Y ~ X) 

---------'> 1'2 (X ~ Y) • 

;::;,2 
~X,Y 



Let f = TX,y and put 

and 

M:>reover 

~anwhi1e 

so 

Therefore 

10. 

1 _2 -1 
a = ~X,y 0 ~ Q_ ,I. 0 (M ) 0 ~ T - ~ ~ -X,y )2 y,X· 

=> 

f E M:>r(X Q Y,Y g X) 

= id;: (X Q Y) , 
2 
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Given [X,$]O' choose a conjugate (x,rx,rx) for X and let 

where ¢ is the ccroposi tion 

N.B. We have 

t,;1 ~ id 
~~-------:> FIe ~ F 2x 

w: } -1 ~ id 
X,X 

id ~ $* ~ id 
----------':> F IX ~ F 2X ~ F 2x 

id ~ 22 
X,X 

-------> FIX ~ F2 (X ~ X} 

id ~ (t,;2)-1 

--------'7> FIX ~ ~ FIX' 
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and 

(cf. 9.11). 

'Iherefore 

[Note: 

§5, 

or still, 

'Iherefore 

Therefore the image of [X,<j>] 0 in A(f
l
,f2 ) is independent of the choice of a 

conjugate for X. 
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Sumnary: A (f l,f 2) is a conmu ta ti ve unital *-a1gebra. 

Accordingly, to coop1ete Step 1, it remains to construct an iSOItOrphism 

en general grounds, 

Bu t the pairing 

tha t ::ends t/l x I/J to tr (t/l 0 I/J) is nondegenera te, thus 

en the other hand, Nat(f1 ,f
2

) consists of those e1erre.'1ts 

9..lch that V f E Mor(X,Y), 

that vanish identically an 10 (f l'f 2) • 'lb characterize the latter, take an 
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<A,a> = 0 

or still, 

for all 

I.e. : 

From the nandegeneracy of the trace, it then foll()\,\lS that 

iropl ying thereby that 

11.12 LEMMA Under the bijection 

the nnnoidal natural transfonuations correspond to the nonzero multiplicative 

linear ftm.ctionals on A CF l' f 2) • 

PROOF To say that a linear functional on A(fl'f2 ) corresponding to an 

a E Nat (f l' f 2) is mul tiplicati ve a;rrpunts to saying that 

<IX,q,] • IY,1J;] ,a> 
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= <[X,~],a> • <[y,~],a> 

for all 

Since < -,a> is null on 10 (Tl'T2) , it suffices to work upstairs, hence explicated 

'Ne have 

Therefore 

tr (~l n 11, (~2 )-1 ) 
Tl (X 0 Y) ~X,y 0 ~ ~ ~ 0 -X,Y 0 ~ 0 Y 

= trT X 0 T Y «~ 0 ~) ~ (~ 0 ay)) 
1 - 1 

~2 n (~l )-1 
~ 0 Y = ~X,y 0 ~ ~ ay 0 ~X,Y , 

the condition that a be! rronoidal. 

[Note: Tacitly, 

or still, 

or still, 

<lA ,a> = 1 
o 

1 2 -1 
< [e,t,; 0 (t,;) lO,a> = 1 

from which the conmutativity of the diagram 
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ae 
FIe > F2e 

<1 1 r <2 

e - e . ] 

11.13 LEJ)('MA Under the bijection 

the unitary rronoidal natural transfo:r:mations correspond to the *-preserving non-

zero multiplicative linearfunctionals on A(f'1,f'2>' 

<[X,$]*,a> = <[X,$] ,a> (= <[X,$],a>* ••• ) 

-1 
iff ~ = ~ • 

From the definitions, 

=> 

In the other direction, 

<[X,$],a> = trf' x($ 0 ~} 
1 

<[X,$],a> = tr~ X($* 0 ax). 
"1 
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But 

= r* 0 ¢* ~ id o idf X ~ 0'._ 
-o r

f f 2X f 2X 1 X IX 

= r* 0 idy X ~ ;p o idy ~ 0'. 0 r f X (cf. 9.10) 
fIX X - -1 1 X 1 

I.e. : 

Proceeding, wri te 

-1 -
( (0'..._ 0 0'..._ 0 A.*) n tv 0 l"d ) 0 r x x 'I' 101 v. fX 

X fIX 1 

ve th.Em claim that 

implying thereby that 

which, when combined with the initial observation, renders the contention of tl'E 
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lerrma. manifest. From the con:mutative diagram 

\I.e see that 

FIX! FIX 

"x !! ax 1 
-------> Fl (X ~ X) 

1 ax Q X 

------> F 2 (X ~ X) 
;::;2 

X,X 

and from the carrrmJ.tative diagram 

\I.e see that 

Recalling now that 

a 
X~X 

---------> F2 (X ~ X) 

1 J'i~ 

(cf. 9.12) 
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we have 

(t:?) -1 o f r* ;::;2 H:? -1 ;::;1 = 0 0 ) o a 0 
2 X - X9X X,X X,X X,X 

(t.?) -1 f r* 0 
_1 

= 0 a 0 .:::. 2 X 
X:9X X,X 

X,X 

- r* - f X' 
1 

as c1airred. 

'lhe results embodied in 11.12 and 11.13 finish Step 2 of the program, which 

leaves Step 3 to be dealt with. 

Put 

Af f = $ Mor(f2x.,f1X.). 
l' 2 iEIC 1 1 

11.14 LEMMA 'lhe linear map 

that sends 

cp. E Mor(f2X. ,fIX') 
111 

to [X., cp .] is an isarrprphism of vector spaces. 
1 1 
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PRCX)F Every A E ACF'1,f'2) is an [X,q,] (cL 11.8) and every [X,q,] is a SlID1 

of elerrents [X.,q,.] with X. irreducible. Therefore q is surjective. That q is 
J. J. J. 

injective is a consaquence of the fact that 

i ;.e j => !!br(X. ,X.) = {Ole 
J. J 

Put 

Then trere is a direct sum decornposi tion 

Define a linear functional 

A (f'1,f'2) = eA .• 
iEIC J. 

by taking it to be zero on A. if i dres not correspond to e but on A , let 
J. e 

1 -1 2 w([e,q,]) = (~) 0 q, 0 ~ E C. 

11.15 LEMMA V A ;.e 0, w(A*A) > o. 

PRCX)F Write 

A = E [X., q, . ] , 
• J. J. 
J. 

where the Xi are irreducible and distinct -- then 

i;.e j => w([X.,q,.]* • [X.,q,.]) = O. 
J. J. J ] 

In fact, 

l1:Jr(e,X. ® X.) ::::: !>br(X. ,X.} = {O} 
J. J J. J 

(cf. 9.3), 
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S) e is not a subobject of X. ~ X.. One can therefore assun:e that A = [x, cp] ;t 0 
]. ] 

wi th X irreducible. Recall now that 

This said, let 

Then pX = PX and 

= 

I.e. : 

is a projection. write 

p = X 

r 0 r* X X 

r 0 r* X X 
~ = Px· 

A*A = [X,cp] * • [X,cp] 

= [X,(p] • [X,cp] 

o 31 o;p ~ cp 0 G2 ) -1] 
X,X X,X 
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~ n ~ (~2_ )-1] o 'I' ~ 'I' 0 _ 

X,X X,X 

[X ~ X,F1 (PX) 
_1 

o 1> ~ 1> O:~: ) -1] = 0 M 0 
~ -X,X X,X 

1 [e,F1rX 0 m: o 1> ~ 1> 0 (3: -1 
o F

2
r X] (cf. 11.7) = ) 

~ X,X X,X 

1 (* ~ n ~ )[ ~1 0 (~2)-1] = - r 0 'I' ~ 'I' 0 r F X e,,,, '" 
~ FIX 2 

where 

Then 

when viewed as a constant, is normegative. But 1> ;t 0 => <I> ;t O. Proof: ¢ is 

the unique element of Mor(F2X,F1X) such that 

¢ ~ id_ X 0 r~ = id g 1>* 0 r~ X (cf. 9.10), 
-T2 T 2X F X - '1 

1 

so <I> = 0 => 1> = 0 

v v V 
=> ( 1»* = 0 => ( 1»** = 0 => 1> = 0 => 1> = O. 
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[Note: 'lb justify the equation 

write 

Then 

<A,B> = w(A*B). 

Then <, > equips AtFl ,f2 ) with the structure of a pre-Hilbert space w.r.t. 

which the left mu1 tiplication operators 

are continuous. Denoting by H (f I' f 2) the Hilbert space corcpletion of A (f l' f 2) , 

it thus follows that A(fl ,f
2

) admits a faithful *-representation 

hence A(fl'f2 ) admits a C*-no:nn as clain:ed in Step 3. 
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§12. THE INTRINSIC GROUP 

let g be a tannakian category and suppose that 

f:C -+- FDHILJ3 

is a fiber flIDctor -- then its intrinsic group G
f 

is the group of m.i tary nonoidal 

natural transfornations a:f -+- f, Le., in the notation of §ll, 

where M:>r(f,f) is COIl'pUted in ff*(g). 

So 

G
f 

c Tf U(fX), 
XEOb C 

U (fX) the compact group of lIDitary operators fX -+- fX. And Gf is closed if 

rr U(fX) 
XEOb C 

is equipped with the prcx1uct topology, thus G
f 

is a compact group. 

N.B. Define 

12.1 LEMMA 3 a faithful synmetric rronoidal *-preserving flIDctor 

<1>:£ -+- Rep Gf such that u 0 <1> = f, where 

is the forgetful functor. 
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pRCX)F IJe!fine ~ on objects by 

and on no:rphisms f:X -+ Y by ~f = ff (cf. 8.2) and take for 6;., E the corresponding 

entities per f. 'Ib see that this makes sense for E say, one nrust check that 

EX, Y is a no:rphism in Rep Gf , viz.: 

But this is obvious since the diagram 

M 

-X,Y 
--------;> f (X ~ Y) 

l"x II Y 

------> f (X ~ Y) 

-X,Y 

conm.utes. '!hat ~ is syrmetric is equally clear. 

I-bre is true: ~ is an equivalence of categories. Because ~ is faithful, it 

ren:ains to establish that ~ is full and has Ii representative image (details below). 

12.2 REMARK The category Rep fd Af is a semisimple synmetric nonoidal 

*-category which can be shown to have conjugates, thus RePfd Af is "alnost" 

tannakian. Specializing 8.14, it was pointed out in 8.16 that the "~n defined 

there is a syrmetric nonoidal equivalence £ -+ Rep fd Af" Denote now by Rep fd Gf 

the category whose objects are the finite d.lm;msional continuous representations 
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of G
f 

and whose norphisms are the intertwining opera tors -- then the inclusion 

functor 

is an equivalence. en the other hand, there is a canonical functor 

and it too is an equivalence (a nontrivial fact) . 

12.3 LEMMA If X E db S is irreducible, then the complex linear span of 

the 'TTX (a) (a E G
f

) is dens:! in B (f'X) • 

12.4 LEMMA If X,Y E db S are irreducible and noniso.rrorphic, then the complex 

linear span of the 'TTX Ca) Ea 'TTy (a) (a E G
f

) is dense in B (f'X) Ea B (fY) • 

12.5 REMARK If Xl, .•. ,Xn are distinctelenents of Ie' then the complex 

linear span of the 

is dense in 

'lb prove that 4'> is full, 'WI9 shall appeal to 7. 9 . 

(a) X irreducible => 4'>X irreducible. In fact, thanks to 12.3, the only 

T E B (fX) that intertwine the 'TTX (a) (a E G
f

) are the scalar rnul tiples of the identity. 

(b) X,Y irreducible and noniso.rrorphic => <!>X,<!>Y irreducible and nonisarrorphic. 
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But then Tu = vT for all u E B(fX), v E B(fY) (cf. 12.4). Now take u = 0, v = 1 

to conclude that T = 0, hence <PX, <PY are noniscm:>rphic. 

The final claim is that <P has a representative image. 'Ib see this, consider 

the l1li3.p 

defined by the rule 

Then Y'F is injective. 

12 . 6 I..EMvlA Y'F is surjective. 

(TIx ,fX.). 
. 1 
1 

PROOF The canplex linear span of the l1li3.trix elements of the TIX. as i ranges 
1 

over IC is a unital *-subctlgebra of C(G'F) which separates the points of G'F' thus 

is dense in C(G'F)' Accordingly, there can be no irreducible object in Rep G'F 

which is not unitarily equivalent to a TIX. for sc:m:e i, so Y'f is surjective. 
1 

'Iherefore Y'F is bijective and <P has a representative image. 

12. 7 REMARK Suppose that 

are fiber functors - then as objects of ff*(£) ,'F1''F
2 

are iscm:>rphic (cf. 11.3), 
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so Gr ,G
f 

are isamrphic (in the category CP'IGRP) • 
1 2 

let G be a CCJIrpact group - then the forgetful functor 

D: Rep G + FDHIIB 

is a fiber functor. ~fine a map r:G + % by sending a E G to the string 

That this is rreaningful follows upon noting that if 

E Ob Rep G, 

then 

there is a com:rD.ltati ve diagram 

H > H 
TIl TIl 

T 1 iT 
H > H , 

TI2 
TI2 (a) 

TI2 

thus the string 

defines an elerrent 

cd a) E MJr (D , D) , 
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where technically 

12.8 LEMMA r is a continuous injective harroIrorphisn. 

[This is imTedia te from the definitions.] 

In fact, r is surjective, hence G and % are isorrorphic. 

[If r \'Nere not surjective, replace G by rG and think of G as a proper closed 

subgroup of % - then there 'WOuld l::e an irreducible representation of % that 

contains a nonzero vector invariant under G but not under %. This, however, is 

i.n:possible: 

is bi jective.] 

12.9 THEOREM Up to isonnrphism in CPTGRP, G is the II intrinsic group" of 

Rep G. 

[If 

F : Rep G -+ FDHILB 

is a fiber functor, then Gr :: % (cf. 12.7).] 

12.10 REMARK Compact groups G,G' are said to l::e isocategorical if Rep G, 

Rep G' are equivalent as nnnoidal categories. In general, this does not rrean 

that Rep G,Rep G' are equivalent as sy:rrrretric nnnoidal categories and G,G' may 

very \'Nell l::e is:::lCategorical but not isonnrphic. 
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§13. CLASSICAL THEORY 

A character of a carrmutative lUlital C*-algebra A is a nonzero haroIrorpbism 

w:A -+ C of algebras. The est of all characters of A is called the structure space 

of A and is denoted by b. (A) • 

N.B. We have 

b.(A) = ~ (A = {O}) 

b. (A) ~ ~ (A ~ {O}). 

13.1 LEMMA ret w E b.(A) - then w is necessarily oolUlded. In fact, 

N.B. The elen:ents of b.(A) are the pure states of A, hence, in particular, 

are *-horcorrorpbisms: \if A E A, 

w(A*) = w(A) • 

Given A E A I define 

A:b.(A) -+ C 

by 

A(w) = w(A). 

Equip b.(A) with the initial topology determined by the A, i.e., equip b,(A) with 

the relativised weak* topology. 

13.2 LEMMA b.(A) is a compact Hausdorff space. 
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If X is a compact Hausdorff space, then C (X) equipped with the supremum nonn 

II f II = sup I f (x) I 
xEX 

and involution 

f* (x) = f(x) 

is a camu.:ttative unital c*-algebra. MJreover, V x E X, the Dirac neasure 

o E il(C(X)) and the arrow x 

is a horrearorphism. 

X + Ll(C(X)) 

x + 0 x 

13.3 LEMMA A E C(Ll(A» and the arrow 

A+C(il(A)) 

A+A 

is a unital *-ison:orphien. 

N.B. If A = {a}, then Ll(A) = ~ and there is exactly one map ~ + C, nanely 

the empty function (~= ~ x C), which we shall take to be O. 

Notation: ret CPTSP be the category whose objects are the carpact Hausdorff 

spaces and whose :m;)rphisms are the continuous functions. 

Notation: ret cc.MUNC*AIG be the category whose objects are the cormutative 

unital C*-algebras and whose norphisrns are the unital *-hDm::mJrphisrns. 

let X and Y be compact Hausdorff spaces. Suppose that <P:X + Y is a continuous 

function -- then <P induces a unital *-hDm::mJrphism 

<p*:C(Y) + C(X), 
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viz. <p* (f) = f 0 <p. Therefore the association that rends X to C(X) defines a 

cofunctor 

C:CPTSP ..,.. C<l1UNC*AIG. 

let A and B be camnutative unital C* .... algebras. Supp:>se that qJ:A ..,.. B is a 

unital *-harom::>rphism -- then qJ induces a continuous function 

qJ*:t:.(B) ..,.. t:.(A), 

viz. qJ* (w) = w 0 qJ. Therefore the association that sends A to t:. (A) defines a 

cofunctor 

t:. :CCMJNC*AIG ..,.. CPTSP. 

13.4 'lHEDREM. The category CPTSP is coequivalent to the category CCMUNC*AIG. 

PROOF Define 

~X:X ..,.. t:.(C(X)) 

by the rule :!X (x) = Ox - then ~X is a ho.meoJrorphisn and there is a commutative 

diasram 
H 

~X 

X > t:,(C(X)) 

~ 1 1 0** 

Y > t:. (C(Y) ) • 

-Y 

Define 

~A:A ..,.. C(MA) ) 

by the rule ~A (A) = A -- then :!A is a l.IDital *-isarorphism and there is a carmutative 
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diagram 

:::'A 
A ;> C(1".(A» 

• 1 i··· 
B ;> C(1".(B». 

:::'B 

Therefore 

id :::: 1". o C 

id :::: C o 1".. 

The category CPTSP has finite products with final object {*}. Therefore the 

category CCMUNC*AlG has finite coproducts with initial object C. 'lb explicate 

the latter, invoke the nuclearity of the objects of CXMUNC*AlG, thus 

A ~ B = A ~. B, max nun 

call it A ~ B -- then 

and there are arrows 

A+A~B 

13.5 EXAMPLE We have 

C({*}) ~ C and C(X x Y) ~ C(X) @ C(Y) 
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13.6 REMARK let A be a COImn.ltative l.IDita1 C*-a1gebra -- then the algebraic 

tenror proo.uct A Q A can be vie\'Iled as an invo1utive suba1gebra of A ~ A. Another 

point is this: Since A ~ A is the coprcxluct, there is a canonical arrow 

A Q A __ m_>A with meA Q B) = AB, i.e., the restriction of m to A Q A is the 

Iml1 tip1ica tion in A. 

[No te : If A1 , A2 ' B are carrmu ta ti ve l.IDi tal C*-a1gebras and 

are l.IDital *-horronorphisms, then the diagram 

A1 ----i> A1 ~ A2 <-- A2 

~1 1 1 ~2 
B B 

admi ts a l.IDique filler 

such that 

13.7 RAPPEL let g be a catego:ry with finite proo.ucts and final object T -­

then a group object in g consists of an object G and rrorphisms 

~:G x G + G, n:T + G, l:G + G 

such that the following diagrams COImn.lte: 
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11 x idG 
G x G x G > G x G 

id
G 

x 11 1 1 ~ 
G x G > G, 

11 

i'\; x n n x id
G 

G x T > G x G T x G > G x G 

prl 1 1 11 
pr2 1 1 11 

G G, G G, 

G ----------~> T G -----------> T 

(idG,l) 1 {l,idG} 1 
G x G -------- G, G x G -------- G. 

11 

There are obvious definitions of internal group harron:orphism G -+ G', composition 

of internal group harron:orphis:ns G -+ G', G' -+ G' " and the identity internal group 

harron:orphism idG:G -+ G. Accordingly, there is a category GRP (~) whose objects are 

the group objects in ~ and whose nvrphisrns are the internal group horrorrorphisrns. 

[Note: If instead ~ is a category with finite coproducts and initial object 

I, then 'We put 

and call the objects the cogroup objects in ~ and the norphisrns the internal co-

group honarorphisms.] 

13.8 EXAMPLE Take C = SET - then 
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13. 9 ID'IrvlA 'V'e have 

GRP (CPTSP) = CP'IGRP. 

13.10 REl'1A...~ Too forgetful func tor 

CPTGRP -;.- SET 

has a left adj:>int. Proof: Given a s:t X, equip it wit..l1 the dis:!rete topology, 

form the aSSJCia tEd free topological group F (X), and consider its Ebhr CC>I:r{')act­
gr 

ifica tion. 

A corrmuta live Hopf C*-algebra is corrmuta tive unital C*-algebra H together 

with unital *-l:'om::>Irorphisns 

A:H -;.- H @ H, E:H -;.- C, S:H -;.- H 

for which t:l"e following diagrams corrmute: 

A 
H >H~H 

6 1 1 ~ ~ 6 

H~H > H ~ H ~ H, 
A ~ i~ 

I-I H H H 

6 1 1 inl 6 1 1 ll2 

H~H > H ~ C, H~H > C ~ H, 
~~E E ~ i~ 
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H < C H < C 

(~,S) 

1 I E 
(S/i~) 

1 I E 

H0H< H, H0H< H. 
6 6 

[Note: Such an H is not necess:rrily a Hopf algebra (in general I 6 takes 

values in H ~ H rather than H 9 H).] 

N.B. Consider, e.g. I (i~/S) -- then in tenus of the coproduct diagram 

H ---» H 0 H <--- H, 

the arrow 

is characterized by the candi tian tha. t 

(i~/S) 0 in2 = S. 

en the o1:h:tr hand I there is an arrow 

i~ ~ S:H ! H + H ~ H 

characterized by tie condition that 

(cf. 13.6). 

And 



9. 

Proof: 

m 0 ~ ~ S 0 in2 = m 0 in2 0 S = i'\i 0 S = S. 

I:enote by CCNHOPFC*AlG the category wlnse objects are the corrmutative Hopf 

C*-algebras and wlnse norphisns f:H -+ H' are the unital *-h:morrorphisns such that 

f Q f 0 6 = 6' 0 f, £ = £' 0 f, f 0 S = S' 0 f. 

13.11 r~~ We. have 

COORP (CCMUNC*AI.G) = C(l.1HOPFC*AI.G. 

let G re a compact group - then the group operation sinG induce operations 

6, E, S in C(G) w.r.t. which C(G) acquires tbe strucrure of a camrnutative Hopf 

C*-algebra. And the association that sends G to C(G) defines a cofunctor 

C:CP'IGRP -+ ccr4HOPFC*AlG. 

let H re a comnuta ti ve Hopf C*-algebra -- then the cogroup operations in H 

induce operations ll, Tl, 1 in 6 (H) w.r.t. which 6(H) acquires the strucbJ.re of a 

corrpact group. And the associa:ti:on that sends H to 6 (H) defines a cofunctor 

6 :CXI'-1HOPFC*AI.G -+ Cl?'IGRP. 

13.12 THEOREM. Tre category CP'IGRP is coequivalent to the category 

WIIlHOPFC*AlG (cf. 13.4). 

13.13 RAPPEL Given a compact group G, let A(G) re its set of representative 

functions - then A(G) is a unital *-subalgebra of C(G) and when endowed with the 
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restrictions of 1:::., E, S fonns a corrmutative Hopf *-algebra. 

[Note: Recall that A (G) is dense in C (G) .] 

• let I:::. (A (G) ) be the ~t of nonzero multiplicative linear fmctionals 

on A (G) • 

• let 1:::.* (A (G) ) be tha set of *-preserving nonzero nn.lltiplicative linear 

functionals on A (G) • 

Then 

I:::.*(A(G» c I:::.(A(G» 

and the conta.i.n.nent is proper in general. 

Equip I:::. (A(G}) (and hence 1:::.* (A (G) » with the topology of pointwise convergence 

and intrcx:luce the following operations: 

(i) (wl ·w2) = (WI ~ w2 ) 0 I:::.i (ii) lA(G} = Ei (iii) w-
l = w 0 S. 

Then I:::. (A (G) ) is a group containing 1:::.* (A (G) ) as a subg"roup (in this connection, 

note that I:::. (f*) = I:::.(f)* and S(f*) = S(f}*}. 

13.14 IE-1MA 1:::.* (A(G» is a corrpact group. 

13.15 THEOREM ~fine 

ev:G -to 11* (A(G) ) 

by 

ev(o} = °0 (Oo(f) = f(o». 

Then ev is an isarrorphism in CP'IGRP. 
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let 

U: Rep G + FDHILB 

be the forgetful functor. 

13.16 LEMMA The arrow 

p:A(U,U) + A(G) 

that sends (H ,<1>] (<1>=H + H ) to the representative function 
11" 11" 11" 

cr + tr{11"{cr)<1» (cr E G) 

is a linear bijection. 

[Note: 'Rris can be sharpened in that A(U,U) carries a canonical Hopf algebra 

structure which is preserved by p, i.e., p is an is::morphis:n of Hopf algebras.] 
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