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The Wightman Axioms To minimize the technicalities, I'll start

with the simplest case.
[Note: We assume throughout that c=1 and KH=1.]
Data:
(1) A separable Hilbert space ¥ ;

(2) A unitary representation U of Cyz\on )L

(3) A t‘j"t

L invariant dense linear subspace P9 < of H

(4) A G’:‘— equivariant linear map ég: af(R4)-—> End O ;

(5) A @1\

. - invariant unit vector QO €L .

Remark: The action of G’I on End 1is by conjugation, so the

equivariance requirement on ¢¢ is that V¥ f € xi&gf),

VA
_l _
UCAa) QBTN T = @lE, ),
where
£ (x) = £( Nt (x-a))
A, a .
[Note: By definition, (( A,a)-£)(x) = £((A,a) t-x) =

e((NY, o N tayex) = £(A I oA ) = (A T (x-a))

This data is said to constitute a neutral scalar gquantum field

theory (QFT)if the following assumptions are satisfied.

Wl: The support of the spectral measure E associated with the
restriction of U to r? ~x 3Tt % r? is positive, i.e., spt E is contained
W VA

in the closed forward light cone V, ( = %(p /P): py >0, p2=p2 -p2 20} ).
+ 0" 0 0 v

[Note: By Stone, 3 four commuting selfadjoint operators Ek( such

that U(I,a) = exp(VY-1 (ayP, -a;P; -a,P, -a3P;)) Y a, thus



2.

' TCT(aOpO -a-p) .
{x,U(1,a)y )= e el d(x,Epy} Vx,yGH.
4
R

One calls PO the hamiltonian and P=(P1,P2,P3) the momentum. It follows

from Wl that Py is a positive operator. The same is true of

2 — 2

w2 = »2 2 2.1/2

- (Pi + P2 + Pg), so it makes sense to form M = (M ,
the mass.]

L : : : , .
W2: The space of (Y, - invariants in gf is l-dimensional.

[Note: Therefore f)o (the vacuum)is unique up to phase. 1In

this connection, observe that W2 is implied by the condition:
dim %\xé )—Q :U(I,a)x=x Va } =]1. For suppose that x&}? has the stated
property -- then so does U(A,0)x (since U(I,a) U(A,0)x = U(A ,0)
U(I,/\—la)x = U(A ,0)x). But the only one dimensional unitary
representation of &£ I is the identity representation, hence U( A,a)x =
U(I,a) U(AN,0)x = x.]

W3: V £ € Afggé),

<
R S Dom yey s

and
@ b= @®.
[Note: Therefore ( (the field map) sends the real valued elements
of ;J(&?) to symmetric operators on ¢f . Incidentally, it is tempting
to conjecture that for real £, &&(f) is essentially selfadjoint but

this turns out to be false.]

Wi: ¥V x,y €o0), the assignment

£ — {x, S{(f)y>

is continuous.



[Note: Otherwise said, {(x, ®(?)y > is a tempered distribution.
Mo

From this, one can deduce that VY x € o@ , the map

ArH —
f —2 @ (fHx
is centinuous. ]

W5: The set of all finite linear combinations f&(fl)---fg(fn)fz,o

is dense in }Q .

[Note: Interpret the empty product as the identity so as to
include §20. By the way, it can be shown (Reeh-Schlieder) that for
any nonempty open set C’C:af, the set of all finite linear combinations

(Q(fl)'-'gg(fn)ﬁflg is dense in ¥¥, where now spt fj c 9 Vi1
W6: If the supports of f,g e.anEf) are spacelike separated, then

[&gf), L (g)]1=0.

[Note: This is a crucial assumption. Roughly speaking, the
idea is that measurements of field components at points which are
separated by a spacelike interval are independent, i.e., neither can
effect the result of the other. To account for a "fundamental length"
one could weaken W6 to [ g(f), \c;g (g)]=0 if (x—y)2< -,(2 (x eﬂnl: £,
y €spt g). However, nothing is gained in so doing: The condition
actually implies W6! So, to essentially weaken W6, the commutator
must be allowed to be different from zero at spacelike distances.]

Here is a final point. By definition, the field map has for its
domain the Schwartz space onv54. Can one instead define it directly
on‘§4? In other words, does'ﬂ a function é£;§4-—h Qgg¢13 such that
&&(f) = J; f(x)&“x)dx? We shall show later that the answer is "no".

R

WV



Example The free relativistic particle of spin zero and mass
m7 0 carries the structure of a neutral scalar QFT. To see this,
one first has to specify the data, i.e., items (1)-(5).

(m)

Recall that 3 an irreducible unitary representation U of

A4 2
6 4 on L (Xm’/“‘m)’ where

4 2 2 .2
Xm“{pe&'p())()rp —,po VE‘E"m 1

and
2 2,1/2
- f((m” + {p]7) 1)
f £ dmy = j ) 7177 dP1dp,dps.
X 3 (m™ + 1pl™)
m J& ww
Here
(m) V-1 (agpy - 2°p) -1
(U (AN,a)E) (p) = e £E(N “p).
Moreover
U(m)(I,a) = EEE('Y—ll(aOPO - alPl —a2P2 —a3P3)),
S0

(2o8) () = Vm+1p1? £(p) & (2i€)(p) = b, £(p).

Notation: Given f € 4f(R4), put
ay

A N V-1(pyxy - P %)
f(p) = — e f(x)dx
(2 ) s
R

. 4 2
and define a map B g?gi ) — L (xmbﬁAm) by

A
Ef=V2h £ |x_.
m m

Ad(1): Take:ﬂn:}?the symmetric Fock space over Lz(xm,/Am),



i.e., let
2
H= a:s (L7 (X e pa ) -

Ad(2): To specify U, it suffices to note that Y (/\,a) € 6’1\ P

U(E)(/\,a) = U(m)(/\,a)CD--°69U(m)(/\,a) (n factors)

is a unitary operator on L2(Xm,/4m)n s (conventionally the identity
r

if n=0). The elements of L2(Xm,/.‘m)n s are, of course, the square
’
integrable functions on gmx--- xxm (n factors) which are symmetric

under permutation of their arguments, the inner product being

n
{f, gy = 5 . .- S. E(xyreeerx) g(xy,eee,x) TIT d -

Xm Xm

And:

(Ur(lm) (N,a)f) (xl.- .o ,xn)

n
= exp( V=T 3 <anxy YIECN TRy, e, AR
j=1

Ad(3): Take for Jathe subspace of algebraic tensors, i.e., let

D=0,

Ad(4): Define the field map by

& () = ®, (B Ref) + V-T Py (E_ Imf),
where §S is the Segal field operator. It is easy to check Gr—equi—
variance. Thus suppose that f is real -- then
TTo™ (A2 @ (6 TTw™ (A2t

= TTw™ (A,an Be o TTo™ (Aan™



(m)
2, @™ (Na)E )

P (E_ £ )

It

vcgm(f/\,a) :

Ad(5): Take for (10 the vacuum { 1,0,...‘§.

We now have to verify assumptions W1-W6.

Ad Wl: From the definitions,

<g, u™(1,a)£ > = l£@)1% apm_(p).

j V—l(aop0 - a-p)
e VA Van
X

m

But‘A«m is a G’EFinvariant measure on R4 with support in Xm;:V+, hence

12
Ad<£,E £ =]E(m | da_(p).
p m
This settles the case n=1. The general case is similar but compu-

tationally more involved.

Ad W2: Trivially,é%{)o is C?z\—invariant. On the other hand,

no nonzero vector in Lz(xm,AAm) is Gwi—invariant (U(m) is irreducible).

L . - . T . .
In addition, no nonzero vector in L2(Xm,/4m) is 6’+—1nvar1ant.

n,s

To see this, let us assume that
Ur(lm) (I,a)f=f Va.
n
Given (xl,...,xn)ééxm><---X‘Xm (n factors), 1 a: exp( V-1 %Ei (a,yj>) -1

is not zero for all (yl,...,yn) in some neighborhood of (xl,...,xn),
hence £=0 a.e. on this neighborhood. Therefore £ is locally 0 a.e.,

so £ is 0 a.e.
Ad W3: Suppose first that f is real. Since 3§S of anything is
symmetric,

L < Dom

PR () +




and
@ B+ D =« ().

Next, write f=Re f + V=1 Im f —- then

& ()% = (P (B Re £) + V-1 P (E Im £))*

and o@ is contained in the domain of the operator on the right. Finally,
*
@ (6)* |0

= P (e Re H)* | - V-T P (B In £)* |0

P (B Re £) +V-T R_(E_(-Im £))
= X _(f).

real V k -- then

Ad W4: Suppose that f —7 £ in ,\f(R4) » with £,

Eg\fk —> Eﬁ in L2 (Xm,Mm) , hence V Y €& L) ,
§S(Emfk5), Y = R (E Y,
so V‘t’ € L,

Gr@n VY = (P @By
Ad W5: Modulo the fact that the range of Em is dense in LZ(Xm,,Mm) ,
this is just a restatement of a property of §S'
Ad W6: Assuming thatv the supports of f and g are spacelike

separated, it suffices to establish that
[, (£), o (g)1=0.
But when f and g are real,
[M(-gm(f), &gm(g)] = [ §S(Emf)' §S(Emg)]

= V—l'En_ <Emf, E 9>



= 3 f E@15m - £@)§m) d (D)
X
m
= 5 — O (x-y) £(x)g(y)dxdy,
Y -1
\54 R4

where

el 4 -V -1I(p.,a -pa)

2271 )
Xm
vV - (po o F -p- a)
- )d/qm(p)-
It will be shown below that
pt AN <=V, uV_,

hence

B (=7 A0 (xgmy)? - Z(x -y )72 0.

On the other hand,

Xxespt £
= (xo-yo)2 - Z(x -y 12 < 0,

A A
y&spt g

SO
jﬁ j" [%n(x-y) f(x)g(y)dxdy=0.

Observation: V f € ay(R4),

2
& (B2 +ndn =0 ( D2=%—2- v?).
‘ -1

[In fact,



o~ A
(02 + 0¥ o) = -(pg - p'p - m)E(p)

= E_ (0% +n°)f) = 0.]
Remark: L;Hlis the unique distribution satisfying the equation
(02 +n®)y =0
m
with Cauchy data

D _(0,x)=0, 2 N_(t,%) = Sx).

It can be expressed in terms of Bessel functions. One has

and VY /\Eo(j,

N (AX) = N (x).

m
. T
For a spacelike x, J AE€ J—+: NAx = -x, thus
Lo (x) =B (Ax) = D (-x) = - A (x),
which implies that
spt AmCV+L)V_ .

In what follows, the neutral scalar QFT constructed above will

be referred to as the free QFT of mass m>0.

Let us now consider this setup from the traditional point of

view.

Working in %FS(LZ(R3)), let Xa be the dense linear subspace

o



consisting of those strings ¥ = g'?’, V&,... } such that \Yn €.4P£5?n)

Y n and \Pn=0 (n >> 0).

Given p€5R3, define operators
N VW

(@) ¥ ), (Xyreeerx)

]
ﬂ
+
H
~<
o]
+
‘—J
i
A
l—l
%
5\/

Il
’H
-M.’:S
e

(Y ) (Ryreeerx)) (p-x,) Wiy (FpreeesXisee,x)

[Note: The physical interpretation is that a(p) and c(p)

annihilate and create particles of rest mass m, momentum p, and energy
WA,

%E =v m2+!£!2 .1

Properties:
(1) a(p)* = c(p) & c(p)* = a(p);

(2) f[a(p), al(q)] = 0 & [c(p).f(g)]

AVL N Vg D Y Ve

Il
o
e

(3) [la(p), \g(g)]

Y A

S(p—q) -I.

Remark: The number operator N is given by the expression

LV WR VR VN U

f c(pa(p)d’p.
\53

E.g.: Suppose that ‘P(xl,xz) = \P(xz,xl) -- then N VY = Z‘P . On the

other hand,
S c(p) (a(p)Y) (x,,x,)d%p
R3

AVt

W

{Vl——_z—, Stp-x) (@ (P) Y (x,) + \}—_—2_1 Stp=x,) (@ ()Y ) (x)) }d3p
3°

;Wg_——ﬁ

= J 15 (p-=x;) [V2 Ll/(p,xz) ]dBP
' e
Rr3

NAA



1l
== 8lpmxy) V2T Wip,x )18’
L v dET) ¥ °
R

= W(Xl’XZ) + ’L}l(lexl)

= 2 ‘y(xl,xz)
a(f)
Given f E'qf(R3), define operators < ** on Jj by
- () o

a(p) f(p) d p

g a(f)

c(f)

cp) f(p) a’> p.
3

L
i

Remark: These definitions are formally consistent with the usual

agreements. Thus

@(E) V) (x,..0,x) = 7

—_— 3
= YV n+1l [ 4In+lﬁgfxl"°°'xn) ng)d P
R

3
and |
(i(f)‘}’ Yy (Xpseenx)
n !
=—f/-—n-, El [£3 S(_g—xj)f(f)df"p}xyn_l(xl,...,é\j,...

A

n
1
= = 7R Yy ke x))




Note too that

[a(f).C(g)]=S S [a(p) ,c (@) 1£(p) g (@) d’pa’q
R3 R3 B

PNy 3

= J j §(p-a) £ (p) g (a)d’pd’q

WA Ve W

= <f,g>-I.

The free Klein-Gordon field of mass m> 0 at time t=0 is the

operator

3 (x) = V-1 x-p
o | (21.)372 e

R3

AV N
where

1
2 AN

Its conjugate is the operator

_ V-1 V-1 x.p
T =372 e T al
Properties:
W Zrer = Freo s THeox =

f'o

~—
.

(2) [P (x), F o1 =0s [TT ), TT_()]

(3) [‘@ (x),T (N7 = V-7 8(35—3)-1

N,

[Note: To check the third property,

0;

it is necessary to examine



or still,

VT

(213

or still,

(27)°

or still,

V -1

(2 1) 3

or still,

or still,

..H

10.

1 Y-1 x —~-1 x-p
: [e Vv \i(}?) + e W\M»S(p)r
V._l vy*q - V_l y-g
-e ”‘VNVE( ) + e Y c(a)] 2(g) d3P d3q
NS Mo v m(p)
‘V—lﬂﬁ\g -Y-1 y-q
S {e e [a(p), c(q)]
3
-Y -1 X°p + V=1 d
e [c(p),a(q)] Q) 435 a3
~4 (p)
V-1 x°p - V-1 y°q
X I X'a - g) 43
§ e qu,h) ~(p) d’p d7q
&?
-V-1 xp +V-1'y.q
A O [P - ?A(g‘) 3
S e 8 (p-g Mcw)dpdq]
Ef
VT g { s o,
e R | q + e R e | q
V§3
1 J V-1 (’X"Y)°q 3
_l . 3 e v v Am, q
(2771 )
¥E3




11.

as claimed.]

In general, the free Klein-Gordon field of mass m >0 at time t

is the operator

T 1 -V-T' (amp)t - X°p)
Wm(t'fﬁ) = —7_(25)3 > j [ e i(f)
fﬁ
V-1(m(p)t - x-p) 3
+ e ~ - fi(p)] S N S
- 2 m(p)
[Note: The exponentials
+ V-1 (~(p)t - x-p)
e Loy N S
are solutions to the Klein-Gordon equation, i.e.,
5 2 +Y-1 ...
(L ° +m%) e = 0.]
To calculate
] 1
[P (e,x), B (e',x")],
it is convenient to introduce
2 4y VT e TR
A, (t,xm®) =1 Y b e - a°p,
- b 2(211) A (p)
3

the integrals being Fourier transforms of tempered distributions.

Since

vV _1! - ¥-1 (tp, - x-p)

v 2(2T) VT (tpy - xop)
e

N

X -

- yam_(p)



12.

v J‘ ( -Y-1 (m(p)t - x-p)
—_— e v -

2(2TT)3
R3
- V-1 (M(p)t - x-p) 3
- e v haal o ) d p
(D)
it follows that
2 2
A _(t,x) = N, (t,x;m°) + A (t,x;m7).
m Veun + Ve - Y
Of course,
A (t,xmP) = - AN (~t,-x;m?) .
— A~ e
LEMMA We have
AANAAN o
' ' = 1 | |
[\j?m(t'v}f)' :_fm(t Iw}’(v)] = _ﬂf-—'-: Am(t t ,3(“\},5\).

[The verification is straightforward symbol pushing.]

The assignment f —> Jf, where

(3g) (p) = ELZAR)ap)

Var(p)'

defines an isometric isomorphism

—_y

which by functoriality extends to an isometric isomorphism
2 T 2,3
F o a ) = Tt ).

For short, call it J (rather than T1J).




13.

Everything can then be transferred over to R3.
NAny

In particular:

a(Jf) = Ja(f)J‘l
VAl v, 2
c(JIf) = J\f\:‘(f)J"l
Now write
F o0 1 : : - V-1 (A(p)xy - Xx-D)
X = e Vaa M v a(p)
fﬁ
V-1l (~(p)x, - X-D) 3
e V 2.A(p)
Claim: V f € /({(\54),
\Ezm(f) = J f(X),\’(& m(x)dx,
jf
where
Q@ (x) =3+ F (x)7.
w- M v 1IN
Thus take f real -- then
j f(X)éfm(X)dx
Bf
" . ~ 1
= 2T J-l( " al(p) ——£—~§ e —l(/uig)xo “x:p) a d3p
3 4 ‘Aa (D)
R R et
: " V-1 ( a(p)x, -x*p) 3
L 2n gL S c(p)( 1 5 e Tow 0 e ax) dP g
Y2 2w e M (p)
k3 k3 B



14.

N
Va1l -1 ' £f(~(p),.p) 53
= ——J ( (p) L d’p) J
Y2' S Y- V.o (p)
3 Van
R
2 1 £l (p) D) 43
n .- A e
+ - J ( c(p) d”p) J
V' 2 S halhe V A (p)
3 [N
R
= Yauw 41 a(p) Jf(p) a’p) g
VT =2 TR
»53
p ¥2n 571 ( T c(p) Jgkp) d3p) J
'v__2—_1 N e [,
jf
= 2T -1 N 21 -1 ~
J T a(JE {x )T + J ~ c(Jf |X)J
V2© - m 2 - ] m
= ;%;1[J—{3(JEmf)J + J—l¢i(JEmf)J]
= L1 [a(E_£f) + c(E_£f)]
2 A m v m
= P4 (B D)
= :fln(f).

Of course, we could have worked from the beginning on Xm. Indeed,

5 ¢ m(x) =

a(p)
A% N

1 1 [ - V-1 (]_O,X>
V3 e 3/2 S ©
X

m
V-1 <{p,x) ,
+ e e da (p),

where now a(p) & Eﬁp) are defined directly on Xm. To confirm this,

take f real -- then



jﬂ £(x) @ (x)dx

;54
‘ -V=1¢p,x>
27 1 ’
= ( a(p) ( e f(x)dx) d (p)
V3! f b (2 77) 2 J‘ m
X jf
o -2 | R (
+ clp — e f(x)dx) 4 P) )
X R4
m .
V2 2
= ( a(p) £(p) 4d (p)
Y7 " 7
X
m
N
+ f S(®) £(p) dm (0) )
X
m
271 A A
_ 2\ ( i}f lxm) + c(f IXm))
=L (a(E f) + c(E_£)
V'—z"' (V2SN m \AA m
= @S(E £)
= & _(£)

Remark: The definition of the pointwise creation operator

utilizes the & -function on Xm:

d (p-q) = p, S(p-q).

N



le.

To check this, simply note that

j £(p) § (p-q)dpm (p)

X
m

3
j’ £( (D)D) A (D) & (p-q) LB

[PPSR /‘b\(p)
R3

N

f(A(q),q)

W

f(q).



Correlation Functions We shall continue to work with a fixed

neutral scalar QFT.

Rappel (Schwartz Kernel Theorem): Let B: %fggh X 4y(3?)”4>£i

be a separately continuous bilinear functional -- then there is a

m

unique tempered distribution T on‘5?+ such that

B(flg) = <T,fXg >

for all £ € F &M, g¢ A EY.

v

[Note: Here

(fxg)(xl,..-.x )

n-+m

= f(xl,...,xn)g(x ) .1

n+l,...,Xn+m

Therefore, Y n'Zl,'H! tempered distributionﬂlfn on\sfn such that
U, (Ey % ooe xE) = <, Q@UE) - Q€ ) 2

One calls an the nEh correlation function of the theory.

[Note: Another name forlhfn is the n-point function. Conventionally,

W =1.]

0

Since

Qo g, D247

= <L, U(ALa) WEHUA,) T Q>

CulpN,a ™t Qg QIDUCA,) T >

it follows that.LJn is 6’:\—invariant:

(A=W =W, VA,



In particular, using symbolic notation, \d'a,
145n(xl+a,...,xn+a) =fh5n(xl,...,xn).

This means that'a a tempered distribution W, on Rlln"'4 such that
AV %N

TASn(xl,...,xn) = W (X =Xy e, X 7% ).

I.e.: V £ € _,t?(gln),

CW ,£) = L WL E o > ax,

R
where
Eay € Sqpreeer Foop)
= f(X,X" ?l,x_ }l— }2,0.-’}(_ El_"'—gn_l)‘
[Note: W_ is 0(4‘ -invariant: V /\Eo("r
) n + - +7
WAINTJqreee e NS ) =W (Fqre-er §) 0]
~ — —_
LEMMA The support of W_ is contained in V, X ..+« XV, (n-1 factors).
AAAAAN n + +

[Note: I have chosen the plus sign in the definition of Fourier
transform. It is not difficult to see that

A
U L (Pyreearpy)

n
N
-_-(211? S ( j%_l pj)Wn(pl,pl+p2,..., Py Pyt ¥p g ]

Remark: In general, if T is a tempered distribution on gfn—4

: N - - . 4n-4
with spt T (:\[FX v X V+ (n-1 factors), then TXO0 —Q?spt Tﬁﬁv .



Taking T=Wn’ it follows that there are just two possibilities:

(1) W_= 0; (2) spt Wn=R4n—4.

n WV

Much is known about the correlation functions but I shall omit
the specifics here (it is a chapter in the theory of several complex
variables). One consequence of these investigations is the following

central result.

THEOREM For all (x,,...,x )€ R,
VAAAAAN 1 n Aand

’LJ~n(xl,...,xn) =‘UJn(—xn,...,—xl).

Notation: Given f € x?&g?), let
TTE(x) = £(-x) (x€RD).
Write
A = &&(fl)--~§£(fn)
B = év(gl)-~-§g(gm)
and
A' = éﬂ(TTfl)"' fﬁ(TTfn)

B' = @ (TWgy)--- @W(TTg,) -

N

LEMMA We have
NAAANAA

(B2 2,> = <A €2,,B'Q ;> .

[This is a formal consequence of the theorem. E.g.:



@@Ly QEHQ Y
=€), @ @) 1>
=<9, &&(5) QU 245
= ijsz(y,x)g(y)f(x)dydx.

On the other hand,

CQTIH Qg QTP 2>

.[Ldz(x,y)f(—x)g(-y)'dXdy

I

j'LJz (-x,-y) £(x)g(y) dxdy

jwzw,x) £(x)g(y) dxdy.]

Define now an operator C) by the prescription

® weepee- @ L2y = QM- RMEH 2

Then ® is well defined. To see this, suppose that A SZO = B (20,

the claim being that A'(2) = B'(),. But
(A, -8Q,2a0,-8Q,>
=<2, A Q>-<AQ, B Qo>
-{(B'Q (A2 >+<B' L2, B' (2,4



{rQy 20, -<BLL,, a0,
(a0, B2 > +<(BQ, B>

>
L ] — ]
The upshot is that & extends to a norm preserving map }4‘“5 }Q

which leaves the vacuum invariant with
® (x+y) = Ox + Oy

@ (cx) = ¢ Bx

4
and: Y £ € SR,

® e ® ™ = amb.

N

This conclusion is the PCT theorem for a neutral scalar QFT.

Remark: As regards the relation

@@ ©F = @D,
I feel it necessary to inject a proviso. While formally true on a
dense subspace of JS, why does it hold on all of<£3? The experts pass
in silence on this issue. Have they forgotten that the field operators

are unbounded, hence discontinuous?



Cluster Property The assignment

;3‘}}\4)X"'X,X(\§4) _,___}M

(£17eee s E )= @(£) - (£ )2

is a separately continuous multilinearaQ-walued function, thus 3 a

continuous map §n: ay (ﬁ4n)___>}5? such that

{R_ e X £ > = QE D QE) L2

=
W, =<Qy B>

§H§£§gﬂ§ Suppose that a is spacelike -~ then in the weak

operator topology,

lim U(x, 9\&) = PQ ’
A—> +00 0
where E>§)_ is the orthogonal projection of Honto C SZO.
0 Ve,

[Note: This is a nontrivial assertion. It amounts to saying

that Vx , vy €}{,

<x,0(I, A2y > — (%, Q> Ly y> as A + 0

which, of course, is obvious only if either x or y is equal to SZO.
However, the verification is straightforward in the special case of
a free QFT of mass m >0. Thus take a=(0,0,0,1) (there is no essential

loss of generality
XXX in so doing) -- then from the definitions,



(m) -V-1 >\P3 —_—
<£,077° (1, da)g> = e £(p)g(p)dm_(p)
X
m
= jx e JE(p) Jg(p) dp,dp,dp,
Eg
which tends to 0 as A—7? + o0 (Riemann-Lebesque lemma). The extension
to functions on va(---><xm is clear. One way to handle the general

case is to use the fact that d<{x, (1-P JE v > is absolutely
$2,4,7p

continuous w.r.t. Lebesque measure, hence with a=(0,0,0,1),

y —'“17\93
e

<{x,0(I, nalyy = d<xEYD
4
R
- sf—’l")\p3 d<X,(l-PQO)EpY> ,
= {x,pP ) y> + j e 7 d'p
0 4 d'p
R

—<{x,P Q0y> =<x,§20> <§20,y’> as A—> +020.]

LEMMA Suppose that a is spacelike -- then
A

lim 'Ld'n(xl,...,xj, xj+l+-%a,...,xn+ Aa)

A—r + 00
=1*Sj(x1""’xj)l*sn—j(xj+1"“'xn)‘
[Unraveled, the assertion is that
lim Qg By UM, Aa) B _5(9) 25>

= <wj,f > < wn_jlg > .



Reeh-Schlieder This is the assertion that for any nonempty

open set O CRBA, the set /JC) of all finite linear combinations

Lq(fl)---(&(fn)gzo is dense in , where now spt ij:Ca Y 5.

Thanks to the cyclicity of the vacuum, it suffices to prove that
i i
x € => x€ =30 .
Fix n> 1 -- then, as has been noted earlier, 3 a continuous map
¥F . ;J(R4n)-«> é? such that
n Vr
<‘§n,flx ...xfn> =&(fl)...v(g(fn)ﬂo’
thus 1! tempered distribution 2Jn % on\Bfn such that
wn,x (‘flxn'an) = { %, ‘én(flx'Han)> -

Using the spectrum condition and the identity

xp Q(xg) - Qlx 1) &ixyp+a)--- QUx +a) $24>

= (x, Q@x) -0 Qlx_)U(T,8) Wix)e-e @x )8 >,

one can check that the support of the Fourier transform

N
Wy x Prre-ipy)

_ 1 VT S
S em j = jgl Kpyrxyy ) <x, @xp) s Wx )82 5> dx, - - -dx
R4n

is contained in the intersection of the sets

4n v
ipe\ﬁ : pk+pk+l+...+pnev_ } (k=1,...,n).



On the other hand, the map
¥1 >
Xy =2 X7%y
Xn - Xn-1"%p
4n + 4n . . .
is a diffeomorphism R —7 R 77, so 3 ! tempered distribution Wn % on
Ny r
R4n such that
VAN
Wn,x ° ¢’=‘ujn,x r
i.e.,
Wn,x (-Xl'xl_XZ""'Xn-l_xn)
= Ldnqx (xl'XZ""’Xn)'
And:
P2 — —_—
spt W % CV+ PR ¢ V+ (n factors).
E.g.: Take n=3 -- then
~

Wy x (PprPyeP3)

_ V (plxl+p2x2+p3x3)
= (xl,xz,x3)dxldx2dx3
(2-[-) n,x
R
e
= exp Y~-1 (-(p +p2+p3)( Xq ) - (_2+D3)(X1—X2)
(2'F)
RlZ
Vg
A —p3(X2-X3))Wn'x(~xl,xl—x2,x2—x3)dxldx2dx3
= Wn,x (5(Py#Py*p3) s —(Py¥py), =Py -



A
Assuming that Wh,x (ql,q2,q3)#0, put

ql= —(pl+p2+p3)

q2= '(PZ+P3)

93= "P3-
Then
4N
TASH,X (Py+P,,P3) 70
P1tP,tP3 € V_
=) Py+P3 € V_
Py € V_
=7 91:9p:93 € V-
Proceeding,

spt W + riD

n,x VA

if C)is proper, as we suppose. But this implies that

which finishes the proof.



the
Euclidean QFT Starting from ﬁsorrelation functions th of a

neutral scalar QFT, one can use analytic continuation and Laplace

transform techniques to produce a certain collection of real analytic

functions on R4n , the Schwinger functions.
n w#

Notation: (1) Let

4 L4 <
vf}vz = {(xl,...,xn)éﬁn . N X5 (;7‘])&

and denote by 2?(R42) the subspace of gP(R4n) consisting of those £
Wy A,

which, together with their derivatives, vanish on each hyperplane

xi—xj=0 (i#3) .

(2) Let

gD ={(xl,...,xn)€v1§4n : 0<x‘1’<-~-<xﬂ}

A

and denote by ap(&i?) the subspace of 4{(R4n) consisting of those £
v

whose support is contained in\ﬁi? .

A given Schwinger function €§ n defines an element of Af'(g?;) in

the sense that the functional defined by the integral

j(;;(xl,...,xn) £(xy,...0x) ax

is absolutely convergent for all £ € qp&§4;) and thé assignment

£—> ‘fhgsnxxl,...,xn) F(xg,...,x) 4%

is continuous.



os1 \V/fC;f(R¢),

<G _£>= <G_. 68 >,
where

OF (%) %)) venny (x0,x)) = E((=x0,x) 4enn, (=x0,x ).

0os2 VY £ € :J)(R 7é).

<@n'f> = <@nr f/\,a>

where (A ,a)€ so(4) X R? and

' -1 -
£ alRyeee X)) = ECAT(xpma) ey A 1(xn—a)).
4 : 4n
0S3 Let £,€C, £, e;f(i)),..., £, €/ By ) -- then

Z <G pamr BE, XE, > 2 0.

ose V G/J(R np

(G E>=<XE fo6> (GEs).

oss V£ € 4" NS *@®™) ana Vg € S )ﬂcm(R4m)

ii_m- <s<-§‘1'1+m’ fthg> = <@nlf >< Gmlg> ’

t —> +00

where

0 0 _ 0_ 0_,
Ttg((xl,gvl),.--,(xm,ﬁm)) = g((xl t’v\}f,l)""’(xm t'fJn))'



Remark: OS stands for Osterwalder-Schrader. Their reconstruction
theorem reverses the procedure, viz. they show that if you start with
distributions G§‘n satisfying 0S1-0S5, then these distributions

are in fact real analytic functions onlgf; and are the Schwinger

functions associated with an essentially unique neutral scalar QFT.

[Note: This is not quite true in that the requirement

G;néé Qy'(R4;) has to be reinforced. Unfortunately, this auxiliary
VA

condition is virtually impossible to check in practice.]

Example: Consider the free QFT of mass m >0 -- then
(S, x,y) = L g e - <p,x—y>——2——2—l a'p
(2Ti)2 p +m
R4
W,
m




The Kallen-Lehmann Representation A distribution T on R? is
WA

said to be of positive type if

<T+£,§ > =<1, MExf > 20 Veec ®Y.

[Note: Symbolically,

{T, T £+f >

i1

jt ( Ti £+£) (x) T(x)dx

- y ( j f(y) TT£(x-y)dy) T(x)dx
R™ rR"

i
Sy

( S £(y) £ (y-x)dy) T(x)dx
Rn
\An

‘Bn
= S f(x) £(y) T(x-y)dxdy.]
R X

et R ———

THEOREM (Bochner-Schwartz) Suppose that T is of positive type--
AN N

A
then T= 4« , where s is a tempered positive measure.

LEMMA Let s be a tempered 4:4\—invariant measure on R4 with
NN NAn,

+
support inig; -- then 3 a tempered measure fon [0,+0o0[ such that
vV £efrY,
X 00
J £ dm=m( 03 )£(0) + S ( ‘[ fda )d P (m).
r? 0 X
- m



Returning to our neutral scalar QFT, consider W2‘ Thus from

the definitions,

X j. f(x) £(y) Wz(x—y)dxdy

LY
= <1A52,E><f >,
And
<1452;E><f >

il

<O, QE 9O >

{RUE)* <L, QUEY S >

Q) Q4 L2 ,>

I @E 2 1122 0.

i

This shows that W2 is of positive type, hence by Bochner-Schwartz,

A
\'2

N ~
‘3 a tempered positive measure A« : W2 = M =$>W2 = m = ., But the

A —
support of W2 is contained in V+, so an application of the lemma gives

&) Fal (~¢] §
(W, £> = Wy (30F)£(0) + J‘ ( j £dua)d P (m)

0 X
m
or still,
Vo
v
Wy £ =KWy, £ 5
A v
1
=w,(i0%) - 5 j £ (x)dx
(2T1)



. %
+J (f fdm )d QP (m),

0 X
m

which is the Kallen-Lehman representation for W Here

9°

- Vo1 ¢ 5.

v PHXa—P-X)
flp) = —+ f e 070w £ (x) dx,
(2T)

W

so by formal manipulation,

A ,
CW,, €S> =w (10} ). —2 J £ (x) dx
2 2 (2 Ti)?
4

WA

+ 4T j‘ f(x) Wz(x)dx,

r:
n
where
00
W, (x) = j‘ L A, (xm?)d e (m)
V-1
0
and
2 V—l - Vol (o R
D (xm®) = dm (p) .
2(2T)
X
m
A
It remains to explicate W2( %0} ). For this, note first that
A 1 is translation invariant, hence 4 a constant K:

< 1Afl,f > =K j‘ f (x)dx.

R4

Vs



LEMMA We have
AN

FaN
wy,(f0t) = (2 w2 |k |2,

[Given f € 4?(5?), let

F(a)

Caer L ,u(,-a) @) 24> .
Then\

F(a) = (WyxExTif) (a),

hence
N A A
F=m* 7,
On the other hand,

‘ - V-1 <a,’,\> .
F(a) = j e a<{ \,u:_(f)QO'EA&g(f)QO> ’

3‘4
SO
5 N
F= @M °xa<@ )2y, B, B>
=y
F - 2xa< @)
F = (2T)"Xa<@f)€2,, B, «f) Q2,5

The mass of d < «(f) {14, B, «(f) {2 at the origin is

< Q) By @) Qo > -

But since the vacuum is unique,
Eg Q) €24 = <{C, By @(H) €2 5 > Q2
=< By Ly, @) Q2 (>,

=<2, @) Q >R,



(a1 L o, Eqe(e) 2>

Cae) L 1, 20> - <Q . @O Q>

1{ Qg @62 ;> 1°

=|(Ul,f>12
= x|? . S £(x)dx - I £ (x)dx
Y =
A .
= em? - lgol? - 1x |2
c 7 2 2
One can then eliminate f and conclude that W2( 20} ) = (2T) -]Ks

Definition: The mass spectrum of a neutral scalar QFT is the

support of e , the mass then being the infimum of its mass spectrum
with 0 removed.
Example: Consider the free QFT of mass m>0 =-- then f = Sm'

[Note: Take f,g real. Using definitions only, one finds that

in this case

W, (fxq) = X _l___l_ A, (x-yin®) £ (x) g (y) dxdy. ]
LS

We have mentioned earlier that it is impossible to define the

field map directly on\g? (subject, of course, to the assumptions).

In brief, here is why.



(1) We have

U,y =<, @) g Q (> = W, (x-y)
=

W, (x) =<2, @x) @) <2 >

(2) We have

Qx) = U(L,%) @(0)U(I,x) "

W, (x) =<C2,, QO)U(I,-x) X(0)€2L
(3) We have

) - V -1 (x,p)
Wz(x) = e

B}

dm(p) .

where aa is a tempered J:¢ ~invariant measure.
+

(4) We have

W, (0) = s (BY) ¢ + o0

ao= (108§

W, (x) = W, (0)

M fo0) ).
(5) We have

@x) 2 = KO .
(6) We have

UCA,@) (W02, = UlA,a) @OU(A,a) T Q 4

= Q(a) <2



= 02, V (Aa)

Q0)2,=cX2

o (30

Q) = CL2.

But this can't happen if the vacuum is to be cyclic.



Spin and Statistics Recall the statement of W6: If the supports

of £,q G-;X(R4) are spacelike separated, then

ég(f) &g(g) - &g(g)\&g(f) = 0.
This is the way it has to be: It is impossible to have
ff(f)fg(g) + ég(g)jf(f) = 0
4 . .
for all f£,g € xygﬁl) with spacelike separated supports.
The proof goes as follows. Agreeing to use symbolic notation,

A
B & + —invariant tempered distributions F and G on‘gf such that

Flx-y) = S£1, Q) @) Ly > =<, @ly) @x) L2 >

Glx-y) = <Q ), @x) X (y) 2 > +<Q, @y) X)L > -

Because F is odd,

¥2 <0 =F(3) = 0.
Here the argument is exactly the same as that employed earlier for

AN o On the other hand,
W, (x-y) =<2, @lx) @y) C2,>

= (Flx-y) + G(x-y)).

But anticommutativity means

(x—y)2< 0 = G(x~y) = 0,

hence

3%<o0 ::BWZ(E) = 0.



In particular: spt W, # r? =>W, =0

=
0=C U, ExE> =1l OQ 112 Ve efrh,

which contradicts the cyclicity of fZO.



Irreducibility of the Field Operators Suppose given a neutral

scalar QFT with the property that the space ofygi-invariants is one

dimensional (recall that this condition implies W2) -~ then the

é{(f) (f € QYQEf)) are an irreducible set. By this we mean that

every bounded linear operator A for which

<x,a@B)y>=< QD) *x,ay > Vx,yedd & Vi € of &Y

is necessarily a constant multiple of the identity.

As a preliminary, note that the function

j~ . V-l(aopo—a-p)

a—r <{x,U(I,a)y > = - d<X:EpY>

R4

VA
is a bounded continuous function of a, thus defines a tempered

distribution Tx .
F

~ —
LEMMA The support of T is contained in V,.
ANAAAAY - X +

r

[Take any f whose support 'is contained in the complement of

V+ -—- then

N 2\
<Tx’y,f> = (Txly,f >

g N
_ j x,U(1,a)y > f(a)da
4

R
han'd

""l(aopo—v‘a‘-"'?)/\
( e f(a)da) d <x,Epy >
2

4 4

Ay

g



= (2m)? £(PIA<x,Ey ) = 0
R4
WA
N
padys spt T Cv,.

— X,y +

[Note: Here, of course, we have used the fact that the support

of d(x,Epy) is contained in —\_7-_'_.]

Suppose now that A is a bounded linear operator with the stated
property.

Claim: 3 ?\:A.C2O =‘A(}0. To see this, observe first that
<Qg/a @(T,2)-£)) --- Q(T,a)-£)K2 >

= {QUI,a) €)% -- @UT,a)-£)* 2, AC2 >

<ax Q) ,U(I,a) Q(£)) --- Q) 2 >

= QRED* o R(EN*C2 ,U(T,-a)AC2, > -

According to the lemma, the support of the Fourier transform of the
LHS is G;, while the support of the Fourier transform of the RHS is
G;. Therefore the support of the Fourier transform of either side
is the origin, hence is a finite linear combination of derivatives
of the Dirac delta. But then, by Fourier inversion, our function

must be a polynomial in a, thus is a constant in a (being bounded).

So: \f a,
{QE) -+ Q£ Q (,U(I,-a)A 2>

= <Q@(E) Q5 2,682, >



I

U(I,a)A Qo = AAQAO Y a

——

AQ, =20, (3 A).

Accordingly, Y x Eoo '
<x,AQE - O )24
= @UEN* - QUEN*x,A Q2 >
- <8(fn)* $(f1)*x' ;\Q0>

(A= ) Q(£;) -+ Q£ ) QO =0

——

A= A I.



The Borchers Algebra Set theoretically, this is

= 4 8
A -codch odztH® :

. . . s . 4n
Equ1p;ﬂ>w1th the direct sum topology per the injections XPQB‘ ) —>
qy -- then;ﬂ7becomes a separable LCTVS.

(1)4? admits a continuous involution *,.

[Let £= {fn} G,xP and put

= {ex},

where

* =
fn(xl,...,xn) fn(xn'°"’xl)'
(2) k? admits a continuous multiplication x .

[Let f= gfnk & g= {gn } Gaf and define f X g by

n
(£ Xg)n = :Ej fk(xl,...,xk) In-k (xk+l,...,xn).]
k=0

[Note: Multiplication is continuous in each variable separately

and is jointly continuous as a bilinear map

N N 2N
4 4 9,4
@ "M@ Jeth—o> @ fe™™
n=0 n=0 n=0
for N< +00 but not for N=+ 0.1
So: XF is a graded topological *-algebra with unit I=(1,0,...)
. A . .
on whlch(3 + operates in the evident way.
[Note: Explicitly,

(A,a) - (X £+ Bg) = X ((A,a)-£) + f((A,a)-9)
(N,2)(£EXg) = (A,a)-£X(A,a)-g
((,\ra)°f)* = (/\ra)'f*r (Ara)'I = I-]



Let LS :,J ~4>\S'be a linear functional -- then

LJ is positive if US(E*x £)> 0

Viesf .
LS is hermitian if WX(£*)= U(f)

LEMMA LS positive => U§ hermitian.
AV VR

LEMMA lAyp051t1ve =>

| WFE*xa) | 2 £ WE*x £) LS (g* x a) .

Definition: A state on XF is a positive linear functional 1&f
such that W (1)=1.
Example: Fix a neutral scalar QFT -- then the correlation

functions L§ n of the theory determine a state ) on,J;.

THEOREM Every positive linear functional on &V is continuous.
N A At
- [Note: It is therefore automatic that the correlation functions

XUSn of a neutral scalar QFT are tempered.]

Given a.@’t—invariant state’hs, put

N =3Ff: W(E* xf)=0 ¢ .
w- }

. L . . .
Then NLS is a G’+-1nvar1ant left ideal in ay. As such, it is a closed
subspace ( UYbeing continuous).

[Note: Observe that

FEN
W => W (g x £)=0.
qé,rf



Indeed,

0 £ | WigxH)| =W (g** x5 |

£ YVWSgxa*) YWiE* x£) = 0.1

The prescription

CLE1, Mgy = W (£* % g)
is an inner product on the quotient d3 ==a//Nhj . Let BQ be the
corresponding completion -- then dais a dense linear subspace of 3{ .
The following properties obtain.
(1) }Q is a separable Hilbert space.

(2) The action of 6‘72 on zfpasses to the quotient to define

an action of G’I on ;f/Nhj : (A)a)-[flz[(/\,a)-f]. Since

<(N,a)-[£], (A,a)-[9]

W Aa)-E)* x (A ,a)-q)

LS ((AN,a)-£* X(A,a)-q)

W ((A,a)- (£5xg))

W (£* x g)

I, 1091y,
the action extends by continuity to a unitary representation U of 6)1

on o¥.

. T, .
(3) From its very construction, d9<:.a¥ is dense and G’+—1nvar1ant.

(4) Define a linear map :4f-—9' Endds by @(£f)[gl=[fxg] -- then

LICAN,a)-£) [g] = [(A,a)-f xg]

1

= [(AN,a) (EX(A,a) qg)]



U(A,a) [f x(A,a) tg]

UIA,a) & (D)U(A,a) " tigl,
thus @ is (?I;equivariant.
(5) Put ()0=[l] -- then §lo el is a 6’§;invariant unit vector.

Conclusion: All the data lying behind a neutral scalar QFT

is in place but there is no guarantee that assumptions W1-W6 are

satisfied.

[Note: To get the field map, restrict to Af£54)44> xf . Obviously,

on the basis of the construction itself, we have
W p(Ep xeee x £y = Qg0 QED -+ QUED 2 5]
Claim: W3 holds. To see this, take f,g,h E;J’and computes

{ Q) lg], [h] > = (£ xg],[h] >

= W ((£Xxg)*xh)

W (g* X £*% x h)

{lgl, [£*xh] >

(Igl, QE*)[h]Y .
Therefore
dS = Eﬁﬂlégf)*
and
QO] = aen) .

It remains only to specialize to f € )JQE?), observing that in this

case f*=f,.



Claim: W4 holds. This boils down to two things: (i)?&f is a
state, hence is positive, hence is continuous; (ii) X : )y,x/JLA>2P

is separately continuous. Therefore the assignment

£—7 <lgl, Q£)[h]>

{Igl,[£X h]l>

LS (g* x £x h)

is continuous.

Claim: W5 holds. From the definitions, o) = {&g(f) L2 ,:£ ef !

(since & (£) C2 =[£XI]=[£]). On the other hand, if £ ,...,f € (\Fj)'
n
4. . .
then »Lg\(fl)'” Sg(fn) Q0=[flx cee X fn] and TT ,f (vliv) is dense in
1
4n
£ &
W rL |
Suppose that 1’ Léz are C?+—1nvar1ant states -~ then the same

is true of

Ap >0
?\11451 + %2 wz (?\l+ 22':1' | ) .
Ay >0
thus the set of G’+-invariant states is convex. Its extreme points

1T, .
are the pure C?+—1nvar1ant states.

THEOREM AL\Sis pure iff the space of @T—invariants in M is l-dimen-
oA s - +

sional, i.e., iff W2 holds.

A

Fix now a pure CP+—invariant state UJ -- then the issue which has
yet to be resolved is: When do Wl and W6 hold?

(Isp) The spectrum ideal Isp is the left ideal consisting of




those £ € f such that £.=0 and Y n2z1,

0
N
£, (Pyre--rpy)=0

n — P
if Z PLEV, VY k, 1<k 4n.
j=

(Iloc) The locality ideal Iloc is the ideal generated by elements

of the form

fn(xl""’xj’xj+l""’xn)

=g(xl"“’xj'xj+l""’Xn) —g(xl,...,xj+l,xj,...,xn),

12 > 0.

where g(xl,...,xn)=0 if (xj-—xj+l >

T, . . . .
Definition: A pure 6>+—1nvar1ant state Ld'ls said to satisfy the

Wightman condition if

Isp’ Iloc <N

W

Example: The correlation functions 'LSn of a neutral scalar

4

QFT determine a pure 6)+—invariant state Lfon,J7which satisfies the

Wightman condition.

3@%%5 Suppose that W satisfies the Wightman condition -~ then

Wl and Wé hold.
[The verifications are straightforward. To illustrate, let's

check W6. Thus suppose that the supports of f,g éﬂaf&gf) are spacelike

separated -- then
| @, we ] 2

= W ((fXgxh-gx £Xh)*x (£X gXh-g x £ Xh))




WS(((EX g-gx ) xh)* X ((£X g-g x £) X h))

=0,

since £fX g-gx f€ Iloc‘]

1\
Congequently, to every pure 6)+-invariant state UJ satisfying
the Wightman condition there is associated a neutral scalar QFT.
Moreover, any other neutral scalar QFT with these correlation functions

is unitérily equivalent to this one.

Example (Greenberg): Let LJ0=1, LS1=O and define W, by
<‘W2,f><g> = j j f(X)q(y)Wz(x—y)dXdy,
R4 R4
A AN
where
o0

1 2
W, (x) = j —— A (x;m")d P (m),
2 WF:I] + P

0

and @ is a tempered measure on [0,+¢0[. For n) 2, let?AS =0 if n is
n

odd but'if n is even, let

CUS B X oo XE_ >

x £, ’
-1 ln>

=2 <Uu 2fs X5 > ---<wz,fin

)

the sum-being over all partitions of n into n/2 disjoint pairs with
iop-1 <12k (k=1,...,n).
E.g.:

CUS 4rE X E,XEaX £, D
= LWy fp x5 Y (W 5 E3 %5y >
+ <UL ) xE3 5> LW Tp X5y >



+ <w2,fle4><u2,f2 XE3% .

, . 4
It can then be shown that LJ = {1} ns is a pure O ,-invariant state
which satisfies the Wightman condition.

Example (Haag): Suppose given a neutral scalar QFT such that

w0=1, UJ,=0, and

<U2,f><g > = 5 J f(x)g(¥y)IW, (x~y)dxdy,
4R4 Mf
where

1
-1

W, (x-y) = A, (x-yim®) (m>0).

Then this neutral scalar QFT "is" the free QFT of mass m > 0.
[The idea is to show that the correlation functions Ljn(n >2)

are the same as those of the free QFT of mass m> 0.]



Extension of the Assumptions The Wightman axioms can be

formulated more generally.
Data:

(1) A finite dimensional vector space'LIand a separable
Hilbert spaceth;

>~ 1
(2) A representation T of J:+ on'lfand a unitary representation

U of E?;chle :

(3) A.C?+—invariant dense linear subspace d?c: é¥ ;

(4) A O’E-equivariant linear map (( : RP(R4; U)— End L);
A vy B

5) A0 t-—-invariant unit vector {2 0 € o) .

s
Remark: The action of O’f on Enddj is by conjugation, so the

equivariance requirement on (¢ is that YV f € 4?(5f; U,
NAn

~~ ~ "‘l B
VA, @) LEVN,2)7 = QEx ),
where
R L) - A £(A L (x-a))
and
\V4 ~ -~ _
A =THUA ™D T

[Note: The rationale for the introduction of the contragredient
is this. Let d=dim U -- then f < %fl,...,fd % and éf &~ {&gl,...,&gd} ,
thus

K

I

_Zgjwj)

J
> )( £5 (0 Uy (x)ax.
3 A v

R



Therefore

1

U(A ,a) RIE)TIN,a) =t§(fxla)
—
~ ~S -1
2 £, (VA ,a) @, (VA ,a) Tax
i N,
&
=Zj y (£, 205 () @ 5 (x) ax
4
R
Ny
A -“V_l
= Z S Z TN g3 £ 0N T (xma)) ) (4 (x)ax
J 4 i
R
= Z j £ (x) Z.“‘/\)ji ng_.)(/\x+a)>dx
7 3 _ :
‘54
=
1

UIA,a) @, () U(A,a)”

’V__ L
= T WA KL (Axva),
3 J J

which is the traditional transformation law for W (x)<> {Sgl(x),
A

RUNEIN I

Observation:
L) = (J f(x)\gg(x)dx)*
X
= J/ f(x)‘ii*(x)dx
5}

Q(£)* = f £(x) @*(x)dx.
N Mo,
R4




This data is said to constitute a vector quantum field theory

(QFT) of type Tl if the following assumptions are satisfied.

Wl: Same as in the neutral scalar case.
W2: Same as in the neutral scalar case.
W3:

W3: Same as in the neutral scalar case except that now no a priori
connection between ¢§(f) and its adjoint Sﬁ(f)* is assumed.
W4: Same as in the neutral scalar case.

Ei: The set of all finite linear combinations Al---An§7.0,

where A.= @Q(f,) or Q(g,)*, is dense in.}q.

The statement of the final assumption, viz. that there is a

normal connection between spin and statistics, is a little involved.

Definition: Let D be a finite multiple of some finite dimensional

irreducible representation of X‘+ -- then thére are two possibilities:
D(-I) = I (call D integral)
D(-I) = -TI (call D half-integral).

W6: Decompose T as a direct sum @ Dk’ where Dk is a finite
k
~t
multiple of some finite dimensional irreducible representation of df+ ’

S0 U=@ Uk' Given
k

4
£ = {£.} (£, € A& U
g = {gk} {9y 6.4?&54; 7]#))

whose supports are spacelike separated,

Q(£,) Qg ) - Q(gy ) @ (£) =0

il
(=]

QUEN* Wlgg ) - Qg ) & (£ )%



if either D, or Df (or both) are integral but

k
Q) R (g ) + Qg ) () =0
QUED* Q@(gp ) + Qlgy ) Q(E)* =0
if D, and DX are half-integral.

k

Remark: The finite dimensional irreducible representations of
~

o(‘+ are parameterized by pairs (u,v), where u,v € z 0,1/2,1,...3

p(urv) (D(u)=D(u’0), ]’)'(V)=D(O'V), D(u,v)=D(u)® B(V)). One has
D(u,v) (-1) = (_1)2(u+V)I’ so D(u,v) is integral iff u+v€ Z. Moreover
D(u,v) is real, i.e., equivalent to its complex conjugate, iff u=v

(for D (u,v)

(u,v)=D(v,u))‘

Finally, dim D =(2u+l) (2v+1) .

Example: Let T be the one dimensional identity representation

of f: (in which case the term "vector" is replaced by "scalar") --
then a neutral scalar QFT is a scalar QFT of type Tt with the additional
property that the field map sends the real valued elements of ;Up(vff)

to symmetric operators. Consider now two free QFTs of mass m >O0.

Call the field maps v(\gi and realize the data on = H+®}?—
+ + : + - + -
(M= =?5(L2(Xm’/“m)—)’ Taking =07 @A, Q0=Q0 ®Q0 /

U=u"®u”, ana

- ¥-1<p,x>
1 1 4 + -
u_(x) = f [e a (p)®I
T \/-21 (2TI)3/2 “-
X
m
V=T'(poxy

+e I ®V€\ (p)1d ae (P)



SO

’ +,_+ - + - -
@ (f) = —— @ EHOT + '@ (E1D)
W 2 Vhny
if £ is real, one can check that all the requirements for a scalar

QFT of type 1 are satisfied (generally referred to as a charged scalar

QFT). Here

J [ @, (€), @ (9)]
=0
\[ng(f)*,gm(g)*]

and for f,g real,

m E) @y (g) *]

( 5~ j- P £> (x-y) £ (x)g(y)dxdy > (I+G§I—)-

"

[Note: Writing

H'l-

5+

D3 T D8

o
o

m=0 m,s,

NE

we have (in obvious notation)

, o
= @

n,m=0

On é((n,m), the number operator N is given by

NY = (n+m)Y

and the charge operator Q is given by

QY

(n-m) Y



Both are selfadjoint and have a purely discrete spectrum. In

particular: There is a decomposition

m -
}'Q = _@20 é’gq'

where }?q is the g-charge sector, i.e., the eigenspace of Q corresponding

to the eigenvalue g. Physically, b{+ represents the space of particles
and }Q— represents the space of antiparticles (of a given type).

E.g.: The electrically charged 11 mesons TT+ and 75 or the electrically

neutral KO meson and its electrically neutral antiparticle KO, which

carry opposite hypercharge: Y=1 for the K0 and Y¥=-1 for the EO. j
Remark: The symmetric Fock space associated with
2 + 2 -
L (Xpr ) @17 (X, aa)
is isomorphic to ¥{ and

+ - + - *
:fnlﬁaI + I Q@jﬁm - égm + Ly -

This setting also carries with it a Borchers algebra. Thus let
D be a finite multiple of some finite dimensional irreducible rep-

~ 4
resentation of J:+ and put d=dim D. Set
X? 4 d 8 d2
b =.C GBAPQE iCY @A RGP -
and equip gyD with the direct sum topology per the injections

n
4n__d

;f (\5 iC ) 7 ’t?D -- then JD becomes a separable LCTVS.
(1) Xf p admits a continuous involution =*.

[Let £= {£ } € Y p and put



£x = {£x 1,
where
<
fﬁ(xl,...,xn) =r fn(xn,...,xl).
£— | . ‘ n
Here r acts on fn—(fil""'in: (115""ln) € ﬁl,...,dj ) by

reversing the order of the indexes.

(2) ;J7D admits a continuous multiplication x .

[Let f= {fn} & g= ggn} = Qy]D and define f x g by

n
(f xg), = Z:o £, @9, !
Suppose given a vector QFT of type D -- then the correlation

functions 'hfn of the theory determine a state WS on fo and what

has been said earlier in the scalar case extends with but minor changes

to the vector case.




Higher Spin The free relativistic particle of spin s> 0 and
(S)=D(SIO) .

mass m > 0 carries the structure of a vector QFT of type D

To see this, one first has to specify the data, i.e., items (1)~-(5).

Notation: As usual,

Lol (Kon)
st 6T «na—- (Aan.
(1) Assign to each pc€ Xm the boost /\p € o(,: /\p(m,0,0,0)=p.

Note that f\p - /\p, where

p0+m+p3, pl_ V-1 Pz
<X _ . l

p .
V 2m(po+m) Pyt Y -1 2P po+m—p3

is positive.

(2) Assign to each pgX  the Wigner rotation W(/\,p)e 53(2):

WA ,p) = (/\p)"l}v\/\x_lp .
Thus
~ ~ -1 o~
WA AR = (A ) TAAN
=
WK, A ™ = (AT KT Axy




where q=(po,—p).
[Employing the usual notation, let

p = pO I + P'ff .

Then
—_ m+p
Ry = ——
2m(po+m)
'\’2_ l
Np = X

On the other hand,

g1¢Q
il
TN
51 ¢
N

Therefore

This shows in particular that 7<i and ;(3: commute, thus the same

NS

v
is true of their square roots, i.e., A __ and /\q' which in turn implies

P
N Ao
that the product ﬁgp/\q is positive. Since

~ 2

~2 e 2
/\p /\q"’ (/\p/\q) r
the assertion follows by taking the square root of I.]

[Note: The disbeliever can multiply out the matrices.]

Put

2 _ .2 . A28+l
L (XmI/"\mlS) = L (Xn.ll/\kmlc )-

v

2 .
So, the elements fE€L (Xm’/*m7s) are strings



{ f(p,6): 6=s,8~1,...,~s+l,~-8 }

with

J- £, o) | 2 am () < + 00 .

X
m

. . . . . . (m, s) &;¢
This sald,_a an irreducible unitary representation U of +

2 .
on L (Xm’/*m;s)' viz.

(w™s) (X ayE) (p, &)

Y-1'<a,p> _° s)

- e > ol WA enE(Re, 1)
T=-s
Turning now to quantum field theory, one has to start by
specifying the Hilbert space, which we shall do by taking for §{ the

symmetric Fock space over Lz(Xm,/Am;s) if s is integral or the

antisymmetric Fock space over L2(Xm,/*m;s) if s is half-integral.
Modulo thée definition of the field map, the other ingredients are
obvious. As for the field map, what follows are the preliminaries
that lead to its definition. I shall concentrate on the symmetric

case, the antisymmetric case being analogous.

An element WGB—Q is a string ¢ = {qJO, Wyre-- } , where

‘Pn = \-}’n(Pl,(f'l:"‘;pn, 6-1'1)
is symmetric w.r.t. permutations of pairs:

(pi, s-i) <« (pj, S‘j) .



a(p, 6 )
Given (p,qg ), define operators wA by
c(p,5)
N
( (i(P:G‘)\Y)n (Plrb—l;"'i n’ €n)

(SV(P,C') \"/ )n (Plr 61;'..;pnl 6-1'1)
Properties:
(1) alp,6)* =clp,¢) & clp,6)* = alp,g )
(2) [&(p,ﬁ‘),g(q.’t)] =0 & [c(p,s),g(q,I)] = 0;
3 ’ r r T = . - -TI.
(3) [lalp,6),cla, T)] S(qp)Sro,
[Note: Let us check the third property. Thus
(alp, §)cla,T) Y )y (s Gyie-iP s 6 )
= Vn+l (S\(qrt)]‘y )n+l (P'G' ;pll 617"’;pnr€n)
- 1 DY S A (b e e
= n+l ( — S(q P) CS To6 ‘\*Jn(Pl, 6—11 1P fn)
1 n ,S S N
+ =z (a-p.) S_ (PrG i *iPur Gsi"*iP ;6. )
VFEIT i=1 ] 55 lyn J J n n
On the other hand,
(cla, Tlal,e )Y ), (P, 6 i ip 0 ,)
_ 1 < Ny -
"_v‘__.,;l' JZ=1 S(Q‘Pj) CY < ](i\(Prﬁ') L& )n—-l (Dl( 6]‘.’ err 6—31 lpn



n / /\
- 1 _ VAl W (5 6 cesevme o cenes
’v—, ]%i S(q pj) S_C 6_] (\ n q/n(Pr ; PPy 37 ; n,G"n)> .
Therefore
(@alp,e)cla, DY - cla, Dalp,6) W) (P, epi--ipy67)
= cS(q—»p) (S-Cg. L}/n(pll 6—1;"'7pnr Gn)’

from which the claim.]
a(f)

Given f, define operators { by
c(f)
VL

a(f) = 2 j 2@ 6)EP,6 ) dan, (P)

A% G =—g

c(f) = 2 j C(p,c')f(p,o")d/w (p).
AVI 6 =-s

Remark: These definitions are formally consistent with the

usual agreements. Thus

(a(£) Y ) (py, 6 qi"iP 6 )
Vn+l %}5 LI’nﬂ(p 6 iPyr6qic iR G JE(p, 5 )dam (p)
and
(c(£) W) (Py, &3t ip s 6 )
L > < f 5 5
= — [ (p-p.)f(p,57) d (p)}
\/ n' s j=1 Xm J Am [ O'.J
A\}/n_l (plld-l;"‘7pj,6'37"‘7 ’6—)



- 1 2 |
= \(n 32—1 %f(pjlﬁ) 50’6‘ L}/n l(PlIG"l,-.-; j,(fj;o..; n’Gn)
= — j%lf(p r()—_) H/nl(pl’g-l;"'; jlé'j;--.;pn’s_n)

Note too that

[a(£),c(g)]

[ Z j a(p,o')f(p,f)d/um(p),Zf clag,T)gla,T)da (9]
s YX_ T TR

m

y J [a(p.s“) c(q, )]f(p,c‘)g(q,t)d/\« (p)d/u (q)

j J S(g-p) 5_“_ f(prﬁ‘)g(q,T)d;,Mm(p)d,Mm(q)

> < f(p,6)glp,T) 80"'( du (p)

)lL

Q

m
_ ZJX F(p, 6 )g(p, &) dm (p)
m

<f,g>-I.

On general grounds, for any unitary operator U on L2(thAAm;s),

J(TTU)i(f) (TTo) ™ = a(uf)

\ (TTU)C(H) (TI) ™ = g (Uf) .

[Note: 1In the sequel, we shall omit the cav pi from the notation.]

Specialize to

u=u™s) (X o).



Then
(m,s) , 7%
c(u (A,0)f)
=z J c(p,s)m‘m ) (X, 0)£) (p, ¢ )dm_(P)
G X
-2 S glere) Z p'%) WA, (R e, Tid (p)
X L
= 2 5 C(/\p,c) Z ) W(X,Ap))E(p, T)d (p)
G X ot m
= 2 J c(/\p, T) U p! ) (WA, A P E(p, o )dr (p)
T X o
f Z c(Ae, 1103 WA, Rp))tie, s)dan ().
X T (Wex m
m
But

o™ (N0 cmu™s) (X,07t

Zj v (X, 0cm,6)0™ (R, 0, 0 )an (0),
o Jx -

so by comparison, it follows that

oS (R, 00c (0, 620 ™ S (X, 007"

= 7 c(Ame, DS WA, Kp))
T e (W,

or, as is preferable,
(s) ~ X N
2. D5 (W(A,AP)Ic(AP, T).
T Lo -
Analogously,

u(mrs) (R ,0)a(p, & yulmes) (X oyt



D(S_)
LG

I
o M

W( A, Ap)al Ap, T)-

These transformation rules can be put into a more convenient

form. Thus, since

) (w(N, Ap))

is unitary, we have

p(s) (W(?\’,XP)) = p's) (W(K,KP)—l)
TG oT
_ () PR N
Therefore
o™ S (X, 0am, 0™ (X,07

_ ) A B ~
= % D L LA TR AxplalAe, T

On general grounds,'3 a unitary 2s+l1 by 2s+l matrix C such that

Y RE€SU(2),

p(8) (r) = cp(®) (r)cL.
Indeed,
_ .\ S+C
Co*t_(l) S T (-6
[Note: Since the entries of C are real, CT-=C—1.]
Consequently,
D(s)(R—l) - CD(s)(R—l)C-l
=

p(s) (R)T = cp's) (r7 L,



Taking these facts into account then allows us to write

o™ (X0, erv™ S (R,07
_ (8) (% y-lw-lv _ 4o-1 ~
= Z 1P R TRTR zpc SCIV LIRS

which is structurally similar to its counterpart for a(p, 6).
A%

Bearing in mind that

1y -1

(s) ([~ -lx-1~
D ((/\p) A /\)KP)
_nis), ,~ -1, (s), 1 ,.(s), %
=D ((/\p) )D (AN 7)D (A7\P)'

introduce now
- (s) -
Kol = 2 D20 (Apalp, T)
L (s) ™~ -1
(p,6) = 2 D% (AN )cC c(p, ¢ )

[Note: It is a fact that D(S)(7<p) is selfadjoint, hence

5 (s) (/\'p) _ (s (/\\:p)'r r

LEMMA We have

N A

o™ (X0 xp, @ 0™ (X, 07t

_ (s) ,x-1 ~
Z_C Do—c(/\ ) K CAP, T)

and

™8 (X 0) ¥ip, e u ™S (X,0)7t

_ (s) (N-1 ~
2% Dol (AT ¥ (Ap, T) -



10.

[To establish the first of these relations, consider

Z o (A u ™S (R, 0am, cr1o™ ) (K, 07
[N A

(s) , : D(s) > y"ly-1% N
%DGC(AP)<% <p ((/‘\p) A /\Ap)i(/\p,p)>.

Next

But

We are therefore left with

zZ > 8§ pts) ~-1 (s) N
! P’ ot! ‘t'(”(/\ ) % DPI{) (/\/\pa‘

or still,

Ei D(s)

Z, (A o (Ke, p!)

- S D(:)_C (A™h & (Rp, o)
_C Whom,

as desired.]

To specify the field map ¢ , it suffices to specify its
LN (m,s)

components (¢ (g=s,s-1,...,-s+l,-s) and verify that they possess the
e O

transformation property per U(m’s)(/\,a).



11.

Definition: Let

1 1 -V-1 <p,x>
G (x) = fe X (p,o)
-G V2! (2m)3/? j -

X
m

+

y -1 <P1X>

LEMMA We have
Ve ¥ W VeV

v A0 @ o™ (A0

B (S) ~ _1 -~
= 7_% DL (N @ (Ax) .

[This lemma is a trivial consequence of the preceding lemma. ]

It remains to incorporate the translations. To this end, note that

1 _ V-T'<a,p)>

- V"l <arp
g (mrs) (I,a)c(p, o yul™rs) (1,a)7t = o >v9\(9r5~)
- V"l <a1p>
o™ (1, a) ot (0, o U™ (1,2)7T = e Zlpro)
- Y-1 <a,P
U(m’S)(I,a).@{(p.o‘)U(m's)(I:a) t-e >;§(p'€)'
LEMMA We have
WA
(m,s) (m,s) -1 _
u (1,a) @ (U (I,a) = = & (x+a).

[In fact,

5 [e- V-1 <p,X> U(m’S) (I.a)g.S(P:O’)U(m'S) (I’a)_l
X
m



12.

2 VR gmS) (7o) ¥ (o, 690 (1,0 M au (o)

X
m

+ e -1 <p,x+a) X (Pr 6-)]d/4~m(p) ’

which is tantamount to the assertion.]

Since
pmrs) (X 4y = v (18 u™S) (X0,

it follows that

o™ (X, « xu™ (K2

(m,s) (s) -1 N (m,s) -1
=U ’ ’
(I a)< Z-('DG"C (AN )»(f‘c(AX)>U (I,a)

_ (s) , X-1,,.(m,s) ~ (m,s) -1
= ZI_ D2l (AU (T,2) @ (AX)U (I,a)

~ _ -~
= Z 0% (A™hH w_ (Ax+a),
T o1 T
ys s . (m,s) , X
thereby exhibiting the transformation property per U (A\,a).

Remark: The field components obey the Klein-Gordon equation

(@2 +n’) @_=o0

but that's the extent of it.
[Note: As Weinberg puts it "any field eqguation except the

Klein-Gordon equation is nothing but a confession that the field

contains superfluous components."]



13.

2s+1

<

Let <& {fG_S be an element of QP(R4; ) and assume that

the fd_ are real. Put

_ . (S) ~ A
Af(p,o’) = Y217 ZC DTO‘(/\P)fT, (p)

N

- (s) °NX oL
Celpr o) = V2T Z {p® K e }-c« £ (P)-

Definition: Let

1

LEMMA We have
WA
Limgy E) = 2 Q& (£,

where

[The integral

fo_(x) \(go_(x)dx

ﬂ( j & (prg) L ( J e —l<p'x>f¢(x)dx)d/um(p)
X

Y2 (27) > .
™ a9
+ j“X(Prﬁ') L 5 ( jk e V-1 <p,x) f (X)dx)d/wm(P))

m R

o,



or still,

V21

( « (P, cr)f (p)d (p)
Yz f m
X

A
+ j Y (B, ) _(p)dm (p))
X
m

or still,

| (s) , % O
vz ( j % &(P,‘C)DG__C (/\p)fo_(p)d/«m(p)
X
(s) , -1 A
X

m

On the other hand,

1
Xm

+ 2 j SR, 6)Ce(Rro)d e (p))
—
X

_ 2T (S) ~oA
- EV’T (% j alp, o) ZD A ) E L (P)dan (p)
m
(S) ~ -1 A\

+ = c(p, &) p'S) (N e £_ (p)da_(p))
X
m

V211

A
£

— (% J % a(p,¢) D </\p) 2 (P ar (p)
X
m
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(s) , W -1 A
* Zt J- % Sprg) {D (A )C . £ (P)d g (P))
X

(43
m
I X ‘ (s) N &
v (};Z 3 ;i\(p,‘C)DG__E(/\p)fc.(p)d/«m(p)
X
m

- (s) (¥ yeool A
+§ j > et iR e }ﬂ £ (P dmp(p)
X

Therefore

(@ ) (£) =§ Q@ (£ )]

va (m,s

Remark: The field map kq(m s)’ A}%RA;C25+1)~—§ Endoé) is
A r An Wan ——
~~~

obviously linear. That it is also C?j\—equivariant follows from the

transformation property of the Leg per U(m’s)(f\,a).
N,

There remains the task of verifying Wl1-W6. Of these, only W5
and W6 require proof, and I shall deal only with W6, leaving W5 on
the backburner.

The symmetric and antisymmetric cases can be dealt with simul-

taneously if we adopt the convention that

AB + BA.

(3,81,

[Note:

[AIB]_ - [BIA]_

while
[A,B]+ = [B,A]+ .
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LEMMA We have
NAANAAA

[gc_(X).gS.(X')]i=0

unless g' = -6 and in this case,
[ @ (x) x1, = = DTN ek
N T F Vo m .

[Dropping the constants, it suffices to consider the sum of

) y VT @ VTR [ (51, Y 0, 61 ,d g () ang (57)

x> [d o), X'y ") ] dm (Plaa (P").

V-I'<p,x) - V-1 (p'
0

From the definitions,

[D((Pr 0"); 'J(P': 6")]_'_

(s) (s) ' '
2. 2 0% (K R (/\ e }ﬁ.t.[‘g(p,'t?),‘g(p T,

T -r! T

(s) =~ (8) , % -1 .
%%Dyt(/\p)ED (Agnc }o..t. §'-p) § _..

(s) ~ (s) , ¥ 1 '
%Dw (AR 3D % (A 0C Sp'-p).

} G'e

Integrating w.r.t. p', the first term thus becomes

-Y-1 <p,x—x'> (s) ~ (s) , =~ -1
f e > o7 (A 303 (R e oo Pnl®)

Next

[¥ (o) LBy 6],
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_ (8) (X yo-l (s)  (~ —
% E{D (R 5 D' (A el T)ate', T,

r\M

(s) , 7 -1 (s) ~ : |
{D (/\p)c _% Do_l -Cl(l\pl)i 5('9‘? ) (5r—cl

! 6 T

T

= (s) /X~ o1 (s) ~ .
%gD (AQIC §6_FDO_.F(AP.)15(pp).

Integrating w.r.t. p, the second term thus becomes

s 1 Yo xx s () % -1 (s) .
j e %{D (Agnc }G‘f‘ Dgrp (Api)da (P
X
m

or still,

+S o Y-I<p,x-x'> %{D(S)(KP

-1 (s) N
)C kﬂ) Digrp (AGldmy(p).
X
m

We are therefore left with

-Y-1<p,x-x'> (s) , (s) % -1
j [ e > 02 (R IR ey

P o’
X
m
V-1 <{p,x-x'> (s) /% o1 (s) %
+ e %{D (Ne™h F o p¥l (AT ()
or still,
-v-1 <p,x—X‘>< (s) A (s) /X -1 T)
j (e ' (A IR )
X
m

Vo1 v o ' ~ _ ~ 7T

or still,
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- V=T (p,x-x'> ( (5) (~ yop(®) (3T
S le S (R e (AT ) o

X
m

V-1 <p,x-x' ( (8) (% o lp(s) T
+ e 7 (b (/\p)c D (/\p) )ff.]d%(p).

Here we have used the fact that ¢ t=c | = (¢™HT =c. 1t is also
true that
C2 _ (_1)25.
So
" s integral =) cl-c

s half-integral =ﬁ7C—l = =C.

In this connection, recall that when s is integral, it is a question

of the commutator

[VgG(X), ug.(X')]_

e,

and when s is half-integral, it is a question of the anticommutator

[SW(X)’ cqﬁ_l(X')]+ .

We are therefore left with

(s) ;7 (s) , v T
X (D (/\p)CD (/\p) Bo‘o"

X
m

X [e - ¥-1 <P,X—x'> —e Y-1 <P,X—x'>]dﬂm(p).

It remains to explicate

(s) /% (s) X T
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To this end, we shall use the fact that

(s) ¥ VT _ anls), -l
D (/\p) CD (/\q)C .
Accordingly,

(s), ¥ (sy , 7 T
D (Apﬂm (Ap)

(s) % (s) -1
= C
D (/\p)ccn (/\q)

- (_1128 (s) % (s) , 7% -1
(-1) D (/\p)D (/\q)C

= (13128 L(8) N N -1
(=1) D (/\p/\q)c

= (-1)%% ps) (1)t

2s -1 T

= (-1)28 ¢l = (-1)2%5¢

(8) , % van(8) ¥ | T
(o (Aep = AT

2s T

= (-1) (c )

o'

_ (_1)2s
= (-1) (C)0,|6_

= 0% ST s

This shows that there is no contribution unless ¢'=- 6, in which

case we are left with

(-1)%% (1577 = - (-1)S7F |

Reintroducing the constants then leads at once to the assertion.]

—~————
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Remark: As a reality check, take s=0 -- then the only possibility

for 6 is ¢ =0, hence
(@ (%), coq(x]_ = == N (x-x"),
w. 0 w0 - V-1

which agrees with our earlier conclusions since @ 5= L
N, M A

&Eggé' We have

where ¢ - , is a differential operator in the x

[Dropping the constants, it suffices to consider the sum of

S S e—V_:f(P,x> eﬁT(p',x

7 Lk (pre)  x* 0, 61, daap (P) A (01)

X X
m m

and

\5 S eﬁT(P;X>e-V:f p',x'y

[E,a), *(', ¢") ], A (P)da (p').

X X
m m

From the definitions,

[ X(p, &)y x*(P'y ") ],

- (s) % (s) ~ . .
- Zi-ZL' DO“C (AP)D-C' G-I (/\Pl) [g(plt)rﬁ(p I‘t )]i'

_ (s) ~ (s) NG v
= Z_(_‘ Zu Doy (RPIP'gv g1 (AL & (p'-p) S e

_ (s) (s) ~ '
%D ’ (RIS v (ALY § (p'-p).
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Integrating w.r.t. p', the first term thus becomes

- Y-I'<{p,x-x"> (s) (s) ~
y e % DO‘« (AP v CAR daep (p)
X

m

- Y-1'<{p,x-x'> (s) > yp5(8) (X
S e @ (R )0 R ) e )

X
m
Next
[2((p,6‘),\?i*(p‘,«zs*')]+
_ (s) -1 (s) , ~~ -1 — o
- 3 P Rpey PR et L e ae, T,
- (s) -1 (s) , ~ -1 + o
) ZL ZLi {D (/\p)C }G‘T {D (l\p')c % o' T §(p p') &"CTZ'

T Sp-p").

= 5508) (% oL (8) (X ool
%{D APy AR et

o'p

L g

Integrating w.r.t. p, the second term thus becomes

I+

Y=1'¢p',x-x" " (s) ™ -1 () & .-l :
j e >%{D (Apoc }GP{D (R ¢ }o_.Pd/u_m(p)

Y-1<p x=x"
+ ! (s) ¥ -1 (s) /% -1
((D (/\p)C )- (D (/\p)C )¥) ¢ g1 G (P)

V-1 <p,x-x"> -
+ ! (s) /7% (s) X
(D (AP)D (/\p)) P de(p).

X
m
K
X
m
| e
X
m

Here we have used the fact that D(s)(;<p) is selfadjoint. We are

therefore left with
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(s) > (s) , %
S @) (X o' (R »

o'
X
m
-Y-1<p,x-x'> V-1<p,x-x'>
X [e te ld (P .
It remains to explicate
(s) ,~> (s) , A .
(D (Apm U&Q)rr"
But this is not difficult:
(s) ¥ (s)
(D (/\p)D (/\p)) o
(s)
=ZT (Kyyeoorky )Py +*°P ]
o s’ 1 2s kl kZS
where the sum is over all kl""'kZS (=0,1,2,3). If s is integral,

then we use the minus sign and

- V:I1<p,x—x'> V:E1<p,x—x'>
-e

p, ---pP [e lda_(p)
j ki Tkyg m
X

m

- V-1I'<p,x-x") V-1<p,x-x'>
= Dkl...Dkzs 5- [e -e ld ry (P),

X
m

while if s is half-integral, then we use the plus sign and

- V=-T'<p,x-x'> V=1'<p,x-x'>
+ e

P, *°°P [e 1dm_(p)
S' kl kZS 7

X

m

-V-T<p,x-x'> V-1'<p,x-x'>
= Dkl---Dk2 Xﬁ e -e ]d/«m(p).
S .
Xm

Of course, the point is that the minus sign does appear in the end,

which in turn leads to the introduction of Lsm and, finally, to the
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contention of the lemma.]

Remark: The following simple formalities have been employed.

-Y-1'¢p, V-1 <p,x
(1) V-1 & [e <P *7 e <px>]

dxo

-V-1 , X V-1'<p,
=V?T[<-\f—Tp0)e <® >—('V3'p0>e px>]

—V:f<plx> W:T<prx>
+ e ]

= Ipy e Po

and

-\[-’l—'<P,X> Y -1 <plx>]
+ e

V-7 d
-1 —d-x—o [po e
2. " V-1 <p,X> 2 Y -1 <‘p,x>
' -V-1<p,x V-1 <{p,x
2) -VI £ e 2 e 7

Aa

Pg

—V_—T<p,x VZT<PIX>
-V:_l_'[(V'-TgM)e >—(—V—113u)e ]

- VT <oxy e\f—'f<p,x>]

= [p

A Pae

and

_'\/:_f<p,x>+ \(Tf<p,x>]

d
TV E e, e P
2 - V-1 {p,x> 2 V -1 <Plx>
= [p, e -p., © 1
A AN

- V-1'<p,x V-1 <{p,x
(3) (V—l'a%a> (-Vl'l’ag;)[e Bix D P >]
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= V:f__g_ [p e— _l (p,x>+ P e " <eexy ]
dXO AN /1
- V-1 <p,x% V-1<p,x>
= lpgp,, © - PgB,, © ]

= - V-1 g [pu e + P,
- V-1<p,x V-1 <{p,x>
= [gw p, e P, p, e 1.
Example: Take s=1/2 -- then D(l/z) (7\/ )D(l/z) (X ) =’\/§2 -1 o)
P P p m-_
L [ Po*P3 Py — V-l Pz>
m pl+ V—l pz po - p3
Therefore
[ 8F(x)’36'(x')*]+
. VT ey VT Cponex'y
=3 p -’ [e +e 1d,44_(p)
~ o
X
m
-1 1 et
== BUQ“' -—Am(xx).
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Example: Take s=1 -~ then D(l)(;(p)D(l)(/\p) = D(l)(7(;)
= 'lf [m2 + 2p-S(2p-S+p0)],
m v_‘\t\'-\-v\\"-
where
0 1 0 0 - V-1 0
_ 1 _ 1 -V_
s; = \[7 |1 0 1 ,sz—jﬁ 0 V-1 |,
0 1 0 0 V~l 0
1 0 0
S3 = 0 0 0 '
0 0 -1

SO one can compute

[\cfo-(x)'ffs-'(x')]—
explicitly in this situation too.

Remark: It is easy to allow for antiparticles (proceed as in

the spin zero case).

(s) _p(s,0)

Instead of working with D , we could just as well have

(s)_p(0,s)

worked with D , realized as

NS

N —> b (ATHT .

Recall here that

1, % -1

D(S)(X) = CD(S)(X_ )y C .

One can then introduce another 2s+l component field ég(m s) with the
r
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g(mss) is the associated irreducible unitary

property that if U

representation of 6 &7 then
1

o™ (N @ _0T™ ) (A,a)”

can now be

and the (0,s) field éf(m,s)

e, (m,s)

The (s,0) field

combined into a single 2(2s+l) component field
\&g\ (ml S)

8 (m,s) '

where, needless to say,
‘n = D(S)® B(S)
but there is a difficulty in that the vacuum is no longer unique up

to phase (the underlying Hilbert space is a direct sum, not a tensor

product) .
Taking s=1/2, one can produce from the preceding the

Remark:
However, I shall omit this and give a different con-

Dirac field.

struction later on.



Massless Particles The free relativistic particle of spin s> 0

carries
and mass zero cxxwax the structure of a vector QFT. TIts type depends

on the helicity A= #+s.
Rappel: In nature, 3 two kinds of massless particles.

I: There are those which exist in the helicity states t 7 .

E.g.: The photon (A =+1) and the graviton ( A=+2).

II: There are those which exist in a single helicity state
A but admit an antiparticle existing in the single helicity state - A .

E.g.: The neutrino (A=-1/2) and the antineutrino ( A=1/2).

Notation: As usual,

Lhud (A= A)
~ 4~ ~
@t“7 (2 ({(AN,a) = (N,a).

. T
(1) Assign to each p €X, the boost /\p e d N /\p(l,0,0,l)=p.
Thus ﬁ\p is the result of sending (1,0,0,1) to (lp}|,0,0,|p|) followed

A A
by the rotation R(p) (in the plane containing p and the z-axis) which

A
takes the z-axis into p=p/|p|.

(2) Assign to each pé& X, the Wigner angle @(x /p)E[0,2T1.

Thus
~ Ll
(AN N N _ € E,
P AR1p
where
__“l
e\/——le z
E = : 040< 2T, zeC '
0 e -1e ”

so it is a matter of picking off the angle in the decomposition of



~s -l’\l ~
(/\p) AN

o1 into its diagonal and off-diagonal components.
N 7p

Fact: Given n €2Z, 3 an irreducible unitary representation " of
W,

-1 2 .
C?_+ on L (XO,/AO), viz.

(" (N ,a)£) (p)

= e V—l <alp> e V—l n @(,\ Ip)f(x_lp).

Turning now to quantum field theory, one has to start by specifying
the Hilbert space, which we shall do by taking for}ftjmasymmetric

Fock space over L2(X0,/40) if s is integral or the antisymmetric Fock
space over L2(X0,/40) if s is half-integral.

[Note: Here, of course, the underlying unitary representation of

—~~

G)I on}e is derived from Uzy\ .1

There are various possibilities for TW . Before getting into this,

introduce operators

i(pl ?\)
cprA)

satisfying the usual conditions ( A\ being merely a label in this

context). Obviously,

o2 (R, 0ce, MvPr (R,0h

3 - ’V»\, ...lf\r-'\:‘\’ ~
_.S_}EB(V 129\@((/\/\p) /\/\Ap))‘i(/\Pr?\)

and



22 (A, malp, AP (X, 07

l’\'"].‘v

= exp(V-122O (AR NalAp, ).

ANRp
Definition: If our particle is left-handed, i.e., if A =-s, put

WI (x) = —% 1 3/2 j e—’VTI'(p,x>

X

0
x 03 (A yalp, A)daun(p)
o N P 0

but if our particle is right-handed, i.e., if A =s, put

\l/+ (x) = 1 1 J -Y-I'<p,x>
“ R,6 V2 (211)37/2
X
0
x5 (N yalp, A )daq(p) -
o Piw 0
[Note: As usual, 0 ranges over s,s-1,..., -s+1,-s.]
LEMMA We have
N A~
MR ,0 ¥ 0N (A, 07t
L,s
_ Z D(s) (K—l) \V+ (Ax)
T It - L, T
and
AR vt et MA,0Tt
N R,o-

=2 p® (XL wt  (Rx
T 6" T Vn RI-C




p(s)
Remark: 1In the massive case, TV —(s) was automatically
D
embedded in the theory through the very definition of —(m,s) °
U 14
p(s)
This is not true here: Ti = —(s) has been introduced solely to
D

get the transformation property of the fields. Our choice is the

simplest but one could equally well have worked with

1

[left] (s + 3, 3, (s + 1,1),...

[right] (%, s+%), (1, s +1),... .

To continue, it is necessary to differentiate between possibilities
I and II. In what follows, I shall concentrate on I (the discussion
of IT entails the introduction of antiparticles).

Definition: Assuming that we are working with particles of type I,

put
- _ 1 1 V—l'(p,x)
(x) = e
Ji o V2 (21m)3/? y
X
0
X (A )e(p,-n)da, (p)
(o3P P ! 0
and
- 1 1 VI'<p,x>
(x) = e
Ye o V2 (2m)3/2 f
Xq

v =(s) N
X D n (NGIEP = A)d g (P)

/

[Note: The lemma also applies to these fields (with U29\

U—29‘).]

replaced

by



Remark: It is a fact that

(s) Ny = pts) A s

Da_a (/\p) D(r?\ (R(p)) (lp D

, , (A=ts).
=(s) ~ _ =(s) A s

DA (/\p) = Da_?\ (R(p)) (lpD)

On the other hand,

=(s) Ay _ o (s) A
D o2 (R(p)) D o (R(p)).
Therefore
+ - -
J &} L,o YLIT
&
1 ¥ v
R,0 ™ R,

actually involve rotations only.
To take advantage of this circumstance, we shall modify our

definitions slightly:

‘Y+ (x) = 1 1 [ 2lpS e Vci1<p,x)

Jie V7 (21 )32
X0
(s) A
XD -~ (R(P))i(pl?\)d/"‘o(p)l
.+ 1 1 s -V-1<{p,x>
A\ (x) = (2ip)” e ’
SR, ¢ V2 (2m)3/? J -
X0
x 0% @Eale, Arda (P
[ N b
and
- 1 1 s _Y-T (p,x)
(x) = 2lph)~ e
}_VL,O- V2! (211)372)' -
Xp

L/ Ve



1 1 s o V-1 <p,x>
(x) = (2iph % e
SR, o V2 (2m)3/? S -
X
0
x D& (RE)cp,- A (p) -

[Note: Bear in mind that, despite appearances, the formulas for

] + -
b %
e L,d‘ wL,o"
&
wt -
b 8%
v R,O’ Ve R,o’-
are not identical. Indeed, when the particle is left-handed A= -s

but when the particle is right-handed, )\ =s.]

The next step is to combine

+ -
‘1,],1 &
N\ L,d— e L,O"'

+ & -
“R,q¢ “ R,6 r

which necessitates the introduction of tensor products.

Convention: Assume henceforth that s is integral.

[Note: When s is half-integral, certain technical modifications
in the overall setup have to be made but the final conclusions are

similar.]

The Hilbert space Bf is the same for any )\ . However, to emphasize
the underlying unitary representation of 5;1, write }f) when UZA is
2A

is operating. This done, pass to

Hy\@}(}_ﬁ , call it ¥ , then let = OO?\®¢,O_;\,Q= Q?\‘X‘)Q—ﬁ\’

operating and}(_y\ when U~

U=U29‘® um2A , and



— + -
Y., " ¥1,c@ 1, +I1, Q0¥

— + -
Voo “Fre DI\ +1, @Y, -

LEMMA We have
AAANNA—

*
ER,O’ - }%Cfr EEA L, T
* _ (_1)28
3ZI”G' = (-1) :? ¢ oT gélk,t .

Accordingly, it suffices to consider in detail just the EEI;G’
Nrrag r
and their adjoints. The definition of the field map proceeds along

the usual lines so I'll omit it. For the record, though, note that

UALO T, 0 UA,07

A (X,0 ¢} x) CMNR, 0T 1

w L,o A
+1, @A (K, 0 ¥ e vEA R0
= %D(j’t<X‘l> :Vz,t(’/\\'x) DI_,
F1,8 Z o (R yi L (Ax
- %D(:)t (ANH(¥L Ao @1_, + L, @Y1,z (Rx))

Since

14

-1
U(I,a) § o o (0U(T,a) © = ¥ (x+a),
it follows that

R, F UK ,a)



_ (S) fv_l -t
= ZT DI EA )EL,'C ( Ax+a) .

Remark: The field components obey the Klein-Gordon equation

2
O EL'J (x) = 0.

In addition, it can be shown that

s (29-5%.Y 1%, = =o.

ot
There remains the task of verifying W1l-W6. Of these, only W5
and W6 require proof but, as in the massive case, I'll omit W5 and

focus on Wé6.

[On the basis of the definitions, this is immediate.]

LEMMA We have
NS

(s)

L Ep, o 50 Ty, oo x4 = 2 5 A Gext),

)

where a(s) , is a differential operator in the x
)

.t

[It suffices to consider the sum of
2 . ) - - - ' v
— j j (2lphS2jpr S o7 V7L (Rixy o V-LCRY xS
2(2 1) - b
X X

0 0

x ‘%) (r(p))p!S)

& 6.?\(R(p))[wa(p,?\),“c”(p F A 1TRI_

A

dacg (P) Ay (p")



and

PR ) Jﬂ y (le‘)s(Z\p-\)S o VCII<P,X>‘e-'V:T orx'S
2(21T) 4 1
X

X

XD(S) (S)

GA(R(p))D

o\ (REII @Le(p=2),2(" = A) 1dmy (P)d g (1)
Employing the commutation relations
[a(p, A),g@'yA)] = §('-P)T
[c(p,- A)salp',-A)] = S(p—p')I_}\

reduces the sum to

1 2s (s) (s) A
—_— (2ip 1) D (R(p))D (R(p))
2(27)° 5 - T A ‘A

X0

[e” V-1'<{p,x-x'> —e y-1 <P,X—x'> ]d/qo(p),

the 17\60 I_'\ having been dropped from the notation. But the factor
/

(s) (s)

219)%° p'2 =)D 5 (R(®))  (A=-3)

is a sum of terms of the form

C . P e
k k kyg ,

Kyeoerkog 7Kg

range over 0,1,2,3. Defining ,a(s) , in the obvious

where kl""’kZS e

way then leads to the assertion.]




The Dirac Equation Working in }4 = L2(R3;C4), the evolution
Vg

equation of this theory has the form

V-1 K 5—’7— Yie,x) = B Y (t,x),
t A hted

where
Y, (£,x)
Yit,x) = ect
. ey
Y, (e.x),
and
H=-V-14cx-Y +(5mc2,
A
a 4 X4 matrix differential operator -~ the Dirac operator. By con-

struction, X is a triple (o<l, oo 0(3) of hermitian 4 X 4 matrices

while p is a hermitian 4 X4 matrix, subject to the relations

o j +o(jo(i 2 SijI

Kif t LKy =0

There are various choices which realize these conditions. For example,

one can take

o
o)
=
o

Here, as usual,



thus

mc” I - V-1 &7

_\ﬂz?ﬁ cg{-V - mc2 I .

Assume henceforth that c=1 and K=1.

LEMMA H is essentially selfadjoint on Af(R3;C4) and selfadjoint
vy v

NN o

1,2

on W (&3;53). Its spectrum is purely absolutely continuous and is

given by
G6(H) = ]-00,-m] U[ml+oo[-
[Note: Recall that in general Wk’p(R3agf) stands for the Sobolev

space consisting of thoseng—valued LP-functions whose distributional

derivatives of order < k are also Lp.]

The domain of H is "configuration space". Under Fourier trans-
formation, H is sent to "momentum space", where as a multiplication

operator it assumes the form

m 6P
AL A

h(p) = .
i G -p -m

VAN

For each p, this is a hermitian 4 X4 matrix with eigenvalues

ey

Ay (P A 3(p)
™ = m(p) & R § D
%y (p) M N (P) e

Here, as earlier,

|
M (p) =~»r;2'+]flﬁ .



The unitary operator which diagonalizes h(£y is then

a(p) = St AMEDI* PEp
~ N 2m(p) (m+(p))

In fact,

w(p)h(p)u(p) " = palp),

SO
W = uoFT
converts H into an operator of multiplication by the diagonal matrix
: -1
(WEW ) (p) = fmip).

Remark: The transformation

= -1 -
Upy = (FT) o LS

is called the Foldy-Wouthuysen transformation. One has
V- A +m2 0
0 -V-a +m2

where V- +m2 is the inverse Fourier transform of multiplication by

-1
U Upw

/\A(wp)-

In the Hilbert space 16L2§E?;Sf), the two upper components of a
wavefunction have positive energy while the two lower components have

negative energy. Accordingly, we define the subspace of positive energy

N pos C )} as the subspace spanned by the

-1
VYogs = W 3 @mp Wy (yed)



and we define the subspace of negative energy '}( CZ}Q as the

neg
subspace spanned by the

Yoeg TW 3 (-FIWY (¥ e ).

Obviously,

=W s @ Hpeg -

the associated orthogonal projections being

=W L el

Poo
-11
Preg = W~ 7 (I-PHW .

But these projections do not determine superselection rules. This is

because 3 observables which do not commute with Ppos & Pneg (see below).

[Note: H is a positive operator on }(p and a negative operator

os
on ¢ neg']

Remark: The standard position operator is x=(x1,x2,x3) (i.e.,
VA

multiplication by X;, an observable if there ever was one). BUtdi

mixes up the positive and negative energy states in a very complex
manner (this effect is the origin of the Zitterbewegung). There is,

however, another position operator that leaves }on and.}Qneg invariant,

s
viz. the Newton-Wigner position operator:

I
XZww = Yrw & Ypwe

Still, it too has its problems.

Let -

u, = expl- V-1 nt]



and write

Wex) = (U, ¥ = Y.

LEMMA Suppose that \Véhay(R3;C4) -~ then
A N,

'\I’(t,v}i) = 5 K(t,x-y) ky(z)d3y (t#0),
jf
where
2

Rie) = (—— -X-V -V-I pm) A ().
wA t VA

Remark: As we know,
e <\x 1= O (t,x) = 0.
So, for fixed t >0, £>nﬁtlx) is supported by {‘leﬁ‘ ﬁ]t\ S.

Consequently, if at time t=0 the support of Y is contained inside

a sphere of radius r, then 1yt must vanish outside of

L

i
W~
'
(O
+
~
ol
]
I~
ot

Since for us c=1, this can be interpreted as saying that Y propagates

at most with the speed of light.

THEOREM (Hegerfeldt) Fix a Hilbert space }f. Suppose that H
is selfadjoint -and positive and A is positive -- then for any unit

vector Y e 3 , either

- V-THt - V-Tut
{e Y, Re Y ) #0



for almost all t and the set of such t is open and dense or

- Y-THt - V-Tut
{ e Y, Re Y >=0 Vt.

prs—

e

Remark: This theorem can be used to prove that if ¥ #0 is in

}epos
aneg

, then the support of Yis all ofVEB.

Return now to the Dirac equation:

‘ oY oY
V-1 CA SV S Y L +x, L1 4 .
dt Y -1 1 ’bxl 2 "Oxz 3 'bx3 pmy

Multiply through by @and put ?{0={3 , Xi= (Gxi (i=1,2,3) (=Y ¥ .=

) -- then we have

Y-1'( % BCARN ’a+}( ?+B 3) -mVy =0
0 2¢ 1 ’Bxl 2 'sz 3 0% Y v

or still,

V-1 ¢ ¥, —,;)3—t +3NIY -my =o0.

[Note: If we had worked instead with

then the Dirac equation would be



V-1 ( 'yoi—g-v )Y -my =0.]

LEMMA If u/satisfies the Dirac equation, then”%’satisfies the
NAAA e

Klein-Gordon equation.

[In fact,

(m+V—1‘(‘ZO%+K°V>)(m—V3< Yo oo+ X UM
t ' t



The Dirac Field This field does not involve an irreducible

unitary representation of (5’: but rather a unitary representation
AL . :
of C?+ with two irreducible components.

Agreeing to view a function f:R4-—0‘gf as a column vector,

-
£ i&f —#\g? is then a row vector. By definition, the adjoint £

+ =
of £fis £ = f T ?b, where

SO

£ = (f ,f4,fl,f2).

3

[Note: This ’XO is not the 'XO of the previous section.]

Denote now by f(m,1/2) the Hilbert space consisting of those

measurable functions f=Xm“7\£4 for which the integral

3|+

<£,£7 = j f*(p) ¥(p)E(p)d e (P)

X
m

is finite. Here

¥(p) = APy + ¥

Y

P = ¥opg * ; Y, P,

and, as earlier,

Remark: V P EXm’ 'KO ¥ (p) is positive definite, hence <f,£f)» 2 0

and f=0 iff <f,£) =0. This is seen as follows. Let



p=pyI+o-p
’5=p01—£'£o
Then
txlp) =Py
2
det(p) = py -~ |p| .

so p is positive definite if pexm. On the other hand,

P =a (a=(py,=p)),

thus 3 is also positive definite if pexm. Using this notation, we have

¥ @ =py I+ 2o, B,
= I +
oy T+ Z 0,
, 0 oy
EY 0
0 p

Py

Therefore, Y pexm, BO Y (p) is positive definitive. Consequently,
Y pe€ X s

f'¥(p)"3(p)f(p)

- 7T
£ (p) XO Y (p) £ (p)

<£(p), ¥, F(p)E(P) > 20.

[Note: It is also easy to check that <f,g)=<g,f>. Thus let

{u,v)= GTZ( oV (u,végf) .



Then

and

Therefore

<f,g>

It

{u,vy = <v,u

{¥plu,v> (7$(p)u)T YoV

TTY® T Yy

ERR TSR 5

GT(XOpO -2 ¥ p )Y oV

AL AA AA

AT A

GT){O}{O(}{OPO - ;y P.) YoV

=T

u - Yol ¥oPg = 2 ¥ Y ¥oPu )V
AN

-7 |

u }{O(XOPO + zb’ﬂp/««)v

T Y, (¥ )V

{u, ¥P)v>y.

' (p) ¥(p)g(pP)da  (p)

=] L

3=

< £(p), h’(p)g(p)g d, (P)

<¥PYE(P),g(p) > daa (p)

3|+

<{g(p), ¥PIE(P) > du_(p)

s T (o) ¥ E@an, (p

=5 o

gl
P — < " Nc'-"ﬂ xL———-, B G
> BM 3 =] =]

=

<g,f > .1



Fact: V n170,'3 a unitary representation W(m,l/2) of C?+

M (m,1/2). Explicitly:

on

w® 172 (A 2y g) (p)
_l <a,p - 'v_l
oV >Dl/2'l/2(/\)f(/\ D).,

where

_ n(l/2,0) (0,1/2)
Dys2,172 =P @D ,

Dy/2,172A) =

1 0 -1 0

[Note: To check unitarity, we shall use the relations

o~ ~ -l ~
Dy /2,172 (A) @Dy )5 1,5 (A) T = ¥ (Ap)

~ . -1
Dys2,172 NI* ¥ = ¥y Pis2,1/2 (~)
Thus

w2 (X aye, w2 (R aye >

t <
-z ™D (X e (m) ¥Eew™Y2 (X 2 em@an (p)

X
l ~ ~ ,V_l
=z 5 A7IRIDY 1y 1 (A* ¥ F@ID 5 1 (AVECR o) d ()
X



_ l ""T N_l . L ) -l ~ N""l
-1 g E (R0 %Dy 5 12 (R TTYEIDY 1 (RVECAT DA ()
X
m
-—T ~_ ~ AL -
-1 ‘S EUATIE) ¥, ¥R T R e (R Ry (0)
X
m
1 (=T
-1 5 £ (0) Yy FE®IEDIMy ()
X
m
-1 . £(p)d
= = (p) ¥ (P)E(P)A Ay (P)
X
m
= {f,f) .]

11This representation is not irreducible since there is an orthogonal

decomposition

o (m,1/2) = K(m,1/2,4)@ H (m,1/2,-)
into two invariant subspaces on which (§ + does act irreducibly:
W(mll/z) - U(mll/21+) @ U(mll/zl—).

The orthogonal projections

P ;;: é—e (m,l/2) _>}'q (mll/2I+)

P ;1: }Q(mll/z)———> a"e(mll/zl_)

are
pt = m+ ¥
m 2m
——m—
PHl 2m

Here it is understood that ¢ stands for multiplication by Y(p), an

operation which defines a selfadjoint operator having a discrete



spectrum with two eigenvalues +m:

¥

+
V£ = Inf (£7 € 3 (m,1/2,4)).

[Note: Under Fourier transformation,

V-1 (Bo—g—— -3V

t

goes over to multiplication by Y (p), thus the elements of a(m,1/2,+)
are solutions to the Dirac equation.]

Remark: On ¢€(m,1/2,+), the inner product is

{g*t,g" > = Iln (p) ?{(p)g+(p)d/‘4m(p)

31+

X
3 HT @) gt eras_(p)
X

S H T g™ (prau ().

X
m

Similar comments apply to b{(m,l/Z,-) except that the inner product
has a minus sign in front of \y .

X

m

[Note: Take £f = g+ and consider

7T ot

or still,
<EHp), Yot @) D

To see what this really is, unravel the relation Z(p)f+(p)=mf+(p) to get

+ + +
£ = mf - £
Y oRof () = mE (p) - Z Y P, £ (p)



(£7 (), ¥opof (@)D
_ + + _ + +
=m < £ (p),£ (pP)) <f(p),ZyMpr () > .

The matrices X]} 82,’X3 are skew hermitian, hence
+ +
< £ (p), /\ZA)‘MPMf (p) >

=< 2;?/;: P £, (@)Y

+ +
- f 'f
< Z ¥, P @ EE5

+ +
<E£(p), ZXM p £ (® >,
SO

+
- kaf (p) >

{£fT(p), > ¥

is pure imaginary. Since the other expressions are real, we can divide

by Py to obtain

CEP@, Y > = 5 ey .
0

Therefore

(et etS = S <o) @Y

dac (p).]
Py m

X
m

Remark: Define vector bundles B(m,1/2,+) by

% (p,v): PEX ,vE ct ¥ (p) v=#mv }
Vo

with projection

(p,v) — p.



+

The square integrable sections of B{m,1/2,+) are those f: xm-—hvg?

such that

+ +
o j (). (p) Y dp (D) 420,
Po

X
m

i.e., the elements of bQ(m,l/Z,i). This means that we are dealing
with a certain system of imprimitivity which, on general grounds,

is equivalent to the one associated with the representation of the
stability group SU(2) of the fiber at (m,0,0,0). On the other hand,

arises from the system of imprimitivity implicit in the method

of the "little group" per Dl/z. Claim:

t—

To prove this, it need only be shown that the two representations of

SU(2) are equivalent.
AN

(+) In the relation

. _ 4
Xopov +; yM P, V=V (vec™),

feed in (m,0,0,0) to get 'Eov=v, i.e.,

0 I v! v'
I 0 V" Vll
V“ V'
- =
v' v" .

Therefore the fiber at (m,0,0,0) in B{(m,1/2,+) is the subspace of



all vectors in C4

u
of the form < > (uevgz). But

¥ AN € su(2),

~ N 0
Dy /2,172 M) o (Rlys
A 0 >
- <)

thus the action on the fiber at (m,0,0,0) is

which is equivalent to the usual action of §E}2) on‘E?, i.e., to Dl/2

(=)

u
B(m,1/2,-) is the subspace of all vectors in\gf of the form < >

Lo~ u
>-——> Dl/2,1/2 (N) (u)

A u)
= _/V\u
D1/2 (;<)u
Dl/2 (K)u ’

This time X0v= -v, so the fiber at (m,0,0,0) in

ad B

(uevgvz) and one can proceed as above.

Put
c=V-1 Yo dso-
. T -1 2 -
Then C is real, C = C = -C, and C~ = -I. Explicitly:
& 0 0 -1

= ).
0 -l (& 1 0



In addition:

Definition:

f — fC’ where

Observation:

(£

10.

C xoc'1=-yo
C’Ulc—l’: b,l

c v, ¢t

[
I
«
N

cC ¥, cC

|
oy
w

il
(@]
Fh
ol
o
.“

=V-T Yo ¥y Vo - VT ¥ ¥y, £
= (VD)2 (303230)2 £
= (VD% -yt
(-1) ¥2 £
= (-1) (-1) £

= f.
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LEMMA The charge conjugation is antiunitary:
NN N e

(Eerge) = <fi9)

[The RHS equals

T _—
% 5 £ (P) Yy Ip) glp) dra (p).

X
m

As for the LHS, it equals

1_

L S £. (P) ¥(P) gp(@) dm ().
X
m

But
t ot

£, = (C¥,D
= (CYEVTY,
= €0 ¥

£T(CYNT ¥,

T T AT
-f)’ocxo

_ T -1
= f ?0 C 'XO.

We must therefore examine

1

T - _ —_
R AEOR TR PR TORCR AT PGP

X
m

the claim being that :



¢t R ¥ (p) C'?fo = ¥Y(p)

= YoPp * I1Pp ~ ¥yPy T ¥ 3P5-
But

(1) Y ¥, C ¥y =¥y
-1 )
(2) €7 ¥, ¥ C¥y
-1 -1
=Cc ¥ ,ccT¥ Cc Y,

=¥y %1%

i
o
o
o
N
ol
o
]
|
ol
N

-1

(4) C© ¥ %5 C¥,
o1 -1 .
=cty, ety ey,

=_‘50 .2‘3 .’XO

- (¥o¥3%) = ¥3-

This establishes the claim, from which the lemma.]
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LEMMA The charge conjugation is quasiintertwining:
AV Y

W(m,l/Z) (K’_a)fc - (W(m'l/z) (x ’a)f)c.

[Evaluated at p, the RHS is

V-1 <alp> N ~ -1
C'YO e Dl/2,l/2(A JE(A Tp)

12,172 FIE(A D)

= Czo e—m <alp> D

and the LHS is

-V-1<a,p) = ~ -1
e Dl/zll/z(/\)CX0 £(N "p).

The issue is therefore the equality of

Dy a,1/2NICY,

and
c ¥, D1/2,1/2(X)'
But
¢ 1)1/2,1/2(X)C—l = ‘31/2,1/2(7\-1)T
or still,
¢ by, 1 nRIC =Dy, g (RTHT,

C ~ being -C. Write

Dy /2,172 NIC Y,

1

c?/o . (c“zfo) D1/2,1/2(/\)C Xo

-1 ~
=C¥q - ¥y € Dysp,172NIC ¥,
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_ ] ~-1.T
=C¥y " ¥ Pryo,12(N ) ¥y
By definition,
AN 0
Dy /2,172 —
0 AN
= (ATHT 0
~-1.T _
0 N\
= A 0
, ~ 1.7 _
S0 Prya,12N Y ¥ g = -
0 (A7) .
It remains only to note that
Ao
D (AN) = .1
1/2,1/2 , —
0 (A l{T

Remark: The experts claim that W(m,l/Z)

commutes with the

charge conjugation but, as we have seen above, the experts are wrong.

To run a reality check, take A= I -- then W(m’l/z)(l,a) is multiplication

by the character %_:p —e -1 <a,P)  (an it be that XoyEo= (X ) 2
Well,

Xafe = (Xafle

(X £ = ((X_£)J) = X_£.
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On the other hand,

(Xafc)e = C ¥ Xafe

hence

xX_f

a a

0
3
o

an impossibility.

Another point is this: The charge conjugation sends bﬁ (m,1/2,+)

to b{ (m,1/2,-). For suppose that ¥ (p)f=mf -- then ('U(p)f)c=mfc.
And:
(3 (PYE)
=C1¥, ¥ (p) £

c XO[ .a’opo + Z(lPl -EZPZ +33P3];

c z0[ Xopo + lel —szz + X3P3] (C WO)_l C_a’o?

CIol ¥gPg + ¥1P; ~ ¥, +2‘393”‘51 ct £

C

-1
C [YoPg ~ ¥1Py + P, ~¥3p3l C 7 £,

= L -WoPg — 1P — WP, ~ ¥3P3] £¢
= - 3'(p)fc

'X(p)fc = —mfc.



l6.

Remark: The charge conjugation is antiunitary, quasi intertwining,

and sends ¥ (m,1/2,+) to ¥ (m,1/2,-). The restriction of w(m,1/2) to

oK (m,1/2,+) is U(m'l/2’+):: U(m,1/2). Define now a unitary repre-

V - R
sentation U(m’l/z’ ) of 6’3 on &f (m,1/2,-) by

v - ~
_ - V-1<a,p> ~ ~-1
: the
v - -
Then U(m’l/z' ) can be identified withp?ontragredient to U(m,l/2, )
. . . (m,1/2) . .
or still, with the contragredient to U . In this connection,
- Y
it is necessary to keep in mind that Dl/2 = Dl/zix Dl/2 and recall
the rules
v o -
U=10U
vl vl .
Let T be the restriction of the charge conjugation to &Q(m,l/2,+) -— then
v (m,1/2) (m,1/2)
| A T = ToU"’ .

which is in agreement with the general fact that a unitary representation
is always related to its contragredient by an antiunitary intertwining
operator.

We shall now associate with the foregoing a vector QFT of type

Dl/2 1/2° taking foraQ the antisymmetric Fock space over of (m,1/2), i.e.,
r

H o=, % m,1/2)).

In this situation, an element ‘WIG‘bQ is a string q’= {tyo,xyl,... g,
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where

is antisymmetric w.r.t. permutation of triples

(pi, c‘i,ei) &7 (pj, O’j,ej) .

Proceeding per usual, one can then attach to a given (p, ¢ ,e)

operators
&(Pl G ,€)

clp, 0 ,e).

Properties:

(1) a(p, o,e)* = c(p, 6,e) & c{p, o ,e)* = a(p, o .,e);
vy haal R anN M

(2) {E(plfre)r \i(p'IS'le') } =0 & {E_(pl §re)r \S(P':'f're')} =0;

(3) {atp,c.e), clo',s'e) = Sp'-p) § S

g's e'e

Definition: Let

- _¥Ym' j e = VT<RxY

X m,172) ¥ = T

Nt

X
m

+ eV -1 <P,X>

v (P)1dm_(p),

where
/*‘\(p) = z a(P,()_ :+)u(p16')
N G_W
LUip) = 2 clp,s,-)vip,6).
N, g S

Here, u(p, ¢ ) is the standard plane wave solution to the momentum

space Dirac equation:

Yplulp,s) = mu(p,6 ),
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and v(p, 6°) = u(plcf)co
[Note: Thus ag(m,l/Z) has four components 22k.]
It is a trivial consequence of the definitions that

X, (x), Xy (x")y = 0.
w k Zk

As for
X ) Xy (x*

it will be more convenient to discuss

g\,.x,\k(X)'vX:k'(x')T} r

where
Xm,1/2) X =X(n,1/2) X * ¥,
V-1 1
= __353'_72_ ‘g e V"1<Pix)> ()
(2T) hdn
X
m v___' _r
+ e VTL<RED )T jam (p)
and
_‘.
V/\:(p) = Zg(p.o*,ﬂ u(p, o)
<
.‘f
L(p) = za(pr 0—1") V(pr (‘Y)
G‘W
Fact:

+
ZU(PIG‘)k u(PrO")ku = %\)kk'

T

+
(p)-m
Z‘V(P:O’)k V(Prcr)k- <3T -

LEMMA We have
vav
e [] — l L
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where

9
X

_ 2
=¥, =5 ,243’»4.3,“

-0 X,

[It suffices to consider the sum of

n g g e VL orxy o VIR Y 1 ()

-l..
P wr o) A (PYda (p")
[} A

X X
m m

and

v... - \/__' gy | ' 1’
i (o

X X
m m

From the definitions,

T
L@l r ey}

+ ,
= Z 2 u(plﬁ‘)k u(p', G')kl {a(Prﬁ‘ l+)rc(p'r G"r"')}
o o b -

¥ .
= %‘ ?.‘ u(P:O‘)k u(p', & )kl é(p -p) Jg"c‘

-f-
= > uPra)y WP’y o)y S(p'-P).
g

Integrating w.r.t. p', the first term thus becomes

- YT {p,x-x' t
~— g e VISP 5 uip, o)y ulps o) yr day (P)
(277) p

X
m

- _m j o= VI <p,x-x') (m
(21)°> 2m Kk ' m

X
m
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Next

1-
IR PR VIC I I

“-
Z 2— V(pl O'-)k V(p'r 6")k| {E(Prf '_)r &(p'r G—'l—)l‘{

5 5'_'

.r
% %‘ vip, 6 )y V(P 5')r §(pP-P') SO_G.

..‘,
?o,:_V(p,cr)k vip', ¢') s Sp-p'").

Integrating w.r.t. p, the second term thus becomes

Vo1 (o' x—x! ¥
m 3 j e 1 <p 1 X=X > Z V(P'rd‘)k V(P':O‘)ku d/"‘m(p')
(271i) o

’ X

m
v— — L —
(271) 2m kk
Xm

We are therefore left with

(27)°

m j’ [e” V-1 <{p,x-x"') <X(p)+m
2m kk'

X
m

4 o Y T <oxx"> /¥ -n 3 ] dm (P).
2m kk'!

But
S e~ v—_l_.<P,X—x'> ?;(p)de(p)

X
m

s r .
= -\/_173 5 e— \—1 <P,X—x > d/b\m(p)

X
m
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and
g e VI <Ry (h)ap ()
X
m

= Y=12 j -e V=T {p,x-x"> d, (P,

X
m
so what remains is
(V-ITo+m),,, ——s S o™ YL SRox=x'S _ V-1 (Rox=x"S g 0 (p)
2(211)
X
m

= (V-179 +m)kk' 1 D (x=x').
V-1

Hence the assertion.]

To complete the picture, one has to write down the field map
(which is easy) and check that it has the required properties (which

is also easy).

LEMMA We have

N g

D) .
V-1 0% o7 VI (n,172) T ¥ (m,1/2)70

[This is because

V-T2 S e” VLR (pra g (p)

X
m

= X VLX) S ap, o, ¥ @I, o ) dng (0)
c

X
m
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= m S e” V-l <p’x>/~«(p)d,~\m(p)

X
m

and

Y-172 5 e V-T <{p,x? v(p)das_(p)

X
m

—_ S -e v -1 <p,X> Zs(p,g =) X(p)v(p,O‘)d/wm(P)

-
X
m

- m S e VL E) oy (pram (0. ]
X

m



Krein Spaces These are pairs (¢ ,T), where y{ is a separable

Hilbert space and T: 3 —> 3{ is a unitary involution: T2=I.
[Note: Let W_'_ = {xé‘H :Tx = +x } -- then ¥ = }(’+ (B}?_ and
the operators

1
P, = F(I+T)

are the orthogonal projections onto é? . In the supersymmetric

1+

context, T is called a grading operator.]

Put
{xi¥Yp = KTYDY (x,y€ed).

Definition: A densely defined linear automorphism U: 00-—-)00

is said to be T-unitary if

<Ux,Uy‘>T = <x,y>T Y x,vyeELD .

[Note: 1In general, U is unbounded. However, U does admit

closure. To see this, take x € {9, yer@ 1y=Tz (z €o@ ) == then
<Ux,yy = <Ux,Tz>
= (Ux,z ),
-1
= (x,U "z) -

{ x,TU'lTy > .

so U* exists, TU-lTCU*, and TLHOC Dom, - In particular: Dom,. 4 is
dense, hence U admits closure. Therefore U is bounded if 9= 3¢

(closed graph theorem).]

Example: Take M:Lz(xo,,t.\o;v(\:f)' and define T by the prescription



—fo (A =0)
(T£) =
A

f/‘_L (m=1,2,3).

Then T is a unitary involution. Here

<E,9%qp = - 5 £5(0) g, (P)dag (p)
+Z 5 A~ (P) 9, (P)dac,(P)
or still,
<f,g)T = g ra? £ @) (=g g (Plday(p).
%o

: : 1
Define now a representation U of C?+ on }{ by

win,af) (B =e VESRY A e (ATl
G

Then

<U(Aa)£,U(Aa)g ),

S T WA (B (-9 ) (U(A2)9) , (R)dm,(P)

/\«\)J
X0
_ -1, -1
- f /»\ZV Z Nofe NTDg, ) Z A, L9 (AP ()
X
0

> £ (@) <Eu N o 9N ) g ¢ (PYd ey (P)

I
X S

T, T o
0
= f —_ d
?'c 6_(P) (go_r)gt(p) A (P)
2
X



= <£,9 ) qr

which shows that the U( A ,a) are T-unitary.
[Note: The symmetric Fock space over L2(X0,/40;C4) is again a
v

Krein space. On the finite particle subspaces, a given U(A ,0)

is bounded but this bound depends on n and, e.g., for boosts, tends

to +oQas n—7> + o0 .]



1.

States According to our original definition, a state onqy.is a
positive. linear functional US such that US(I)=1. We shall now weaken
this.

Definition: A state on‘ﬂ7is a linear functionalld which is
continuous and hermitian normalized by 1J(I)=l.

[Note: Recall that a positive linear functional is automatically
continuous and hermitian.]

Suppose given a stateld‘on4¥ . Put

Nw =ig: W (Exg)=0 VY féj} .
Then de is a closed left ideal in,ﬂ7.

The prescription

C[£],[g]> =W (f**%q)
is a
--—- separately continuous
~-—- nondegenerate
~-—-~ gesquilinear
--- hermitian
form on the quotient o) = J/Nw .
Define now a linear map\g : )00 —7 Ep_c_i_oO by @ (f)[gl=[£x g] and
let Q=111 -- thenO={ @O ;: fef} anaCQ [, 2, D -1.

LEMMA The arrow f — Q (f) is a representation of)? by linear
NAAAA AL PN

operators on ) such that

C «(£)Igl,[h]D = C:[g].ff(f*)[h]CD .

Remark: If W is @’:—invariant, then O *

4 can be represented on



L) by writing
(A,a)-[£f] = [(AN,a)-£].

This action respects C ,2) , i.e.,

C(A,a)-[f], (A,a)-[gl DD = CI[£f],[g1 DD .

Hilbert spaces make their appearance in the theory through the
following assumption.

HSSC: 7 a continuous Hilbert seminorm P anzf such that

W
| Wt*x g) | & P s (E)P o ()

[Note: A Hilbert seminorm is a seminorm that is derived from

an inner product.]

Remark: Obviously, p:bj(g)=0 :f>ge#Nuj but conceivably, 3 gengj :

p,us(g)#o. To circumvent this difficulty, introduce a new seminorm
p! on by
U
p! (f) = inf P (f+qg) .
w — we
gGZij
Then ker p' = Nld.and one can check that p' £ is a continuous Hilbert
seminorm on 2?such that
f£* < p! f)p! .
| us ( xg)|-pw()pw(g)

Accordingly, there is no loss of generality in supposing that ker p =

W

NIJ , hence that the associated inner product < ’>Ld is positive

definite on ) .

LEMMA If Ja sequence of continuous Hilbert seminorms p_ on
N n



af(R4n) such that
v
i L$ n+m £ X Ip) } ey (£))pp(9)
for all £_ € £ @™, g € &™), then the HSSC obtains.
A4 VA

[{Let

(£,9> = 2 (n+1)2 <E 09, 4

n

Then

LW (gxx g0 | = | an,,m £% xg,) |

£ T WS o (B xg ) |

n+m' ' n
n,m

£ 2 p (£)p (g.)

T~ n,m

£<§ pn(fn)> ( p3 pm(gm))

2 <Z (n+l)p (£ ) L > (Z (m+l)p (g ) - 1 >
- n (n+1) m (m+1)

1/2

1/2
<Z (m+1)? b (£)7 ) ( : 11)2)
n n+

1/2

1/2
2 2 1

X < > (m+1) (g_) (E

o P Im ) (m+1) 2 )

m

t cVY<e£y Ya,g> .

Maintaining the assumption that the HSSC is in force, let &{ be

the completion ofaOper the inner product <, > LS associated with



P -—- then the form C ,D : 45 b3 X3-*Vg'extends by continuity to

(A
a form C, D : yl x }Q-—%Qg. As such, € ,D is sesquilinear and

hermitian (but possibly degenerate). Thanks to the Riesz representation
theorem, d a bounded linear operator T: 3{ —> ¢ characterized by

the relation

Cx,y2 = <Tx,y>w (x,y 65—‘3 ).

Observation: T is selfadjoint.

[In fact,

< TX’Y>LS =Cx,y0

=Cvy,x2

= <TYIX>LJ = <xlTy'>w -]
Remark: Matters can always be arranged so as to ensure that T

is one-to-one. Thus let PT be the orthogonal projection '}Q —
1
}Q T = (1{_(31: T) . Since C ,D is nondegenerate on &), O M ker T= {0} ,

D= B D

X — PTx

hence the arrow of restriction

has a trivial kernel (PTx=0 :i)(l—PT)x=x = x €ker T). The whole

setup can then be transferred to PTgO — ¢ 7 (PT,@ is dense in NT) .
By construction, T ‘MT is one-to-one (x €& 3¢ T and Tx=0 =) x € }-Q; =
x=0) (of course T, being selfadjoint, does leave }QCP invariant).

Cx,yD =< TX.y>w



and now C, D : T X H T '—_>\,§, is nondegenerate.

To summarize, under HSSC,dﬂ is a pre-Hilbert space with com-

pletion ¢ . In addition, 3 an injective bounded selfadjoint operator

T: 3 — 3 such that

Cx,yD = <Tx,y>m V x,yef .

Example: Consider the field operators ég(f):

C Q@ (£) [g],[h] D = Clgl, &(£*) [h]D

<T@ lgl,[hl >, ¢ = <Tlgl, (EX) [h]D,

*
{lgl, TQ(E )[h]>w .
Therefore T< (£f) has an adjoint and

(TR(E))* 10 = TW(f*).

Definition: U§ satisfies the Krein condition if under HSSC, T is

surjective (hence invertible).

[Note: T T is symmetric (hence ™1 is bounded). Thus write
x = Ta (T—lx,y >bd = <a,Tb> -1
-- then -1 W and T = is symmetric.]
y = Tb {x,T y)u = (Ta,b)-w
Remark: In the presence of the Krein condition, suppose given
<121 | T,y >
two inner products on 3¢ such that Cx,yD = . .
T, x,y
<y, 2%rY)
-1y 1 .
determine the same topology on }Q . Indeed,

Then the norms

1R I



. -1
CX/X oy = <x,T2T2 x> 5

Cx,Tglx -

-1
(1T Y

I xlly, €zt -lix

and vice-versa.

LEMMA Assuming that the Krein condition is in force, 3 an
AN S

equivalent inner product on ¥ in which T2=I.
[Since | T| (=>VT ) is strictly positive (T is invertible), the

prescription

{x,v> =(x, 1T} Y>w

is an inner product on.}{ . It remains only to note that

Cx, ¥ = <TX'Y>LJ

=<=xr it driy >

U

={x, sgn T ¥ ),

where as usual, sgn T = TlTl_l (of course (sgn T)2 = T2°IT|”2 = T2-T—2=I).]

We shall assume henceforth that T2=I. The pair (¢ ,T) is
therefore a Krein space. Accordingly, let us write ( > in place

of (,D and , in place of C, D .
LL‘ < >T



Example: Suppose that ld is 0’t—invariant. Put U(A ,a)[f] =
(N,a)-[£f] -- then

{U(A,a)l£]l, U(A,a)lg]l ) o= <[fl, [g] > .

i.e., the U(A ,a) are T-unitary.

[Note: Bear in mind that the U(A ,a) are unbounded in general.]

There are certain circumstances under which the Krein condition

arises naturally. Thus let :af«—> *V be an automorphism with the

following properties:

(1) W (A (K (£)))*xg) = W(E* x g);

(2) W (X (£)* x£) 20;

(3) W (X (£)* xg) = W(E* xexX(g)).
Then

{£,9%5 =W (R(£)*x g)
is an inner product on x? ;, SO
py () = Wi * xnl/?

is a Hilbert seminorm on 3f with Nog C ker p (ger<"'—'> WiExg) =0

Veied =W(xig*xg) =0 =p_ (g) = 0).
And:

| W (X (E)*xg) ) 2 2 U o) * x£) W (X () * xg)

=
| We* xq) | 2

= | LS (ot (ot (£))) % x ) | 2

2 W (X (X (£)))* x e (£)) W ( X(g)* x g)



= LS(E* x X (£)) WS (X (g9)* x g)

W (E)* x£) LS ( x(g)* xg)

2 2

Po((f) P

This shows that the HSSC holds if in addition pd is continuous, as

we suppose. Here, ker p“ = Nw , so there is no need to pass to pl;< .

Denote still by ’ the positive definite inner product on
>«x

o) associated with P v ¥ the corresponding completion.

LEMMA ¢ admits the structure of a Krein space with T =9 and
NAAAN

Ty =£),.
[Define T: ) — &) by TIf] = [ (f)] -- then T is welldefined

and Tz[f] = [X(A(f))] = [f]l. It is easy to check that

<Tl£l, [91>, =<I[f], Tlgl >

and

C [£f], [g1D =<TIf], 915>, -

Finally, T is continuous. In fact,

= 2 _ £y —
(£ 1—>0 = (e 01 o, = W(g)* x£) — 0

=>
2 .
et 1 7 = WX CK(E ) * X oX(£))

*
W, xex(£)))

LS ot(E ) * x£ ) —> 0.]
e S ——————————

Example: Work with the Borchers algebra )}7 4 generated by



A
(%, ) Y j - VU pex-y ) g
W X,Y = - — e ! d P).
ANV 2(2.”)3 /A
X5
Define a state w on /I‘f 4 as follows:
wz(fxg) = > 3. f/b\(X)g)/ (y)WMU(x,y)dxdy,
AV 4 4
R R
N~ S

w2n(flx Xon)

n
= 2 ﬁwz(fikxf- ),

j
i,5 k=1 k

where the sum is over all partitions of {l,...,ZnS into n disjoint

pairs (il,jl),..., (in,jn) with ik<jk. Recall now the unitary

. . 2 4 2 4 .
involution T:L (XO,AO;\S ) — L (XO’/“‘O7E ) given by

- £ (m=0)
Tf =
( )‘M
£ o (m=1,2,3).
Let  be the extension of T l,)y(&f;\cf) to all of ,f L then « is

an automorphism. Moreover, 0(2=1,
_ A ,
W, ()% x£) =2 2T j | £..(0) 1% aryip) 0,
AN
)



10.

and
WD) *xg) = L, (£* x X (9)).

Therefore all the assumptions are satisfied.

[Note: The Ljn are the correlation functions of free QED in
the Feynman gauge.]

In the case of gauge theories, not all the Wightman axioms are
satisfied. Basically there is a conflict between locality (= micro-
causality) and positivity. Examination of specific cases reveals
that it is best to keep locality but jettison positivity.

It is not difficult to isolate the essential ingredients. Thus
return to our state'LJ', assume that it is G’t—invariant, and impose
the Krein condition. Locality is then achieved by supposing that
Iloccz NLU.. The other assumption is the spectral property, viz. that

raN — -
the support of W, is contained in V+x —--X\u_(n-l factors). Here

W is the tempered distribution on\Bfn—4 with

lAfn(xl,...,xn) = Wn(xl-xz,...,x —xn).

n-1

[Note: The uniqueness of the vacuum is not part of the setup.

For example, it might happen that T commutes with the U(I,a), yet

TQOZ\E.QO.]



The Gupta-Bleuler Construction As we have seen, the pair

2 4 £ m=0)
(L (XO,/AO;S ),T) is a Krein space. Here (beu =
v £. (m=1,2,3)
and
<£ig9yp=- g £0(P) g (PYAan g (P)
%o
+ > 5 £ . (P)g, (Plda(p).
Aa
X0
. 4 . . 2 2 2 2
LEMMA Fix a pe R in the light cone : Py = P + P5 + P3 (p0> 0).

Suppose that {p,a>) = 0 -- then <(a,a) £ 0.

[Since {( Aa, Na) = <(a,ad (ANE c[: ’_"\_) , we can assume without

loss of generality that p=(1,0,0,1), hence 0 = {p,a) = ag - ag

— _ 2 _ 2 __ 2 _ 2 4
= {a,ay =ap -aj -a; ~a3 =-a] -a; £0.]

It follows from the lemma that

2 p £ (p) =0 a.e.
Aa A

=
<f,f>T >0.

The f which satisfy this auxiliary condition constitute a closed

subspace GB of L2(X0,/Aoa94). Denote by GB, the closed subspace of

0
GB made up of those f for which (f,f‘)T = 0 -~ then the completion

of the quotient GB/GB0 is a Hilbert space that in the Gupta-Bleuler



formalism describes the one-photon states.

To generalize these considerations, take for }f the symmetric
Fock space over LZ(XO,/«ORE?) and extend T to §{ in the obvious way --
then the pair ( { ,T) is a Krein space. Our objective now will be

to construct a quantum field A:‘{A}Mk which transforms according to

W

r
the standard representation of $:+ on‘gf, i.e.,
-1 -1
U(A,a)A (X)U(A,a) " = 2 (AT A (Ax+a).
va A v AL v WV

Physically,\élis a gauge for the free electric-magnetic field but
we are no longer dealing with a QFT in the sense of Wightman. Instead,
it is the more general framework of the preceding section that is

relevant.

An element ¢ is a string ¥ = {\VO, Vyre.- %, where

is symmetric w.r.t. permutations of pairs:

alp,m)
Given (p,m ), define operators { ™ by

&(p AN )

(\i(le)k‘/ )n (Ply,Ml;"'7Pn,Mn)

= Vn+l \'/n"'l (le;pllMl;°'°;pnan)
(&(P,/\«)I-" )n (Pl:/b\l7"'? nr/"\n)
n o~
1
= - = S(p-p.) g (PrrAarqi=*iPerA i "iD ).
\[?? 3 /ﬂﬁAj Y n-1 1 1 3775 n n

j=1



Remark: The fact that the metric tensor figures in the definition
of the creation operator serves to shift the focus to ¢ ’>'P’ Thus

let t stand for the adjoint per <',”)T -- then

T
\::\(p,,««) =\i(p.,~\) = T\i(p,ﬂ)*T.

On the other hand,

[a(pr/‘l\)l E(qIU)] =0
le(Prm), cla,u)]l =0
and
la(p, )y cla,v)] = S(a-p) (-g ). I,
WA “a AA LS
as to be expected.
a(f)
Given f, define operators b by
S(f)
a(f) = > a(pra) £(pra)dan, (p)
N A AN
%o
c(f) = 2 j C(prm)f(p,m)dmgy(p).
~ A~ a
)
Then
[i’(f),g_(g)] = <f'g>T'I-

It has been noted earlier that there is a representation U of 6’1

on L2(X0L¢40;C4) by T-unitary operators:

V-T'<a,p> 1

(U(A,a)E)  (p) = e Neoefe (NP



Extend U to a representation of G)f\on 3 (but omit the cap pi from

the notation) -- then the U(A ,0) are, in general, unbounded.

From the definitions,

UCA,0C (BTN, = T (AT clAps ).
L

Here, it is necessary to bear in mind that /\_l = G FJ_G and use the

relation

Slp - /\'lq) = §(Ap-q9).

T 1

Therefore (since U(A,0) = U(A,0) )

U(A0aeam)UA0 T = T (A™ alap,v).

Iy Ay

Definition: Let

A (x) = L L J[__l<p'x>( )
X) = e alp,r
- vz (2m)3/? -
X
0
V-1 <p,x>
+ e c(Pra)ldam(p).
Properties:

(1) <A, (K¢, ¥y =<P A V¥

(2) TA ()T = - z 9, 8y )

3y W2 (x) = o.
N

LEMMA We have
Y T e ]

U(A,@)A (RU(A,a) T = T (AT A (Ax+a).

LEMMA We have

BB = s A Bt



Remark: It is not difficult to check that
<pa OA LV
=W _ v (x,vy)

g9

AL

d/uo(p) .

j -Y-1<p,x-y>

2(21)°3

X,

The auxiliary condition introduced at the beginning for the

elements of LZ(XOLAA07C4) can be extended to the elements of

2 4
W= F, @ xgmgich).
Using it, one can define as before closed subspaces J}QGB and }{(33

of 3¢ , the completion of the quotient }(GB/ }eGB then being the
0

physical Hilbert space szﬂf

While it is not true that the\é/«(x) leave .}?GB invariant, the

formal combination
\E/\«u(x) = ?)AVP:V(X) - BV_Z}# (x)

does. Therefore F =4 FA{V} is a quantum field, the free electric-
Ny LN

magnetic field. It transforms according to the rule

-1 _ -1
UCA,a)F | (¥TN,a) " = 2 (N

arT

) (N

Moreover, the field components satisfy the (free) Maxwell equations

QD F + 9. F + 3, F = 0

MM)JP 1 \MPM mek)/

A

e
ZB’“F = 0.



[Note: The second relation is not an operator identity on

-}QGB! Rather, it holds only in the weak sense, i.e.,

Z\ 2P ETVEY D=0 Ve Y € Hgd



Nuclear Spaces Let X be a Hausdorff LCTVS. Suppose that {pd,}

is a directed collection of defining seminorms, i.e., V « ,V(—f ,_;1 ¥ o

P;< < PK
. PutN =%kerp , X ,=X/N_ .
P, <D L e *
p - ¥
Assume: The p are Hilbert seminorms.
Definition: X is nuclear if Vo« df: o« < fand £ X —> X
R ¢ P X 18 ¢ =4

is Hilbert-Schmidt.

Example: xP(af) is nuclear, as is its dualgj’|(§?).

Notation: If X and Y are nuclear, then XéSY is their completed
tensor product (hence is universal w.r.t. continuous bilinear maps
or still, is universal w.r.t. separately continuous bilinear maps).

Fact: X,Y nuclear => X6§Y nuclear.

Example: af (RY) @ A& =~ f @™ ana 437'(Rn) ® ,X'(Rm);g

v v v v Y
gfk53+m) (Schwartz kernel theorem).

Henceforth we shall assume that X is a nuclear Fréﬁhet space
equipped with a continuous involution =x.

Definition: The Borchers algebra U(X attached to X is

xR

@ (® "x).

(o]
[Note: Therefore Dtx is a nuclear LF-space.]

Let {J be a Hausdorff LCTVS, C ,D a form on U which we take
to be
--- separately continuous
--- nondegenerate
--- sesquilinear

--- hermitian.



Definition: A representation of ()[x on”Lfis @ homomorphism

T: le-—? End J such that
Cvy, Ti(@)V, D = C 7y (@%) vy ,vy, D
and for which the arrow
(ly U — U
(,alV) —_— Tj(a)v

is separately continuous.

|

-]

| 1 Ul
[Note: Representations of OTX on
Ry Y

are eguivalent

if‘g a form preserving topological isomorphism W: L‘l'ﬂb‘lf that

2
intertwines 111 & 172.]

Definition: A state on Ol, is a linear functionallbj which is

X
continuous and hermitian normalized by LJKI)=1.

Suppose given a state UJSon 0(y. Put
N ={y: W (xy)=0 Vxémx}.
(8]
Then Nlifis a closed left ideal in (T(X.

The quotient

OOX =mX/Nw

is nuclear and the prescription

Clixl, [ylD = W (x*y)

is a form on.¢£3X possessing the properties enumerated above.



One can then represent O‘(X on 0@ % in the obvious way:
Ti(x) [yl=[xyl. BAnd, with Qo=[l] ' o®X= S nxQ2 0i¥X € U(x L.

[Note: The relation

W (x) =CL,, mx)2 D

connects Id and T.]

Remark: The arrow

state —> representation

is called the GNS construction.




The Bongaarts Construction The homogeneous Maxwell equation

9, F + 9

o Frp v Fou D F =0

Py

is equivalent to the existence of functions A from which the F
7 Ay

can be obtained by differentiation:
F o =0, Ay - Dv A -
The field iF}Al/} does not determine the potential {A/AS uniquely

but rather only up to a gauge transformation. In our setting, the
situation is similar. Thus roughly speaking, each QFT for the field

tensor, say ?_BRF, ClFqu%JJk , gives rise to a set of triples

{'}QA, QA,AMk , any one such being termed a gauge for {}(F, QF'

F - However, é{F and 3{A are different spaces, so the formula

s

0. A, -7

F/\.\U= A by} 1

AL makes no sense as an operator relation. This

issue (and others) can be clarified by invoking the theory of Borchers

algebras and their states.

Let XF be the subspace of AF(R4;C4GDC4) consisting of those f
A" S o R VN

AA) . . .
whose components f are antisymmetric -- then XF is a nuclear

Frééhet space and we shall write 0(F= O(X . Denote by X0 the linear

F F

Py,
subspace of X_ whose elements are those f such that £ Y = Z)Ply P

F

( 1P/KU? antisymmetric and rapidly decreasing). Let Ig be the closed

*-ideal generated by XO

P form the

A
in D{F, that is, in each Q@nXF,

closed linear span of the tensor products
xoﬁg}( Q- @ X
F F F

0
XF®XF®--- ®XF



and then take their direct sum.
Definition: An F-theory is a positive state in 01 _ which

annihilates Ig.

Let 1*SF be an F-theory -- then by definition
Wox) =0 V¥xer1l
P F*
Moreover, via the GNS construction, 1J-F determines a nuclear space
O F (which is also a pre-Hilbert space), a cyclic unit vector Cl.F,
and a map Qg Ol ; — End 47F-

[Note: At the moment, we do not require that 14fF possess any

additional property like, e.g., (¥ ,-invariance.]

+
4 4 . ’
Let X, be the space AY(R ;C7) == then X, is a nuclear Frechet
A Wy V' A
space and we shall write (T(Af Dtx . Denote by Xg the linear subspace
A

of X, whose elements are those f such that £ ='3L,\P/“lj ( \V‘L{U

antisymmetric and rapidly decreasing). Let Cﬂ,ih be the closed sub-

0

algebra of OlA generated by Xa-

Definition: An A-theory is a state in Cﬂ,i.

Let 'UJA be an A-theory -- then, via the GNS construction, YAfA

determines a nuclear space &) a cyclic unit vector SﬁLA, and a

AI
ma : O —3 End 0,.
P &a a 7 RS Uy

[Note: No positivity requirement has been imposed on 1J thus

Al
the pair (,£§A,<:',13 ) is not necessarily a pre-Hilbert space.]

Fact: We have

X0 = {£: £V =0}



Define now a continuous linear map d:XF~4> XA by the prescription

AALS AR)YS
—
£ Z"BL/f

/ ,
POINCARE LEMMA The kernel of d is X0 and the image of d is XO.
AAAAACANAAN  VAAAANAA P A

Extend d to a continuous #*-homomorphism @ .: 01 _ — O  hence
d F A

-~ N
By=D@ (®").
0

LEMMA The kernel of & . is 0
A d

. . rh
F and the image of @d is mA .

The transpose ()é sends OtA to O(%. Its kernel is the annihilator

0

of Oigh and its image is the annihilator of IF'

Let U p be an F-theory -- then the fiber
(@ H7hwy
is not empty. Suppose, therefore, that
Wp=@iW )= Wy 0@y
Question: What can be said about 2J‘A?

First of all, Uf A 1is necessarily normalized:

U AD =W, 0 @y(D)
= Wo(m) = 1.

Next, WS F is positive, hence hermitian. While U A need not be

hermitian, one can get around this by considering instead



5 LU, 0 +15, (x0)1.

In fact,

cc ol ao*o© iji

|

ce o LSZ\ o@ o
= cco W po *
= USE"

The situation as regards positivity is not so simple: There is no

1\
guarantee that LJ'A can be chosen positive (ditto for (?_+—invariance).

In what follows, it will be assumed that ld'A is hermitian, thus

is an A-theory. We then have
Wrp—>{Dp Qprerl

Wa 7 Ldar aral -
Definition: The triple idO A’ {1Af£fA§ is a gauge for
{Dp Qpropl-
[Note: It is also said that an A-theory in the fiber (()(a)-l(ld ¥
is a gauge for 161F‘]
Put

L ]zih =58A(X)QA: X€m§h§ .

LEMMA The assignment

L A@gx)€2 = @ ()2 g (x € O p)



defines a linear isometric map W fromaﬁih onto °0F such that

W2 ,=Cp
[To check that W is well defined, one has to show that
« Al®x)82, =0=r @ (x)C2, = 0.
To see this, note first that V x,y € by QY
C\SF(X)QF,&ZF(Y)QFD

= LS (x*y)
= W, ° ®,4x*y)
= wA(@d(x*)@d(Y))
=W, (0 4(x*@ 4(y))

= C e A(@)dx)QA,gA(@dy)QBD .
so

QLA @yx)C2, =0

(- L’QF(X)QF’&?F(Y)QF‘D =0 VYG mFI

Vo,

thus, by nondegeneracy,
Qn(x) <2, = 0.

That W is isometric is, of course, obvious.]

While the lemma implies that ,O ih is an inner product -space,

there may still be elements x € a@ih of zero length: C x,x 2D = 0.



But Cx,xD =0 => CwWx,Wx D =0 =>x €ker W. Consequently, the
quotient gﬁih/ker W (’,\\’,oOF) is a pre-Hilbert space.
Observation: Let x Elxﬁih -~ then Cx,xD2 =0 iff Cx,y> =0
h
Vyedh .

[Apply the Schwartz inequality

jexyo] £ YV axxD Vaoyvo

to get the nontrivial implication.]

In practice, it is sometimes possible to choose UA:

ph_
a- Qa
Since C , is nondegenerate, C x,x 2 =0 =y x=0 —=>ker W=0 —=>

oO AN OOF Therefore, in this situation, one can realize the field

operators (,QA and LQF on the same pre-Hilbert space. Accordingly,
AVZRN Vo

VY £ €Xp,

F(f)

I f~Y (x) F (x)dx
1 v
R4

Ve

A(4f)
AV =N

j 2 9. £fMY(x)A (x)dx
V4 v-._/M
R

J D EMY(x)A (x)dx
. v — An

R

N

+ y D OfTYx)A (x)dx
bV - A
4

R®

Ve



- Y
= 5 CIR: ()2 (x)dx
R4

+ j ’b/M f ‘UM(x)ﬁu(x)dx
R4

—_ AA U
= 5 f (x)@vé/Jde

R4

-g £Y™(x) 3 A (x)dx
YRSV

R4

N

_ A
= & £V ()1, AL, (0= DA (x)]dx

jf
=
Fo 0 =3 A (0-3 A ().

[Note: The Coulomb ( = radiation) gauge for the free electric-
magnetic field is an example of this setup. But there is a price to

be paid: The relation

-1 -1
U(A,0A (RIVA 07 = ?5 (A A (AR

ALy -
fails to hold.]



The Free Electric-Magnetic Field 1In the previous section, we

introduced the nuclear space X_ and its associated Borchers algebra

P
oiF' We shall now consider a particular F-theory U P and its

collection of gauges MA:

Wy = W, 0Oy-

[Note: Recall that 1*5A is necessarily an A-theory, i.e., is

a state on (T[A. Therefore l*SA is continuous, hermitian, and LJA(I)=1.]

Notationally, it will be convenient to use superscripts rather

than subscripts, i.e., replace W, W, by Wt ‘UJA-

electric
Definition: The 2-point function of the free sXEgxiz-magnetic

field is
F
111 92102 1 2
= & £ 2 2 (-9 1_A

. : . T, Ty —— (x,~-%,;0)).
Mlul My U, Gy 6‘2 1 ZV_:T +'71 72

Explanations:
6T

(1) EA\U' = 0 unless &, T is a permutation of .,y and is

then equal to x 1 according to the sign of the permutation.

j _ o - . 4 _(,0 1 2 3
(2) 30_ = 3/'3 Xj (6=0,1,2,3 & ] 1,2) (XJ 6\5‘ =y xj (Xjrxj'xjvxj))-

v -1 j e—‘\/?f(’p,a}dﬂo

(3) A . (a;0) = —%_
+ 2(27)°

(p).

Xy

Remark: Accordingly, A fl,fzefo,

U5, e x5y



_ F
= j £ (%)) £ (x5) w/mlvl_,«.\zvz
4 1

R

A e

Example: Let

qA4U J‘ - Vciy(p,xl—x2‘>
e

W (xy,%x,) = = ——— d ., (P) .
A~ L1772 2(2n)3 0
X0
Then
AwF
MM ViU,
1l 2 1 2
= A - i
3’*"1 3"*2 VY, D"‘1 ’a“z L4 Ry
1 2 1 2
-9 D) W ‘ + D W
Y1 Mg MV Vo] 3“2"*1""2
Remark: While W/“LJ is not unique, any other possibility has
the form
~ 1 (L) 2 (2)
Wy Fpexg) t 3, P (xex,) + DY <|>N (29 ¢%5)
where

(1) (2)
&
¢>LI 4>A«
are tempered.
To complete the definition of WJ¥, let
A ¢ F F
w = ll w . . =0
0 ALY 1T i Mon41 Yonsl

and

(xl,xz)dxldxz.



P
AN . ey ey ) e
Mjlv]l:/\f\jz’vjz jl 1o
MF P v (xj r¥5 ).
s . s . _
Jon-1Y3an-1"""J2n " 3op 21 “2n

Here the sum is over all permutations jl""’j2n of 1,...,2n with

13 €33< 7 < Jppog @nd 33 <Jgrererdnn 1< Ipp-

F .
LEMMA 1S" is an F-theory.

[That 1JIF annihilates Ig

itions (details omitted). Let's check positivity. For this, it

is more or less implicit in the defin-

suffices to look at z«}g. Passing to Fourier transforms, we have
WSS £ % £
2rE1 X5y %
/\/‘"1)41 /\MZU
£

| 2
g P (-p)p,, £ (p)daxn (P) .
X4

= - 8T

* _
Now replace fl by fl ( = fl) to get:

F *
CWiy g XEy >

3
=81 t{ ;%%él Mjk(p) #’i(p) 4’§(p)d/ao(p),
X9
where

« A-
g <H(p) =P, fi“ (p)

VA
1 S =p £3Y @



and

2 2
M) = S5 - BB e =1 p 1.
0

The matrix Mjk is obviously hermitian and using the fact that

pg = ]p \2, one can check that it is idempotent, hence positive.]

N

Definition: The free electric-magnetic field F = {F .G is the
Ve A
QFT determined by lx’F.
This field has all the usual properties, e.g., locality. It

transforms according to the rule

U(A,a)vgﬁu<x)u</\,a)"1= > NhH ATH, D F L (Axea)

A S VT g T

and the Maxwell equations

F 9, F + F =0
9/‘A“"l'(’ ¥ a’““f/w ’a(’v\/mu
AAY
3 2.1 =0

obtain. Finally,

F
]AS paq Upi i A UL (xl,...,xn)
= <QF"’€M1"‘J1(X1)...F&‘nVn (x) QF > -

Remark: There have been many investigations of the gauges LJA

associated with 1A§F. One important point is the fact that if 'QJA
is Jlli—invariant, then the form < ,D cannot be positive, i.e., the

pair ( 0C7Af <, ) is not a pre-Hilbert space.



