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IN THE MOUNTAINS

There is WINTER.

Then there is the melting time.
Then there is summer.

Then there is the waiting time.

Then there is WINTER.



ABSTRACT

The purpose of this book is two fold.
(1) To give a systematic introduction to topos theory from a purely
categorical point of view, thus ignoring all logical and algebraic issues.
(2) To give an account of the homotopy theory of the simplicial objects

in a Grothendieck topos.

* % % * % %

EDITORIAL COMMENT I have always found the traditional homotopical treatments
to be somewhat contrived and ad hoc. There is, however, a way out: Use Cisinski's
"localizer theory". For then the classical results are mere instances of the

output of this powerful machine which has the effect of sweeping all before it.
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§1. PARTIAL ORDERS

Iet X be a class = then a binary relation < on X is said t© be a preorder

o
A

isreflexive: V X € X, X £ X3

@ < is transitive: VX,y,ZE€E X:X < y& y< 2 =>X £ 2.

=> x = x'.

Every mreorder (X,<) givesrise to a category CX,<): The objectsof C,<)

are the elanents of X ard

1l

Mor &,y) d = &,x),

T {&xylifxs<y
8 otherwise, X

and

2o x,y) = &,2).

1.1 LEMMA Let (X,<) be a preorder — then every arrow in C(X,<) iskotha

moromorphisn and an epimor phign.

1.2 LEMMA Let (X,<) be a partial order —— then the only isomorphisns in C X,<)

are the identities.
1.3 DEFINITION A poset isa st X equipped with a partial order.

If X,5), (¢,<) are ppsets, then a functor £:C(X,<) > C({,<) is simply a

func tion £:X - Y which is monotonic, i.e.,



xsx'"inX= f(x) < fx') inY.

1.4 TeMA Let (X,<), (¥,s) be psets and let

£:C(X,<) + C{Y,<)

g:C{¥,<) » CX,x<)
be functors — then f is a left adjint for g if for all x e Xard y € ¥,
fx) =y<=x=<g{y).
1.5 DEFINITION Supmse that X,<) is a pset — then X,<) is a lattice if
C{X,<) has bimary poducts ard bimary coproducts, written

XAy EZXXY

xvyzx ||y
[Mote: Accordingly,
T ox Ay X Tz <x
& = Z<SXANY
_ XAYySy _z=sY
and
T x<xVvVy T x<gz
& = x Vy < z.]
Yysxvy y=2

1.6 DEFINITION Suppose that (X,<) is a lattice -— then (X,<) is said to be
boundead if C(X,<) admits a fimal object, demoted by 1, and an initial object,
derotel by 0.




T ox Al
[Note: So, vVxx€EX, 0sx<1ad .1
_OVx

Il
b

i
X

1.7 LBMMA Let (X,<) be a preorder -~ then a commutative diagram

W—>y
X —> 2

in CX,<) is a mllback square iff w is a product of x and y or is a pushout

square iff z is a coproduct of x and v.

1.8 RAPPEL Let C be a category — then C is finitely complete iff C has
pallbacks and a final object and C is finitely cocomplete iff C has pushouts

and an initial object.

1.9 SCHOLIUM If (X,<) is a bournded lattice, then C(X,<) is finitely complete

ard finitely cocomplete.

1.10 REMARK Suppose that (X,<) is a boundal lattice — then C(X,<) has

moducts iff it has coproducts. Therefore C(X,<) is complete iff it is cocomplete.

Let (X,s5) be a boundal lattice.

e (X,<) is distributive if Vv x,y,z € X:

X A (v vaz) X AyY)Vx A 2)

X VvV (y A 2) x vy)ax vaz).

e (X,<) is complemented if vx € X, 3 — x € X:

!

xz\w—lx=0arﬁxv-—fx=l.



[Note: In a distributive lattice, a complement — X of x, if it exists,

is unique.]

1.11 DEFINITION A boolean algeébra is a bounded lattice (X,<) which is both

distributive and complenented.

N.B. In a boolean algeébra (X,<), V x € X, — | X =X
[For
o XA — — x=0
— XV — — x =1

and compl enents are unique.]

1.12 LEMVA Let (X,<) be a boolean algéra -— then v %,y € X,

- —, (xvy)=—-——‘XA—-1y

—_l (XAY) _— XV y‘

{ !

[Note: These relations are called the laws of de Morgan.]

1.13 EXAMPLE If S is a set, then its power set PS is a boolean algebra.



§2. SUBOBJECTS

Given a category C amd an object X in C, let M(X) be the class of all mirs
(Y,£f), where £:Y » X is a monomorphism — then M(X) is the object class of a full

subcategory M(X) of C/X.
Given (Y,f), (Z,9) in M(X), write (¥,f) < (z,g) if there etists a morphism

h:Y ~ Z such that £ = g ¢ h, i.e., if there exists

£ g

> X) .

[Note: h is necessarily unique and is itself a monomorphism. ]

2.1 LEMMA The binary relation Sy is a weorder on M(X).

N.B. So, in the notation of &1,

M) =CMEX), <).

=X
2.2 DEFINITION Two elanents (Y,f) and (%,g) of M(X) are deeaned equivalent,
written (Y,f) ~x (z,9), if there exists an isomorphism ¢:Y -~ Z such that £ = g ¢ ¢.

2.3 LEMMA The binary relation ~x is an equivalence relation on M(X).

2.4 DEFINITION A subobject of X is an equivalence class of monomorphisms

undEC NX-

2.5 REMARK In practice, people tend to blur the distinction between a mono-

morphism £:Y¥ -~ X and its associated subobject, a potentially confusing abuse of



the language.

Let Subc X stand for M(X)/~,, let [ ] denote an equivalence class, and let
[£] < [g] have the obvious connotation -—— then the preorder on Su]oC X is a partial

order. In fact,

(¥,£) <, (Z,9)

(Z,9) < (¥,f)

imply that (Y,£) ~x (z,9) or still, [f] = [g].

2.6 EXAMPLE Let (X,<) be a bounded lattice and take for C the category C(X,<)—
then

SubC X, <) 1

<> X,

2.7 EXAMPLE Let X be a topological space and take for C the category Sh(X)

(the sheaves of sets on X) — then
SUbgll(X) hX PN '[X.

[Note: T

X is the topology on X and the correspondence <« assigns to U € T

X'
1ifvecu

the sheaf hU' where hUV = .l
_Pgifv iU

2.8 DEFINITION A representative class of monomorphisms in M(X) is a subclass

of M(X) which is a system of representatives for ~y

2.9 EXAMPLE Suppose that C has an initial object ﬁc. Let £:Y - ,GC be an



element of M(ﬂc) -~ then £ is an isomorphism, hence f~g :i.dﬁ .
= C C

Therefore

Subg 'G_(_:_ = [id_ ].

%
2.10 RAPPEL A category C is said to be wellpowered provided that each of
its objects has a remresentative class of monomorphisms that can be indexed by a

set.

2.11 EXAMPLE Take C = SET and fix X — then a subobject of X is an equivalence
class of injective maps.
e Every subobject of X contains exactly one inclusion of a subset of X
into X and that subset is the image of every element in the subobject.
e The subsets of X together with their inclusion maps form a remresentative
set of monomorphisms in M(X).

[Note: Therefore SET is wellpowered.]

2.12 EXAMPLE TOP is wellpowered.

[Let (X,rx) be a topological space -~ then a remresentative set of mono-

morphisms in M(X,TX) are the pairs ((Y,’EY) 'jY) , where Y is a subset of X, Ty is

a topology on Y finer than TX]Y, and i,:Y ~ X is the (continuous) inclusion.]

2.13 CRITERION If C is a small category and if D is a finitely complete,

wellpowered category, then the functor category [C,D] is wellpowered.

2.14 EXAMPLE If C is a small category, then the presheaf category

c = IcF,sET]



is wellpowered. In particular:

stser = [A°F,sET]

is wellpowered.

2.15 RAPPEL Consider a pallback square

n
P > Y
El lg
X > Z
£

in a category C. Assume: f is a monomorphism —— then n is a monomorphism.

2.16 DEFINITION Let C be a category with pullbacks. Given an object X in

- flel - X
C, suppose that € M(X) — then their intersection is the mir
f.:¥.. + X
2t
(Yl n YZ’Al 2) € M{X), where ¥, ny, is defined by the pullback square
?
Yl N Y2 > Y2
f2
Yl > X
f
and
Al,Z:Yl N Y2 - X

is the corner arrow.



2.17 SCHOLIWM If C is wellpowered and has pullbacks, then vV X € Ob C, the

category C (SubC X,sX) associated with the poset {Subc x,sx) has binary products.

2.18 DEFINITION Let C be a category. Given an object X in C, suppose that

{(Yi,fi) :i € I} is a set-indexed collection of elements of M(X) -- then an element

(¥Y,f) € M{X) is called an intersection of the (Yi,fi) povided that

vi, (¥,f) Sx (Yi,fi)

u
and for any object U

> X in C/X such that

u i
> X, Yi

vi, 3 94 eer/X

(U > X)r

there exists a

u f
gEMorC/X U -—>X, ¥ > X} .

[Note: If I = {1,2}, then matters reduce to that of 2.16 (universal property
of pullbacks).]

N.B. Intersections are unique up to isomorphism and the intersection of the

enpty collection of monomorrhisms with codomain X is idX:X + X.

2.19 DEFINITION A category C is said to have (finite) intersections if for

each X € b C and any (finite) set-indexed collection of elements of M(X), there

exists an intersection.

2.20 LEMMA If C is a finitely complete category, then C has finite inter-

sections, and if C is a complete category, then C has intersections.



[Note: An intersection ("finite or infinite") is a multiple pullback and

a multiple millback is a limit.]

2.21 SCHOLITUM If C is wellpowered and (finitely) complete, then v X € Ob C,

) associated with the poset (Subc X, sx) has (finite)

the category C (Subc X, <y

mEoducts.



§3. DECOMPOSITIONS

Let C be a category, f£:X + Y an epimorphism — then there are various re-
strictions that can be imposed on f.
(1) £ is a coequalizer, i.e., 3 Z € Ob C and u,v € Mor(Z,X) such that
f = coeg(u,v).
(2) £ has the left lifting property w.r.t. monomorphisms, i.e., every

commitative diagram

a

X > A

fl ll

Y > B,
b

where i:A - B is a monomorphism, admits a filler w:¥ > A (thus we £ =a, i o w=bh,
and w is necessarily unique).
[Note: Epimorphisms with this property are closed under composition.]
(3) f is extremal, i.e., in any factorization £ = h o g, if h is a mono-
morphism, then h is an isomorphism.
In general,
1) => (2) => (3)

and none of the implications can be reversed.

3.1 LEMMA Suppose that C is finitely complete — then an epimorphism f:X - Y

satisfies (2) iff it satisfies (3).

3.2 EXaMPLE In CAT, there are extremal epimorphisms that are not coegualizers.



3.3 DEFINITION A finitely complete category C fulfills the standard conditions

if C has coequalizers and the epimorphisms that are coequalizers are pullback
stable.

3.4 EXAMPLE In SET, every epimorrhism is a coequalizer and surjective functions

are pullback stable. Therefore SET fulfills the standard conditions.

3.5 EXAMPLE In TOP, an epimorphism is extremal iff it is a quotient map, thus
"(1) = (3)". Still, TOP does not fulfill the standard conditions since quotient

maps are not pullback stable.

3.6 REMARK If C fulfills the standard conditions and if I is small, then the

functor category [I,C] fulfills the standard conditions.

3.7 LEMMA Suppose that C fulfills the standard conditions — then an epi-

morphism £:X + Y satisfies (1) iff it satisfies (2).

3.8 DEFINITION Let f:X + Y be an arrow in a category C -- then a decomposition

k m
of £ is a pair of arrows X > M > Y such that £f = m o k, where k is an

epimorphism and m is a monomorphism. The decomposition (k,m) of f is said to be
minimal (ard M is said to be the image of f, denoted im f) if for any other

£ n
factorization X > N > Y of £ with n a monomorphism, there is an h:M » N

succhthat h o k=2 andno h=m (=> (M,m sY(N,n)).

3.9 LEMMA Suppose that C fulfills the standard conditions —- then every

morphism £:X + Y in C admits a decomposition f = m ¢ k, where k is an epimorphism



satisfying "(1) = (2)" and m is a monomorphism.

PROOF Form the pullback square

v

P > R

ul lf

X ~ Y .
£

Then u and v are epimorphisms. Pass now to coeq(u,v):

u
> £
P X > Y
>3
v
kl
2.

Since £ o u = f o v, there is a unique m:Z + ¥ such that £ = m o k and the claim

is that m is a monomorphism. To see this, form the pullback square

r

Q > Z

sl m

A > Y .
m

Then
mokeu=moKkowv,
so there is a unique morphism q:P - Q such that

rog=keu, seoqgq=keov,

But g is an epimorphism (cf. infra) amd k ¢ u = k e v, hence r = s which implies
that m is a monomorphism.

[Note: From the definitions

Q0
i
3
X
B3



and there is a commtative diagram

a
XXYX >Z><YX > X
c b k
XXYZ >Z><YZ > Z
d
m
X > 7 > Y
k m

of pullback squares. Since C fulfills the standard conditions and k is a co-
equalizer, the arrows a,b,c,d are coequalizers as well. Thereforeg=Db o a =

d o c is an epimorphism.

3.10 THEOREM Suppose that C fulfills the standard conditions -- then every
morphism £:X > Y in C admits a minimal decomposition £ = m o k unique up to iso-

morphism.

N.B. The decomposition of £ secured by 3.9 turns out to be minimal but there
are two points of detail that will have to be addressed before this can be estab-
lished.

® Suppose given two deccmpositions of £ per 3.9, hencem ¢ k = m' » k',
where

Then we claim that there exists an isomorphism ¢:M + M' such that

pok=k'andm=m'o ¢.




Thus consider the commutative diagram

k
X > M
k! m
M! > Y .
m|

Then by the left lifting property w.r.t. monomorphisms.

JuM > M st

and
- u' o k' =k
Ju':M* > M st
mo u' = m'.
Accordingly,
o mou‘ou°k=m‘ok'=mok=>u'ou=idM
~_m'euou’'eok!=mok =m‘ok'=>u°u'=idw.

It remains only to take ¢ = u.

[Note: This is what is meant by "unique up to isomorphism” in 3.10.]

® Suppose given a commutative diagram

k m

X > M > Y

u v

X' > M! > Y'Y,
k! m'

T f=mok
where are decampositions per 3.9 — then there exists a unique
fl == m! o kl



Wwok=X'"onu

w:M -+ M' such that The uniqueness of w is, of course, clear.

il

m'"oeow=vom.

As for the existence of w, use 3.9 again and write

{_ k' ou=no £

_ vem=n'olL',
say
o L m' o n
X > N > Y!
£' o k n'
X > N' s Y'Y,
Since
m' s k'l ocu=vomok
and since

l_ (m' on) oL =m" ok cu

n'o (' ek) =vomok ,

it follows from what has been said above that there exists an isomorphism ¢:N -+ N’

such that
T poel=2L"ok
!_ﬁ m' e n=n' ¢ ¢.
Now put
w=n°q‘>~lo£'.
Then
T woks= no¢—loﬂ'0k= noe L=k"ou
l_ m ow=m' ono¢ el =n'ol = vom,

as desired.



[Note:

{u,v) € mr§(+) (F,£%)

(u,w) € Morc k,k*)

)

(w,v) € Morg(_,) (m,m").]

Proof of 3.10 Write £ = m o k per 3.9 — then this decomposition is minimal.

For suppose as in 3.8 that £ = n o £ and using 3.9 once more, write £ =m' o k',

Thanks to the preceding discussion, the comutative diagram

k m
X > M > Y

gives rise to a unique w:M - M' such that

wok=k'andnom' e w=nm.

Put h = m' o w -~ then h:M > N and

}_— hok=m'"ewok=m"ok"=1

neh=nom'oow=nm.

neh=m
[Note: Such an h is unique. For
ne h'=m

monomorphism. ]



3.11 DEFINITION Let C be a category. Given an object X in C, suppose that

{(Yi,fi) :1 € I} is a set-indexed collection of elements of M(X) -— then an element
(Y,f) € M{X) is called a union of the (Yi,fi) provided that
V i, (Yiyfi) S, (Y'f)

u

and for any element U > X of M(X) such that

£,
i u

> X, U > X)),

Vi, 3g; €Morg, (¥

there exists a

£ u

> X, U > X) .

gGMorg/X (Y

[Note: The definition of union is not the exact analog of the definition of

intersection (cf. 2.18).]

3.12 DEFINITION A category C is said to have (finite) unions if for each

X € Ob C and any (finite) set-indexed collection of elements of M(X), there exists

a union.

3.13 LEMA Suppose that C fulfills the standard conditions and has finite
coproducts — then C has finite unions.
PROOF Fix X € Ob C and let {(¥,,f;):i € I} be a finite collection of objects

of M(X) (I = @). Denote by



the canonical arrows. Write £ = m ¢ k per 3.10, thus

J_j_ Yi > M > X.
iel

Then (M,m) is a union of the (Yi,fi) . To begin with, k o :i.ni:Yi -+ M and

fi = f o 1ni =mo Ko J_ni = (Yi,fi) sX M,m) .

u

Assume next that U > X is an element of M(X) and

fi u
v i, agiemrg/x (Yi—m——>X,U > X},
so f, = u o g, — then there exists a unique g: _H_Y.—rUsuchthathin.=g..
i i e 1 i i
But
uogoini=uogi=fi=f0ini
=>uog=f (definition of coproduct).
Now display the data:
k m
.U_ Yi > M > X
ieT l
_Ll__ Yi > U > X .
i€l g u

Since the decomposition £ = m o k is minimal and since u is a monomorphism, there

is an h:M > U for which u o h=mn, i.e.,

(M, m) ¢ (U,u).

[Note: The union of the empty collection of monamorphisms with codomain X




10.

is initial in M(X).]

N.B. The same argument works for an arbitrary index set so long as C has

coproducts.

3.14 SCHOLITUM If C is wellpowered, fulfills the standard conditions, and
has (finite) coproducts, then the category g(SubC X, :éx) associated with the

poset (SubC X, sX) has (finite) coproducts.



§4. SLICES

Let C be a category.

4.1 THEOREM If C is finitely camplete, then so are the C/X.

4.2 REMARK It can happen that the C/X are finitely complete, vet C itself
is not finitely camplete.

[Take C = TOP .., the category whose objects are the topological spaces and

whose morphisms are the local homeomorphisms - then TOP ./ has pullbacks but does

not have a final object, hence is not finitely camplete (cf. 1.8). On the other

hand, the ‘I‘OPI H/X are finitely complete.]

4.3 IEMMA If C has pullbacks, then the C/X have binary products.

u v
PROOF Given obijects U > X and V > X in ¢/X, form the pullback square
n
P > U
8] > X
u
u A
in C =~ then the corner arrow P + X is a product of U > X and V > X

in ¢/X.

4.4 LEMVA If the C/X have binary products, then C has pullbacks.
— u
u v U > X
> X < V in C, thus € Ob C/X.
\'4

PROOF Consider a 2-sink U

v > X




Iet

ki u v

P > X = (U > X)) x (V

> X).

Then there are commutative diagrams

P > U P 7
.
X —— X, X ————— X

or still, a commtative diagram

Prv
P > V
p}_‘Ul lV
U > X
u

which is a pullback square in C.

let X,Y € Ob C and let £:X > Y be a morphism — then f induces a functor

f,:C/X » C/Y via postcomposition.

4.5 LEMMA Suppose that C has pullbacks —- then V £, £, has a right adjoint f*.

u

PROOF Given an oblject U > Y in C/Y, form the pullback square

P > U
B s
X -~ > Y
£
and let
u P
£* (U > YY) =P > X




Then this prescription defines a functor f£*:C/Y - C/X and (f ,f*) is an adjoint

pair.
£ g
4.6 REMARK Let X > Y > % — then
B £, I
c/x > C/Y > C/Z
g'k f*
C/Z > C/Y > C/X.

And
(g8, =g °f

but in general

fX o g* = (g o £)*.

Given X € Ob C, denote by 1X the inclusion M(X) - C/X.

4.7 TEMVA Suppose that C fulfills the standard conditions -- then i, has a

left adjoint
imX:C_Z/X - M(X).
u k m
[Given U > X € Ob ¢/X, write u=m ¢ k per 3.10, so U > M > X.
Put
u m
imX(U > X) =M > X.1

If C has pullbacks and if f:X -~ Y is a morphism, then f*:C/Y - C/X restricts

to a functor £ T:M(Y) » M(X) (cf. 2.15).



4.8 LEMMA Suppose that C fulfills the standard conditions —- then f—l has
a left adjoint
Elf:Ij_I(X) > M(Y).
[Take for 3¢ the camposite

iy £, imy
M(X) > /X > C/Y

> M(Y).]

4.9 REMARK If C fulfills the standard conditions, then so do the C/X.



§5. CARTESIAN CLOSED CATEGORIES

Let C be a category with finite products.

5.1 DEFINITION C is cartesian closed provided that each of the functors

— X Y:C » C has a right adjoint Z - ZY, S0

Mor (X X ¥,2) = Mor(X,z0).

N.B. The property of being cartesian closed is invariant under equivalence.

5.2 FXAMPLE SET is cartesian closed but SE.'I'OP is not cartesian closed. The

full subcategory of SET whose objects are finite is cartesian closed. On the other
hand, the full subcategory of SET whose objects are at most countable is not

cartesian closed.

5.3 EXAMPLE TOP is not cartesian closed but does have full, cartesian closed

subcategories, e.g., the category of campactly generated Hausdorff spaces.

5.4 EXAMPLE CAT is cartesian closed:

D
Mor (C x D,E) = Mor(C,E),

5.5 EXAMPIE Suppose that (X,<) is a boolean algebra. Put 2 = — Y Vvz--

then
xzxy::z<=>xszy.
E.g.: Given that x A ¥ < 2, write

X =X A]—:XA{""'IYVY)




=(XA—| ¥) v {(x A Y)

IA

(xz\——! y) vV z

— yvz=.

1A

Therefore

Mor(x A v,2z) = M:wr(x,zy) (cf. 1.4),

hence C(X,<) is cartesian closed.
Let C be a cartesian closed category.

5.6 DEFINITION The object ZY is called an exponential object, the evaluation

morphism vy o being the arrow

ZYXY->Z

with the property that for every f:X x Y - Z there is a unique g:X - 7% such that

f=evY'Z o (g x 1dY).

One may view the association (Y,2) - ZY as a bifunctor, covariant in Z2 and

contravariant in Y.

e The functor

(—1Yc -
is defined on objects 2 by
(—)z=2"
£
and on morphisms A > B by
Y
£ £
(—)'a——>m =a" > 87,




where £ is the unique arrow rendering the diagram

ev
AY xY —m s A
£ x id £
BY XY > B
ev
commutative.
® The functor
Z( —)
is defined on objects Y by
Z( )Y = ZY
f
and on morphisms A > B by
£
z( - )(A — > B) =

where Zf is the unique arrow rendering the diagram

id x £

B 7P
Zf x id

ZA X A >3

ev

commutative.
5.7 IEMMA The - functor

Z( — ):gOP a e

admits a left adjoint, viz.




Y . . . R
N.B. ( — ) preserves limits while z( ) sends colimits to limits.

5.8 LEMMA In a cartesian closed category C,

LYy

Y x 7 Y. 7 i Y,

@ (T xp =T o @ xx vy =1l exy.
i i i * i 1
5.9 LEMMA In a cartesian closed category C, finite products of epimorphisms

are epimorphisms.

5.10 RAPPEL A full, isomorphism closed subcategory D of a category C is said
to be a reflective subcategory of C if the inclusion 1:D -+ C has a left adjoint

R, a reflector for D.

[Note: A reflective subcategory D of a category C is closed under the forma-
tion of limits in C.]

Let D be a reflective subcategory of a category C, R a reflector for D ——
then one may attach to each X € Ob C a morphism r :X >~ RX in C with the following
property: Given any Y € Ob D and any morphism f:X +~ Y in C, there exists a unique

mrphismg:RX~>Y:’ngsuchthatf=g°rX.

N.B. Matters can always be arranged in such a way as to ensure that R e 1 =

idD.

5.11 LEMMA Suppose that C is cartesian closed and let D be a reflective

subcategory of C. Assume: The reflector R:C + D preserves finite products —— then



D is cartesian closed.

Y

[If Y,Z € Ob D, then z¥ is iscmorphic to an object in D, hence z~ € Ob D.]
Let C be cartesian closed -~ then for any final object *or We have
X c
* )7 = =~
(*c) *g_ & X X.

5.12 DEFINITION Let C be a category with an initial object ,@C -~ then QIC is
strict if every morphism f:X - 'GC with codomain ;JC is an isomorphism.

[Note: Anv morphism to an initial object is an epimorphism.]

5.13 LEMA Let C be a category with finite products and an initial object

,GC -—— then ’GC is strict iff v X € Ob C,

Xxﬂczﬁc.

PROOF If ﬁc is strict, then the projection X x Q’C - fa’c is an isomorphism.

Conversely, let f£:X » ’@C be a morphism -- then there is a commutative diagram

X x EC_:
1 - id
X « ﬂc > fn
X < X -~ gc
idx £ -7

from which it follows that £ is a split monomorphism (! o £ = id‘() . But f is




also an epimorphism. Therefore £ is an isamorphism.

5.14 APPLICATION Let C be a cartesian closed category with an initial object

ﬂc —— then ‘GC is strict.

[The functor — x X preserves colimits, in particular initial objects, so
ﬂ(_: X X = ﬁg. And

ﬁCxX:Xng,]

5.15 EXAMPLE Under the preceding assumptions,

g
X = *g.
[Given A € Ob C,
g
Mor{ad,X ) = Mor{A x ﬁC,X)
= D-br(,@c,x) .
- ﬂc
But there is a unique arrowﬂc—rx, so there is a unique arrow A > X  and this

2
C
means that X ~ is a final object.]

5.16 LEMMA Let C be a cartesian closed category with an initial object ﬁc -

!

then ¥ X € Ob C, the canonical arrow ;JC > X is a monamorphism, thus is an

element of M{X).
PROOF Suppose that a,b:A -+ ﬂc are morphisms such that | e a = ! o b. Since

1
> X is a monamorphism.

A is initial (HC being strict), a = b, hence ﬁc




5.17 EXAMPLE Under the preceding assumptions

X
17 e M(*g) .
[The functor ( — )X preserves limits, in particular monomorphisms. Therefore
X
X ° X
(ﬂg) >(*§)
is a monomorphism. But
X
(*g) ~ *gl
so
X
4
1% e M(*Q) .1
!
[Note: M{*c) is an exponential ideal in the sense that if Z > *o is a

i
monomorphism, then v Y € Ob C, ZY

> *o is a monomorphism. ]

5.18 RAPPEL An object in a category C is called a zero object if it is both

an initial object and a final object.

5.19 LEMMA Suppose that C is cartesian closed —— then C has a zero object iff

C is equivalent to 1.

5.20 EXAMPLE Neither SET, nor TOP, is cartesian closed.

5.21 THEOREM Let C be a small category -- then (E is cartesian closed.

PROOF Given F,G € Ob C, define

GF:COP -+ SET



by the rule
G (X) = Nat(h, x F,G) (X € Ob C).
5.22 EXAMPLE A = SISET is cartesian closed:
Y
Nat(X x ¥,Z) = Nat(X,2"},
where

z°(In]) = Nat(A[n] x ¥,2) (Aln] =h._.).

[n]

5.23 DEFINITION A category C is locally cartesian closed if v X € Ob C, the

category C/X is cartesian closed.
[Note: A locally cartesian closed category with a final object is cartesian
closed.]

5.24 EXAMPLE SET is locally cartesian closed. Proof: SET/X is equivalent

5.25 EXAMPLE CAT is cartesian closed but CAT is not locally cartesian closed.

5.26 EXAMPLE 'I‘OPE g 18 Ilocally eartesian closed but 'I'OPI 18 not cartesian closed.

com—— vm—

5.27 THEOREM Let C be a small category —— then é is locally cartesian closed.

PROOF Given F € Ob é, write C/F in place of gro, F — then the canonical arrow

o~

> C/F

FaN
C/F

N
is an equivalence and C/F is cartesian closed (cf. 5.21).



5.28 THEOREM Let C be a category with pullbacks. Assume: V £, f* has a
right adjoint f, —- then C is locally cartesian closed.
PROOF Thanks to 4.3, C/X has binary products. Since C/X also admits a final

object (viz. idg(:x + X), it follows that C/X has finite products. This said, fix

u:y + X
objects in ¢/X and realize u x v as the corner arrow P + X in the
vV > X

pullback square

n
P > V
£ v
U > X,
u

thus

uxXxv=uef=vern=vvu.
Then for any f£:Y - X, we have

Mor (u x v,f) = Mor(v,v*u,f)

u

Mor (v¥*u,v*f)
= Mor (u,v,v*f).
Definition:
£ = vv*E.
Suppose that C is finitely complete. Given X € Ob C, denote by
X,:C/X > C

the forgetful functor and by

X*:C + C/X



10.

the functor that sends ¥ to X x Y » X.

5.29 CRITERION The functor — x X has a right adjoint iff the functor X* has

a right adjoint.

5.30 LEMMA If C is locally cartesian closed, then vV X € Ob C, the category

C/X is locally cartesian closed.

PROCF For every object A -+ X of C/X,

C/X/A ~ X = C/A.

5.31 LEMMA If C is locally cartesian closed, then vV X € Ob C, the category
C/X is finitely complete.

PROOF Since the C/X are cartesian closed, they have products, in particular
binary products, hence C has pullbacks (cf. 4.4). So vV X € Ob C, C/X has pullbacks
(pullbacks in C/X are computed as in C (cf. 4.1)). But C/X has a final object,

thus C/X is finitely camplete (cf. 1.8).

5.32 LEMMA If C is locally cartesian closed, then v £, £, has a right adjoint

£*.

[Because, as noted above, C has pullbacks.]

5.33 THEOREM If C is locally cartesian closed, then v £, f* has a right
adjoint f,.

[A morphism £:X +~ ¥ is an cbject of C/Y and

-



11.

Therefore 5.29 is applicable.]

N.B. £* preserves exponential objects.



§6. SUBOBJECT CLASSIFIERS
Let C be a finitely complete category.

6.1 DEFINITION A subobject classifier for C is a pair (2,71), where T:*C > 0

is a monomorphism with the property that for each object X in C and every mono-

morphism £:Y »~ X there exists a unique morphism Xf:x + @ such that the diagram

!

o
v

Hh
Aot

W
v

is a pullback square.

[Note: The morphism xfzx + Q is called the classifying arrow of (Y,f) in X.]

6.2 EXAMPLE :‘LdQ is the classifying arrow of (*C,T) in Q.

-

6.3 LEMMA If (,7) and (Q',T') are subobiect classifiers, then  and Q' are
isamorphic.

PROOF Prom the definitions, there are pullback squares

*c *c *c *c
T! l T T Tt
Qr ———— > Q Y > Q' .
X X'
Therefore ' o x is the classifying arrow of (*g,'r') in Q':



So, by uniqueness, x' o ¥ = id . And, analogously, ¥ ¢ %' = idg.
Q!

6.4 EXAMPLE Take C = SET, let *, = {1}, @ = {0,1}, and define T:x, > Q by

sending 1 to 1. Given X, if Y is a subset of X and if f:Y¥ - X is the inclusion,
then there is a pullback square

Yy — 5 {1}
X ey {Ogl}:
Xy

where ., is the characteristic function of Y.

6.5 LEMMA Let (%, 7) be a subobject classifier —- then VX € Ob C,

XX*C————————>X
idXXT
Xx R X

is a subobject classifier in C/X.

[Note: Recall that C/X is finitely camplete (cf. 4.1).]

6.6 RAPPEL A category C is balanced if every morphism that is simultaneously




a monomorphism and an epimorphism is an iscmorphism.
6.7 EXAMPLE SET is balanced but TOP is not balanced.

6.8 LEMMA Let C be a category and let f:X - Y be a morphism. Assume: f is an
equalizer and an epimorphism — then f is an isomorphism.

PROOF Suppose that f = eq{u,v), henceu e £ =v e £, sou=v (f being an
epimorphism). But the equalizer of u = v is idy, hence there is a unique arrow
g:Y*Xsuchthatfog=idY:

>
4

And then

Therefore £ is an isomorphism.

6.9 LEMVMA If C admits a subobject classifier (Q,7), then every moncmorphism
f:Y - X is an equalizer.

PROCOF Consider the pullback square

Y >*g
fJ lT
X > 8.




Then T is a split monomorphism, hence the same is true of f. And a split mono-

morphism is an equalizer.

6.10 SCHOLIUM A category with a subobject classifier is balanced.

Assume: C admits a subobject classifier (Q,71).

6.11 LFMMA Let (Y,f), (Z,g) be elements of M(X) — then (Y,f) ~¢ (2,9) iff
Xg = Xg°

6.12 LEMMA Given Y € Mor(X,{), form the pullback square

(™

Then}(f=x.

6.13 THEOREM The map [f] - Xg is a bijection between the class SubC X of

subobjects of X and the set Mor(X,0).

[Note: Therefore SubC X "is a set", i.e., has a representative class of

monomorphisms which is a set, thus C is wellpowered.]

Consider pullback squares

Y ————— Y 2! — 7
i T L A
oo > X X' —— X .

k! k'



6.14 IEMMA If (Y,f) ~x (z,g), then (Y',£") ~x (z*,g").

Therefore not only is a pullback of a monomorphism a monomorphism but a

pullback of a subobject is a subobject.

Denote by Sub, the association QOP > SET that sends X to Sub, X and k':X' > X

to Su.bC k', where

t, 1
Sub(_: k .Subg X~ Subg X

is the arrow [f] - [f'].

6.15 LEMMA SubC is a functor.
PROOF It is clear that Subc sends the identity of X to the identity of SubC X.

As for compositions, if

kK':X' > X
k“ :X" -3 X"

then the claim is that

Subg (k' o k") = Subg k" o Sul:s.g k'.

To see this, pass fram the pullback squares

" > Y! Y?! > Y
X" > X! X! > X
kl! k!
to the pullback square
" e > Y
f!l f|
X' s X

k! o kl\



6.16 THEOREM The presheaf SubC is represented by Q: vV X € Ob C,
SubC X = Mor (X,Q).
[Note: The natural isomorphism

SubC -+ Mor (—,{2)

sends a subobject [f] of X to its classifying arrow Xf.]

6.17 LEMMA Every monomorphism £:0Q +~ 2 is an isomorphism.

PROOF It suffices to show that £ o £ = idQ. Form the pullback squares

-

10
He!

£ g

Yy

> *. is a monomorphism and since g is

Since f is a monomorphism, the arrow U

a monamorphism, the arrow V ——* , is a monomorphism, thus the squares in the

¢
diagram
idy !
onv=yv > V > U >*C
R
U : >*g N > . > £

are pullback squares, so by uniqueness, £ ¢ 7 ¢ ! = g, which implies that




f°f°g=f°T0!=g=g0idU

or still, that the square

ia,
U > U
g g
Q > §
fof

comutes. Working through the definitions and bearing in mind that £ o f is a

monomorphism, it follows that this square is in fact a pullback square. Therefore
the outer rectangle

5

13

is a pullback square, hence by uniqueness,

f°f°f=f=f°idg=>f0f=id9.




§7. STEVES
Let C be a small category.

7.1 DEFINITION Let X € Ob C — then a sieve over X is a subset $ of Ob C/X

g £ f
such that the camposition 2 > Y > X belongs to § if Y

> X belongs to $.

7.2 DEFINITION A subfunctor of a functor F:C** - SET is a functor G:C*¢ - SET

such that v X € Ob C, GX is a subset of FX and the corresponding inclusions con-

stitute a natural transformation G - F, so Vv £:¥ + X there is a comwutative

diagram
v
GY > FY
GE Ff
GX > FX .
*x

7.3 LEMMA Fix an object X in C — then there is a one-to-one correspondence

between the sieves over X and the subfunctors of hX
PROCF If § is a sieve over X, then the designation

GY = {f:Y X & f ¢ $§}

9
defines a subfunctor of h, (given 2

> Y, Gg:GY ~ GZ is themap £ ~ £ o g).
Conversely, if G is a subfunctor of hX' then GY <« Mor(Y,X) and

§=Ugy
Y




is a sieve over X.

7.4 EXAMPLE The maximal sieve over X is 8 = Ob C/X and the associated

subfunctor of hX is hX itself. The minimal sieve over X is smin = @ and the

associated subfunctor of h, is f, (the initial object of C).
C

—

Consider now the functor category
¢ = 1, e .
N.B. é is wellpowered (cf. 2.14).
7.5 LEMMA The monomorphisms in é are levelwise, i.e., an arrow =:G > F in é

is a monomorphism iff v X € Ob C,

EX:GX + FX

is a monomorphism in SET.

Suppose that Z:G » F is a monomorphism in é - then (G,Z) € M(F), so
VX €EObC,

(GX,EX) € M(FX)
(GX,EX ~FX (G'X,8Y),
where G'X is a subset of FX and E}’{ is the inclusion G'X - FX.

7.6 LEMMA G' is a subfunctor of F.

It follows that there is a one~-to-one correspondence between the subobjects

of F and the subfunctors of F.



7.7 THEOREM Let C be a small category -- then é admits a subobiject classifier.

Definition of §! There are two ways to proceed.

® Define

Q:c%F & ser

— JuiSi———

on an object X by letting (X be the set of all subfunctors of hX and on a morphism

f:Y -~ X by letting Qf:(X - (¥ operate via the pullback square

Qf (G} —— G
hy > hy
he
® Define
Q:¢F 5 gEr

on an object X by letting (X be the set of all sieves over X and on a morphism

f:Y > X by letting QFf:0X > ¥ be the rule § > § - £, where § - £ = {g:f o g € $}.

Definition of T1:%x, - @ In terms of subfunctors, TX(*) = bX and in terms of
C

sieves, TX(*) =3 ax*

The claim then is that the pair (2,7} is a subobject classifier for é and
for this we shall work with sieves, the details in the subfunctor picture being
analogous. So let Z:G + F be a monamorphism, where w.l.o.g., G is a subfunctor
of F —— then the classifying arrow Xg:F > Qof (G,E) in F at a given X € Ob C
is the map

(XE)X:FX » (X



that sends x € FX to the sieve

f

(XE)X(X) = {Y > X: (Pf)x € GY}.

Since
(xE)X(X) = Smax <=>x € GX,

the diagram

111
b

— %
b

2
R

(XE)X
is a pullback square in SET, thus the diagram

G >

»

13>

[11
-

is a pullback square in (§ This completes the verification, modulo uniqueness,

i.e., if

{11
— ¥
HHoRs

|

k]
%
k)

X

is a pullback square, then y = Y- «.. .



7.8 EXAMPLE Let G be a group, considered as a category G -- then the category
of right G-sets is the functor category [QOP,SE?I'] , thus is cartesian closed (cf.
5.21) and admits a subobject classifier (cf. 7.7).

Iet C be a small category -- then

e C fulfills the standard conditions (cf. 3.4 and 3.6);
. E_E admits a subobject classifier (cf. 7.7).

7.9 LEMMA Every epimorphism in é is a coequalizer.

PROOF Suppose that Z:F »+ G is an epimorphism. Write 5 =m o k per 3.9, thus
m is a monomorphism and k is a coequalizer. But then m is necessarily an epi-

morphism and § is balanced (cf. 6.10). Therefore m is an isomorphism, hence E is

a coequalizer.



§8. HEYTING ALGEBRAS

A bounded lattice (X,<) is called a Heyting algebra if C(X,<) is cartesian
closed (as a category with finite products).

N.B. If x,y,z € X, then

XAy£z<=>xszy (cf. 1.4).

S0, e.qg.,
Yy £z <=> zy=l.
In particular: Vv x € X, ¥~ = 1. And
Z Ay < z.

In particular: V x € X, x A 0° = 0.
8.1 EXAMPLE Every boolean algebra is a Heyting algebra (cf. 5.5).

8.2 LEMMA Let (X,<) be a poset which is linearly ordered (v x,y € X, either
X < yor y < x) and with least and greatest elements 0 and 1 - then (X,<) is a
bounded lattice and, as such, is a Heyting algebra.

PROOF C(X,<) has binary products:

T o xifxzsvy
XAy =
_ yify £ x
and binary coproducts:
T o yifx<y
XVys=

x if y < x.
This said, the prescription
"— lifx <y

vifysx&y=x




defines an exponential object, so C(X,s) is cartesian closed.

8.3 EXAMPLE The closed unit interval [0,1] c¢ R in its usual ordering is a

Heyting algebra (but not a boolean algebra).
8.4 LEMMA A Heyting algebra is necessarily a distributive lattice.

The difference between a boolean algebra and a Heyting algebra lies in the

notion of complement.

8.5 DEFINITION Let (¥,<) be a Heyting algebra. Given x € X, put — X =

0* — then — X is called the pseudocomplement of x.

N.B. In a boolean algebra (X,<),

0= xvil=s — x {(cf. 5.5).

8.6 LEMMA Iet (X,<) be a Heyting algebra -~ then v x € X%,

— X = viy:x A y = 0}.

8.7 EXaMPLE Iet S be an infinite set and let X be the subset of the power
set PS consisting of all finite subsets of S together with S itself — then (X,c)
is a distributive lattice but it is not a Heyting algebra.

[If x € X and x = @, then the set of y € S such that x N y = # has no largest

member. ]

To recapitulate:

boolean algebra => Heyting algebra => distributive lattice




and none of the implications are reversible.

8.8 RULES In a Heyting algebra (X,x<),

(L) — 0=1, — 1=0; 6) xsy=— — x<— — i
(2)xsy=>-—-—|ys———lx; (?)xs—‘—lx,

B — x=— — — X 8) — — — — X =— — ¥

4) — xvy)=—7 XA— ¥ (9) — — XAYy)=— — XA— — Vi
(5) — x vy =< W) — — = — .

[Note: This list is by no means exhaustive but suffices for our purposes
(there is another list to the effect that any Heyting algebra satisfies the axioms

of the intuitionistic propositional calculus).]

8.9 LEMMA 1et (X,<) be a Heyting algebra — then (X,<) is a boolean algebra

iff\y‘xEX,xv—-lx=l.

[Note: In any Heyting algebra, x A — x = 0.]

8.10 LEMMA Let (X,<) be a Heyting algebra — then (X,<) is a boolean algebra

iff vxeX, — — x=X.

8.11 EXAMPLE Given a topological space X, let O(X) be the set of open subsets
of X, thus under the operations
UaAaV=0UnV

U<V<=>UcV, , 0=8,1=X%,
UvVvV=U0UyV

0(X) is a bounded lattice. Denote by O(X) the category underlying O(X) — then



O(X) is cartesian closed:
U .
V =UWM@WNUCcV),

Therefore O0(X) is a Heyting algebra. Here
— U=g =intx-U) =X -ct U
=>

[Note: In general, O(X) is not a boolean algebra (cf. 8.9 and 8.10).]

8.12 DEFINITION Let (X,<) be a Heyting algebra —— then an x € X is boolean i

[Note: It is always the case that x < — — X.]

8.13 EXAMPLE In 8.11, an open set U is boolean iff it coincides with the

interior of its closure.

8.14 NOTATION (xb,s) is the subposet of (X,<) whose elements are the boolean

elements of X.

8.15 THEOREM (xb,s) is a boolean algebra.

PROOF First,

— — =1
so 0 and 1 are boolean. Next, if x,v € X are boolean, then

) BAY) S XA Y =X AY,



thus x A y is boolean. On the other hand, x v y is not necessarily boolean. To
remedy this, put

b
<
9
i
|
l

| xvy.

— = XYY == =/ — & VY)
=— — XVy)=xVvy.
S0, with these definitions, (Xb,s) is a bounded lattice (which, in general, is not

a sublattice of (¥X,<)). There remains the claim that (Xb,s) is distributive and

complemented.

® VvV X,V,ZEC Xb:

i
"
>

x A (yvaz) — — (y Vv 2)
=— — XA— — (yV 2

= — — XA (yV2)

=— — (xAy) v (x4 2)

Il

xAy) v (xaz).

Analogously,

xVv(yaz =&xvy) Axya.

® Vx€xb:

XA—-—!x=0

=— [ xv-— x))



i
T
|
_l

i
|
|

»

>

z

8.16 THEOREM Let C be a small category — then v F € Ob C, the poset Sub, F
c

is a Heyting algebra.

PROOF Suppose that G, ,G, are subfunctors of F -— then under the operations

172

GlX n G2X

(Gl A GQ) X

r X =g, 1IX = FX,

Il

(Gl v GZ)X GlX U GZX

G G

Sub, F is a bounded lattice. As for the exponential object Gzl, take (Glz)x to

10

be the set of x € FX which have the property that if f:¥Y - X and if (Ff)x € G:LY'

then (Ff)x € G,Y.

2
[Note: So, if G is a subfunctor of F, then (— G)X is the set of x € FX

such that for all f:Y » X, (Ff)x &€ GY.]

8.17 EXAMPLE Consider the functor category [QOP,SET] per 7.8 - then for

every right G-set X, the Heyting algebra Sub, X is actually a boolean algebra.
G



§9. LOCALES

A locale is a Heyting algebra (X,s) for which the category C(X,<) is complete
and cocamplete (cf. 1.10).

[Note: If C(X,<) is cowplete and cocamplete, then Q(Xb,s) is complete and

cocanplete, hence the boolean algebra (Xb,s) (cf. 8.15) is also a locale.]

9.1 EXAMPLE The closed unit interval [0,1] < R in its usual ordering is a
locale (cf. 8.3).

9.2 EXAMPLE If X is a topological space, then O(X) is a locale (cf. 8.11).
[Here Vv Ui = U Ui while & Ui is the largest open set contained in all
iex i€l i€l
the Ui.]

9.3 EXAMPLE If C is a small category and if F € Obé, then Sub, F is a locale

10

(cf. 8.16).

9.4 LEMMA Suppose that (X,<) is a locale — then for any index set I,

xAa (v y.)= Vv (xAy.).
jer "t dex 1

[Recall that left adjoints preserve colimits.]

[Note: If (X,<) is a bounded lattice for which the category C(X,<) is
camplete and cocamplete (cf. 1.10) and with the property that "arbitrary joins
distribute over finite meets", i.e., the conclusion of 9.4, then (X,<) is a Heyting

algebra or still, is a locale. Proof: Put

27 = vix:x Ay < z}.]




Generically, locales are denoted by L,M, ... and are to be regarded as

categories.

9.5 LEMMA Iet L be a locale. Given x € L, put

tx = {y € L:x < y}
_ W ={y € Ly < x}.
To4x
Then the subposets are locales.
+x

9.6 DEFINITION Let L,M be locales - then a localic arrow f:L - M is a pair

of functors

fe:l > M
f*:M > L

such that f* is a left adjoint for f, and f* preserves finite products.

9.7 REMARK There is a one~to-cne correspondence between the localic arrows

f:L > M and the functors f*:M -+ L such that

i

(1) £( v y.) v By,
ieT ieT

(2) £*(y A y') = £%(y) A £*(@"),
(3) £*{1) = 1,
for all indexing sets I and elements YirY,y' of M.

[If f* satisfies these conditions, then by quoting the appropriate "adjoint

functor theorem" one infers the existence of £, (f, is uniquely determined by f




(in a poset, the only isomorphisms are the identities (cf. 1.2))). Specifically:
f,.(x) = viy € M:f*(y) < x} (cf. 1.4).]
9.8 EXAMPIE Iet X,Y be topological spaces and let f£:X + Y be a continuous
function -- then f induces a localic arrow f£:0(X) - O(Y).
[Take £* = £, hence

£,0) = U (Ve oM £ W) cu)
or still,

£,(U) =Y - EX0.]

9.9 NOTATION LOC is the category whose objects are the locales and whose

morphisms are the localic arrows.
9.10 THEOREM ILOC is complete and cocomplete.

N.B. An initial object for LOC is {x} and a final object for LOC is {0,1}.
[E.g.: Given L, a localic arrow f:L + {0,1} must have the property that
£*¥(0) = 0, £*(1) = 1 implying thereby the uniqueness of f as well as its existence

(cf. 9.7).]

9.11 DEFINITION A point of a locale L is a localic arrow p:{0,1} > L.

9.12 DEFINITION An element x of a locale [ is prime if v a,b € L,

anbzsx=as<xorbcs<x.

1A

9.13 ILEMMA Iet L be a locale — then there is a bijection between the points

of L and the prime elements of L.




PROOF Given a point p of L, put
x = vi{a € L:p*(a) = 0}.
Then p*(x) = 0, hence x = 1 (p*(1) = 1). And x is prime:
anbsx=pFlanb) =0
=> p*(a) A p*(b) =0
=> p*{a) = 0 or p*() =0
=>3a < xorbs<x
Conversely, if x € L is prime, define p*:L - {0,1} by

T 0ifasx
p*{a) =
_lif a £ x.
Then p* satisfies (1), (2), (3) of 9.7, so p* is the left adjoint constituent of
a localic arrow p:{0,1} -~ L.
® Start with a point p, form the prime element x as above, and consider

the point q associated with x. Given a € L,

g*(a) = 0 <=> a £ x <=> p*(a) = 0.
Therefore g* = p* or still, g = p.
® Start with a prime element x, pass to the point p corresponding to X,
thence to the prime element y corresponding to p. Given a € L,
a<x<=>p*a =0<=>axsxy.

Therefore x = v.

9.14 EXAMPLE Iet X be a topological space — then each x € X determines a



point px:{O,l} + O(X), thus

p;';(U) =0 <=>x €U,

the prime element per Py being X - {x}.

9.15 NOTATION Given a locale L, let

pt(L) = Mor({0,1},L),
the set of points of L.
[Note: It can happen that pt(L) = #. E.g., take the real line R in its
usual topology and let

L= (O(B)b’ 3)-
Then L has no prime element, thus pt(L) = g (cf. 9.13).]
9.16 LEMMA Iet [ be a locale. Given x € L, put
U, = {p € pt(L):p*(x) = 1}.
Then the collection {szx € L} is a topology on pt(L).
[Note: We have
. . . % XAY
i€l 71 jer 1

Ul = pt(f-—):

N.B. If f:L - M is a localic arrow, then postcomposition

pt(£) :pt (L) ~ pt(M) (p > £ °p)

is continuocus.




[{In fact,

PE(D) T (U) = Upy -]
Therefore these definitions give rise to a functor
pt:ILOC - TOP.
In the other direction, let
£oc:TOP > 10C
be the functor that sends X to O(X) and f£:X -~ Y to its associated localic arrow
£:0(X) »~ O(Y) (cf. 9.8).

9.17 THEOREM The functor pt is a right adjoint for the functor foc.

[Note: The arrows of adjunction

u € Nat(id,mp, pt o foc)

v € Nat{(foc e pt, idIOC)

are
e Given a topological space X,
By s X —> pt(0(X))

sends x € X to P, {ct. 8.14);

® Given a locale L, the left adjoint part of

\)L:O(pt(!.)) > L

is the functor
\)f:L — O(pt{l))

thatsendsxGLton.]




9.18 RAPPEL ILet X be a topological space -- then a nonempty closed subset

S ¢ X is irreducible if for all closed subsets S8, of X,

2

SCS1U82=>SCSlorSCS

2’
i.e., if X - S € O(X) is prime. E.g.: V x € X, {x} is an irreducible closed
subset of X.

[Note: The only irreducible closed subsets of a Hausdorff space are single-

tons. ]

9.19 DEFINITION A topological space X is sober provided that every irreducible
closed subset S of X is the closure of a unique point x € X:8 = {x}.

[Note: Consider the map x -+ {x} from the points of X to the irreducible
closed subsets of X -- then X is Ty iff this map is injective and X is sober iff
this map is bijective.]

9.20 EXAMPLE The spectrum of a commutative ring with unit in its Zariski
topology is sober.

9.21 CRITERION A topological space X is sober iff the arrow of adjunction

Uy X > pt(0(X))
is bijective.
9.22 IEMMA ILet L be a locale — then pt(l) is a sober topological space.
PROOF It is a question of applying 9.21 when X = pt(L). So let

0:{0,1} -~ O(pt(L))

be an element of pt(Q(pt(L))) —— then there is a unique point g € pt(L) such that



pq = Q (here
pg(Ux) =0<=>qgu, (cf. 9.14)).
To see this, let
y = vi{x € L:Q*(Ux) = 0}.

Then Q*(Uy) =0, hence y = 1 (Q*(Ul) = Q*(pt{L)) = 1) and it is immediate that

y is prime. ILet now q € pt(l) be the point corresponding to y, thus

0if x <y
g*(x) = (cf. 9.13).
lifx{y

Claim: pq = Q. Proof: v x €L,
* = =
pq(UX) 0 <=>q ¢ U,
<=> g*(x) =0

<=>x <y

<=> Q*(Uu) = 0.

That g is unigue can be established by a similar calculation.
9.23 DEFINITION A locale L is spatial if U, = Uy => X = Y.
N.B. In other words, L is spatial if

\)I:L + O(pt(L))

is injective (it is surjective by definition).

9.24 EXAMPLE Iet X be a topological space -— then the locale O(X) is spatial.



[Given U € O(X),

\%(X) (U) = {p € pt(O0X)) :p*(U) = 1}.

* =
p, € V& (x) (U) <=> x € U.
Therefore
* -
Vo (%) :0(X) - O(pt(0(X)))
is injective.]
The reason for introducing "sober topological spaces" and "spatial locales"

is the following easy consequence of 9.17.

9.25 THEOREM The category of sober topological spaces is equivalent to the

category of spatial locales.

Details:
® A topological space X is sober iff the arrow of adjunction
uX:X » pt(O(X))
is a homeomorphism.
[If X is a topological space, then My is continuous (being a morphism in
TOP) and if in addition X is scber, then 1% is bijective (cf. 9.21), hence open:
UX(U) = UU L Q]
e A locale L is spatial iff the arrow of adjunction

vpsopt(l)) ~ L

is an isomorphism of locales.



10.

[If | is a spatial locale, then \)? is bijective. Moreover, v’l‘: preserves

the poset structure (clear) and reflects it:
UX c U ~ => UX

so by injectivity, x A v = x or still, x = v.]

Turning to 9.25, the image of the functor pt is contained in the full sub-
category of TOP whose objects are the sober topological spaces (cf. 9.22) and the
image of the functor foc is contained in the full subcategory of LOC whose objects
are the spatial locales (cf. 9.24). Therefore the adjunction (foc, pt) restricts
to an adjunction on these smaller subcategories and by the above observations, the

restricted arrows of adjunction are natural isomorphisms.

9.26 SCHOLIUM Iet X be a topological space -- then the locale O(X) is iso~
morphic to the locale of open subsets of a sober topological space.

[For O(X) is spatial (cf. 9.24), hence

Vo (x) :0(pt(0(X))) + O(X)

is an isomorphism of locales. But pt(0(X)) is sober (cf. 9.22).]



§10. SITES
Iet C be a small category,

10.1 NOTATION Given a sieve $ over X and a morphism f£:Y - X, put

f*$ = {gicod g=Y & £ o g € $}.

Then f*$ is a sieve over Y.

10.2 DEFINITION A Grothendieck topology on C is a function t that assigns to

each X € Ob C a set 1, of sieves over X subject to the following assumptions.

X

(1) The maximal sieve smax S TX.

{(2) If § ¢ Ty and if £:Y - X is a morphism, then f*§ ¢ Ty
{(3) If 8 € Ty and if $' is a sieve over X such that f*$' € Ty for all

f:¥ - X in 8, thenﬁ'ETX..

10.3 DEFINITION A site is a pair (C,t), where C is a small category and T is

a Grothendieck topology on C.

10.4 EXAMPIE Iet L be a locale. Given X € L, a sieve over x is a subset § of

¥x (cf. 9.5) which is hereditary in the sense that

VsES Yacel,ass=>ac€s5.
One then says that 3 covers x if x = v $. Demnoting by Ty the set of all such §,
the assignment x - Tg is a Grothendieck topology T on L.
[It is straightforward to check (1), (2), and (3).

Ad (1) Here 3max = yx and it is obvious that

vy = ¥,
v




ad (2) IfSETxandifysx (f:y » x), then
f*$ = {s < yis € $} = {s A y:5 € §}
and the claim is that £*3 € Ty. In fact,

vy=xXxAy=(v8) Ay =v{s A yis € $} = vi*g,

Ad (3) Given $', suppose that

y=v{s' ay:s' € $'} (ye§g.

Then
X=Vvg= VvV §= V v s'As= v v s' A s
SES s€$ s'eg! s'eg' scE$
= v (s A (v 8))= v s'ax= v s,
Slesl 865 Stest S'ES'

Therefore $' € Tx.]

N.B. Take L = 0(X), where X is a topological space -~ then a sieve $ over an

open subset U of X is a set of open subsets V < U such that V! <« V& §=>V' € §.

And
SETU<$> U v=20U.
ves
10.5 LEMMA Let (C,7) be a site — then V X € Ob C,
| . ]
$ETX&SC5 => & ETX
and

3,8' e Tx = & NnNg e Tyt

10.6 REMARK Suppose that we have an assigrment X - Ty satisfying (1), (2)

of



10.2 and for which

ﬁETX&ﬁcS‘:vﬁ‘ETX.

Then to check (3) of 10.2, it suffices to consider those $' such that §' < $.

Let C be a small category —— then by Tc we shall understand the set of

-

Grothendieck topologies on C.

I

10.7 EXAMPLE Take C = 1 —- then C has two Grothendieck topologies: {$ __ }

max
and {Smmpﬁmx} .

10.8 DEFINITION

e The minimal Grothendieck topology on C is the assigmment X -+ {ﬁmax}‘

e The maximal Grothendieck topology on C is the assignment X + {$}, where

$ runs through all the sieves over X.

Given 1,T' € T, Wwrite T < T' If VX € C, T, © Ty.

c’ XX

10.9 1EMMA The poset Tc is a bounded lattice.

PROOF If 1,1' € 1., let T Ao T' be their set theoretical intersection and let

Cl
T v 7' be the smallest Grothendieck topology containing their set theoretical union.
As for 0 and 1, take 0 to be the minimal Grothendieck topology and 1 to be the

maximal Grothendieck topology.

10.10 THEOREM The bounded lattice 1. is a locale.

0

Iet C be a small category with pullbacks.



10.11 DEFINITTION A coverage on C is a function K that assigns to each

X € Ob C a set Ky of subsets of Ob C/X subject to the following assumptions.
(1) If £:Y » X is an isomorphism, then {f:Y - X} is in K-

(2) 1If {fi:Yi +X(ie1I)} is in Ky then for any morphism g:Z - X,

pr,
{Yi Xy % > 7 (1e1)}
is in KZ.
[Note: Here
pPr,
Yl XX Z > Z
g
Yi » X
£,
1

is a pullback square.]

(3) If {f5:v, > X (i ¢ I)} is in Ky and if v 1 € I, {gij:Z..

isinKY‘, then
i

{f. o g..:Z

1 >X (1€e1, je€ Ii)}

i3" %43

is in KX
10.12 EXAMPIE Iet [ be a locale. Given x € L, let KX be the set of all subsets
of +x consisting of those set indexed collections {xi:i € I} such that v X, =X -

iex
then the assigmnment x - K, is a coverage K on L.



10.13 DEFINITION Let K be a coverage on C -~ then the Grothendieck topology

T on C generated by K is the prescription

$E€T <=>3R€KX:RC$.

X

10.14 EXAMPLE Iet L be a locale — then the Grothendieck topology on L per

10.4 is generated by the coverage on L per 10.12.

10.15 REMARK Suppose still that C is a small category with pullbacks. ILet
T be a Grothendieck topology on C — then there is a coverage K that generates T,
viz.

R e Kx <=> <R> € Tgr

where

<R> = {f o g:f € R, dom £ = cod g}.



§11. SHEAVES
Iet C be a small category,

11.1 RAPPEL For any X € Ob C, the sieves over X are in a one-to-one corre-

spondence with the subfimctors of hX (cf. 7.3).

Because of this, the notion of Grothendieck topology can be reformulated.

11.2 NOTATION Given a subfunctor G of hX and a morphism f£:Y » X, define £*G

by the pullback scuare

f*G ——m— G

£3G J ig
hy ———

in g: -— then £*G is a subfunctor of h,.

11.3 DEFINITION A Grothendieck topology on C is a function T that assigns

to each X € Ob C a set Ty of subfunctors of hx subject to the following assumptions.
(1) The subfunctor hX € Ty-

(2) 1I£ G € 5% and if £:Y » X is a morphism, then £*G € Ty

3y If G € 1, and if G' is a subfunctor of hX such that £*G' ¢ Ty for all

X
fEGY,thenG'GTX.

[Note: For use below, observe that 10.5 and 10.6 can be stated in temms of




subfunctors instead of sieves.]

Suppose that S is a reflective subcategory of é Denote the reflector by
a —- then there is an adjoint pair (a,1), 1:8 -~ § the inclusion.

Assume: a preserves finite limits.

[Note: It is automatic that a preserves colimits.]

i
G>hx

such that giG is an isomorphism —— then the assignment X - T is a Grothendieck

11.4 THEOREM Given X € Cb C, let Ty be the set of those subfunctors G

topology T on C.

PROOF Since
§(idhx) = idahx’

it follows that hX € Ty hence (1) is satisfied. As for (2), by assumption a

preserves finite limits, so in particular a preserves pullbacks, thus

af*G — 5 aG
aig,. ai,
ah,, > al
ahg

is a pullback square in S. But ai, is an isomorphism. Therefore ai is an

G £*G

isomorphism, i.e., f*G € T The verification of (3), however, is more complicated.

v

e Suppose that G € % and G is a subfunctor of G':




iG:G - hX

igr:G' > hy

, 1:G > GY,

i.=1

G G'oj_=>§i

G=§i, ° ai.

G

But ai. is an isomorphism, hence

id = ai

o oeale @iy

which implies that giG, is a split epimorphism. On the other hand, a preserves
monomorphisms, hence éiG, is a monomorphism. Therefore g_iG, is an isomorphism,
i.e., G' € Ty
e Tt remains to establish (3) under the restriction that G' is a subfunctor
of G. Using the Yoneda lemma, identify each f € GY with f € Nat (hY,G) and display

the data in the diagram

¥ ' '
hYXGG > G G

i i i
£

hy PGy

f i

There is one such diagram for each Y and each f € GY, so upon consolidation we have

T
_l_Y]_ J%L g G" > Gt
s i




Now i is an equalizer (all monomorphisms in é are equalizers), thus ai is an
equalizer (by the assumption on a}. But the assumption on G' is that v Y and

v £ € @Y, §if is an isomorphism, thus ai is an epimorphism (see 11.8 below).
And this means that ai is an isomorphism (cf. 6.8). Finally,

ina=1,°1i=>ai, =ai., o ai.
G! G -G -3 -

Therefore ai

! is an isomorphism, i.e., G' € 1

x.
11.5 RAPPEL Given a category C, a set U of objects in C is said to be a
£ >
separating set if for every pair X Y of distinct morphisms, there exists
>
g

aUe€ land a morphism ¢:U ~ X such that £ o ¢ =2 g ¢ ©.

11.6 EXAMPLE Suppose that C is small —- then the h, (¥ € Ob C) are a separating

set for C.

11.7 1EMMA Let C be a category with coproducts and let U be a separating set ——

then V X € Ob C, the unique morphism

11 ||  domf
vel £ € Mor (U,X)

> X

such that v £, I‘X e :'Lnf = f is an epimorphism.

11.8 APPLICATION Suppose that C is small., Working with C, take X = G in
11.7 — then

> G

WAL By
Y

£ Tq

is an epimorphism.



[Note: To finish the argument that ai is an epimorphism, start with the

relation

Te © | Hif:ionG,.
Then

als ° af il i) =aie alls, -

Since I‘G is an epimorphism, the same is true of g_I‘G (left adjoints preserve epi-

morphisms). And

is an isomorphism, call it ¢, hence
gI'G =ai o (_qIIG,

Therefore ai is an epimorphism.]

11.9 NOTATION Dencte by Sc the "set" of reflective subcategories S of § with

the property that the inclusion 1:S -~ é has a left adjoint §=C:5 -+ S that preserves
finite limits.
11.10 DEFINITION Fix a Grothendieck topology T € e~ then a presheaf
Fe&ob (:2 is called a 1-sheaf if vX€Ob Cand v G € Txr the precomposition map
ié:Nat(hX,F) -+ Nat (G,F)
is bijective.
Write §_le (C) for the full subcategory of é whose objects are the 1-sheaves.

11.11 EXAMPLE Take for T the minimal Grothendieck topology on C —- then
__SllT (g) = g'



[Note: In particular, Sh (1) = i = SET.]

11.12 EXAMPLE Take for 1 the maximal Grothendieck topology on C —- then the
objects of _E‘_;_I}_T (C) are the final objects in é

[First, v X € Ob C, #, ~ hX But @ is initial, thus the condition that F
C C

be a t-sheaf amounts to the existence for each X of a unique morphism hX - F,

Meanwhile, by Yoneda, Nat(hX,F) = FX.]
11.13 EXAMPLE Given T € Tor define 0T by the rule

{0} if @, €1
C

X

0. =
g if g/\ E Ty
¢ X

Then 0_ is a t-sheaf and, moreover, is an initial object in Sh. Q).

11.14 THEOREM The inclusion 1_:Sh_(C) ~ C admits a left adjoint a _:C + Sh, (Q)
that preserves finite limits.

[Note: We can and will assume that a_ ¢ 1_ is the identity.]

Various categorical generalities can then be specialized to the situation at

hand.

11.15 DEFINITION A morphism f:A -+ B and an object X in a category C are said
to be orthogonal (f 1 X) if the precomposition map £*:Mor(B,X) - Mor(A,X) is bi-

jective.



11.16 RAPPEL Let D be a reflective subcategory of a category C, R a reflector

for D (cf. 5.10). Let WD be the class of morphisms in C rendered invertible by R.

[ IetXeObg--tllenXEObI_)iffvfewD,fLX.

. I_etfemr(_l-—thenfEwDiffVXGOb]_Ig,fiX.

e

11.17 NOTATION Iet W . be the class of morphisms in é rendered invertible by

a
-T
11.18 EXAMPLE If F € Ob C, then F is a t-sheaf iff VE € W, & L F.
11.19 EXAMPIE If € Mor C, then © € W_ iff for every T-sheaf F, 1 F.
[Note: If X € Ob Cand if G € T then for every t-sheaf F, iG 1+ F, thus
ig € wT.]

11.20 RAPPEL Let D be a reflective subcategory of a category C, R a reflector

for D (cf. 5.10) — then the localization w];l(_: is equivalent to D.

11.21 APPLICATION The localization w;lé is equivalent to Sh_(C).

11.22 RAPPEL Iet D be a reflective subcategory of a finitely complete category

C, R a reflector for D (cf. 5.10) —- then R preserves finite limits iff 0/, is pull-

back stable.

[Note: When this is the case, (UD is saturated (i.e., £ € WD iff Rf is an

isomorphism) . ]




11.23 APPLICATION Since gTzé > §I_1_T (C) preserves finite limits, it follows

that wT is pullback stable (and saturated).

(] o

11.24 EXAMPLE Take C = 1, so 1 = SET -~ then #1; = 2. On the other hand,

-

SET has precisely 3 reflective subcategories: SET itself, the full subcategory

of final objects, and the full subcategory of final obijects plus the empty set
(#RX =1 if X = @, R = g). In terms of Grothendieck topologies, the first two
are accounted for by 11.11 and 11.12. But the third cannot be a category of
sheaves per a Grothendieck topology on C = 1. To see this, note that the class of
morphisms rendered invertible by R consists of all functions f:X > Ywith X = @
as well as the function § -~ # (thus the arrows § >~ X (X =z @) are excluded).
Suppose now that Z is a nonempty set and X,Y are nonempty subsets of Z with an

empty intersection. Consider the pullback square

where :LX,J.Y are the inclusions -— then RJ_Y is an isomorphism but R;_Y is not an
isomorphism. Therefore the class of morphisms rendered invertible by R is not

pullback stable.

11.25 NOTATION Let F € Ob C be a presheaf. Given X € Ob C, let T,(F) be the




set of subfunctors iG:G > hX such that for any morphism f£:Y » X, the precomposition

arrow
(if*G)*:Nat(hY,F) > Nat (£*G,F)

is bijective.
11.26 LEMMA The assigmment X - TX(F) is a Grothendieck topology t(F) on C.

N.B. T(F) is the largest Grothendieck topology in which F is a sheaf.

11.27 SCHOLIIM For any class F of presheaves, there exists a largest Grothen-

dieck topology T(F) on C in which the F € F are sheaves.

11.28 DEFINITION The canonical Grothendieck topology Tean 0 € is the largest
Grothendieck topology on C in which the hX(X € Ob C) are sheaves.

[Note: Let t € T, —— then T is said to be subcanonical if the h, (X € Ob Q)

—

are t-sheaves. ]

11.29 EXAMPIE Iet L be a locale -- then the Grothendieck topology T on L
defined in 10.4 is the canonical Grothendieck topology.
[Note: This applies in particular to the locale 0O(X), where X is a topological

space, @"T (0(X)) being the traditional sheaves of sets on X, i.e., Sh(X).]

11.30 EXAMPLE Take for X the Sierpinski space (so X = {0,1} with topology

{X,8,{0}}) —- then sSh(X) (c£. 11.29)is the arrow category SET(-).



§12. LOCAL ISOMORPHISMS

Iet C be a small category.

12.1 RAPPEL § fulfills the standard conditions (cf. 3.4 and 3.6) and is
balanced (cf. 6.10 and 7.7).

Iet H,K € Ob § be presheaves and let Z € Nat(H,K). Form the pullback square

f1}

e
111

[1}

Then p and q are epimorphisms.

12.2 NOTATION SH:H -+~ H <% H is the canonical arrow associated with idH’ thus

p°6H=idH=q0<SH.

N.B. GH is a monomorphism.

12.3 LEMMA E is a monomorphism iff (SH is an epimorphism.

[Note: Consequently, if £ is a monomorphism, then SH is an isamorphism. ]

Fix a Grothendieck topology 1 € Tor

12.4 DEFINITION Let H,K € Ob C be presheaves and let = € Nat(H,K). Factor

per 3.9:




Then ¥ is a t-local epimorphism if for any f:hY + K, the subfunctor f*M of hY

defined by the pullback square

M M
1eay m
hy - K
£
is in T,

12.5 LEMMA Every epimorphism in § is a t-local epimorphism.

12.6 DEFINITION Let H,K € Ob C be presheaves and let Z € Nat(H,K) —- then

33}

is a t-local monomorphism if (SH is a t-local epimorphism (cf. 12.3).

12.7 LEMMA Every moncmorphism in (_E is a 1-local monomorphism.

[1}

12.8 DEFINITION Let H,K € Ob C be presheaves and let E € Nat(H,K) — then

is a t-local isomorphism if Z is both a t-local epimorphism and a t-local mono-

morphism.

12.9 EXAMPIE If G € T, then i.:G > h, is a T-local isomorphism.

XI

[For any £:¥ - X, there is a pullback square

£f*G > G
if*Gj liG
e
Y

in C and %G € 1, (cf. 11.3), thus i, is a T-local epimorphism. On the other hand,



iG is a monomorphism, hence iG is a T1-local monomorphism (cf. 12.7).]
12.10 THEOREM wT is the class of 1~local isomorphisms.

12.11 APPLICATION Iet H € Ob é -— then the canonical arrow
H—> ITQTH

is a t-local isamorphism.

12.12 APPLICATION Let G € 1y —— then gTiG is an isomorphism (cf. 11.19).

[Note: Suppose that iG:G > hX is a subfunctor -- then i, is a monomorphism,

G

hence iG is a 1-local monomorphism (cf. 12.7). Assume in addition that i(, is a

t-local epimorphism. Claim: G € Ty Proof: Take f = idX and consider

}j)( ——____——'_——_ hX .]
We shall now proceed to establish the "fundamental correspondence”.

12.13 THEOREM The arrows

> T (cf. 11.4)

&
]

(cf. 11.14)

[@]

are muatually inverse.



To dispatch the second of these, consider the composite

c

Take a 1 € Te and pass to __SET (C) - then the Grothendieck topology on C determined

by Sh_(C) via 11.4 assigns to each X € Ob C the set of those subfunctors i.:G ~ h,

such that ETiG is an isamorphism or, equivalently, those subfunctors iG:G > hy

such that iG is a t-local isomorphism (cf. 12.10). But, as has been seen above,

the subfunctors of with this property are precisely the elements of 1.,. There-
X

fore the composite

is the identity map.

It remains to prove that the composite

Sc —> Te —> &¢

- a— —

is the identity map. So take an § € §C produce a Grothendieck topology T on C

per 11.4, and pass to g’.}l«r(g -- then § ¢ .S_llf(g)‘ Thus let F € Ob 8, the claim being
that ¥ € Ob &T(g) or still, that F is a t1-sheaf, or still, that v X € Ob C and
v G e Tyer iG 1 F, which is clear since iG € wT {(cf. 11.19). To reverse matters
and deduce that iSET (C) ¢ S, one has only to show that if Z:H » K is a morphism

in (:2 and if aE is an isomorphism, then §TE is an isomorphism. To this end, factor

Z per 3.9:




5.

Then a& = am o ak. But af is an isomorphism and am is a monomorphism (a preserves
finite limits). Therefore ak is a monomorphism. But ak is a coequalizer (a is a
left adjoint), thus ak is an isamorphism (cf. 6.8). 2And then am is an isomorphism
as well.

e Assume that af is an isomorphism, where £ is a monomorphism — then

z_iTE is an isamorphism.

[Bearing in mind that here H = M, consider a pullback square

f*H —— — H
lf*H ]
}]Y e —— K -
£

Then the assumption that af is an isomorphism implies that §if*H is an isomorphism

which in turn implies that if*H € Ty- Therefore = is a t-local epimorphism or still,

Z is a t-local isamorphism, hence E € wT (c£. 12.10), =0 gTE is an isomorphism.]

e Assume that af is an isomorphism, where I is a coequalizer —- then a E
is an iscmorphism.
[Because gTE is a coequalizer, to conclude that §._TE is an isomorphism, it
suffices to verify that gTE is a monomorphism (cf. 6.8). For this purpose, consider

the pullback square

e
{1}

1]



Then <SH is a monomorphism and there are pullback squares

aq a.d
a 2 2
ap jé a.p a.
aH - > ak ’ a H . >a K .
- -

But &_16H = 5§H is an isomorphism (cf. 12.3), thus QTSH = rSé g 1s an isomorphism

(cf. supra), so §TE is a monomorphism (cf. 12.3).]

12.14 THEOREM Let H,K € O (_Al be presheaves and let E € Nat(H,K) —— then

a f:a H-+akK is an epimorphism in Sh (C) iff E is a t-local epimorphism.

12.15 APPLICATION The epimorphisms in §_{1_T (C) are pullback stable.

[The class of 1-local epimorphisms is pullback stable.]



§13, SORITES

The category :5_1_1:; (C) associated with a site (C,1) has a nunber of properties
that will be cataloged below.

13.1 LFEMMA gl:x_T (C) is complete and cocomplete.

[This is because Sh _(C) is a reflective subcategory of (:3 which is both com-
plete and cocomplete. Accordingly, limits in §p_T (C) are computed as in C:: while

colimits in §1_'1_T (C) are camputed by applying a  to the corresponding colimits in é.]

13.2 LEMMA sh (C) is cartesian closed.
[since a T:é - S—h-r (C) preserves finite limits, it preserves finite products so
one can quote 5.11.]

[(Note: Recall that (E, is cartesian closed {(cf. 5.21).]

13.3 LFEMMA §_11T (C) admits a subobject classifier.

[Note: Therefore Sh - (C) is wellpowered (cf. 6.13).]

The proof of this result will be broken up into several steps (tacitly em-
ploying the license provided by 7.6).

Step 1 Given F € (b C:: and a subfunctor i:G =+ F, define a subfunctor i:G +F

by the pullback sguare

G

> 1. aG
T=T
i 1 ai
T
F 1+ aP .
=1




Step 2 There is a cammutative diagram

> 1. a G
=T

i 1 ail
=T

F > 1.2 F

from which an arrow y:G + G such that the diagrams

Y

v
Qi

- >
G 1 QTG

'—J
.H..____——
[

<

ko
e
G
o)
G

cormmute.

Step 3 Definition: G is closed if G = G. We have

(1) G < G;
(2) Ge H=>G c H;
(3) G =G.
In addition, closed subfunctors are stable under pullbacks.
[Note: To make the last point precise, suppose given an arrow f£:F' = F in é

Define G' by the pullback square

G/ —m——> G
e




and define G' by the pullback square

G ——

F'——

Thealam(—;‘, S0

G=G=>6'=¢"=G'.]
Step 4 VFEObé,
F = F.
In particular: V X € Ob C,

Step 5 Let ({1, T) be the subobject classifier for é {(cf. 7.7). Define

. o ser

on an object X by letting szdx be the set of all closed subfunctors of hX and on

a morphism f:Y » X by letting Qdfzﬁdx - QCKY operate via the pullback square

e — s G
hy ———> by
hf
and define
cl cf




by factoring
Tix, + Q
¢
through QCY‘ (which makes sense since g— = hx) . With these agreements, ch is a
subfunctor of Q, say iCK:QCf’ -+ Q.

Step 6 Consider the pullback square

G — 5 %

Then the classifying arrow X4 factors through QCf' iff G is closed.

Step 7 If F is a 1~sheaf, then it and its t~subsheaves G are closed. This

said, consider the commtative diagram

ct .t cl

Here X; = i7" e X3 and both squares are pullbacks. If y:F > &7 1is another

morphism and if



5.

cl

=
il 19 B
-t

cl

v
)

X
is a pullback square, then icf, ° y is a classifying arrow of (G,i) in F, so

ic/Z °oX =Xy = icg o Xf.;f“, hence y = xif’.

Step 8 *_is a t-sheaf (obvious) and SZOK is a t-sheaf (...). Therefore

10

the pair (S?CE,TC“K) is a subobject classifier for sh (C).

13.4 ILEMMA §§1_T (C) is balanced.

[Taking into account 13.3, one has only to cite 6.10.]

13.5 LEMMA Every monomorphism in _S_ET (C) is an equalizer.

[In view of 13.3, this is a special case of 6.9.]
[Note: It is easy to proceed directly. Thus let E:F » G be a monomorphism

in sh (C) — then 1TE:1TF > 1TG is a monomorphism in é, hence is an equalizer. But

a_ preserves equalizers (since it preserves finite limits).]
N.B. Monomorphisms in _S_gl_,E (C) are pushout stable.

13.6 LEMMA Every epimorphism in _SE_T (C) is a coequalizer.

PROOF Given an epimorphism Z:F - G in §_}3T (C), form the pullback square




v
P > F
u =
F > G
in §Il’c (g) -- then
1Tv
1TP > 1TF
1Tu 1,[
1 F > 1. G
1 =
T

is a pullback square in é Factor 1TE per 3.9:

k m
1TF > M > 1,{(5.

Then by construction there is a coequalizer diagram

Tu
T
1 =
T
1Fe—s 1 G
P T >t
>
1.V k m
M M

in f_: Now apply a. to get a coequalizer diagram

(1}



u
> z
P F > G
>
v
ak
a, am
aM aM
T -T

in sh_(C). Since
T=ame°ak
=T -T
and since £ is an epimorphism, it follows that am is an epimorphism. But am

is also a monomorphism. Therefore a_m is an isomorphism (cf. 13.4) and Z is a

coequalizer, thus being the case of ng.

13.7 LEMMA Sh,_(C) fulfills the standard conditions.
[Epimorphisms in @T (C) are pullback stable (cf. 12.15) and every epimorphism

in _Sl‘l_T (C) is a coequalizer (cf. 13.6).]
13.8 ITEMMA In _Sﬁ_c (C), filtered colimits commute with finite limits.

13.9 RAPPEL Coproducts in § are disjoint.

[In other words, if F = _I_L E’i is a coproduct of a set of presheaves Fi, then
i€l

viel, ini:Fi—rFisammrphismandvi,j eI {i=73]), the pullback

F; X Fy is the initial object in C.]




13.10 LEMMA Coproducts in _Sl'_l_T (C) are disjoint.

13.11 RAPPEL Coproducts in § are pullback stable.

{In other words, if F = _U_ Fi is a coproduct of a set of presheaves Fi’
ieT

then for every axrow F' > F,

1l Fx_F, = F'.]
ieT Fi

13.12 IEMMA Coproducts in _Sl_}_T (C) are pullback stable.

13.13 DEFINITION ILet C be a category which fulfills the standard conditions.

u
>

Suppose that R X is an equivalence relation on an object X in C. Consider
>

v
the coequalizer diagram

u

>
R X
>

T >X/R = coeqlu,v).

\'4

Then there is a commtative diagram

v
R > X
u i
X > X/R
w

and a pullback square



X > X/R .

One then says that R is effective if the canonical arrow
R—> X XX/R X

is an isomorphism (it is always a monomorphism) .

[Note: C has effective equivalence relations if every equivalence relation

is effective.]

13.14 ILEMMA Equivalence relations in ”S_l_fx_T (C) are effective.

[The usual methods apply: Edquivalence relations in SET are effective, hence
equivalence relations in é are effective etc.]

13.15 LEMA The a h, (X € Ob C) are a separating set for sh (C).

PROOF Let Z,EZ':F ~ G be distinct arrows in Sh (C) -- then the claim is that
3X€0bCando:gh, »F such that £ e 0 # E' o 0. But £ # E' implies that
EX:-*E}'( (3 X € Ob C) which implies that Exszxx (3 x € FX). Owing to the Yoneda
lamma, FX = Nat(hX,F), SO x corresponds to a o' € Nat(hX,F), thus 5 o g’ =2 8' o o',
Determine G:gThX ~ F by the diagram

by — > 2%

gt o
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Then Z o g # E' o g,

N.B. All epimorphisms in gﬁr (C) are coequalizers (cf. 13.6). So, for every
t-sheaf F, the epimorphism I‘F of 11.7 is automatically a coequalizer. Therefore
the a hy (X € Ob C) are a "strong" separating set for Sh_(C).

[Note: This baroque technicality is used implicitly in 13.16 below.]

A summary of the theory of presentable categories can be found in the Appendix
to CHT and will not be repeated here.

[Note: As a point of terminology, let C be a cocomplete category and let Kk
be a regular cardinal -— then an object X € Ob C is k—definite if Mor (X,—) pre-
serves k—-filtered colimits. ]

13.16 LEMMA _Sil_T (C) is presentable.

PROCF Fix a regular cardinal « > #Mor C — then ¥ X € Ob C, thObE_\:is
«—definite, the contention being that Vv X € Ob C, a h, € Ob Sh_(C) is x—definite,

which suffices (cf. 13.15). To see this, note first that a k~filtered colimit of
T-sheaves can be computed levelwise, i.e., its k~filtered colimit per é is a

T-sheaf. Now fix a «-filtered category I and let A:I + Sh (C) be a diagram —— then

u

Nat(z_a_.ThX,colim;_L‘ A;) = Nat(a ThX,colimz 1.40)

Nat (hX,colimI 1TAi)

u

i

COlenI Nat (h}(} ITAi)

144

colimI Nat (gThX, Ai) .

13.17 REMARK Tt is a fact that a presentable category is complete and co-

complete, wellpowered and cowellpowered.




§14. TOPOS THEORY:FORMALITIES
Let E be a category.

14.1 DEFINITION E is a topos if

™

is finitely complete;
® [ is cartesian closed;
® € has a subobject classifier (2,71).

[Note: The defining properties of a topos are invariant under equivalence.]
N.B. Every topos is wellpowered.

14.2 EXAMPLE SET is a topos.
[Note: The full subcategory of SET whose objects are finite is a topos. On
the other hand, the full subcategory of SET whose objects are at wmost countable

has a subobject classifier but is not cartesian closed, hence is not a topos.]
14.3 EXAMPLE Let C be a small category -- then é is a topos (cf. 5.21 and 7.7).

14.4 EXAVWPIE Let (C,71) be a site —- then Sh (C) is a topos (cf. 13.2 and 13.3).

14.5 THEOREM Every topos is finitely cocomplete.
14.6 THEOREM Every topos fulfills the standard conditions.

14.7 ILFMMA Let E be a topos.

(1) Every monamorphism in E is an equalizer.




(2) Every epimorphism in E is a coequalizer.

(3) Every morphism in E which is both a monomorphism and an epimorphism
is an isomorphism.
(4) Every morphism in E admits a minimal decomposition unique up to iso-

morphism.

14.8 EXAMPLE Not all monomorphisms in CAT are equalizers and not all epimor-

phisms in CAT are coequalizers. Therefore CAT is not a topos.
14.9 LEMMA Every topos has effective equivalence relations.

14.10 EXAMPLE In POS (the category whose objects are the posets and whose

morphisms are the order preserving maps), not all equivalence relations are effective.

14.11 CRITERION In a topos E, consider a pushout square

Assume: f is a monomorphism =- then n is a monomorphism and the square is a pullback.

14.12 IFMMA In a topos E, finite coproducts are disjoint.

PROCF Let A,B € Cb E -~ then on general grounds, there is a pushout square




b
ﬂé— > B
a llnB
A . > AL}_B .
'\

On the other hand, a and b are monomorphisms (cf. 5.16). Therefore inA and mB

are monomorphisms and the square is a pullback (cf. 14.11).

14.13 ILEMMA In a topos E, finite coproducts are pullback stable.
[Note: Finiteness is not needed provided that the coproducts in question exist.

£ £

> A:i € I} is a coproduct diagram in E. Let B

Thus suppose that {Ai > A

and for each i € I, define Bi by the pullback square

Bi _— Ai

95 £

B ———m—> A .

93

Then {Bi > B:i € I} is a coproduct diagram in E. To see this, use 15.3:
Consider the composition

A* £* B
> E/A > E/B

-

E

Each of the functors A*, f*, B, has a right adjoint, hence preserve colimits, in

particular coproducts. On the other hand, given an arrow X - A, define an arrow



B Xp X > B by forming the pullback square

BXAX————-—>}[
B———--)A-
f

B, o £* o A*(X > A) = B x, X + B.]

Iet E be a topos.

14.14 NOTATION Given A € Ob E, let <SA:A + A X A be the diagonal -~ then (SA

is a monomorphism, so there is a pullback square

—

Abbreviate X, tO =p-
A

We have

Mor{(A x A,Q) = l\tbr(A,QA) .
Therefore
=a € Mor(A x A,Q)
corresponds to an element

{-}, € Mor a,@,

the si‘ng‘le‘ton on A.



14.15 1LEMMA {-}A is a monomorphism, hence

(A {-},) € m.

14.16 EXAMPLE Take E = SET —- then {.},:A > ?® sends a € A to the character-
istic function of {a} (cf. 6.4). Identifying o with pA (the power set of A), it

follows that {-}A:A »> ¢ sends a to {a}.

14.17 RAPPEL Given a category C, an object Q in C is said to be injective if
for each monomorphism £:X » Y and each morphism ¢:X » Q, there exists a morphism

a:Y » Q such that g o £ = ¢.

14.18 LEMMA In a topos E, the object @ is injective.
PROOF Let f:X » Y be a monomorphism and let y:X +  be a morphism. Define

(;(,;) € M(X) by the pullback square

i
[
\Y

I

Fhe
D e

> 2.
X
Then x. = x (cf. 6.12). Consider now the commutative diagram
T
- ~ !
X X > *g
X > Y > .




Put g = ¥ .+ Since the squares are pullbacks, the commtative diagram
feof

is a pullback square, so y, =g o £. But
f
X~ =X =>ge f=x.
£

14.19 IEMMA In a topos E, the object QA (A € Ob E) is injective.

PROOF Let f:X - Y be a monomorphism and let ¢:X - SZA be a morphism -— then

there is a commutative diagram

Mor (7,9 — o Mor (X,

1

Mor{¥y x A,y ———— Mor(X x A,0).

~
~

b

Since © is injective, the bottom map is surjective, thus the same is true of the

top map.

14.20 RAPPEL A category C has enough injectives provided that for any X € Cb C,

there is a monomorphism X - Q with Q injective.

14.21 IEMMA A topos E has enough injectives.




PROOF If A € b E, then QA is injective and {-}A:A > SZA is a monomorphism

(cE. 14.15).

14.22 LEMMA The injective objects in E are the retracts of the QA (A€ b E).



§15. TOPOS THEORY: SLICES AND SUBOBJECTS

Let E be a topos.

15.1 THEOREM For every A € Ob E, the category E/A is a topos.
[Since E is finitely complete, the same is true of E/A (cf. 4.1). Let A

! T
be the composition A > % > {}. Bearing in mind that idA:A + A is a final

)]

object in E/A, define

<id,,Ta> @ (id,:A > A) > (pry:A x Q > A)

by consideration of

A A A
ldAl : {TA
v
A <« Ax 8 > Q.

pr, Pro

Then <idA, T is a monomorphism (its domain being a final object in E/A) and the
pair

(prA:A x Q-+ A, <idA,TA>)
is a subobject classifier for E/A. The crux is therefore to establish that E/A

is cartesian closed.]
In particular: E is locally cartesian closed (cf. 5.23).

15.2 EXAMPIE V X, mP_I__H/X is a topos but ’I’OPIT{ is not a topos (recall that



TOPIH is not finitely complete (cf. 4.2)).

15.3 THEOREM Suppose that f:A -~ B is a morphism in £ —- then f£*:£/B » E/A
has a left adjoint f,:E/A > E/B and a right adjoint f,:E/A ~ E/B.
[This is a sgpecial case of 5.32 and 5.33.]

[Note: £* preserves exponential objects and subobject classifiers.]

15.4 LEMMA Let A € Ob E — then the poset Sub. A is a bounded lattice.

{Simply apply 2.21 and 3.14. However, for the record, suppose that

— o
S > A
T
_ T > A
are monomorphisms. Definition:
T 8AT=S8SNT

SvT=8UT.

To complete the picture, let

e
i

(idA:A -+ A)

0= (!:ﬁE > A) (cf. 5.14 and 5.16).

15.5 REMARK The square



is both a pullback and a pushout.

15.6 THEOREM Let A € Cb E — then the bounded lattice Sub

algebra.

PROOF Given monomorphisms

o}
S > A
T
_ T > A,
define ™ as the equalizer
>
T'S > A Q

>

ofxgandxe (where S N T
morphism —~ then, from the properties of an equalizer,

RSATS<=> X00p=xe° O.
But

Xcopzxeop<=>RﬂSSAT.

[Note: There is a pullback square

RN ———os 8
R > A,
P

> A is the corner arrow).

Iet R

A is a Heyting

> A be a mono-

the classifying arrow of the monomorphism R N S + A being Xg © Pr and there is a



pullback square

RN{ENT) —sSnT

R >Ap
P

the classifying arrow of the monomorphism RN (S N T) -+ A being Xg © p.]

15.7 REMARK If (C,t) is a site and if E = §_hq(9 , then SubE A is a locale.

—

15.8 NOTATION

e Define a monomorphism

<T,7T> :*§ +> Q%X Q
by consideration of the diagram
*E “E *E
T J . lT
v
Q00X Qs Q

and denote its classifying arrow by N, thus

N x Q> Q.

B

T

* I_.etTQbetheccmgositionQ > *p >  — then there is a pullback

square




SO Xidgz T

Q*
® Define a morphism
<Toride> i <idg, To>:0 Jla»axa

by consideration of the diagram

f ——— } Q<
<TQ,LdQ> E <idQ,TQ>
v
@xQ—0x§ % Q,
factor it per 3.9, hence
k m
Q] e > M > 0 x Q,
andputu=xm:
M >*§
m lT
2 x Q s 8,
U
Given monomorphisms
— g
S > A
T
T > A,

define a morphism

<XG,XT>:A +> 0 %X 8

by consideration of the diagram



o

K &K re5s 9550 y

>
Q
&) e

N
o

15.9 LEMMA Form the pullback square

E
on-T l T
Q

Xs n 1t

g
v

= < >.
Xont e XgrXq

15.10 ILEMMA Form the pullback square

o

Q
-
~
I el Ly
-‘

hog
v

Xs U T
Then

== <
Xo U T U e XO'XT>°

15.11 NOTATION Iet (sg,eg) be the equalizer of



N
>
£ x Q §2,
————>
Prl
thus
n
€
SQ e e R Y
pry

and let =>:0 x Q@ > Q be its classifying arrow, thus

> %

I

Then



PROOF Consider the diagram

v 1
P > SQ > *E
u JT
A > %D ———— 0,
<XG'XT> =>
prl N
9]

where the squares are pullbacks and

Pry ° <XgrXe” = Xg

Me XerXy” = Xonee
By construction, the classifying arrow of u is => o KgrXe” and the claim is that
p=1° (cf. 15.6) or still, that u is the equalizer of Xy and Xorr OF still, that

u is the equalizer of pry ° <x6,xT> and N o <xg,x,1_>. But
prl [ <XO"XI> o1 = prl [} eQ o

— [+] [+
ﬂegv

= 1] e (XO XT> o 11.

And if

|

Pry © KYgrXe” © X =N 0 <X x> ° X (XX > P),




<XG,XT> o x = eQ oy (V:X > ng)

from which a unique z:X - P such that

y=voz,

15.13 NOTATION

!

e Denote the classifying arrow of the monomorphism )ZE > *g by L.
Schematically:
!
gg > *§
! JT
*E P Q -
= L
® Denote the classifying arrow of the monomorphism *e t.Q by —.

Schamatically:

15.14 IEMVA Given a monomorphism S

> A, form the pullback square
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Then

[Note: The monomorphism — § ——— A represents the pseudocomplement of

[0] in the Heyting algebra SubE A. E.g.: Take A= (, S = %

gr 0 =T - then

Therefore 1 is the pseudocomplement of T in SubE Q.1

15.15 DEFINITION A topos E is a boolean topos if for every A € Ob E, the

Heyting algebra SubE

A is a boolean algebra.

15.16 THEOREM A topos € is a boolean topos iff Sub_ @ is a boolean algebra.

E

15.17 REMARK If E is a boolean topos, then for every A € Ob E, the topos E/A
{cf. 15.1) is a boolean topos.

15.18 LEMMA A topos E is a boolean topos iff — o — = idQ.

o
> A —-

[To see that the condition is sufficient, consider a monomorphism S
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X o g=—1°— ° X =¥, (of. 15.14),

——— T~ O (cf. 6.11).

Therefore SubE A is a boolean algebra (cf. 8.12 and 8.15).

15.19 ILEMMA A topos E is a boolean topos iff the pair

is a subobject classifier.

[To see that the condition is sufficient, define an iscmorphism

U *E_[_\_*E—>Q
by consideration of the diagram
in in
1 2
y: > g Llxg < “E
T { . li
v
Q 0 Q.
Then the arrow -—;:2 + @ corresponds to the involution which interchanges the
factors of 1L *E.]

15.20 EXAMPLE let C be a small category — then the topos _(E is a boolean
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topos iff C is a groupoid (in particular, SET = 1 is a boolean topos).

[Note: Let G be a group —— then the category of right G-sets is a boolean

topos (cf. 7.8).]

15.21 EXAMPIE Let X be a topological space and take Sh(X) per 11.29 — then
Sh(X) is a boolean topos iff every open subset of X is closed.

[In fact, §_h_(X) is a boolean topos iff vU € O(X), Uy — U = X. But — U=

!
int(X - U) (cf. 8.11), thus Sh(X) is a boolean topos iff v U € O(X), X - U=
int(X - U) or still, iff v U e O(X), X - U e 0(X).]

[Note: This condition is met if X is discrete, the converse being true if X

is in addition TO‘ For if every open set is closed, then every closed set is open,
'e) X:TO => X:Tz. But then every subset is a union of closed subsets, hence is a

union of open subsets, hence is open.]

15.22 DEFINITION A topos L is said to satisfy the axiom of choice if every epi-

morphism in £ has a section.

15.23 REMARK If E satisfies the axiom of choice, then for every A € Ob E, the

topos E/A (cf. 15.1) satifies the axiom of choice.

15.24 THEOREM Iet E be a topos. Assume: E satisfies the axiom of choice ——

then £ is a boolean topos.

15.25 EXAMPLE let G be a group -- then the category of right G-sets is a
boolean topos (cf. 15.20) but it satisfies the axiom of choice iff G is trivial.

[Supprose that G is nontrivial and view G as operating to the right on itself.



13.

o

Let {*} be the final right G-set —- then G > {*} is an epimorphism but there

is no morphism {*} » G of right G-sets.]

15.26 EXAMPLE Let L be a locale and take Sh(l) per 11.29 —— then the following
conditions are equivalent.

(1) sh(l) satisfies the axiom of choice.
(2) sh(l) is a boolean topos.
(3) L is a boolean algebra.
[Note: Recall that by definition L is a Heyting algebra whose underlying cat-

egory is complete and cocomplete.

15.27 DEFINITION lLet C be a category with a final object *o = then an object

!
is a monomorphism.

X is said to be subfinal if the arrow X >

¢

15.28 LEMMA Suppose that the topos [ satisfies the axiom of choice — then

there is a set of subfinal objects of * which constitute a separating set for E.



§16. TOPOLOGIES
Let E be a topos, (Q,T) its subobject classifier.

16.1 DEFINITION A Lawvere-Tierney topology on £ is a morphism j:Q ~ Q in

E with the following properties.

(L} jeT1=r1.

(3) Jen=ne(jx3J.

(2) 3 °3=73-

16.2 EXAMPLE idQ:Q + Q is a Lawvere-Tierney topology on E.

16.3 EXAMPLE TQ:Q + §i is a Lawvere-Tierney topology on E.

16.4 EXAPLE — © —:0 > @ is a Iawvere-Tierney topology on E.

16.5 THEOREM Let C be a small category —— then there is a one-to-one corres-
pondence between the set of Grothendieck topologies on C and the set of Lawvere-

Tierney topologies on éz

T >3
i T..
_ 1T
PROOF Recall from 7.7 that
:¢F > ser

is defined on an object X by letting (X be the set of all subfunctors of hX and

on a morphism £:¥Y -~ X by letting Qf:QX » QY operate via the pullback square



f (G —— G

| |

By > by
he

e If T is a Grothendieck topology on C, then T € M(2) and if jT = Xopr
then jr is a lLawvere-Tierney topology on C.
e If j:0 + Q is a Lawvere-Tierney topology on é and if

*
{ T (cf£. 6.12),
9]

o]
4

J
then Tj is a Grothendieck topology on C.

[Note: These constructions are mutually inverse.]

16.6 EXAMPIE let L be a locale — then Ox is the set of all subfunctors of hx
or still, Ox is the set of all sieves over x. Iet x > Ty be the Grothendieck

topology T on L determined by the sieves that cover x (cf. 10.4) —-- then szs‘z -
is the natural transformation

(3.)

e >
! o,

where

Gy $=1{ysxiy= v (yas)h
oK -




16.7 DEFINITION Suppose that j:Q + © is a Lawvere-Tierney topology on E.

Iet (B,f) € M(A) — then (B,f) is jdense in A if j o Xg = Ty

16.8 EXAMPLE Let (C,T) be a site and let G be a subfunctor of hX - then
(G,lG) is jT—dense in hX iff G &€ Ty
16.9 DEFINITION Suppose that j:Q - Q is a Lawvere-Tierney topology on E -~
then an A € Ob £ is a j-sheaf if for every B € Ob E, for every j-dense (S,s) in

B, and for every f € Mor(S,A), there exists a unique g € Mor (B,A) such that

ges=£:
s
S > B
£ g
A A,

I.e.: The precomposition map
s*:Mor (B,A) ~ Mor (S,A)

is bijective.

16.10 EXAMPLE Since j is idempotent and E is finitely complete, j splits:
j=ier (reis= id), where
1. + Q
J
Q. = eq(j,idQ) and

J
r: > ..
J

But 0 is injective (cf. 14.18), thus Qj is injective (being a retract of Q), and

the claim is that szj is a j-sheaf. In fact, the existence of the relevant liftings




is then immediate which leaves the uniqueness... .

Write %j (E) for the full subcategory of E whose objects are the j-sheaves,

16.11 EXAMPIE Take j

16.12 EXAMPLE Take i = T~ then g}lj (E) is the full subcategory of E whose

objects are the final objects.

16.13 THEOREM Fix a Lawvere-Tierney topology j:Q - @ on E — then the inclusion

lj:gﬁj (E) »~ E admits a left adjoint gj:_E_ > gﬁj (E) that preserves finite limits.

N.B. Let Wj be the class of morphisms in E rendered invertible by ay — then

the localization wglg is equivalent to Sh, (E) (of. 11.20).

16.14 LEMVMA Iet £:B -+ A be a mononmorphism — then (B,f) is j-dense in A iff

a_ijf is an isomorphism.

16.15 SCHOLIUM Iet C be a small category. Suppose that j:00 +~  is a Lawvere—
Tierney topology on é and let Tj be the associated Grothendieck topology on C

J
[Viewing §_Igj ((:1) as an element S of §_C (cf. 11.9), introduce T € To per 11.4,

— —

e

thus Ty is the set of those subfunctors G

> hy such that a;l is an isomorphism
i

or still, those subfunctors G

> hX such that (G,iG) is j-dense in hX (cf. 16.14).



i
G
On the other hand, a subfunctor G

> hX is jTj—-dense in hX iff G & ("cj)X

{cf. 16.8). But 3., =3 hence Ty = (Tj)

and therefore 1 = Tj . Since
]

X!

gh_j (©) =8h (O (cf. 12.13),

it follows that

sh. (©).

sh, (©)
] j

[Note: Consequently, V T € Ter

sh, @ =8 (O = §{1_j (€ .1
Jr T
16.16 REMARK Let L be a topos —- then it can be shown that the Lawvere-Tierney

topologies on E are in a one-to-one correspondence with the reflective subcategories

of E whose reflector preserves finite limits (cf. 12.13).

16.17 THEOREM Fix a Lawvere-Tierney topology j:Q + Q on E -- then §Ilj (E) is
a topos.

[Note: The pair (Qj,Tj) is a subobiject classifier for _S_I}_j (E). Here (cf. 16.10)

J
1 ————d
£, 9] Q
j N
:i.dQ
T, T (JeT=r1).]
J
"E "E
16.18 EXAMPIE Take j = — © —, ~— then Sh (E) is a boolean topos.

—— O e
[




§17. GEOMETRIC MORPHISMS
Let C, D be finitely complete categories.

17.1 DEFINITION A geometric morphism f:C » D is a pair (f*,f,), where

f*:D - C

are functors and

f* is a left adjoint for £,

f* preserves finite limits.

[Note: The second condition on f£* is automatic if f* is a right adjoint.]

17.2 EXAMPIE Let X,Y be topological spaces and let f£:X > Y be a continuous
function —- then f induces a geometric morphism £:8h(X} - Sh(Y), where f,:Sh(X) -
sh(Y) is "direct image" and f*:Sh(Y) > Sh(X) is "inverse image".

[Note: Here Sh(X)}, Sh(Y) are taken per the canonical Grothendieck topology
on O(X), O(Y) {(cf. 11.29).]

17.3 EXAMPIE et G,H be groups and let ¢:G -~ H be a homomorphism -~ then ¢
induces a geometric morphism ¢ from right G-sets to right H-sets, i.e.,
0:1¢%F,sET] ~ B ,SET]  (cf. 7.8).

[There are three functors

2

(¢, serl < ~ 8%, sErl,
G




where

¢, —I 0% —1dy-

e Definition of ¢*: Given a right H-set ¥, ¢*(Y) = Y with the right
G-action induced by ¢.

e Definition of ¢,: Given a right G-set X, ¢, (X)

HOI{!G (H,X), the set

of G-equivariant functions H -+ X.

e Definition of ¢,: Given a right G-set X, ¢,(X) =X @G H, the cartesian

product X x H modulo the equivalence relation (x-.g,h) ~ (x,¢{g)-h).]

17.4 EXAMPLE Take C = SISET, D = CGH and consider the adjoint pair (| |,sin):

|

sin:CGH - SISET.

:SISET ~» CGH

Then | | preserves finite limits, hence (| |,sin) is a geometric morphism SISET - CGH.

17.5 EXAMPLE Iet E be a topos that has arbitrary copowers of *E' Define a

functor I',:E + SET by stipulating that

TA = Mor (*p,A)
and define a functor I'*:SET -+ E by stipulating that

r*s = _U_*

868 E

Then (I'*,T,) is an adjoint pair and I'* preserves finite limits (cf. 18.2). There-

fore (I'*,T',) is a geometric morphism E - SET.




17.6 EXAMPLE Let (C,T) be a site —— then the adjoint pair (éT,IT) is a geametric

morphism Sh_(C) + C (cf. 11.14).

17.7 EXAMPLE Let E be a topos, j:0i ~ 2 a Lawvere-Tierney topology on E —- then

the adjoint pair (gj,xj) is a geometric morphism §Ej (E) ~ L.

17.8 EXAMPLE Let E be a topos. Suppose that f:A ~ B is a morphism in E - then
f*:E/B ~ E/A has a left adjoint f,:E/A -+ E/B and a right adjoint f,:E/A -~ E/B

(cf. 15.3). Therefore the adjoint pair (f*,f,) is a geometric morphism E/A - E/B.

17.9 EXAMPIE Let I,J be small categories and let S be a complete and cocomplete

category. Suppose that F:I +~ J is a functor —— then by the theory of Kan extensions,

F*:[Q,_S_] > [:_[_l§]
has a right adjoint

Fu: [;E_I_S_] -+ [§;§]
and a left adjoint

F,:[1,8] » [3,8].

Therefore F* preserves limits and the adjoint pair (F*,F,) is a geometric morphism

[x,s1 »~ [3,8].

17.10 EXAaMPIE Iet L, M be locales and let f:L ~ M be a localic arrow (cf. 9.6) —
then f induces a geometric morphism Sh(L) » Sh(M) (taken per the canonical Grothen-
dieck topology on L,M (cf. 11.29)), call it T to forgo any possibility of confusion.

[Proceed as follows. The functor f*:M » L gives rise to a functor g% > J

*
(technically, £%* = ((£%))"), which then restricts to a functor £,:Sh(L) ~ Sh(M).




On the other hand, f** has a left adjoint £¥:M » L (take S = SET in 17.9).
Accordingly, denote the composite

T ~ ! N é’r
sh (M) > M > L > Sh(l)

by f* —- then f* is a left adjoint for f,. Proof: Given F € Ob Sh(l),
G € Ob sh(M),

Mor (£*G,F)

2

Mor (ng‘flTG,F)

u

l\rbr(f’!"lTG,lTF)

2]

Jok
Mor(lTG,f ITF}

4]

Mar(lTG,le*F)

n

Mor (G, £,F) .

The final point is that f* preserves finite limits. Since this is true of 1. and
a s matters reduce to verifying it for f’!" (which is not an a priori property of

Kan extensions...) .l

17.11 DEFINITION Let f,g:C > D be geometric morphisms -- then a geometric

transformation £:f -+ g is a natural transformation f* -» g*,

[Note: Since

g* - Ty r

natural transformations f* - g* correspond bijectively to natural transformations

gx > L;.]



§18. CROTHENDIECK TOPOSES
Iet E be a topos.

18.1 DEFINITION E is said to be defined over SET if E admits a geometric

morphism £ —+ SET.

18.2 THEOREM E is defined over SET iff E has arbitrary copowers of #..

PROOF If f£:E ~ SET is a geometric morphism, then f* preserves finite limits,

thus in particular £*x = *po Therefore, since f* preserves colimits, for any set S,

S S S

£*s = £* || *z{_(f**z_u*g.

Turning to the converse, define T, :E - SET by
T,A = Mor (*E,A)
and define T'*:SET ~ E by

r*s = || *E (T*g = ;?JE) .

S
Here T*¢ (¢:S ~ T) is the unique arrow in E such that v s € §, T*¢$ o ins = in¢(s):
ing *¢
*_E > _U_ *E > _U_ *g
S T
My (s)

It is clear that (I'*,T,) is an adjoint pair, so the issue is whether I'* preserves



finite limits and for this one need only show that I'* preserves finite products
and equalizers.

® By construction, I'* sends final objects to final objects. Suppose now
that S and T are sets. Distinguish two cases: (1) S is empty or T is empty;
(2) S is not empty and T is not empty. If S is empty, then S x T=g x T = g

and T*(F x T) = I'*@ = QIE, while T'*@ x I'*T = ;JE X I*T = ""E (cf. 5.13 and 5.14).

If neither S nor T is empty, then

T*(S x T) = || *e
sxT =
On the other hand,
r*s><r**r=_[i*§x_1_i*§
S T
’:_]_L(L[_*g)
s T
~ JWL *E.
S x T
¢ . o
e Iets ” T be arrows in SET and let K = eq(¢,§), s0 K —> S g
v ¥

Put A= T*3, B=I*T, C = I'*K, f = T'*¢, g = T*), k = I'* —-- then the claim is that
f
sA B
>
g

k
c

is an equalizer in E. Thus consider a morphism u:E ~ A and v s € S, define ES by




the pullback square

E8 > *E
s { g
B > A .
11
ins
Then ;i.S is a monomorphism (this being the case of ins) and since {*E > A:s € S}
ig
is a coproduct diagram in E, the same is true of {Eg > E:s € S} (cf. 14.13).
I.e.:
E = lL ES.
s€S

If u equalizes f and g (=> £ ¢ u =g ¢ u), then this time

ter ¢
And there are monomorphisms
ES —_— E¢ (s)
(s € 5).
B E‘.S  — EKP (s)
E.g.: Given the situation
!
Eg
!
Ed;)(S) S *g
s s (s)J o (s)
> E > B ’




founoei =foin o ! = in o !
s s ¢ (s) ’

from which a unique arrow AS:ES + B such that i, = 1¢(S) ° A_.. Moreover, >‘s

S

$(s)

is a monamorphism (because is is a monamorphism). Proceeding, the intersection

E o (s) n E:@ (s) is officially defined by the pullback square

Bys) M Bye) T Bys)
(cf. 2.16)

Bpisy ——— > F
but the answer is the same if instead we use the pullback square

Bis) " EBye) > Byqe)

|

o) Fors) Ll By
The data provides us with a monomorphism

E (s € 8)

s 7 Boes) " By

and if ¢(s) = y(s), then E(b s) n Elb (s) * ﬂg, hence Es = j?IE. Consequently,

-

E = |_| ES
seK

and u:E -~ A factors through k (uniquely).

[Note: The geometric morphism (I'*,T,) extends to a geometric morphism

s1E = (87,61 » [8%,5ET] = siSET

denoted by the same symbol.



e Define
T*:SISET -+ SIE
by
* -
(T*K) 11 *p .
K -
n
® Define
T,:SIE + SISET
by
(T*X)n = Mor(*E.Xn) -]
18.3 LEMMA Suppose that E has arbitrary copowers of *re Iet A € Ob E and let
£
{B; > A:i € I} < M(A) — then || B. exists.

i€l

PROOF First of all, the copower || A exists, In fact,

o

i

Determine x:|| A » @ via the X; (X e in; = x;) and form the pullback square
I



o
v

Im

T (cf. 6.12).

'_uh
0+ %

[

B. > B >

o
\Y
—
>
AV

cammites (so 9; is necessarily a monomorphism). Inspection of the rectangle and

the right hand square then implies that the left hand square

9
Bi > B
£, £
i
A - >_]_]A
in, I
ing
is a pullback. Since {A > || A:i € I} is a coproduct diagram, the same is
I
93
true of {B; > B:i € T} (cf. 14.13), hence || B, exists.

ier



18.4 APPLICATION Under the preceding hypotheses, the copower _[_]_ A exists (sic),
I
as does the power || A:
I

1L % *
I

= E
A =ITa ~ =TT A.
I I

18.5 EXAMPLE, Suppose that E has arbitrary copowers of *E - then it does not

follow that E has coproducts,

[Let E be the full subcategory of [ZOP ,SET] whose objects are the right Z-sets
S with the property that multiplication by n is the identity on S for some positive
integer n —- then £ is a topos and has arbitrary copowers of *z but E does not have

coproducts (e.g., one cannot construct _l_l Z/nl).]
nx1

18.6 DEFINITION Let E be a topos -— then E is said to be a Grothendieck topos

if E is cocomplete and has a separating set.

[Note: 1In general, a cocomplete topos need not admit a separating set.]

18.7 EXAMPLE Let (C,T) be a site — then the topos _SET((_:_) {(cf. 14.4) is a

Grothendieck topos (cf. 13.1 and 13.15).

18.8 DEFINITION Let E be a topos -— then a subseparator is an object ' in E

with the property that M(T}) contains a separating set.
18.9 LEMMA Suppose that E is a Grothendieck topos -— then E has a subseparator.
PROOF If U is a separating set, let

r=|| v
ueu




Then ' is a subseparator.

18.10 RAPPEL An object X in a category C is a coseparator if for every pair
f,g:A ~ B of distinct morphisms in C, there exists a morphism ¢:B -~ X such that

gofxgoeagqg.

18.11 LEMMA Let E be a topos. Assume: I is a subseparator — then QP is a

coseparator.
*

E
[Consider the simplest possibility, viz. when I' = #; (=> Q Tz Q). et

-

f,9:A +~ B be morphisms such that for any 0:B~+ Q, 0 ¢ £ =0 o g, Claim: f = g,

To see this, let e:E —+ *= be a subfinal object and given a morphism ¢:E -+ A, pass

to the pullback square

k=
v
*

Hal

£f o T (£ o ¢ € M(B)).

w
v
Eel

XE o ¢

Since X¢ , ¢ € Mor (B, , from the assumptions
Xfo(i)Of:Xde)og’

thus

TE=XfO¢°f°¢=XfO¢°g°¢'

so there exists a unigue morphism e€:E ~ E rendering the diagram



™

& ©
Hh
o
S

B e Y e
b ]

g Xf o (I)
commutative. But Mor (E,E) = {idE}, hence € = id,, which implies that £ © ¢ = g © ¢.

Therefore £ = g (E and ¢ being arbitrary).]
[Note: In general, Q is not a coseparator but if Q is a coseparator, it does

not follow that *E is a subseparator.]

18.12 REMARK Let E be a Grothendieck topos —— then £ satisfies the axiom of

choice iff E is a boolean topos and *r is a subseparator.

[E.g.: If € satisfies the axiom of choice, then E is a boolean topos (cf. 15.24)
and *E is a subseparator (cf. 15.28).]
18.13 LEMMA A topos E is a Grothendicek topos iff it is defined over SET and
has a subseparator.
PROOF That the conditions are necessary is implied by 18.2 and 18.9. As for
the sufficiency, since a topos is finitely cocomplete (cf. 14.5), to finish the
vroof it suffices to show that E has coproducts. For this purpose, note first that
€ has arbitrary powers of objects (cf. 18.4) and has a coseparator, call if X (cf.

18.11). Suppose now that {Ai:i € I} is a set-indexed collection of objects of E.



10.

Choose a set S such that v i € I, Mor(A,,X) < S and put B = 1T X — then the mono-

5
morphism
A, > T X
Mor (Ai +X)
leads to a monomorphism A, ~ B. Therefore || A; can be constructed as an element
i€l
of M(]| B).
I

18.14 LEMMA Every Grothendieck topos £ is complete.

PROOF Given a set-indexed collection of objects {a;:i € I} of E, define P,

by the pullback square

b TT || a
1 I i‘eli 1
A, > || A,
+ ing ier *t

Then

18.15 IEMMA If £ is a Grothendieck topos, then v A € Ob E, the topos E/A
{(cf. 15.1) is a Grothendieck topos.
PROOF As a category, E/A is cocomplete (E being cocomplete). This said, let

U = {U} be a separating set (per E) and put

u/a = {f:u > A, U € U}.

Then U/A is a separating set (per E/A).




11.

18.16 THEOREM If E is a cocamplete topos, then for any small category I,

the functor category [I,E] is a cocomplete topos.

[Note: If E is a topos (hence finitely cocomplete (cf. 14.5), then for any

finite category I, the functor category [I,E] is a topos.]

18.17 LEMMA If E is a Grothendieck topos, then for any small category I, the

functor category [I,E] is a Grothendieck topos.

PROOF If U = {U} is a separating set for E, then

{FU,i:U € U, i€ 0b I}

is a separating set for [I,E], where

Fy,1 ) = 11 U (j€0bI).
Mor (i,3)

Let € be a Grothendieck topos, I a small category, and A:I - £ a functor.

PutB=colimIAandletA->Bbeamrphism-—~thenViEObL there is a pullback

square

18.18 LEMMA The canonical arrow
oollml (1+AxB Ai) > A

is an isomorphism.
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Given a set {Xi:i € I} of objects in E, put

18.19 EXAMPIE Iet Y + X be a morphism —- then the canonical arrow

i_Ié)ixixXY—>Y

is an iscomorphism.
18.20 EXAMPIE let Y € Ob E —— then

| (X, x¥) =X xY (cf. 5.8).
i€T

[This is a special case of 18.19: Replace Y by X x Y, consider the projection

X XY =+ X, and note that

Xixx (XxY):}{ixY.]

The following result is Giraud's "recognition principle”.

18.21 THEOREM Suppose that E is a Grothendieck topos —— then there exists a
site (C,t) such that E is equivalent to il’_l‘r Q.

[Here is a sketch of the proof. Take for C the small full subcategory of E
whose objects are a separating set. Given X € Ob C, let Ty be the set of subfunctors

G+hxsuchthatthearm

i [l ¥-x

YeOb C geGY

is an epimorphism -- then the assigmment X - Ty defines a Grothendieck topology on C.



13.

Next, vV A € Ob E, the presheaf h,|C” is a t-sheaf (h, = Mor(—A)) and the

specification A - hA|§_:OP defines a functor E - Sh (C) which at length can be
shown to be an equivalence of categories.]

[Note: Making a simple expansion, one can always arrange that C is finitely

complete. ]

18.22 REMARK The Grothendieck topology figuring in 18.21 is subcanonical.
However, it is possible to enlarge C so as to replace "subcanonical" by "canonical".

Thus let U = {U} be a separating set and for each U € U, let {Ui:i S IU} ba a set

of representatives for SubE U (E is wellpowered (cf. 6.13)). Perform the con-

-

struction of 18.21 on the full subcategory of L generated by the U, (ie Ty Uelu -

then the resulting "t" is canonical.

18.23 LEMMA Every Grothendieck topos E is presentable (cf. 13.16).
18.24 LEMMA Every Grothendieck topos E is cowellpowered (cf. 13.17).

18.25 CRITERION Iet E,F be Grothendieck toposes — then any functor F - E
which preserves colimits has a right adjoint E - F.
[The categories involved are cocomplete, cowellpowered, and have separating

sets. Now quote the appropriate "adjoint functor theorem".]

18.26 NOTATION Given Grothendieck toposes E,F, write [_E_,f]gro for the meta-

category whose objects are the geometric morphisms E + F and whose morphisms are

the geometric transformations.
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18.27 LEMYA Let E,F be Grothendieck toposes —~— then [E,F] geo is a category.

[In other words, if f,g:E - F are geometric morphisms, then there is but a

set of natural transformations f* » g*.,]

18.28 LEMMA et E,F be Grothendieck toposes and suppose that f:E + F is a

geometric morphism -~ then the following conditions are equivalent,

(1) £* is faithful:
(2) £* reflects isomorphisms;
(3) f£* reflects epimorphisms;

(4) £* reflects moncmorphisms.

18.29 THEOREM let E be a Grothendieck topos —- then there is a Grothendieck
topos B satisfying the axiom of choice and a geometric morphism f:5 + E such that

f* ig faithful.



§19. POINTS

Let E be a Grothendieck topos.

19.1 DEFINITION A point of E is a geometric morphism f£:SET - E.

N.B. Alternatively, a point of £ is a functor p:E » SET which preserves colimits

and finite limits (cf. 18.15).

19.2 EXAMPLE Iet X be a nonempty topological space -~ then each X € X deter-

mines a point px:_gg (X) > SET, where Sh(X) is computed per the cancnical Grothendieck

topology on O(X).
X
[Apply 17.2 to the continuous function {*}

> X, thus p :8h(X) > sh({x}) =
SET sends F to its stalk FX at x.]

[Note: If X is sober, then this construction is exhaustive, i.e., up to
natural isomorphism, every point Sh(X) ~ SET is a “pX". In general, the full sub-

category of TOP whose objects are the sober topological spaces is reflective with

arrow of reflection X - sob X. But

O(X)<—> O{socb X) (cf. 9.26),
hence

Sh(X)<—s> Sh(sob X).

Therefore the points of sob X "parameterize" the points of Sh(X): If £:SET » Sh(X)
is a point, let U be the union of all open V ¢ X such that £f*V = @§ — then X - U

is an irreducible closed subset of X, thus is a point of sob X. Conversely, ... .]

19.3 REMARK If X is empty, then Sh(X) is the full subcategory of SET whose



objects are the final objects so there is no functor p:Sh(X) - SET which preserves

colimits and finite limits. Proof: All objects in Sh(X) are both initial and

final.

19.4 EXAMPLE ILet X be a nonempty Hausdorff topological space in which no

singletons are open -—- then

sh ., (sh(X) (cf. 16.18)
| !

has no points.
19.5 NOTATION Given a Grothendieck topos E, let

PT(E) = [SET,E] _  (of. 18.26).

N.B. PT(E) is a category (cf. 18.27).

[Note: Tt is not necessarily true that PT(E) is equivalent to a small category

(e.g., there are E for which PT(E) is equivalent to SET).]

19.6 RAPPEL Let C be a small category — then the functor Yé: [(E,SET] + [C,SET]
has a left adjoint that sends T € Ob[C,SET] to Ty € Ob[C,SET].

[Note: I’T is the realization functor; it is a left adjoint for the singular

functor sin,l,:SET > <:3 which is defined by the prescription

(SinT Y)X = Mor(TX,Y).]

19.7 ILEMMA Let C be a small category. Suppose that £:SET - é is a point --

then there exists a functor T:C - SET such that f* is naturally isamorphic to FT.



19.8 DEFINITION Iet C be a small category — then a functor T:C - SET is

said to be flat if T,, preserves finite limits.

8o, if T is flat, then the adjoint pair (I’T,si_nT) is a geometric morphism

SET +~ C, i.e., is a point of C. Moreover, up to natural isomorphism, all points

of C are of this form (cf. 19.7).
Write [C,SET] flat for the full subcategory of [C,SET] whose objects are the
flat functors.
19.9 THEOREM There is an equivalence
[C/SET] ¢ > PL(Q)

of categories.
1 *
[Send T to (I‘T,s:mT) and send £ to f* o Yg.}
19.10 REMARK Let T be a Grothendieck topology on C ~- then PT(Sh (C)) is
equivalent to the full subcategory of ?_’_I‘_(é) consisting of those points that factor

through Loe

19.11 DEFINITION ILet C be a category. Suppose that the (_I_i are categories

and the F,:C » C, are functors -- then {F;} is faithful if given distinct morphisms

f,g:X » Y in C, there exists an Fi such that Fif 2 Fig.

19.12 EXAMPLE Take C = Sh(X) (X a nonempty topological space), let (_:X = SET

(x € X), and let pxz_gg(x) + SET be as in 19.2 - then {px} is faithful.



19.13 DEFINITION Let C be a category. Suppose that the <__:i are categories

and the F.:C + C; are functors.

° {Fi} reflects isomorphisms if any f € Mor C with the property that

Fif is an isomorphism for all F. must itself be an isomorphism in C.

. {Fi} reflects monomorphisms if any f € Mor C with the property that
F.f is a monomorphism for all F, must itself be a monomorphism in C.

. {Fi} reflects epimorphisms if any f € Mor C with the property that

Fif is an epimorphism for all F, must itself be an epimorphism in C.

Iet P < Ob PT(E) be a class of points.

19.14 LEMMA Suppose that P is faithful -- then P reflects isomorphisms.
PROCF It is immediate that P reflects monomorphisms and epimorphisms. But £

is balanced (cf. 14.7).

19.15 LEMMA Suppose that P reflects isomorphisms -~ then P is faithful.
PROOF Let f,g:A ~ B be morphisms in E and suppose that pf = pg for all p € P.

Form the equalizer diagram

eq(f,g) —— = A B.

g

Since p preserves finite limits, it preserves equalizers:

pleq(f,q)) = eq(pf,pg).




Therefore
pf
pk >
pleg(f,g)) — > pA pB
>
g
is an equalizer diagram. But pf = pg, thus
. pf
id oA .
PA ————u> DA pB
>
Pg

is also an equalizer diagram, which implies that pk is an isomorphism, hence k is

an isomorphism, hence £ = g (f ¢ k = g o k).

19.16 DEFINITION E is said to have enough points if the class of all points

of E is faithful.
19.17 THEOREM If E has enough points, then E has a faithful set of points.

19.18 DEFINITION A weak point of [ is a functor p:E - SET which preserves

epimorphisms and finite limits.
N.B. Every point is a weak point.
19.19 IEMMA A class of weak points of E is faithful iff it reflects isomorphisms.

19.20 THEOREM The class of all weak points of E is faithful.
PROOF Take B and f:B » E as in 18.29 -- then every epimorphism of B has a
section, thus vV B € Ob B, the functor X - Mor (B,X) from B to SET is a weak point

of B, so V B € B, the functor X ~ Mor (B,£*X) from E to SET is a weak point of E



(f* preserves epimorphisms (being a left adjoint)). And: {pB:B € Ob B} is a

faithful class of weak points of E. Proof: Bearing in mind 19.19, suppose that

¢:U > V is a morphism in £ such that v B € (b B,

ppé :Mor (B, £*U) ~+ Mor (B, £*V)

is bijective —— then f*¢:f*U » £*V is an isomorphism. But f* reflects isomorphisms

(cf. 18.28), hence ¢ is an isomorphism.

19.21 1EMMA Let p:E » SET be a weak point. Given a morphism f:A ~ B in E,

factor it per 3.9:
k m
A > M > B (£ =m e k).

PM ~ im pf
or still,
p{im £) = im pf.
PROOF Since p preserves epimorphisms and monomorphisms, pk is a surjection and
pn is an injection:

pk js
PA > pM > pB  (pf = pm o pk)

i

im pf.

19.22 LEMMA Suppose that {p} is a faithful class of weak points of E -- then

{p} reflects epimorphisms.

m

PROCF First, f£:A » B is an epimorphism iff the canonical arrow M > B is




an epimorphism, then Vv p, pm is an isomorphism (cf. 19.21), hence m is an iso-

morphism (cf. 19.19).

19.23 SCHOLIUM A morphism f in E is an epimorphism iff v weak point p, pf is

an epimorphism.

19.24 LEMMA Suppose that R is an equivalence relation on X and p:E ~ SET is

a weak point —- then pR is an equivalence relation on pX and
PX/PR = p(X/R).
19.25 APPLICATION Let f£,g9 € Mor(X,Y) and let

(£,9):X + Y x Y.
Suppose that im(f,g) is an equivalence relation on Y and p:E + SET is a weak point ——
then p(im(f,g)) (= im p(f,g) (cf. 19.21)) is an equivalence relation on pY and the
canonical map
coker (pf,pg) -+ plcoker (£,9))

is bijective.

19.26 IEMA Iet R be a relation on X. Assume: VY weak point p:E - SET, pR is

an equivalence relation on pX —- then R is an equivalence relation on X, hence
PX/PR = P(%/R).

19.27 APPLICATION Iet f,g € Mor (X,Y) and let

(£,9):X >~ Y x Y.
Assume: V weak point p:E - SET, p(im(f,9)) (x im p(£,g) (cf. 19.21)) is an equiv-
alence relation on pY -- then im(f,g) is an equivalence relation on Y and the

canonical map

coker (pf,pg) ~ p(coker (£,9))

is bijective.



§20. CISTNSKI'T THEQRY

Iet E be a Grothendieck topos -~ then the class M < Mor E of monomorphisms
is retract stable and the pair (M,RILP(M)) is a w.f.s. on E.

N.B. Elements of RLP{M) are called trivial fibrations.

20.1 THEORFM There exists a set M < M such that M = IIP(RIP(M)}, hence

M = cof M (E being presentable (cf. 18.23}).

20.2 RAPPEL ILet C be a category, W < Mor C a class of morphisms — then (C,W)

is a category pair if W is closed under composition and contains the identities of C.

20.3 DEFINITION Suppose that (E,W) is a category pair -- then W is an E-localizer
provided the following conditions are met.
(1) W satisfies the 2 out of 3 condition.
(2) W contains RLP(M).
(3) WN M is a stable class, i.e., is closed under the formation of pushouts

and transfinite compositions.

Let C < Mor E —— then the E-localizer generated by C, denoted W(C), is the

intersection of all the E-localizers containing . The minimal E-localizer is

W(@) (# the empty set of morphisms).

Note: Iet Cl,02 c Mor E - then

W(C; U Cy) = WW(C)) U NW(C,)).]

20.4 DEFINITION An E-localizer is admissible if it is generated by a set of
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morphisms of E.

20.5 EXAMPLE Mor E is an admissible E-localizer. In fact,

N({gg - *E}} = Mor g.

20.6 EXAMPLE Take E = SISET ( = é) and let W_be the class of simplicial weak

equivalences —— then W_is a é—localizer.
e W _ is generated by the projections
Pk x Alll > K (K€ Ob A).
. Nm is generated by the maps A[n] -+ A[0] (n = 0).

N.B. It follows from the first description that W_ is closed under the forma-
tion of products of pairs of arrows and from the second description that W _ is
admissible.

[Note: In SISET, a simplicial weak equivalence is a simplicial map £:X > Y

.
-

such that |f

X| - |Y| is a homotopy equivalence.]
20.7 EXAMPLE Take E = SET —- then W(ff) is the class

g u {£:X>Y (X = 2)}.

20.8 NOTATION Given C < Mor £, let cart C be the class of arrows of the form

fxidZ:XxZ+YXZ (feC, 2€0bE).

20.9 LEMMA The E-localizer generated by cart C is closed under the formation

of products of pairs of arrows and is admissible if C is a set.



20.10 APPLICATION The minimal E-localizer W(f) is closed under the formation
of products of pairs of arrows.

[Note: This is one way to distinguish a generic E-localizer W fram W(f).]

20.11 DEFINITION A cofibrantly generated model structure on E is said to be

a Cisinski structure if the cofibrations are the monomorphisms.

[Note: The acyclic fibrations of a Cisinski structure are the trivial fi-

brations.]

20.12 THEOREM Suppose that (E,W) is a category pair — then W is an admissible
E-localizer iff there exists a cofibrantly generated model structure on £ whose
class of weak equivalences are the elements of W and whose cofibrations are the

monomorphisms.

20.13 SCHOLTUM The map
W WMRPMH N M
induces a bijection between the class of admissible E-localizers and the class of

Cisinski structures on E.

20.14 REMARK The stable class W N M is retract stable. In addition, W is

necessarily saturated, i.e., W = W.

20.15 LEMMA Let W be an admissible E-localizer -—- then the cofibrantly

generated model structure on E determined by W is left proper.

20.16 EXAMPLE Take E = SISET and let W be the class of categorical weak equiv-

alences —— then W is a §—~localizer. As such, it is generated by the maps I[n] >

Aln] (n = 0), hence W is admissible. The resulting cofibrantly generated model



structure on SISET is the Joyal structure. It is left prover but not right proper.

[Note: 1In SISET, a categorical weak equivalence is a simplicial map f Xy X,

such that for every weak Kan camplex Y, the arrow

Sy map(Xz,Y) > Cy map (X_‘L’Y)
is bijective.]

N.B. Every categorical weak equivalence is a simplicial weak equivalence.

20.17 CRITERION Let § c Mor E be a set -~ then the cofibrantly generated model

structure on E corresponding to W(S) is right proper iff

e Varrow £:X + Y in S,
e Vv fibration p:E -~ B with B fibrant,
e Vv arrow w:Y -~ B,

the induced arrow

B
per
g
XXBE >Y><BE > B
j P
X > Y > B
f u
is in W(S).

[Note: One can replace the set S by a class C provided that W(() is admissible.]

N.B. Take S = # to see that the Cisinski structure on E corresponding to W(#)

is right proper.




20.18 1FmvA If Xi (i € I) is a set of objects of t, then the E-localizer
generated by the projections X; x 2> 7 for all i and Z is admissible (cf. 20.9)

and the associated Cisinski structure is right proper (hence proper (cf. 20.15)).

[To infer right proper, apply 20.17 and consider

(Xix-Z) XBE——-——>Z><BE-—-——-—>E
J :
XiXZ > Z ~ B
or still,
Xix (ZXBE)—-—-—————>Z><BE—-————>E
[ ,
XiXZ > 4 > B .

But the arrow

Xix (ZxBE) ->Z><BE

is in our generating class.]

20.19 EXAMPLE Take SISET in its Kan structure —- then this model structure is
proper .

[Since all objects are cofibrant, left proper is an application of standard
generalities while classically, right proper lies deeper in that it uses the fact
that the geometric realization of a Kan fibration is a Serre fibration. But, as

has been noted in 20.6, W _ is generated by the projections

K x AIll > K (K€ Ob }).




Therefore right proper is immediate (cf. 20.18).

20.20 1LEMVA Let Sl,s2 < Mor E be sets. Suppose that the Cisinski structures
corresponding to N(Sl) ,W(Sz) are right proper -- then the Cisinski structure

corresponding to W(Sl U 82) is right proper.

[To infer right proper, apply 20.17, noting that every fibration per N(Sl U Sz)

is a fibration per W(Sl) and W (52) .]

20.21 NOTATION Given an admissible E-localizer W and a small category I,

denote by W, < Mor[I,E] the class of morphisms Z:F - G such that v i € b I,
g;:Fi > Gi is in W.
N.B. Recall that [I,E] is a Grothendieck topos (cf. 18.17).

20.22 LEMMA WI is an admissible [I,E]-localizer.

[Note: Therefore 20.12 is applicable with E replaced by [I,E] and W replaced
by U]

APPENDIX

What follows is a summary of some basic facts from model category theory.

Let C be a model category.

DEFINITION C is combinatorial if C is cofibrantly generated and presentable.

EXAMPIE If W is an admissible E-localizer, then E in the Cisinski structure




corresponding to W is combinatorial (recall that E is presentable (cf. 18.23)).
Fix a small category I.

DEFINITION Let C be a model category and suppose that & € Mor[I,Cl, say

“sF > G.

e E is a levelwise weak equivalence if v i € Ob I, Ei:Fi -+ Gl is a weak

equivalence in C.

]
f1

E is a levelwise fibration if v i € Ob I, £,:Fi » Gi is a fibration

[
(1

% is a projective cofibration if it has the LLP w.r.t. those morphisms

which are simultaneously a levelwise weak equivalence and a levelwise fibration.

DEFINITION The triple consisting of the classes of levelwise weak equivalences,

levelwise fibrations, and projective cofibrations is called the projective structure

on [I,C].

THEOREM Suppose that C is a combinatorial model category — then for every I,
the projective structure on [I,C] is a model structure that, morecver, is combina~

torial.

DEFINITION Let C be a model category and suppose that E € Mor[I,C], say

=P - G,

e F is a levelwise weak equivalence if v i € Ob I, Ei:Fi + Gi is a weak
equivalence in C.

-

e £ is a levelwise cofibration if v i € Ob I, Ei:Fi -+ Gi is a cofibration




® E is an injective fibration if it has the RIP w.r.t. those morphisms

which are simultaneously a levelwise weak equivalence and a levelwise cofibration.

DEFINITION The triple consisting of the classes of levelwise weak equivalences,

levelwise cofibrations, and injective fibrations is called the injective structure

on [I,C].

THEOREM Suppose that C is a combinatorial model category -- then for every I,
the injective structure on [I,C] is a model structure that, moreover, is combina-

torial.

REMARK
® ELvery projective cofibration is necessarily levelwise, hence is a co-
fibration in the injective structure,
® FEvery injective fibration is necessarily levelwise, hence is a fibration

in the projective structure.

EXAMPLE If W is an admissible E-localizer, then the Cisinski structure on
[I,E] corresponding to NI (cf. 20.22) is the injective structure (monomorphisms

are levelwise).

[Note: Of course one can also equip [I,E] with its projective structure.]

LEMMA Suppose that C is cambinatorial —— then

[I,C] (Projective Structure)
C left proper => left proper

[I,C] (Injective Structure)



and — [1,C]1 (Projective Structure)

Il
\'

C right proper right proper.

[I,C] (Injective Structure)

REMARK If W is an admissible E-localizer, then the Cisinski structure on

[I,E] corresponding to W, (cf. 20.22) is left proper (cf. 20.15) and is right

proper if the Cisinski structure on E corresponding to W is right proper.
Iet C and C' be model categories.

DEFINITION A left adjoint functor F:C + C' is a left model functor if F

preserves cofibrations and acyclic cofibrations.

DEFINITION A right adjoint functor F':C' + C is a right model functor if F'

preserves fibrations and acyclic fibrations.

LEMMA Suppose that

F:C » C!

-

Fligt > ¢

are an adjoint pair — then F is a left model functor iff F' is a right model

functor.

DEFINITION A model pair is an adjoint situation (F,F'), where F is a left

model functor and F' is a right model functor.

ILEMMA The adjoint situation (F,F') is a model pair iff F preserves cofibrations

and F' preserves fibrations.



10.

LEMMA The adjoint situation (F,F') is a model pair iff F preserves acyclic

cofibrations and F' preserves acyclic fibrations.

REMARK If C and C' are combinatorial and if

F

10
Q

Fl

is a model pair, then composition with F and F' determines a model pair

w.r.t. either the projective structure or the injective structure.

If the adjoint situation (F,F') is a model pair, then the derived functors
LF:EI_(_J_ + HC'
RE':HC' ~ HC

exist and are an adjoint pair.

DEFINITION A model pair (F,F') is a model equivalence if the adjoint pair

(LF,RF') is an adjoint equivalence of homotopy categories.

LEMMA Suppose that C is combinatorial and consider the setup



11.

[I,C] (Projective Structure) [I,C] (Injective Structure).

i1,

Then (1d[:£:§], ld[l'g) is a model equivalence.




§21. SIMPLICTIAL MACHINERY

Iet C be a category.

21.1 NOTATION SIC is the functor category [QOP,Q] and a simplicial object

X in C is an object in SIC.
21.2 RAPPEL Assume: C has coproducts. Define X|”|K by

(X!:]K)n =K, % E _ILLXH)
n

Then

|| :SIC x SISET -+ SIC

is a simplicial action, the canonical simplicial action.

[Note: Therefore

X|Z[& xn) = &[_|x|]|L
and
x|[af0] = X,
subject to the usual assumptions.]
N.B. Take C = SET —- then
X| |k » X x K.
In fact,
(xxK)annxanKnXXn:Kn-Xn.

21.3 REMARK Thus there is an S-category l:lSIC such that SIC is isomorphic
to the underlying category U|  |SIC.

[Recall the construction: Put O = Ob SIC and assign to each ordered pair




X,Y € O the simplicial set HOM(X,Y) defined by

HOM(X,Y) | = Mor (X[ |Aln],Y) (n 2 0).]

21.4 LEMMA Assume: C has coproducts —- then v X € Ob SIC, the functor

x|

:SISET + SIC

has a right adjoint, viz. the functor

HOM(X,~—) :SIC + SISET.

21.5 LEMMA Assume: C has coproducts and is complete ~— then v K € Ob §,

the functor
—|Z|k:sIC > STC
has a right adjoint, denoted by
X » hom(K,X).
N.B. In terms of SIC,
T Mor(X|T|K,Y) = Mor (K,HOM(X,Y))
‘__ Mor (X|_|K,Y) = Mor (X,hom(K,Y)),
and in terms of | [SIC,
T HOM(X||X,Y) ~ map(K,HOM(X,Y))
i HOM(X| |K,Y) = HOM(X,hom(K,Y)).

[Note: Here is another point. On the one hand,
Mor (X|_| (K x 1),¥) = Mor(X,hom(K x L,Y)),
while on the other hand,

Mor (X| [ (K x L),¥) = Mor ((X|_|R) |_|L,¥)



4

Mor (X||K,hom (L, Y))

t

Mor (X, hom (K, hom (L, Y)) ).

Therefore

u

ham(K x L,Y) hom (K, hom (L, Y)) .]

21.6 LEMMA Assume: C has coproducts and is complete. Suppose that
K = coiimi Ki -~ then v X,Y € Ob SIC,
bbr(x,hcxn(colimi Ki,Y)) ~ l:imi Mor (X,hcm(Ki,.Y)) .

PROOF

&

Mor (Xl’_(colimi K;/Y)

n

Mor (colim; xl:\Ki,Y)

R

lim, Mor (X|_|K,,Y) = RHS.

21.7 NOTATION Iet C be a complete category. Given a simplicial object X in

C and a simplicial set K, put

XMK= ](X)

[n

an object in C.

21.8 EXAMPLE Take K = A[n] -- then it follows from the integral Yoneda lemma
that

X fh Aln] = Xn.

Iet K be a simplicial set. Assume: C has coproducts — then K determines a
functor




by writing

X « X)n] =Kn - X.

21.9 LEMMA Assume: C has coproducts and is complete —— then K - — is a

left adjoint for

— 1 KSIC » €.

21.10 LEMMA Assume: C has coproducts and is complete. Suppose that

cholimiKi--theanEObSIC,
X h K= lim; X f K;.

PROOF Given A € Ob C, let A € Ob SIC be the constant simplicial object
determined by A, thus

Mor(A,X § K) = Mor(X + A,X)

11

Mor (A|”|R,x)

14

it

Mor (col:im:.L é}"[Ki,X)

1

lim, Mor(a|_|K, ,X)

u

4

lim; Mor (A,X } K,)

2

Mor (A, lim, X f K,).

21.11 LEMMA Assume: C has coproducts and is complete -- then V X € Ob SIC,
hom (K,X) | = X h (R x A[n]).

PROOF Write

K x Aln] =~ oolimi A[ni] .




Then

XM (K x Aln])

a

lJmi X b A[ni]

u

llmi Xni (cf. 21.8)

4]

hom(K,X)n.

[Note: The not so obvious final point is implicit in the proof of 21.5 (which

was omitted).]

21.12 EXAMPIE Take n = 0 to get

hom(K,X)y = X i K

44

and then replace K by A[n] to get

134

hom(A[n],X) X Aln] = X -

[Note: Accordingly,

3

hom(K,X)n hom(A[n],hcm(K,X))o

= hom(X % A[n] 'X)O‘]

21.13 LEMMA Assume: C has coproducts and is complete — then v K,L € Ob @,

hom(K,X) i L =X i (K x L).

21.14 RAPPEL A simplicial set K is finite if it has a finite number of non-

degenerate simplexes.

21.15 FACT Suppose that K is finite —— then there exists a finite category I

and a functor ¢:I - A such that

K=x~colimyY, o &

>



or still,

R = c:olimi zl[ni] (1€0bI, 2i= A[ni}).

21.16 THEOREM let C, C' be categories. Assume: C, C' have coproducts and are

complete. Suppose that F:C + C' is a functor which preserves finite limits -- then
F: 0%,cl > 2%F,c'
and ¥ X € Ob SIC and every finite K € Ob A, the canonical arrow

F,hom(K,X) > hom(K,F,X)
is an iscmorphism.
PROOF Since

hom(K,X)n = hom(K %X Aln] ,X)O {(cf. 21.12)
and since K x A[n] is finite, it will be enough to verify that
(F,,J’xf:m(l(,x))0 = Fhan(K,X)O = hom(K,F*X)O.

Per 21.15, write

=
K

col.uni A[ni] .

Then

u

Fhom(K,X}o Fhom(oolimi A[ni] ,X)O

R

F(X  colim, Aln;])

n

F(l:imi X A[ni]) (cf. 21.10)

i

lim, F(X th Aln.1)

u

lim, E'Xni (cf. 21.8)

4

lim, (FyX) n,



1

lim, F,X § Aln,]

R

F,X colim; Aln,]

13

F.X K

~ ham (K, F,X) ;.

21.17 APPLICATION Let E be a Grothendieck topos. Suppose that p:E -+ SET
is a weak point —— then for every simplicial object X in £ and for every finite
simplicial set K, the canonical arrow

pihom(K,X) -+ hom(K,p.X)

is an isomorphism.



§22. LIFTING

Iet E be a Grothendieck topos.
[Note: € is cocamplete (by definition), hence has coproducts, and is complete

(cf. 18.14). Therefore the technology developed in §21 is applicable.]

22.1 DEFINITION A geometric family is a class U of monomorphisms of finite

simplicial sets.

22.2 EXAMPIE The inclusions

Aln] + Aln] (n

v

0)

constitute a geometric family.

22.3 EXaMPLE The inclusions
1)

[T
~
A
v

Afk,n] = Aln] (0 n, n

constitute a geometric family.

Given an element i:K ~ L of a geometric family Y and a morphism Z:X -~ Y of

simplicial objects in E, there is a cammutative diagram

i%*
hom (L, X) > hom (K, X)
:* E*
hom (L, ¥) > hom (K, Y)
i*

which then leads to an arrow

(E4,1i%*) shom(L,X) - hom(L,Y) hom (X, X)

xhcm {K,Y)



or, upon evaluating at 0, to an arrow

(E*,l*)O:th(L,X)O - hcm(L,Y)o th(K'Y)O hom(K,X)O.

22.4 DEFINITION Z:X - Y has the local right lifting property w.r.t. Y if

¥ i:K - L in Y, the arrow (E*,i*)o is an epimorphism in E.

22,5 EXAMPLE Take E = SET - then Z:X - Y has the local right lifting property
w.r.t. U iff Z:X + Y has the right lifting property w.r.t. 4.
[For simplicial sets A and B,

hom(A,B) = map(A,B) => h:)m(A,B)0 = Mor(A,B).]

22.6 NOTATION Given a geometric family Y, denote by LOCq(g) the class of
morphisms in SIE that have the local right lifting property w.r.t. 4.

22.7 LEMMA Let E, F be Grothendieck toposes and let f£:E ~ F be a geametric

morphism ~- then

(£%) ,I0C, (F) < TOCy(E) .

[Apply 21.16 (f* preserves finite limits).]

[Note: By definition, £*:F + E. Therefore

(£%),: 2%, F1 > 12%F,E1.]

ILet EZ:X > Y be a morphism of simplicial objects in E. Suppose that p:E + SET

is a weak point of E -- then the compositions



are simplicial sets and
pIZipX » pY
is a simplicial map.
[Note: Here, Vv n
(pX)n = PX,

' En:Xn > Yn’

(pY) | = pPY,

and (p::)n = pEn, thus
PE

an———-—> pYn .]

22.8 CRITERION Z:X - Y has the local right lifting property w.r.t. 4 iff for

every weak point p:f -+ SET, pZ:pX - pY has the right lifting property w.r.t. Y.

It is obvious that I.OCq(g) contains the isomorphisms.

22.9 LFMMA The class mcq(g) is composition stable, pullback stable, and closed

under the formation of retracts.

Let I be a small category — then [I,E] is a Grothendieck topos (cf. 18.17)

and epimorphisms are levelwise.




N.B. There is an identification

%, 11,811 = 11, 2%, E11.

22,10 IEMMA Denote by Locq(_E_)I the class of morphisms =Z:F -+ G such that
vieolI, E‘i:Fi + G1 is in I_OCq(:E_) —— then

LOCy (B) = 10Cy ([L,ED) .

22.11 1FvvA The class Locq(g) is closed under the formation of filtered co-
limits.

[If I is filtered, then the functor

oolimI: [I,E] - E

preserves finite limits. But c:ol:i_mI has a right adjoint, viz. the constant diagram

functor. In other words, the data provides us with a geometric morphism E + [I,E].

Now quote 22.7 (modulo 22.10).]

22.12 IEMMA Z:X » Y has the local right lifting property w.r.t. Y if it has

the right lifting property w.r.t. the arrows

idy |Z]4:a|CIk > AL,

where A runs through the objects of £ and i:K + L runs through the elements of Y,

i.e., if every commutative diagram

Ak ——

‘-.l
[o7)
L
™
[1} a

admits a filler.




N.B. The arrow
Al_[k > A"
is a monamorphism.

[From the definitions,

@_w, =1l a
K
n

@_lw, =1l a
L
n
and K injects into L _.]
n n

22.13 REMARK There is a characterization, namely Z:X - Y has the local right

lifting property w.r.t. U iff for every A € Ob E, for every i:K » L in 4, and for

every commutative diagram

AR ——— X
idél_!i IE
Al —m —— v,

one can find an A' € Ob E and an epimorphism w:A' + A with the property that the

commutative diagram

m|_|idy,
AR AR x
id,, ||k 2
AR ——— A L —— ¥
Tr|_|1dL

admits a filler.



§23, LOCALIZERS OF DESCENT
Iet E be a Grothendieck topos.

23.1 DEFINITION Let E:X + Y be a morphism of simplicial objects in E -~ then

£ is said to be a hypercovering of SIE if it has the local right lifting property

w.r.t. the inclusions A{n] > Alnl] (n =2 0).

[Note: Recall that

hom(A[n] ,X)0 ~ X
(cf. 21.12).
hom{A[n] ’Y)O = Yn

On the other hand,

hom(A[n],X) y = X f Aln]

(cf. 21.11)
hom(Aln] ,¥) 5 = ¥ ) Aln]
and
X 0 Aln] = M X
Y f Afn] ~ MY,
X
the symbols on the right standing for the matching object of familiar from
Y
"Reedy theory", thus o
= = (n-1)
Mnx(—- M[n]x) = (cosk x)n
N,[nY(= M[n]Y) = (cosk(n'l)Y)n,

the matching morphisms being the canonical arrows
Xn - MnX

Y‘n > MnY.

e



Therefore the demand is that v n 2 0, the arrow

X »Y¥ X M X
n n n

MhY

is an epimorphism in E.]

23.2 NOTATION HR(E) is the class of hypercoverings of SIE, so

HR(E)= 1OC |, (E).
{Aln] » Aln] (n = 0)}

[Note: The stability properties formulated in 22.9 are in force here.]

23.3 EXAMPLE Take E = SET —— then in this situation, HR(§) is the class of

acyclic Kan fibrations (cf. 22.5).

23.4 LEMMA Every hypercovering Z:X -~ Y is an epimorphism.
PROOF Since epimorphisms in SIE are levelwise, it suffices to prove that vV n,

En:Xn - Yn is an epimorphism in E. To this end, let p:E ~ SET be a weak point —-

then p=:pX - pY has the right lifting property w.r.t. the Ex[n] > Aln] (n =z 0) (cf.
22.8), hence is an acyclic Kan fibration, hence is an epimorphism (see below). But

pEn = (pE)n is an epimorphism in SET, thus one can quote 19.23.

[Note: In SISET, all objects are cofibrant, so in the commtative diagram

g—> pX
pY ——— p¥,

there is an arrow w:pY - pX such that pf o w = id

Ly which implies that pZ is an

epimorphism. ]



23.5 LEMMA The hypercoverings are closed under the formation of products of
pairs of arrows.
PROOF Suppose that

El :Xl - Yl

gy, > Y,

are hypercoverings -— then for any weak point p:E - SET,
p(E; x &) = p(Eq) x p(E,).
- pe,
But are acyclic Kan fibrations and the product of two acyclic Kan fibrations
p=
2

is an acyclic Kan fibration. Now apply 22.8.

23.6 DEFINITION The SIE-localizer of descent is the SIE-localizer generated

by HR(E), i.e.,

W(HR(E)) .

N.B. The elements of W(HR(E)) are called the weak equivalences of descent.

23.7 EXAMPLE Take E = SET — then

W(HR(E)) = W(@),

the minimal _Z_x-localizer .

[Since HR(E) is the class of acyclic Kan fibrations (cf. 23.3), if W is a
g—localizer, then

W> RP(M) = RIP({A[n] - A[n] (= 0)})

HR (E) .



Therefore

W> WHR(E)).]
23.8 LEMA W(HR(E)) is admissible.

Consequently, SIE admits a cofibrantly generated model structure whose class
of weak equivalences are the elements of W(HR(E)) and whose cofibrations are the

monomorphisms (cf. 20.12).

23.9 REMARK The foregoing model structure on SIE is left proper (cf. 20.15)

and right proper (use 20.17 (the elements of HR(E) are pullback stable)).

N.B. W(HR(E)) is closed under the formation of products of pairs of arrows

(use 20.9 (cf. 23.5)).

23.10 RAPPEL The geometric morphism (I'*,T',) of 18.2 extends to a geometric

morphism SIE - SISET denoted by the same symbol. In particular:

I'*:SISET -+ SIE

is defined by the prescription

(T*K) = J?_L *E'
‘n

So v X € Ob SIE,

* - x
XxT K)n Xn x (T K)n

zL_X X * (cf. 18.20)




_E_K_I_Xn = &R,  (cf. 21.2).
n
Therefore

X| |k = X x T'*K.

13

23.11 NOTATION Given X € Ob E, X is the constant simplicial object in SIE.

23.12 DEFINITION Let W be a A-localizer —- then the SIE-localizer of W-descent,

denoted WE, is the SIEt-localizer generated by HR(E) and by the morphisms

sd [7|£:x| 71K - x|,

where X € Ob E and f:K +~ L is an arrow in W.

N.B. The elements of WE are called the weak equivalences of W-descent.

23.13 1LEMMA Suppose that W = W(C) (C < Mor é) -~ then NE is generated by

HR(E) and by the morphisms

ENES (L

—

where X € Ob E and f:K ~ L is an arrow in C.

PROCF Ietting NE c be the SIE-localizer generated by the morphisms in question,
-—’ -

it is clear that W c W To go the other way, given X € Ob E, let

E.c < M

FX:Z} -+ SIE

be the functor that sends K to X| [K (z X x T*K) — then F}_(lWE o isa A-localizer

(cf. infra) and

-1
CcFye¥e o

-

=> W c F;(lWE e
Cr



Since this is true of all X € Ob £, it follows that WE < W o-
t4

— -

[Note: The claim is that F;;]'NE c satisfies the three conditions of 20.3.

E.g., to check condition (2}, let f:K -~ L be an acyclic Kan fibration -- then

I*f:T*K » T'*L is a hypercovering (cf. 22.7), thus the same is true of
idX X T*f:g_{ x T*K - X x T*L {cf. 23.5).

I.e.:

id, x T* € HR(E).

-,

Therefore F;LWE c contains the class of acyclic Kan fibrations, as claimed.]

N.B. The SIE-localizer of W(f@)-descent is the SIE-localizer of descent.

23.14 EXAMPLE Consider the SIE-localizer generated by HR(E) and by the morphisms
1d, | Tlp x| 7| (® x A[11) > X[T|K (K € 0b A).

Then this is the SIE-localizer of Nw-—descent (cf. 20.6).

23.15 IFMMA If W is admissible, then wE is admissible.

23.16 THEOREM If W is admissible, then SIE admits a cofibrantly generated model
structure whose class of weak equivalences are the elements of NE and whose co-

fibrations are the monomorphisms (cf. 20.12).
~
[Note: If the Cisinski structure on A per W is proper, then the Cisinski

structure on SIE per WE is proper.]

23.17 SCHOLIUM SIE admits a cofibrantly generated proper model structure whose



class of weak equivalences are the elements of (W ) £ and whose cofibrations are
the monomorphisms.

23.18 LEMMA Every trivial fibration Z:X -~ Y is a hypercovering.

PROOF By definition, E € RIP(M), where M < Mor SIE is the class of mono—

morphisms. Accordingly, every cammtative diagram

A|"|aln] >

X
}E (ARe€EObE n20)
Y

Al |An] >

admits a filler. Therefore = has the local right lifting property w.r.t. the

inclusions A[n] + Aln] (n 2 0) (cf. 22.12). 2nd this just means that E is a
hypercovering.

Let E, F be Grothendieck toposes and let £:E > F be a geometric morphism —-
then f induces a gecmetric morphism si £:SIE » SIF, thus there is an adjoint pair

(si £*, si f,) and si f£* preserves finite limits.

[Note: si £* = (£%), (cf. 22.7).]
23.19 LFMMA Suppose that W is admissible —— then
1 *
sif WF c WE.
PROOF Applying 22.7 (and bearing in mind 23.18), it follows that (si f*)‘le

is a SIf-localizer which contains the hypercoverings. On the other hand, if

YEObFand £f:K ~ L is an arrow in W, then

(si £)*(id, [T|F) = id.,,|T|f.

JEN——



Therefore

W, c (si f*)“le

F £
or still,

si f*NF c NE.

— pes

23.20 THEOREM Suppose that W is admissible —- then the adjoint situation
si £*:SIF » SIE
si £,:SIE » SIF

is a model pair.
PROCF In fact, si f* preserves finite limits, hence preserves cofibrations
(these being the monomorphisms). Meanwhile, thanks to 23.19, si £* sends weak

equivalences to weak equivalences.
Let I be a small category — then [I,E] is a Grothendieck topos (cf. 18.17) and

10,8 = 8%, (1,801 = (L, 8% ,E1] = [I,SIE].

Let W be an admissible @—localizer — then W_. is an admissible SIE-localizer

E

(cf. 23.15), so it makes sense to form (W {cf. 20.21), which is an admissible

2
[I,SIE]-localizer (cf. 20.22).

23.21 ILFMMA In [I,SIE],

Wig,e = Mg

——

I

Therefore the Cisinski structure on [I,SIE] per N{I Fl is the injective
-'.-v

structure on [I,SIE] w.r.t. the Cisinski structure on SIE per WE.

-




§24. LOCAL FIBRATIONS AND LOCAL WEAK EQUIVALENCES
Let E be a Grothendieck topos.

24.1 DEFINITION Let Z:X - Y be a morphism of simplicial objects in E — then

Z is said to be a local fibration if it has the local right lifting property w.r.t.

the inclusions Alk,n] = AIn] (0 £k <n, n=z 1).

24.2 LEMMA E:X » Y is a local fibration iff for every weak point p:E —+ SET,

pE:pX » pY is a Kan fibration (cf. 22.8).
N.B. Therefore the hypercoverings are local fibrations.

24.3 1IFMMA Iet Z:X > Y be a local fibration and let i:K » L. be a monamorphism

of finite simplicial sets -- then the arrow

(E4,1*) :hom(L,X) + hom(L,Y) hom (K, X)

“ham (K, Y)

is a local fibration which is a hypercovering if © is a hypercovering or i is a
simplicial weak equivalence.
[Note: These conditions are reminiscent of those figuring in the definition

of "simplicial model category".]

24.4 DEFINITION Consider SIE in its Cisinski structure per an admissible

W < Mor § (cf. 23.16) = then the elements of

RLP(NE n M

are called the fibrations of W-descent.

24.5 EXAMPLE Take W = W_ —— then every fibration E:X + Y of W —descent is a



local fibration.

[In view of 22.12, it suffices to show that every commutative diagram
Al |alkn] — X

JE A€eObE O<k<n, nzl)
A" |Alp] ——— ¥

admits a filler. But this is plain: The arrow

Al |JAlk,n] — a|7|Aln]

is both a weak equivalence of W_-descent and a monomorphism. ]

24.6 REMARK Suppose that E satisfies the axiom of choice — then in this case,

the fibrations of W _—descent are precisely the local fibrations (Rezk+) .

24.7 DEFINITION A simplicial object X in E is said to be locally fibrant if

the arrow X » %

SIE is a local fibration.

24.8 IEMMA X is locally fibrant iff for every weak point p:E - SET, pX is a

Kan complex.

24.9 EXAMPIE If X is locally fibrant and if K is a finite simplicial set,
then hom(K,X) is locally fibrant.

[In fact, v weak point p:E - SET,

p,hom (K, X)

u

hom (K, p.X) (cf. 21.17)

i

map (K, p,X)

i arXiv:math/9811038




or still, dropping the sub~x,
phom(X,X) = map(K,pX) .
But

pPX Kan => map(K,pX) Kan.]

24.10 EXAMPIE If X is locally fibrant, then hom(A[l],X) is locally fibrant
and there is a local fibration
hom(A[1],X) » X x X,

[In 24.3, let K = A[0] || A[0], L = A[1].]

24.11 NOTATTION Let SIE Poc be the full subcategory of SIE whose objects are

locally fibrant.

24.12 DEFINITION Iet Z:X - Y be a morphism of locally fibrant simplicial objects

in E — then E is said to be a local weak equivalence if for every weak point

p:E + SET, pPE:pX -~ pY is a simplicial weak equivalence, i.e., pE € W_.

[Note: Take E = SET —— then it is true but not obvious that "local weak equiv-

alence" coincides with "simplicial weak equivalence" (cf. 24.23).]

24.13 RAPPEL Consider a triple (C,W,fib), where C is a category with a final

object * and

!" W e Mor C

fib <« Mor C

are two composition closed classes of morphisms termed

]_ weak equivalences

fibrations,




the acyclic fibrations being the elements of

W n fib.
Then C is said to be a category of fibrant objects provided that the following
axioms are satisfied.
(FIB-1) For every object X in C, the arrow X » * is a fibration.
(FIB-2) All isomorphisms are weak equivalences and all isomorphisms are
fibrations.
(FIB-3) Given composable morphisms f£,g, if any two of f,g,g9 o f are weak

equivalences, so is the third.

(FIB-4) EBvery 2-sink X £ > 2 < g Y, where g is a fibration (acyclic

fibration), admits a pullback X < 2 p_". Y, where £ is a fibration (acyclic

fibration):

rd
v
-

>
v
3

g
_e_..___._..._
. Q

£
(FIB-5) Every morphism in C can be written as the composite of a weak equiv-

alence and a fibration.

24.14 THEOREM Take C = SIEE and let

W = the local weak equivalences

fib = the local fibrations.

Then the triple (C,W,fib) is a category of fibrant objects and the acyclic fibrations




are the hypercoverings.

[Note: Given an arrow = in SIEEoc' one can write & = q ¢ j, where q is a

local fibration and j is a local weak equivalence with the property that it has

a left inverse r which is a hypercovering (r ¢ j = id).]

24.15 LEMMA Suppose that =:X + Y is a local weak equivalence — then Z is
a weak equivalence of descent.

PROOF Write Z = g ¢ j per supra -~ then q is a local weak equivalence (this
being the case of = and j). But g is also a local fibration, thus g is a hyper—
covering, thus g is a weak equivalence of descent. As for j, it too is a weak
equivalence of descent. To see this, recall that W(HR(E)) is the class of weak

equivalences for a model structure on SIE, hence is saturated:
W(HR(E)) = N(HR(E)) .

Therefore any arrow whose image in the homotopy category is an isomorphism is
necessarily in W(HR(E)). But r o j = id and r € HR(E), hence is invertible in the
homotopy category, hence the same holds for j, i.e., j is a weak equivalence of

descent.

The functor E -+ SIE that sends X to X (cf. 23.11) has a left adjoint 7,:SIE ~ E

0
that sends X to the coequalizer of the arrows

dO :Xl > XO

dl:Xl > X{)'




[Note: Take E = SET — then in the context of simplicial sets, w, preserves

0

finite products and TTOX can be identified with the set of components of X.]

24.16 LEMMA Suppose that X is locally fibrant —— then for every weak point
p:E + SET, the canonical map
TFOPX  — prrOX
is bijective.
PROOF Iet R be the image of the arrow

(do,dl) :Xl - X0 x XO'

Then R is a relation on X and ¥ weak point p:E + SET, pX is a Kan complex and pR

is an equivalence relation on PXy- Therefore R is an equivalence relation on Xy
and the canonical map
il OpX — pTrOX

is bijective (cf. 19.27).

24.17 RAPPEL The class of all weak points of E is faithful (cf. 19.20), hence
reflects isomorphisms (¢f. 19.19).
24.18 IFMMA The restriction of T to SIEg preserves finite products.
PROOF To check that the canonical arrow
To X xXY) —> TTOX b TTOY

is an isomorphism, let p:E + SET be a weak point and note that

pTTO(X X Y) = ﬂop(X X Y)

11

Ty (PX x pY)



1

TropX % TTOPY

n

PrgX X prgY

1

p(TrOX % 'ITOY) .

[Note: It is clear that T, Preserves final objects.]

24,19 IEMVMA Iet Z:X + ¥ be a local weak equivalence — then m.Z:7w.X > 7Y

0=*"o 0
is an isavorphism.

PROOF Take a weak point p:E + SET and consider the commutative diagram

PTTOE
p’HDX > p’WOY

~ ~
o~ ~

wOpX > TTOPY.
TrOpE

Since pf is a simplicial weak equivalence, the arrow

ﬂopE:ﬂOQX -+ 'rrOpY
is bijective. Therefore the arrow

PTGE:pT X + prY
is bijective.

The preceding considerations can be extended from T to ™ (n = 1) but before

doing this it will be best t0 review how things go for simplicial sets (i.e., the

case £ = SET).



Thus given a Kan complex X, let
m X = 1l M, (Xexg)

Then there is a map Cpim X * Xy and X is a group object in SE'I‘/X0 (abelian if
nz=2).

[Note: The construction X »> wnx is functorial in X and natural w.r.t. cn.]

N.B. Denote by % the nth loop space of X -— then O™ is a Kan camplex and

TrQnX=7rX.
0 n

24.20 THEOREM Iet X and Y be Kan complexes, £:X > Y a simplicial map -- then

f is a simplicial weak equivalence iff w.f:7m.X » 7.¥ is bijective and ¥V n 2 1, the

0770 0
commutative diagram

7 X > T Y
n

s

0
o

Q
ts)

=

is a pullback square.

While I shall amit the particulars, the story for an arbitrary £ is analogous:
One can assign to each locally fibrant X its nJCh loop space QnX, a locally fibrant

simplicial object in E, and

QnX = TTnX.

To



N.B. There is a map c M X * X, and for any Z:X + Y, there is a commutative

diagram
T B
n
'rrnX Y 'rrnY
“n ©h
XO > YO.
0

24.21 LEMMA Let p:E > SET be a weak point — then
pﬂnx ] anX.

PROOF The formalities give rise to a pullback square

ok > hom(A[L], % 1)

| |

0 > o _lX X gzn'lx,

the vertical arrow on the RHS being an instance of 24.10. Now apply p — then the

commutative diagram

pX > phmn(A[l},Qn—lX)
PX, > an-JX x pa I

is a pullback square in SISET. Proceeding inductively, it can be assumed that

o Iy~ P "le.




10.

Here pX, = (pX), and

phom(A[1],2% %) ~ hom(A[1],p 1) (cf. 21.17)

13

4]

hom(A[1], 2% 1px) .

But the commutative diagram

o px > hom(A[1],2% Hpx)
() ) > Pl x P
is also a pullback square in SISET. Therefore
anX = anX.
[Note: If n =1, then there is a pullback square
X > hom(A[1],X)
}-{0 > X % X
from which a pullback square
piX ——————> phom(A[1],X)
2.9 > pX X pX

in SISET. But
phom(A[1},X) =~ hom(A[1],pX) (cf. 21.17)
and the commutative diagram

OpxX > hom(A[1] ,pX)

| |

(BX), > PX X pX




11.

is also a pullback square in SISET. Therefore
piX =~ OpX.]

24.22 LEMMA Let p:E > SET be a weak point - then

ﬁan = p’zrnX.
PROOF In fact,
Tran = TrOQn pX

~ ’n'opﬂnx (cf. 24.21)

~ p’ﬂoﬂn}( (cf. 24.16)

I

prr_X.

24,23 THEOREM Iet X and Y be Kan complexes, f£:X - Y a simplicial map -- then
f is a local weak equivalence iff f is a simplicial weak equivalence.

PROOF The nontrivial claim is that if f is a simplicial weak equivalence, then
for any weak point p:SET - SET, pf:pX > pY is a simplicial weak equivalence, and
to establish this, we shall apply 24.20.

® (onsider the commitative diagram

13
u

p’rrof

Then wof is bijective, hence p'rrof is bijective, hence TTDpf is bijective.



e The commitative diagram

12.

is a pullback square, thus the commutative diagram

pr X

pX

is a pullback square. But

pr X

u

Therefore the commtative diagram

’iTan
“n

BX,

TTnf
iU nY
lc
n
> YO
fO
pm £
> prrnY
C
n
> pYO
pfy
pwnf
> p’ITnY
> 'rran.
Trnpf
m_of
n
> Tl'an
> pYO

pf,



13.

is a pullback square.

24.24 THEOREM Iet Z:X - Y be a morphism of locally fibrant simplicial objects
in E — then T is a local weak equivalence iff TTOE:TFOX -> TYOY is an isomorphism

and V n 2 1, the comutative diagram

7=
n
TFnX >3 TrnY
€n Jcn
XG > YO
=0

is a pullback square.

Every local weak equivalence is a weak equivalence of descent (cf. 24.15),
hence is a weak equivalence of W_~descent. When E = SET, this can be turned around:
Every weak equivalence of W _-descent (a.k.a. simplicial weak equivalence) is a local

weak equivalence (cf. 24.23), a conclusion that persists to an arbitrary E.

24.25 1EMMA Let E:X - Y be a morphism of locally fibrant simplicial objects in
E. Assume: E is a weak equivalence of W _-descent —- then E is a local weak equiv-
alence.

[The full proof is lengthy and technical but here is the strategy. First treat
the case when ¥ = x and use it to treat the case when in addition the arrow Y - *

is a fibration of Wm-descent. This done, factor Y » * as
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where j is an acyclic cofibration (thus a weak equivalence of W_-descent) and

Y' »+ % is a fibration of Noo—descent. Consider

g J
X > Y > Y'Y,

Then j is a local weak equivalence and j o Z is a local weak equivalence. There-

k3

fore E is a local weak eguivalence.

[Note: Another approach is to use 24.6 and prove it initially under the
assumption that E satisfies the axiom of choice. To proceed in general, take
f:B >~ E as in 18.29 -- then si f*Z is a weak equivalence of W_-descent (cf. 23.19),
hence is a local weak equivalence. And fram there it is not difficult to see that

= is a local weak eguivalence.]

Using standard methods, one can introduce a functor

Ex :SIE + SIE
and a natural transformation

€ :ldg7g

with the property that if X is a locally fibrant simplicial object in E, then Ex X
is a locally fibrant simplicial object in E and the arrow ei:x + Ex X is a local

weak equivalence.

24.26 LEMMA If X is a locally fibrant simplicial object in E, then the arrow
ei:X + Ex X induces an isomorphism
meX > ToEX X (cf. 24.19)
and vn=zl,

'rrnX:: ﬂnEx X



15.

PROOF The commutative diagram

X ]
'nnX > ﬂnEx X
<, c,
X, — > (Ex X)O
eyl

is a pullback square (cf. 24.24). But (e;;)o is an isomorphism and the pullback

- . * * * @0 4 s »
of an isomorphism is an isomorphism. Therefore T8y is an isomorphism.

24.27 IEMMA If X is a simplicial object in E, then Ex X is a locally fibrant

simplicial object in £ and the arrow e;:X +~ Ex X is a weak equivalence of W_-descent.

24.28 DEFINITION Given X € Ob SIE, put
’iTnX = TrnE;<°°X {n=1}).

[Note: Up to isamorphism, matters are consistent when X € Ob SIEZ {cf. 24.26).]

24.29 THEOREM ILet Z:X - Y be a morphism of simplicial objects in E —- then the
following conditions are equivalent.
(1) £ is a weak equivalence of Nm-descent.
(2) Ex 2 is a weak equivalence of W_-descent.
(3) Ex = is a local weak equivalence.

(4) ToEsmgK > mg¥ is an isomorphism and v n = 1, the commutative diagram
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TrnX > 1. Y

>

is a pullback square.

PROOF Taking into account 24.27, the equivalence of (1) and (2) results upon

inspection of the commutative diagram

[1]

X > Y
[oe) 00
* Sy

fes] X
Ex X > BEx Y.

o0
Ex =

Next, since EKOOX and Eme are locally fibrant, the equivalence of (2) and (3)

follows from 24.25. Finally, in view of 24.24, the equivalence of (3) and (4)

can be read off from consideration of

Mo
1TOX > '1T0Y
Ex X Ex Y
TTO - >4 TTO p4
TTOEX o’



TrnExE
X =7 Ex X > TEXY=1Y
c le:
n n
(o] o
= (Bx X)0 > (BEx Y)OxYO.
m«-—.
(ExJ0

Iet

W, = the local weak equivalences

W) E= the weak equivalences of W _-descent.

24.30 IEMVA The arrow of inclusion

ipoeiSIEy . > SIE

is a morphism of category pairs (cf. 25.9) and the induced functor

. -1 -1
ip W, SIEE > (wm)g SIE
is an equivalence of categories.

[Use Ex to construct a functor in the opposite direction.]

24.31 NOTATION Put

HSIE = (W)} SIE.

24.32 LEMMA The arrow

E > H SIE

P & v S —

that sends X to the image of X in the homotopy category is fully faithful.



§25. COMPARISON PRINCIPLES

Iet C be a small category -— then

sic = 2, (cF,sETl]
= 1, (8%, s

(™, s1SET] .

25.1 IEMMA Let W be an admissible g—localize:c — then the elements of W. are
c

levelwise the elements of W.

PROOF In 23.21, let I = C© and E = SET.

25.2 REMARK Since

s1c ~ [CF,SISET],

it follows that if W is an admissible é—localizer and if the Cisinski structure on
SISET determined by W is proper, then the Cisinski structure on SIC determined by

W, is proper.
C

Iet C be a small category, T a Grothendieck topology on C.

25.3 RAPPEL The inclusion 1 :Sh_(C) ~ C admits a left adjoint a_:C ~ Sh. ()

that preserves finite limits (¢f. 11.14).

T a
~T
Abusing the notation, we shall use the same symbols for the induced
1
adjoint pair -t

SIC — SISh_(C)

SISh_(C) —> SIC.



25.4 DEFINITION Let Z:X + Y be a morphism of simplicial objects in (_3 -~ then

% is said to be a t-hypercovering if its image aE is a hypercovering of SIShT ©.

25.5 DEFINITION Iet W be a _&_—localizer —— then the SIE:—localizer of (W, T)-descent,

denoted W _ (1), is the _Sgé-«localizer generated by the t-hypercoverings and by the
Cc

morphisms

sd || £x| % > x|7Jz,

where X € Ob C and f:K + L is an arrow in W.

N.B. The elements of W, {t) are called the weak equivalences of (W,t1)-descent
C

and the elements of

RLP (W, (t) N M)
C

are called the fibrations of (W,1)-descent.

25.6 EXAMPLE Take for T the minimal Grothendieck topology on C (cf. 11.11) ——

then Sh (C) = Cand W (1) = W .
—tT 7 C C

25.7 LFMVA If X is a simplicial object in é, then the canonical arrow

X - 1T§TX is a weak equivalence of (W, 1)-descent.

25.8 THEOREM Iet W be a fé—localizer - then
1

~ a W =W, (1)
=t "sh_(Q) ¢
-1
1 W {1t) =W
T8 sh,_(C) .




PROOF The pair (a Pl ) defines a geometric morphism Sh c) ~ C and a w

Sh (&)
is a SIC-localizer which contains W, (cf. 23.19). In particular: The
C
dxl |f € a wSh ©"
But the t-hypercoverings are also in a wSh © thus
a iy © 2 M0
—T ‘= g
As for 1;1NA (1), it is a SIsh_(C)-localizer and
C
N (M > wSh "
® Iet Z:X +~ Y be an element of a'rleh © " — then the claim is that

E € W (r). To see this, consider the commutative diagram

¢
1.a =
=T
12X >1ay
X > Y .
Here
27 € Mgy (g © 17O
T e g
=>
ra €W (1).
T=T ¢

-

On the other hand, the vertical arrows are weak equivalences of (W,T)-descent



(cf. 25.7). But W.(1) satisfies the 2 out of 3 condition. Therefore = € W, (1).
C C

® Iet Z:X » Y be an element of 1;1WA (t)} == then the claim is that
C

EE wShT(T)' Proof:

1L.E€EW (1) =>a1Eel
¢ =TT sh_(C)

= ECNg o @ =1

25.9 RAPPEL A morphism

F:(Cp W) > (Cyl,)

of category pairs is a functor F:C > C, such that Fil; < (,, thus there is a unique

functor F:wilgl - w'lg for which the diagram

2 &
F
S > S
L
W ",
-1 -1
UG : > WG
F
camutes.
e Take
- G =s8IC oWy =W ()
¢
¢, = SISh_(Q) Uy = He ()

— et



and let

F=a_.
T

Then gngl - 92 is a morpvhism of category pairs, so

— -1 -1
apsl) G~ WyG,.
® Take
C, = SIsh_(C) w, = N_SET ©
F 4
92 = SIC wz = W, (1)
— _ C
and let
=,

25.10 THEOREM The functors ___are an adjoint pair and induce an adjoint

equivalence of metacategories.

[The arrows of adjunction are natural isomorphisms. ]

25.11 CRITERION Iet E;, E, be Grothendieck toposes, let ¢:f; ~ E, be a functor,
and let W, be an admissible E,-localizer. Assume that ¢ preserves colimits and

finite limits and that ®_1N2 is an E;-localizer -- then ®_1W2 is admissible.

25.12 LEMMA If W is admissible, then W _(t) is admissible.
C



PROOF In 25.11, let E, = SIC, E, = SISh (Q), 0 =a_, W, = W then

2™ %sn_(©

W

éh—r(g) is admissible (cf. 23.15) and

-1 5
a. N_f'g_h_,[ © = Na('c) {(cf. 25.8).

—

25.13 REMARK Since W (1) is admissible if W is admissible, SIC admits a
C

—

cofibrantly generated model structure whose class of weak equivalences are the

elements of W, (1) and whose cofibrations are the monomorphisms (cf. 20.12).
C

Accordingly, in 25.10, the data gives rise to an adjoint equivalence of homotopy
categories.
[Note: If C is a model category, then HC (= w"lg) is a category (and not

just a metacategory).]

25.14 ILFMMA Suppose that W is admissible and that the Cisinski structure on

§ per W is proper —- then the Cisinski structure on SIC per W.(t) is proper.
C

PROOF To begin with, this is the case if T is the minimal Grothendieck topology

on C (cf. 25.1and 25.6). In general, there are two points.

(1) since a_ preserves finite limits, hence preserves pullbacks, the
T-hypercoverings are pullback stable (cf. 22.9).

(2) Every fibration of W-descent per W, (1) is a fibration of W-descent per
C
W..
C

Now quote 20.17.

[Note: As always, it is right proper which is at issue (cf. 20.15).]



25.15 LEMMA Suppose that W is admissible and that the Cisinski structure on

A per W is proper —— then the Cisinski structure on SIShT (C) per wSh © is proper.
_.._"[ —

PROOF Fibrations in SISh (C) "are" fibrations in SIC and pullbacks in SIsh (C)
"are" pullbacks in S_IC?:_

[To provide a modicum of detail, suppose that g:Y -+ 2 is a fibration of
W-descent per SISh (C) -- then 1 g is a fibration of W-descent per _S_E(E Thus

consider the lifting problem

\%
where f is an acyclic cofibration -- then

£fEW (1) => é’rf € wsh © (cf. 25.8).

C 2

But a_ preserves monomorphisms, hence

ng :gTA > é’EB

is an acyclic cofibration. Therefore the commtative diagram

au
ah > Y
=T
ng g (a,‘C o l’c = id}
gTB > &
av

has a filler w:gTB +Y, i.e.,



£
o
U
Hh
il

a.u

ge°ew=av.

Now form the commutative diagram

u
A > 1. Y
o
o 2 1T§Tu
1.a 1Y
A > T~TA > -
1 1
£ T—Tf Tg
B > 1 a
25 > 1TZ
8 , 1 av
=T
8
B > 1TZ .
v

Then 1Tw<>B:B >y is a solution to our lifting problem:
= o = g
Lwe Bof 1w ngTf ca=1auca=u

1 o 1T Wo =1 avoe = V.
Tg T B ™T B ]

25.16 SCHOLIWM (cf. 23.17) Fix 1 € Tc and take W =W _ -- then



admit a cofibrantly generated proper model structure whose class of weak equiv-
alences are the elements of

(W) . (1)
C

)en (g

and whose cofibrations are the monomorphisms.
[Note: Here there is present an additional item of structure, viz. that

these model categories are simplicial model categories.]



INTERNAL AFFAIRS

TA-1 NOTATION GRD is the full subcategory of CAT whose objects are the groupoids

(the morphisms are functors).

IA-2 LEMMA Iet G,H € Ob GRD and suppose that F:G -~ H is a functor.

e F is fully faithful iff the diagram

F
Mor G > Mor H
(S,t)l (s,t)
ObGxObG———>0Hx0H
FxF

is a pullback in SET.

e [ has a representative image iff the composite

s
> Ob H

——

OngobHIVbrI;I—»Ivbrg

is surjective.

[Note: Here

N.B. These points characterize an equivalence between groupoids and provide

the motivation for the notion of "internal equivalence" infra.



TA-3 THEOREM GRD is a model category if weak equivalence = equivalence and

the cofibrations are those functors F:G + H such that the map

Ob G+ ObH
X » FX
is injective.

[Note: All objects are fibrant and cofibrant.]

IA-4 LEMMA Let G,H € Ob GRD, F:G +~ H a functor — then F is an equivalence
iff the induced simplicial map ner F:ner G + ner H of nerves is a simplicial weak

equivalence.

IA-5 LEMMA Let G,H € Ob GRD, F:G + H a functor —— then F is a fibration iff

the induced simplicial map ner F:ner G - ner H of nerves is a Kan fibration.

IA~-6 IEMMA Iet X,Y be simplicial sets and let £:X -~ Y be a simplicial map.
e If f is a simplicial weak equivalence, then the induced morphism
If:MX -~ Y of fundamental groupoids is an equivalence.
e If f is a cofibration, then the induced morphism IIf:1IX » IIY of funda-

mental groupoids is injective on aobjects.

IA~7 REMARK Since
1:SISET > GRD
is a left adjoint for
ner :GRD - SISET,
it follows from the lammas that 1 is a left model functor, i.e., preserves co-

fibrations and acyclic cofibrations, and ner is a right model functor, i.e.,




preserves fibrations and acyclic fibrations.

[Note: Here the underlying model structure on SISET is, of course, the Kan

structure. To get a model equivalence, simply replace it by its truncation at
level 1 (thus now the weak equivalences are the l-equivalences (so the arrows are

isomorphisms at ™ and 'rrl)).]

Iet E be a Grothendieck topos — then E is complete so the formalism of

internal category theory is applicable. And, as will be seen below, the results

outlined above for the case £ = SET actually go through in general.

IA-8 NOTATION GRD(E) is the full subcategory of CAT(E) whose objects are the
groupoids in E (the morphisms are internal functors).

[Note: Recall that an object G of GRD(E) is a pair (GO, l) of objects of E

together with a battery of morphisms satisfying the usual axioms. ]

IA-9 EXAMPLE Iet C be a small category -— then

GRD(©) = I, GROI.

IA-10 DEFINITION Let G,H € Ob GRD(E) and suppose that F:G » H is an internal

functor, hence F = (FO'Fl) , where

are morphisms in E (subject to ...) —— then F is said to be an internal equivalence if




(1) The diagram

is a pullback in E and

(2) The composite

is an epimorphism.

[Note: Here

IA-11 THEOREM GRD(E) is a model category if weak equivalence = internal equiva-

lence and the cofibrations are those internal functors F:G » H such that the arrow

}E‘O:G0 > HO

is a monomorphism.

N.B. Take £ = SET to recover IA-3.



IA-12 RAPPEL Every category C in E gives rise to a simplicial object ner C

in E by letting nerog = (_:0, nerl(_; = §1' and
nerng = Cl XCO XCOCl (n factors).

[Note: An internal functor C - C' induces a morphism ner C -+ ner C' of

simplicial objects.]

IA-13 LEMMA Let G,H € Ob GRD(E), F:G + H an internal functor — then F is an

internal equivalence iff ner F:ner G > ner H is a weak equivalence of W_-descent.

IA-14 REMARK The functor
nex:GRD(E) -+ SIE
has a left adjoint

I:SIE > GRO(E) .

Working with the model structure on SIE per 23.17 (the weak equivalences thus being
the weak equivalences of W _-descent), what was said in IA-7 can be said again. In

particular: If G € Ob GRD(E) is fibrant, then ner G is fibrant.

Let C be a small category, T a Grothendieck topology on C —— then _S_I__(A; admits
a cofibrantly generated proper model structure whose class of weak equivalences are

the elements of

W) (1)
c

and whose cofibrations are the monomorphisms (cf. 25.16).
[Note: If T is the minimal Grothendieck topology on C, then

M) (1) = (W),
c C

-



and the elements of (W ), are levelwise the elements of wm (cf. 25.1). Therefore

¢
in this case the model structure on

SIC

2]

[C™ ,SISET]

is the injective structure.]

N.B.

e If G:C* - GRD, then

ner G:¢* - SISET.

e If G,H:C > GRD and if Z:G - H, then

ner Z:ner G -+ ner H.

IA-15 THEOREM [QOP,GRDE is a model category if the weak equivalences are the
E:G -~ H such that ner £ is a weak equivalence of (W_,T)-descent and the fibrations

are the Z:G » H such that ner £ is a fibration of (ww,T)—descent.

For ease of reference, call the objects of [QOP,SISET] simplicial presheaves

and the objects of [(_;OP,GRD] simplicial groupoids.

IA-16 DEFINITION A fibrant model for a simplicial presheaf X is a fibrant

simplicial presheaf Xf and a weak equivalence of (W_,T)-descent X - Xf.

IA-17 DEFINITION A simplicial presheaf X is said to satisfy descent if for

some fibrant model Xf, the arrow
XU ~ XfU

is a simplicial weak equivalence vV U € Ob C.



Ia-18 IEMMA If A and B are fibrant simplicial presheaves and if f:A >~ B is a
weak equivalence of (W _,t)-descent, then Vv U € Ob C, the arrow AU ~ BU is a sim-

plicial weak equivalence.
IA-19 APPLICATION If X is a simplicial presheaf, if Xf and Xf'_. are fibrant
models for X, and if v U € Gb C, the arrow
XU - XfU
is a simplicial weak equivalence, then v U € Ob C, the arrow
XU ~ X%U

is a simplicial weak equivalence.

[Choose b:Xe > X% such that the diagram

X X
Xf —— XT':

¢
commutes -- then ¢ is a weak equivalence of (W_,7)-descent (by the 2 out of 3

condition), hence v U € Ob C, the arrow
t
XeU > XiU
is a simplicial weak equivalence, from which the assertion.]

Consequently, the notion of "descent" is independent of the choice of a fibrant
model.

IA~20 DEFINITION lLet G be a simplicial groupoid =- then G is said to be a



stack if ner G satisfies descent.

IA-21 DEFINITION A stack completion of a presheaf of groupoids G is a weak

equivalence G -~ G', where G' is a stack.

It is a fact that a stack campletion for a given G always exists. E.g.: One

possibility is to take G' = G-torsy (Jardine's "discrete G-torsors").

IA-22 REMARK The definition of stack is a moving target.



