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ABSTRACT

This book is addressed to those readers who are already familiar with the
elements of the theory but wish to go further. While some aspects, e.g. tensor
products, are summarized without proof, others are dealt with in all detail.
Numerous examples have been included and I have also appended an extensive list

of references.
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§1. BASIC FACTS

Iet A be a complex Banach algebra, *:A > A an involution —— then the pair

(A,x) is said to be a C*-algebra if v A € A,

lla*a || = [|a]]=.
N.B. It is automatic that ||a*|| = ||a]], twus the involution *:A > A is
continuous.
1.1 IEMMA YV A€ A,
lal| = r @)Y/,

r the spectral radius.

1.2 REMARK If (A, |

-|) is a C*-algebra and if

-||" isa submultipli-

cative norm satisfying the C*-condition, viz.,

[asal [t = ([|a]|D% @,
then

L3

=11 =11

[Note: It is not assumed that (A, |

|') is complete, i.e., (A,]]-]]") is

merely a pre-C*-algebra. ]

1.3 EXAMPLE Given a complex Hilbert space H, denote by B(H) the set of
bounded linear operators on H — then B(H) is a C*-algebra. Furthermore, any
*—subalgebra A of B(H) which is closed in the norm topology is a C*-algebra. E.q.:
This is the case of A = L_(#), the norm closed *~ideal in B(H) consisting of the

compact operators.



1.4 EXAVPIE Take H = C' and identify B(C)) with M_(C), the algebra of

n-by-n matrices over C. Equip M (C) with the induced operator norm and let the
involution *:M ) ~ M (C) be "conjugate transpose" -- then with these stipulations,
Mn (C) is a C*-algebra. More generally, if n = (nl,... ,np) is a p-tuple of positive
integers, then

P
M€= M (C
D k=1 T

is a C*-algebra. Here

p
|lk§1AkH= max | |a || By €M, ©D)

1<k<p

or still,

p
@ all= mx X\,
o K 1s}<sp)\k

where Aﬁ is the largest eigenvalue of A]’;Ak

[Note: Every finite dimensional C*-algebra A is *-isomorphic to an M ()
for some n and n is uniqguely determined by A up to a permutation. If B is another

finite dimensional C*-algebra with associated g-tuple m = (ml,. .o ,mq) , then A and

B are *-isomorphic iff p = g and 3 a permutation ¢ of {1,...,p} such that m =D

k=1,...,p).]

1.5 EXAMPLE Fix a C*-algebra A and let X be a compact Hausdorff space. Equip
C(X,A) with pointwise operations and define the involution by £*(x) = £f(X)* (x € X).

Put

"

HEN] = sup [|£06x) |
xEX



Then C(X,A) is a C*-algebra.

1.6 NOTATION C*AIG is the category whose objects are the C*-algebras and

whose morrhisms are the »-homomorphisms.

[Note: An isomorphism is a bijective morphism.]

N.B. Let A,B be C*-algebras -~ then a linear map ¢:A + B is a *~homomorphism
iff

2(ah,) = 0(A))0(A,) & (A% = 0(B)*.

1.7 LEMMA A »-homomorphism ¢:A +~ B is necessarily norm decreasing, i.e.,

.

VAEA, |le@]] = ||a

1.8 LEMMA An injective #~homomorphism ¢:A -+ B is necessarily isometric, i.e.,

vAEA, |loe@]||=|]a

Suppose that T ¢ A is a closed ideal —- then T is a *-ideal. Equip A/T

with the quotient norm, thus

lla+ 7|| = inf ||a + I|],
1T
and let
A+ T)y*=pn% +17,

Then A/T is a C*-algebra and the mrojection m:A > A/T is a *~homomorphism with
kernel 1.

N.B. If ¢:A » B is a »-homomorphism, then the kernel of ¢ is a closed ideal

»



in A and the image of ¢ is a C*-subalgebra of B:A/Ker ¢ = &(A).

[Note: The tam "C*-subalgebra"” means a norm closed subalgebra which is

invariant under the *-operation.]

1.9 EXaMPLE If X is a compact Hausdorff space and if I « C(X) is a closed

ideal, then 3 a unique closed subset Y ¢ X such that
1={f €cX:£|Y =0}

Moreover, the C*-algebra C(X)/I is *-isomorphic to C(Y) via the map induced by the

arrow of restriction C({X) -» C(Y).

A C*-algebra A is simple if it has no nontrivial closed ideals. E.g.: L_(H)
is simple (but B(H) is not simple if H is infinite dimensional).

A C*-algebra A is unital if A has a unit 1 A otherwise, A is normunital.

1.10 LEMMA If A is unital, then every maximal ideal in A is closed.

A simple unital C*-algebra has no nontrivial ideals. On the other hand, a
nonunital simple C*-algeora may very well have nontrivial ideals (e.g., L, (H) if
H is infinite dimensional).

A closed ideal I in a C*-algebra A is essential if AT = 0 => A = 0 (equiv-

alently, JA = 0 => A = 0). In particular: A is essential in itself.

1.11 IFMA A closed ideal 7 < A is essential iff I n J = 0 for all nonzero

closed ideals J in A.



1.12 EXAMPLE Suppose that H is a complex Hilbert space —- then L _(H)

is an essential ideal in B{#).

A unitization of a C*-algebra A is a pair (U,i), where U is a unital C*-
algebra and i:A - U is an injective *-homomorphism such that the image i(A) is an

essential ideal in U.

1.13 REMARK If A is unital to begin with, then the only unitization of A is
A itself. Proof: Identify A and i(A) and, assuming that U = A, fix U € U - A —

themUlAEAandU—Uleo. Mearwhile, V A € A,

(U—UlA)A=[T_A~UlAA=UA—UA=0.

1.14 CONSTRUCTION Given a nonunital C*-algebra A, put Af=ae C (vector

space direct sum) -— then with the operations

(A, (B,y)

(BB + AB + A, \u)

AN * = (a%,)),
A+ acquires the structure of a unital *-algebra (1 + = (0,1)). Moreover, the
A
prescription

el = sup  |]ax+ ]|
x[]

X| =1
is a C*-norm on A+. Proof: It suffices to cbserve that

a0 *@,0 || = | (a*a + 2 + aax,00) ||

= su {HA*AX'F;\AX’*‘AA*X"'K}\XH}
(x| ]<1



[\

sup  {||X*A*AX + AX*AX + AX*A*X + MX*X||}
[1X]]<1

= sup  {|]@X+ *@EX + AX) ||
= swp  {||ax +xx[|H

= [lan ]2

Denote now by i the arrow A > A" that sends A to (A,0) — then the pair (AT,i) is
a unitization of A. Indeed, i(A) is a closed ideal in A+, thus one only has to
check that it is essential. 5o suppose that (A,N)i(A) =0, i.e., BB+ 3B =0

Y B€A. Claim: A= 0 and A = 0. This being obvious if A = 0, assume that X = 0:
v B €A,

AB + )B

]
)

l_.l

(~A)B + B

I
o

==
1
B* (T A)* + B* = 0

=

I
L]

m%m*+5-

FRGN*+ (G A* =0

1 1
(';‘\- A) (I A)*

-+
I
&2
I
o



Therefore — —%—A is an identity for A. But A is nonunital, from which a contra-

diction.

[Note: The quotient A'/i(A) is x-isomorphic to C ((A,1) + A).]

1.15 EXAMPLE Let X be a noncompact locally compact Hausdorff smce, C _(X)
the algebra of complex valued continuous functions on X that vanish at infinity.
Equip C_(X) with the sup norm and let the involution be complex conjugation -- then
C_(X) is a nonunital C*-algebra and C_(X)' = c(x"), X' (= X U {»}) the one oint
compactification of X.

[Note: Explicated, the relevant arrow

c. x* +cxh
is the assignment
(£,20) +~ £+ X,

where

(£ + 2) (=) = A.]

Given C*~-algebras A and B, their direct sum A ® B is the ordinary *-algebra
direct sum with norm
|| @,B) || = max{]|[a]|[,||B]]}.

This is a C*-norm. Proof:

|| @&,B)*(a,B) || = ||(a*A,B*B| |

max{ | [a*A[ [, [ [B*B] |}

2 2
max{ | [A[ %, | [B][7}

]



[

max{| [a] [, | [B] [}°

2

H

|| @&,B) |

N.B. A ® B contains A and B as nonessential ideals and

(A®B)/AxB

i

(A ® B)/B = A.

1

In addition, A ® B is unital iff A and B are unital (in which case lA@B = (lA’lg))'

1.16 REMARK Take A unital -- then one can form A’ exactly as in 1.14 and

the arrow c:A+ -~ A ® C that sends (A,)) to (A + AlA,)\) is a unital *-isomorphism.

1.17 LEMMA Let A,B be C*-algebras and let ¢:A » B be a *-homomorphism —-

then ¢ admits a unique extension to a unital *-homomorphism otaat 5 B+, viz.

st @a,n = (0(8),0).

1.18 NOTATION UNC*AIG is the category whose objects are the unital C*-alge-

bras and whose morphisms are the unital *-homomorphisms.

[Note: An isomorphism is a bijective morphism. ]

N.B. The assigrment

is functorial, i.e., defines a functor



C*ALG - UNC*ALG.

1.19 RAPPEL Let A be a Banach algebra -—— then an approximate unit per A

is a norm bounded net {ei:i € I} such that v A € A,

lim ||e;A - A[[ =0
ier
lim ||ae, - A[] = 0.

ier

1.20 LEMMA Every C*-algebra A has an approximate unit {ei:i € I} such that

C*-algebras having a countable aprroximate unit are said to be o-unital.

1.21 REMARK Every unital C*-algebra is o-unital. Every separable C*-algebra
is o-unital but there are nonseparable nonunital c-unital C*-algebras.

[Note: Not all C*-algebras are c-unital.]

1.22 EXAMPLE Take H separable and infinite dimensional. Fix an orthonormal

basis {en:n € N} and let P, be the orthogonal mrojection onto Cey + -+ +Ce —
then the sequence {Pn} is an approximate unit per L (M), hence L (H) is o-unital.

[Note: L _(H) is separable (but B(H) is not separable).]



10.

1.23 EXAMPLE Let X be a noncompact locally compact Hausdorff space — then

C_(X) is g-unital iff X is og-compact.

Let A be a C*-algebra.

.ASA is the collection of all selfadjoint elements in A, i.e.,

ASA = {A € A:Aa* = A}.

oA " is the collection of all positive elements in A, i.e.,

I
It

2
{a®:a € ASA}

or still,

A = {A*a:A € Al.

1.24 1EMMA The set A+ is a closed convex cone in A with the property that
A, n (= A) = {0].

Given A,B € ASA’ one writes A =B {or B < A) iff A ~-B ¢ A+.

1.25 IEMMA If A 2B =20, then ||A|| = ||B]].

l1.26 IEMMA If A >B >0, thenv X € A,

X*AX > X*BX = 0.

PROOF Since A - B ¢ A+, 3Ce¢e A:A - B = C*. Therefore

X*AX - X*BX = X*(A - B)X



11.

= X*C*CX

({CX)*CX € A+.

N.B. If A is unital, then

AceA =0s<Ax HAHlA.

If A is nonunital, then

- +
A+—Aﬂ (A )4
and
Ac€A =>0s<As |[a][L,.
A
So, in either situation, v X € A,
0 < X*AX < ||Aa||x*X.

1.27 REMARK Every positive A has a unique positive square root Al/ 2

a= @32,

, thus

2)1/2

1.28 1LEMA Given A € A, mut a] = @& and let

a = (|a] £ n)y/2.

A €A,A=A -A,AA =0.

Moreover, A, are the unique positive elements with these properties.

—



12.

N.B. Every A € A is the sum of two selfadjoint elements:

A=ReA+ /-1 Im2a,

* — %
MA=A;A , maA=2"2A

r

2 /-1

[[Reall, [lmal] < |a

l -

Therefore every A € A can be written as a linear combination of four positive

elements.

Suppose that A is unital - then an element U € A is unitary if U*U = UU* = 14-

IfAEASAand

all =1, then
A= (U +U)/2.

Here

_ 2.1/2
U, =A% AT (1, - 2D

are unitary. Therefore every A € A can be written as a linear combination of four

unitary elements.

1.29 REMARK If ||Aal| <1 -?‘ﬁ, then there are unitaries Uy,...,U, such that

Ul+ soe -!-Un

A= .
n

Consequently, the convex hull of the set of unitary elements includes the open unit

ball in A, thus its closure is the closed unit ball in A.



13.

Put

Al= (A e A:

|| < 1}
1.30 LEMMA A C*-algebra A is unital iff Al has an extreme point.

1.31 EXAaMPLE If A is unital, then 1, is an extreme point of Al.



§2, THE COMMUTATIVE CASE

A character of a comutative C*-algebra A is a nonzero homomorphism w:A + C

of algebras. The set of all characters of A is called the structure space of A

and is denoted by A(A).
N.B. We have
AA) =8 (A ={0})
A(A) = @ (A= {0}).

2.1 ILEMMA Let w € A(A) — then w is necessarily bounded and, in fact,
llw|| = 1. Moreover, if A is unital, then
1= w(lA)

ard if A is nonunital, then

1 = 1lim w(ei) .
i€I
Given A € A, define
A:A(A) > C
by stipulating that
Alw) = w(a).

Equip A(A) with the initial topology determined by the A, i.e., emip A(A) with
the relativised ‘weak* topology.

2.2 IEMA A(A) is a locally campact Hausdorff srace. Furthemore, A(A)

is compact iff A is unital.



2.3 LEMVA Fix a comutative C* algebra A.
If A is unital, then A € C(A(A)) and the arrow
A > C(A(A))
A > A
is a unital *—isomorphism.
o If A is nommital, then £ € Cw(&(A)) and the arrow
A > C_(A(A))

~

A->A

is a »-isomorphisnm.

N.B. If A = {0}, then A(A) = f§ and there exists exactly one map #§ - C,

namely the empty function (# = g x C), which we shall take to be 0.

2.4 REMARK It suffices to establish 2.3 in the unital case. Thus suppose
that A is nonunital - then each w ¢ A{A) extends to an element m+ € A(A+) via the

mrescription w (A,A) = w(A) + A and

AAT) = {w'w € AT U ),
where w_(A,}) = A, so A(,A+) is homeomorrphic to A(A)+, the one point compactification
of A(A). But A’ is unital, hence

AY e 2 camh
=>

Az C_(AA)).



2.5 LEMMA Fix a locally compact Hausdorff space X.

e If X is compact, then v x € X, the Dirac measure éx € A(CX)) and the

arrcow

X > A(CX))

X + 68
- b*

is a homeomorphism.
o If X is noncompact, then ¥V x € X, the Dirac measure 6X & A(Cm(x)) and

the arrow

X > A(C, (X))
x> 8

is a homeomorphi sm.

2.6 REMARK It suffices to establish 2.5 in the compact case. Thus suppose

that X is noncompact —— then X+ is compact, hence

x" = acEh)
or still,

Xz A(C_ (X) ")
or still,

X"z ac_ o™t
Therefore

Xz AC_(X)).

2.7 RAPPEL Let C and D be categories — then a functor F:C » D is an




equivalence if there exists a functor G:D -+ C such that G o F = idc and
Fegzx idD, the symbol = standing for natural isomorphism.

[Note: The term coequivalence is used when F is a cofunctor: v f € Mor(X,Y),

Ff € Mor (FY,FX).]
N.B. A functor F:C ~ D is an equivalence iff it is full, faithful, and has
a remresentative image (i.e., for any Y € Ob D, there exists an X € Ob C such that

FX is isomorphic to Y).

2.8 RAPPEL Categories C and D are said to be equivalent (coequivalent) pro-

vided there is an egquivalence (coeguivalence) F:C ~ D. The object isomorphism types

of equivalent (coequivalent) categories are in a one-to-one correspondence.

Let X and Y be compact Hausdorff spaces. Suppose that ¢:X > Y is a continuous

function - then ¢ induces a unital *-homomorphism
(b*:C(Y) + C(X) r

viz. ¢*(f) = £ o ¢, Therefore the association C that sends X to C(X) is a cofunctor
from the category of compact Hausdorff spaces and continuous functions to the cat-
egory of unital commutative C*-algebras and unital *-homomorphisms.

Let A ard B be unital commtative C*-algebras. Suppose that ¢:A > B is a

unital *-homomorphism -—- then ¢ induces a continuous function
o*:A(B) > A(A),

viz. o*(w) = v ° $. Therefore the association A that sends A to A(A) is a cofunctor



from the category of unital commutative C*—algebras and unital *-homomorphisms

to the category of compact Hausdorff spaces and contimous functions.

2.9 THEOREM The category of campact Hausdorff spaces and continuous
functions is coequivalent to the category of unital commutative C*-algebras and
unital x—homomorphisms.

PROOF Define

EX:X > ACX))

by the rule EX(x) =8, — then =, is a homeomorrhism and there is a commutative

X
diagram
X —X 5 ACE)
o J J -
Y
Define
EA:A > C(A(AN)

A

by the rule = A (A) = A — then = A is a unital *-isomorphism and there is a commutative

diagram
A AL cian)
¢ l pr*
+
B
Therefore
T idzAeC
id = C » A.




The situation for noncompact locally compact Hausdorff spaces and nonunital
commutative C*-algebras is slightly more complicated. One immediate and obvious
difficulty is that a continuous ¢:X + Y need not induce a map ¢* :C (Y) »C_(X).

E.g.: Take X =Y =R and let

o(t) = eZTrv,q t

However, the resolution turns out to be simple enough: Impose the restriction that
$:X + Y be proper.
[Note: Iet ¢:X > Y be continuous —— then ¢ is proper iff its canonical

extension ¢ :x' » ¥ (47 (=) = =) is continuous.

2.10 LEMMA A proper ¢:X - Y induces a *-homomorphism

$*:C_(¥) + C_(X) .

There is also a problem on the algebraic side, namely if A and B are nonunital
commutative C*-algebras, then a *-hamomorphism ¢:A > B need not induce a map
d*:A(B) » A(A), the point being that w ¢ ¢ might very well be zero. To get around
this, call ¢ proper if for any approximate unit {ei:i € I} per A, {<I>(ei):i € I} is
an approximate unit per B (cf. 1.20).

[Note: A surjective ¢ is proper. To see this, choose an approximate unit

{ei:iEI}perA-—thenVAEA,

eA > A => @(ei)CD(A) - &(a).]

2.11 LEMMA A proper $:A » B induces a continuous function



P*:A(B) > A(A).

[vAeA,
% (w) (A*A) = w(®(A)*o(a)) = O.

Therefore ¢*(w) is a positive linear functional, hence v w € A(B),

[[o* (w) || = Lim &* (w) (e;)

iex

i

lim w(@(ei) )
ieT

]

ol = 0.]
N.B. The ¢* fiquring in 2.10 is proper and the ¢* figuring in 2.11 is proper.

2.12 THEOREM The category of noncompact locally compact Hausdorff spaces
and proper continuous functions is coequivalent to the category of nonunital
commutative C*-algebras and proper *-homomorphisms.

PROOF Replace the cammutative diagrams in 2.9 by

(>}

X —2 s A(C_ (X))

R

5y

and

AR e

o | | oxs

B ——— C_(8(B)).



§3. CATEGORICAL CONSTDERATIONS

We ghall first review some standard terminology.

3.1 RAPPEL Let C be a category.

e A source in C is a collection of morphisms fi:X > X, indexed by a set

-

I ard having a comon domain. An n-source is a source for which #(I) = n.

¢ A sink in C is a collection of morphisms £i:X, > X indexed by a set I

and having a common codomain. An n-sink is a sink for which #(I) = n.

A diagram in a category C is a functor A:I + C, where I is a small category,

the indexing category. To facilitate the introduction of sources and sinks associ-

ated with A, we shall write Ai for the image in Ob C of i € Ob I.

3.2 LIMITS Let A:I + C be a diagram — then a source {fi:X > Ai} is said

§
to be natural if for each 6§ € Mor I, say i + j, A(Sofi=fj. A limit of A is a

natural source {Ki:L > Ai} with the property that if {fi:x > Ai} is a natural
source, then there exists a unique morphism ¢:X -+ L such that fi = f’i o ¢ for all

i€ 0Ob I. Limits are essentially unique. Notation: L = lij Af{or lim A).

3.3 COLIMITS TLet A:I » C be a diagram -- then a sink {fi:Ai + X} is said

§
to be natural if for each § € Mor I, say i + j, fi =~fj o AS. A colimit of A is



a natural sink {Zi:Ai + L} with the property that if {fi:Ai + X} is a natural sink,
then there exists a unique morphism ¢:L -~ X such that fi =¢ o ﬂi for all i € Ob I.

Colimits are essentially unique. Notation: L = c:olimI A{or colim A).

There are a nurber of basic constructions that can be viewed as a limit or

colimit of a suitable diagram.

3.4 PRODUCTS ILet I be a set; let I be the discrete category with Cb I = I.

I
P<

Given a collection {X;:i1 € I} of objects in C, define a diagram A:I -+ C by A,

(i € I) — then a limit {Ei:L > L\i} of A is said to be a product of the X;.

Notation: I = 1;[' Xi {or XI if Xi; = X for all i}, ﬂi = pri, the projection from

TiTxi to X;.

3.5 LEMMA C*ALG has products.

PROOF Let {Ai:i € I} be a collection of objects in C*ALG. Consider the set

A of all functions A fram I to U A, such that v i € I, A(i) € A; and
iex

[[A]] = sup ||AD) ][] < .
1€1

Take the sum, product, and involution pointwise — then A is a C*~algebra and

v i €I, there is an arrow pry:A - A;, viz.

prl(é) = é(l) .



We claim that the natural source {prizé > Ai} is the product of the Ai. For suppose
that {tbi:A > Ai} is another natural source - then v i,
[o; @ || < [|a]]  (ef. 1.7),

thus the function

o(A):I >~ U Ai
i€l

that sends i to <I>i (A) belongs to A. Moreover, the diagram

e
|3 A 3>
[P A—
LS
i—!

obviously camutes, from which the claim.

[Note: A is not the cartesian product of the Ai if I is infinite.]
E.g.: Take Ai = C V i — then the product in this case is simply £2(1).

3.6 COPRODUCTS Let I be a set; let I be the discrete category with Ob I = I.

Given a collection {X;:i € I} of objects in C, define a diagram A:I ~ C by
A, =X, (i € I) — then a colimit {ﬁi:ai +~ L} of A is said to be a coproduct of

the X,. Notation: L = _]_|_ X; (or I-X if X; =X for all i), Ei = ini, the injection
i

from X; to _EL X;-

‘3.7 LEMMA C*ALG has coproducts.




PROOF Let {Ai;i € I} be a collection of objects in C*ALG ~— then their

coproduct can be realized as the free product C*-algebra *Ai, i.e., the completion

of the free *-algebra generated by the Ai w.r.t. the largest C*-norm whose

restriction to each Ai is the original norm.

3.8 REMARK Let 0 be the category with no objects and no arrows —— then the

limit of a diagram having 0 for its indexing category is a final object in C and

the colimit of a diagram having 0 for its indexing category is an initial object

ing‘

[Note: The zero C*-algebra is both a final and initial object in C*ALG.]

a b
3.9 PULIBACKS Iet I be thecategory 1 ¢ —» @ « . @2, Given a
- - 3
£ g
2-sink X » 2 <« Y in C, define a diagram A:I -~ C by

A1=X

T pa=f
A2=Y &

_ b = gq.
A3=Z

Then a commutative diagram

Poouos¥

X ——r 2



is said to be a pullback square if for any 2-source X ¢ P' 3 Y with f o &' =

g o n' there exists a unique morphism ¢:P' > P such that &'

The 2-source X § Py is called a pullback of the 2-sink X 5 Z 2 ¥. Notation:

ool
oy

o
-
Jﬂ

|

=

o

-

:

P =X %y Y. Limits of A are pullback squares and conversely.

3.10 ILEMMA C*AIG has pullbacks.

PROOF Given a 2-sink A i?- C iii B, let

P={(A,B) € A ® B:0(n) = ¥(B)}.

‘ a b
3.11 PUSHOUTS Let I be the category 1 «— @ — ®2, Given a
3

2-source X fE z § Yin C, define a diagram A:I ~ C by

Al=X
T ha=f
A2=Y &
_ b =gq.
B A3=Z
Then a commutative diagram
g
Z — Y
|
£ L
X— P
a

L) 3
is said to be a pushout square if for any 2-sink X § p U vwith




E' o £ = n' o g there exists a unique morphism ¢:P » P' such that £' = ¢ ¢ £ and

, . £
n' = ¢ o n. The 2-SJ_Tﬂ{XEPEY is called a pushout of the 2-source X « ZgY.

Notation: P =X || Y. Colimits of A are pushout squares and conversely.
Z

3.12 IEMMA C*ALG has pushouts.

¢ V¥
PROOF Given a 2-source A « C » B, let

the amalgamated free product.
[Note: Spelled out, P is the quotient of the free product C*-algebra A = B

by the closed ideal generated by the set

{®(C) -~ V¥(C):C € C}.]

A category C is said to be complete if for each small category I, every

diagram A:I » C has a limit.

3.13 CRITERION C is camplete iff C has products and pullbacks.

A category C is said to be cocamplete if for each small category I, every

diagram A:I > C has a colimit.
3.14 CRITERION C is cocomplete iff C has coproducts and pushouts.

What has been said above can thus be sumarized as follows.



3.15 THEOREM C*ALG is both complete and cocomplete,

Let (I,<) be an up-directed poset =- then the pair (I,<) gives rise to a
small category:
(i,3) if i <3
ocb I=1I, Mor(i,j) = ' idi = (i,1),
g otherwise
composition being
(G,k)e(di,j) = (i,k) (1 <3=<k.

This said, let C be a category — then by definition, a filtered colimit is the

colimit of a diagram A:I - C.

3.16 LEMMA C*ALG has filtered colimits.

[On the basis of 3.15, this is clear. However, it is not difficult to proceed
directly. Indeed, to specify a diagram A:I - C*ALG amounts to specifying a
collection

{(Ai,tbij):i,j € 1,ic< i},
where the Ai are C*-algebras and (Pij is a *-homomorphism fram Ai to Aj with

@ﬂ{=®jk°@ijf0r13:]£k.

Each q)ij is norm decreasing, so on the algebraic filtered colimit, the prescription

|1al] = inf H@ij(A)H A€ A)
j>i

is a C*-geminorm. Dividing out the elements of seminorm 0 and campleting then leads



to a C*-algebra, written

which in fact is a realization of the filtered colimit.]

[Note: Put

A= @*(Ai’q}ij) .

Then strictly speaking, the filtered colimit is the natural sink {<I>i:‘Ai + Al,

where @i:Ai + A is the *~homomorphism defined by

0; () (1) = A0, R () =0 (<3,

s (a) () = 0 otherwise.]

3.17 EXAMPLE Let I =N -- then a filtered colimit of a sequence of finite

dimensional C*-algebras is called an AF-algebra. E.g.: Take An = Mn(g) and let

0] k:Mn c) ~

n,n+ ©

ﬂn+k
be the *-homomorphism obtained by adding k rows and colums of zeros -- then

-]:ilg(Mn (Q_) ’®n,n+k)

is x-isomorphic to L (22) .

3.18 LEMMA Iet

A = Lim(A,0;4).

Assume: V i, Ai is simple — then A is simple.



3.19 REMARK ILet I be a set and let {Ai:i € I} be a collection of objects
in C*ALG. Form the categorical product A as in 3.5 and denote by & Ai the closure
- ‘ i

:inéoftl‘ealgebraicdirectsm-—thenéé?Aiiffv8>0,

#{i:|

A || 2 €} < =,
To realize & Ai as a filtered colimit, let F be the set of finite subsets of I
i

directed by inclusion and for each F € F, put

= & A, (=TT A).
AF iGFl ieF 1

If F c G, define

% gt~ Ag

by setting the additional coordinates equal to zero — then
;EQ(AF,@F,G) = ? Ai'

[Note: Take A, = CV i —- then ? C can be identified with c;(I).]

The setting for filtered colimits is an up-directed poset I. Dually, the

setting for cofiltered limits is a down-directed poset I. E.g.: If I = IjOP, then

a diagram A:I > C is essentially a sequence

f
n
IRV D

of morphisms in C, where

fn
An+1-+n) = Xn-t—l > X .



1o0.

3.20 IEMMA C*AIG has cofiltered limits.

Iet C, D be categories and let F:C »~ D be a functor.
¢F is said to preserve a limit {ﬂi:L > Ai} (colimit {i{i:Ai + L}) of a
diagram A:I ~ C if {F{;:FL > FA,} ({FL;:FA; -~ FL}) is a limit (colimit) of the
diagram F o A:I » D.

e F is smid to preserve limits (colimits) over an indexing category I if

F preserves all limits (colimits) of diagrams A:I —+ C.

e I is =mid to preserve limits (colimits) if F preserves limits (colimits)

over all indexing categories I.

10
o

10
¥

1o

3.21 ADJOINTS Given categories , functors are said t be

1o
Q
1o
v
10

an adjoint pair if the functors

mor o EF x id)

Mor o (id op X G)

—_ C
from QOP x D to SET are naturally isomorphic, i.e., if it is possible to assign to
XeobC
each ordered pair a bijective map
Y € 0b D

EX’Y:I\fbr (FX,Y) - Mor {(X,GY)
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which is functorial in X and Y. When this is so, F is a left adjoint for G and

G is a right adjoint for F.

write [I,C] for the category whose objects are the diagrams A:I - C and whose

morphisms are the natural transformations Nat(A,A') from A to A'.

3.22 EXAMPIE Let K:C - [I,C] be the diagonal functor, thus v X € &b C,

$
&X) (1) =X, ®X)(@E > 3J) =idy
and v £ € Mor (X,Y),
KE € Nat(KX,KY)

is the natural transformation

—-
=

(KX) (1) —2» (KY) (1)
(KX) (8) l l (KY) (8)

(KX) (3) —(KY) (3)
3

defined by the comutative diagram

f

X —5Y
| |
X «-"‘f'—* Y -
Assume now that C is both complete and cocomplete —— then K has a left adjoint, viz.
colim: [LQ] > Q:

and a right adjoint, viz.
lim:[I,C] ~ C.
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3.23 REMARK If C is both complete and cocomplete, then the same holds for
[1,Cl.

[Note: Limits and colimits in [I,C] are computed "object by object”.]

3.24 THEOREM Ieft adjoints preserve cclimits and right adjoints preserve
limits.
3.25 RAPPEL Let C be a category -- then a morphism f:X -~ Y is said to be

a monamorphism if for any pair of morphisms A X such that £ e u= £ o v, there

<4 ¥R

follows u = v.

3.26 IEMMA In C*ALG, a *-homomorphism ¢:A -+ B is a monamorphism iff it is
injective.

PROOF An injective *-homomorphism ¢:A4 + B is trivially a monomorphism. As
for the converse, consider

Ker ¢ > A > B

Rer & > A > B.

Then
®oi=3%00=>1i=0=>Ker &= {0}.
3.27 RAPPEL Let C be a category —— then a morphism £:X - Y is said to be

an epimorphism if for any pair of morphisms Y _ B such that u o £ = v o £, there

<o
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follows u = v.

3.28 LEMMA In C*ALG, a *~homomorphism ¢:A ~ B is an epimorphism iff it is

surjective%.

T Archiv d. Math. 20 (1969), 48-53; see also Inventiones Math. 9 (1970),

295-307.



§4. HILBERT A-MODULES

Let A be a complex Banach algebra —— then a left Banach A-module is a complex

Banach space E equipped with a left action (A,x) - Ax such that for some constant
K>0,

lax|| < x||a]] ||xl] (& eAxeE).
[Note: Right Banach A-modules are defined analogously.]
N.B. If A is nonunital, form A" as in §1 (but with || @,0 || = |[A]] + [A]} -
then E becomes a left Banach A'-module via the prescription
A+ Mx=ax+ Ax ((A,2) = A+ }).

[Note: We have

Ix=x (I=1,=(0,1).]
A

4.1 RAPPEL A left approximate unit per A is a norm bounded net {ei:i. € 1t

in A such thateiA+AforallAEA.

4.2 THEOREM Suppose that A has a left approximate unit {ei:i € I} and let
E be a left Banach A-module —— then the set

AE = {Ax:A € A,x € E}

is a closed linear subspace of E.

The assertion is trivial if A is unital @ take A nonunital and fix M > 0O:

le;ll <M e,



4.3 1EMMA 1et EO be the closed linear span of AE -~ then

EO = {x € B:lim e.x = x}.
iel

PROOF The RHS is certainly contained in the IHS. On the other hand, AE

is contained in the RHS as is its linear span [AE]. With this in mind, take an

arbitrary x € E; and given ¢ > 0, choose y € [AE]: |x = y|| < e. Next, choose

iOEI:
iziy= |legy-vyl] <e
and write
eix-x=ei(x-y) + (y - x) + (e;v - v
Then V 1 Zior
legx - %11 < Klleg || lx = vl|+ 1y - xI| + |legy - v/|
< (KM + 2)e.

4.4 RAPPEL ILet X € A" and suppose that ||X|| < 1 — then (I - X) ™ exists

and there is a norm convergent cxpansion

T-XToT+x+C+ en .

Iet y=1/M -~ then v 1 € I,

- M
I l+uei

is invertible, hence the same is true of

as well. And



(@A +wI - uei)'1 = (1 + u)—lI + A

for some Ai € A.

4.5 IEMMA Fix XO € EO — then 3 a sequence {ei (= en)} in {ei:i € I} such
n
thnot
+ _ _ -1 _ -1
An-— ((1 + I uen) eee ({1 + )T uel)

il

-n
(L + uI) I +2—\n

o an element x.

converges in A to a limit A € A and x, = (A;)-lxO converges in Eg

Admit 4.5 for the noment — then

| 1a7x - ax||

HA;xn—Axn+Axn—Ax|[

in

@y -2 ||+ Ak, -]

A

x|l - al| x|+ &lal] |lx, - x|]

>0 (n »x).

S0
. -+
x0=Ax = lim A x = Ax
n > w©
Therefore
XOEAE.

+

Turming to the proof of 4.5, set AO = 0, AO = I and chooss the e, inductively



subject to
+-1,,-1 M -n-1
and
-11~1
e, — Bl <M+ .
Since

+
to prove that {A;} is convergent, it suffices to prove that {An} ig Cauchy.

First

N

- .|
= @+ wT - pe D w@ 0™ e o+ e A -]

But
-1
QA+ I =ve ) 7]
< (1 + u}_l 1 -
L-u@+w e 1
< 1
L+u=-ulle,, !
< M,
ud + 0™ e 1] s @+ ™,
and

[lve (A - w8 |l = 0+ w L



Therefore
A - A |l <2 + ™
So, for m > n,
1A, -3
<A, Al + 1A A I+ e+ A -2l

M1 + u)"n‘l(l + 1+ u)"l +oeee + (14 il

in

)

MM+ 1A+ W 50 @),

A

which implies that {An} is Cauchy.

It remains to deal with x_ = (A:;) L . For this purpose, note that

o
PR N |
%41 = Bo) X
_ +, -1 _
= (An) (L +wI ueml)xo,
thus
+,-1
EXn+l - XnI ! = l I (An) (UXO - uen—l-lXO) 1 l
+, -1
< K| | @D T %y - e g%l ]

-n-1

IA

1+ )

Proceeding as above, we then conclude that {xn} is Cauchy, thereby finishing the

proof of 4.5,



4.6 EXAMPIE Iet A € A -~ then AA is a left Banach A-module. Since A € AZ,

it follows from 4.2 that 3 B € A, C € AA such that A = BC.

Maintain the assumption that A has a left approximate unit {ei:i € 1}.

4.7 1EMMA Iet X be a compact subset of E, — then 3 A € A and a continuous

0
function f:X » Eo such that

x = Af{x) VX € X.

PROOF Define a left action of A on the Banach space C(X,BO) (sup norm) by

(Af) (x) = Af(x) (x € X).

Then
[[af]| = sup || (Af) (x) ||
®eX
= sup | [Af () ||
xeX
< [af] [I€]].

Therefore C(X,EO) is a left Banach A-module. 2And here

C{X,E C(X,E

0o = o~

Accordingly, thanks to 4.2, V £, € C(X,EO), FAceAand £ € C(X,EO):

0

£, = Af.

Conclude by applying this to the particular choice fO x) =x (x € X).



4.8 EXAMPLE Suppose that {xn} is a seguence in EO which converges to 0.

In 4.7, take X = {O,Xl,Xg,...}, and put Y, = f(xn) -=- then Ayn =X, Af(0) = 0,

and Yo > £(0). So, letting xr‘1 =Y, - £ (0), we have Ax1'1=xn and xr’k—> 0.

4.9 SCHOLIUM Iet A,B be complex Banach algebras. Iet ¢:4 > B be a homo-

morphism. Assume:

1. 3K>0:vA€EA, |[|le@]] < K||a]]-

2. {ei:i € I} is a left approximate unit per A.

3. {@(ei) :i € I} is a left approximate unit per B.
Define a left action of A on B by

AB = O (A)B.
Then B is a left Banach A-module and
B = AB.
[In 4.2, take E = B -— then
BO = {B € B:lim ®(e.)B = B}.
N 1
i€l

But B{) = AB.]

Iet A be a C*-algebra. ILet E be a right A-module —- then an A-valued

pre~immer product on E is a function < , >:E X E »+ A such that VY x,y,2 € E,

VAEA VXIEC:

(1) <x,y + 2> = <x,y> + <x,2>;

(li) <K AYy> = A<X, V>3



(iii) <X, YA> = <X,y A;
(iv) <x,y>* = <y,x>;
(V) <x,x> 20 (=> <x,x> € A+) .

If

<X,x>=0=>x=0,

then < , > is called an A-valued imner product.

[Note: < , > is "conjugate linear" in the first variable: <xA,y> = A*<x,y>.]

A pre-Hilbert A-module is a right A-module E equipped with an A-valued pre-

inner product < , >.

N.B. Tacitly E is a complex vector space with compatible scalar multipli-
cation: A(A) = (Ox)A = x{(}A).

4.10 I1IEMMA Suppose that E is a pre-Hilbert A-module —— then V x,y € E,
<x,y>*<x,v> < | |<x,x> | |<y,v>.
PROOF Assume that ||<x,x>|| =1 and let A € A:

A¥<x,x>A - <y,x>A - A¥<x,y> + <y, y>

A

| |<x,x>| |A*A = <y,x>A — BA*<x,y> + <y,y>
= A*A - <y,X>A - A¥<x,y> + <y,y>.

)
Now take A = <x,y> tO get |

0 5 <X,y>¥x,y> = <Y, X0<K, V> ~ <X, VX, v + <y, v



or still,
<Y E><X, ¥ £ <Y,¥y>
or still,
<X, y>¥<x,y> < <y,v>.
Put
Ixl| = [Jxo |72 xem.

Then 4.10 implies that

.

| is a seminorm on E:

A

[+ vl < [ + |yl

| 12|

A

Al [x

Moreover,

| is a norm if the pre-inner product is actually an inner product.

Definition: E is said to be a Hilbert A-module if the seminorm is a norm and

E is complete (hence is a Banach space).

4.11 EXAMPIE Take A = C —— then the Hilbert C-modules are the complex
Hilbert spaces.

4.12 EXAMPIE let Z be a hermitian vector bundle over a compact space X.
Denote by I'(3) the space of continuous sections of & ~- then T'(5) is a right

CX)—module and the rule

<g,0'>(x) = <o(x),o" (X)>X

equips I'(Z) with the structure of a Hilbert C(X)-module.
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Iet

N, = {x € Ez[ [x]] = 0}.
Then NE is a sub A-module of E and the pre~inner product and seminorm drop to an

inner product and norm on the quotient A-module E/NE.

4,13 IEMMA The completion of E/NE is a Hilbert A-module.

A Hilbert A-module E is a right Banach A-module. Proof:

|[sal] = ||<xaxa>| |12

1/2

| |a*<x, 0] |

(2% 172 (<0 (M2 | |a] |12

IA

=[] [1al]-

4.14 LEMMA Iet E be a Hilbert A-module -— then E = EA.
PROOF One has only to show that EA is dense in E (cf. 4.2). But

<KX - . - g
X xel,x xel

i

<, x> = e,< > - < >, + e.< >,
z i X'X X;X 1 i X,.X i

+ 0.

[Note: If A is unital, then x = xlA.]

Here are three examples of Hilbert A-modules which are "internal" to A.
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4.15 EXAMPIE View A itself as a right A-module and put

<A,B> = A*B (A,Be A).

Then A is a Hilbert A-module.

4.16 EXAMPLE Givenn € N, let A" = A ® --- @ A. View A" as a right
A~-module in the obvious way and put

n
@ v B Bn> = il *%(’

<A, ®--- ®A, B 5

1

Then A" is a Hilbert A-module.

4.17 EXAMPLE Let H, stand for the subset of TT A oconsisting of those A
k=1

o0

such that I AXA (A = AKk)) converges in A. View H, as a right A-odule in the
k=1

obvious way and pat

k=1
Then HA is a Hilbert A-module.
4.18 REMARK ILet Hi stand for the subset of || A consisting of those A
k=1
such that I ]]AkHz <o (& =AaK)) — then
k=1
2
HA c HA
and
2 _
iy = Hy
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iff A is finite dimensional. E.g.: H,= £7.

Let H be a complex Hilbert space, E a Hilbert A-module ~- then their algebraic
tensor product H @ E carries an A-valued inner product given on elementary tensors
by

<€ 8 X,n R y> = <, n><xX,y>.

Its completion H 8 E is therefore a Hilbert A-module (cf. 4.13).

4.19 EXAMPLE Suppose that H is separable and infinite dimensional -- then

H @ A and H, are isomorphic as Hilbert A-modules.

4.20 EXAMPIE Iet X be a compact Hausdorff space -- then C(X,H) is a Hilbert
C (X)-module and

H8 CX) = CX,H).
[Consider the map

HecX ~Cci,H
that sends £ @ £ to the function x > f£(xX)£. It preserves C(X)-valued inner products

and has a dense range.]

4.21 CONSTRUCTION Suppose that E and F are Hilbert A-modules —— then E® F

is a right A-module in the obvious way and the prescription
<%, y) (X', ¥')> = o<x,x'> + <y, y'>

is an A-valued inner product on E ® F. Since the completeness of E and F implies
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that of E ® F, it follows that E @ F is a Hilbert A-module.

One difference between Hilbert A-modules and Hilbert spaces lies in the
rroperties of orthogonal complements. Thus let F c E be a closed sub A-module
of the Hilbert A-module E. Put

F* = {x € E:<F,x> = 0}.

Then F' is also a closed sub A-module but in general, E is not equal to F & F~

4.22 EXAMPIE Take A = C[0,1] = E and let F = {g € E:g(0) = 0} — then

Fl=1{0}, o F®F"=E.

Iet E and F be Hilbert A-modules —— then by I—IomA (E,F) we shall understand
the subset of B(E,F) wipse elements are the T:E ~ F which are A-linear:

T(xA) = (TX)A (x €EE, A€ A).

N.B. HomA(E,F) is a closed subspace of B(E,F), hence is a Banach space.

4,23 IEMMA V T € HomA(E,F), we have

<Px,Tx> < ||T] 12<x,x> (x € B).

Iet T & EbmA(B,F) — then T is said to be adjointable if 3 an operator
T* HomA(F,E) such that
<Ix,y> = <x,T*y>

for all x € E, YyE F,
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[Note: T* is unigue and T%* = T.]

Weite I*Iomz (E,F) for the subset of HomA (E,F) consisting of those T which are
adjointable -- then Homx (E,F) is a Banach space.

[Note: The containment

Hom*

A(E'F) c Ek:):mA (E,F)

is, in general, proper (cf. infra).]

4.24 EXAMPIE Take A = C[0,1] = E and let F = {g € E:g(0) = 0} (cf. 4.22).

Define T:E @ F - E @& F by T(f,g9) = (g,0) — then

TEHOIHA(E(BF,EQF) butTEHOmX(EG)F,EQF).

4.25 IFMMA Homz(E,E) is a unital C*-algebra.

[Note: fbmA (E,E) is a unital Banach algebra.]

4,26 REMARK Iet T € HomX(E,E) -~ then T € HomX(E,E)_‘_ iff v x € E,

<TX,x> = 0.

4.27 NOTATION H*MOD, is the category whose objects are the Hilbert A-modules
with

Mor (E,F) = HOIHX(E,F) .

N.B. H*MOD, is a *—category in the sense that it comes equipped with an

involutive, identity-on-objects, cofunctor

*:H*MOD, -~ H*MOD,.
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4.28 EXAMPLE Iet HILB be the category whose objects are the complex

Hilbert spaces and whose morphisns are the bounded linear operators — then

HILB = H*MOD.

*:Mor(Hl,Hz) = B(H]_,Hz)

sends 'I':H':L > H2 to its ad pint T*:h‘2 > Hl‘

4.29 IEMMA Hmnz(E,F) is a Hilbert HomX(E,E)—xrodule.

PROOF The right action
Homy (E,F) X Homi(E,E) ~ Homj (E,F)
is precomposition and the HomX (E,E)~valued immer product
<, >:HomX(E,F) X Homz(E,F) -> HomK(E,E)
is
<T,S> = T*g,

[Note: The induced norm on chnf\ (E,F) is the operator norm.]

Iet E be a Hilbert A-module. Given x € E, define x:E -+ A by

§(y) = <X,y>
and define LX:A + B by
LX(A) = xA.
Then
x € Hom, (E,A)

L, € Homy (A,E).
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And

il

<§(y) JA> <<X,y>,A>
= <x,y>*A
= <Y,X>A
= <Y, RB>
= <y,LxCA)>.
Therefore

®)* =L

;z € Homz(E,A)

‘l Lx € HomX(A,E) .

Put
E = Hom, (E,A).
Then E is a right A-module:
(TA)x = A¥x.
4.30 LEMMA The arrow
- E -~ E:
X > %

is an isometric conjugate linear map of right A-modules.

One then calls E selfdual if this arrow is surjective, thus
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chmA (E,A) = Homz E,A).

4.31 EXAMPIE A is selfdual iff A is unital.

4.32 EXAMPLE HA is selfdual iff A is finite dimensional.

4,33 LEMMA Suppose that E is selfdual -- then v Hilbert A-module F,

HC}mA (E,F) = Homi E,F).

4.34 REMARK Suppose that A is a W*-algebra and let E be a selfdual Hilbert

A-module -- then it can be shown that the unital C*-algebra fbm/’{ (E,E) is a Wr-algebra.

X €B
Let E and F be Hilbert A-modules. Given , define @y X:E -+ F by
y eEF
GY:X(X|) = y<xX,X'>,
Then
18y, 11 = 1wl 1=l
and

' = ' = ' — '
@y,x(x A) V<X R'A> = y<x, X" >A ey,.x(x JA.
E.g.: Take E=F = A and suppose that A is unital -- then

e = jdAQ

lA,lA
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4.35 IEMMA O € Hom* (E,F) :
— Yy,x A

[ 4

* =
G)Y,x @x,y'

Write L (E,F) for the closed linear subspace of Homx (E,F) spanned by the (E)y <
r

4.36 EXAMPIE The image of the arrow in 4.30 is L _(E,A). In fact,

A*
G)A,x = XA*,

Accordingly, when E is selfdual,

il

L (8,A) = Hom} (E,A).

S0, e.g., if A is unital, then

L, (A,A) = Hom} (4,A),

but if A is nonunital, then Hom:{ (A,A) is in general much larger than goo(A,A)

(cf. 85).

4.37 REMARK If A is unital and if E is a Hilbert A-module, then

;,w{E,A) = chn;’;\(E,A).

Thus let T € HomK(E,A) and put x = T*(lA) ~— then
x(y) = <x,y>
= Tk (lA) e
= <1A,Ty>
= lXTy

il

Ty.
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Take E = F -~ then

ex,yeu,v = ®x<y,u>,v = ex‘,v'<u,y>
and
) =0
X:y II‘)<I§’
ex,yT = @x,‘I‘*y.

4.38 LEMMA L (E,E) is a closed ideal in Hc)mK(E,E).

[Note: Therefore L _(E,E) is a C*-algebra.]

More is true: L (E,E) is an essential ideal in Hom} (E,E).

A
we shall need a technical preliminary.
4.39 IEMMA V X € E,

x = lim x<x,x> (<X,x> + e)—l.
£+0

To prove this,

Bearing in mind 1.11, let J c HomK(E,E) be a closed ideal such that

JnL (EE) ={0}. FixJeJ-—thnvx€eE Jo, = 0and
’

JIx = J{(lim x<x,x> {<x,x> + e:)-l)
e->0
= lim J(x<x,x> (<x,x> + e)—l)
e-+0
1

i

lim J@X’X(x) (<x,x> + €)
e+0
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£->0

= 0.

I.e.: J = {0}.

lim O(<x,x> + s)_l

4.40 EXAMPLE The C*-algebra L _(A,A) is x~isomorphic to A. To see this,

define LA:A > A by L,B = AB - then

(Ly)* =L => L, € Homf (A,A).

A*

But

[yl 1= 112

3

Therefore the range of

is a C*-gubalgebra of Irme (A,A). On the other hand,

0 (C) = A<B,C> = AB*C =

A,B

from which it follows that

5
!

- L__OO(A:A) .
[Note: The pair

(Hom (A, 4) L)

L C,

AB*

is a unitization of A. Indeed, the image LA is L (A,A), which is an essential

ideal in HomX(A,A) .1

4.41 REMARK let Mn(A) be the set of n-by-n matrices with entries from A —
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then Mn (A) is a x—algebra but it is not a priori obvious that Mn(A) is a C*-algebra

(if n > 1). Here is one way to proceed. Introduce A per 4.16 — then the map

- X oo *
AlBl Aan

Q
Al®'--®Ah,Bl@°--€BBn+ . .

implements a #-isomorphism

n n
L, (A% - ).

Therefore Mn (A) becomes a C*-algebra via transport of structure.

[Note: The involution *:Mn(A) > Mn(A) is

{Aij) * = [Ag‘i} -]



§5. MULTIPLIERS and DOUBLE CENTRALIZERS

Given a C*-algebra A, put

M(A) = Hmz(A,A) .

Then M(A) is a unital C*-algebra, the multiplier algebra of A. Abbreviate L _(A,A)

o L (A), thus L (A) is an essential ideal in M(A) and there is a *-isomorphism

L:A > L_(A) (cf. 4.40).

[Note: Recall that
L_(A) = M(A)
if A is unital (cf. 4.37).]
Iet E be a left Banach A-module -- then according to 4.2, the set
AE = {Ax:A € A,x € E}

is a closed linear subspace of E, which can be characterized as

{x € E:1im e.x = x},
iel

denoted by EO in 4.3.

N.B. E can, of course, be viewed as a left Banach LOO(A) -module by writing

I,Ax=Ax.

5.1 THEOREM Assume: E = AE — then the prescription
M(Ax) = (MLA)X ™M e M(A))

iw welldefined and serves to equip E with the structure of a left Banach M(A)-module.



PROOF Observe first that
MLA €L _(A),

£ the RHS makes sense. To check that matters are welldefined, suppose that

Byxy = Byxy o then

(ML
B

M lim L Ix
jer &1

I

)xl

= lim (ML yx
jer e 1

= lim (ML Y%
ier & 1

= lim (ML )A.x
ieT eiAll

= lim (ML_ )
ier &1 %2

= (I"K.A2)x2.

And

Il

| M@x) | |

L omy) x| |

| [ilézn (Nmei)AX( ]

il

lim || (M@, )2x||.
iex i

But

A

!l(MLéi)AX|\ K“MLéi|l | [ax] |

a8

K| ] | IILei!i 12| |

A

R M| ||ax]].



Therefore E is a left Banach M(A)-module.

Given C*-algebras A and B, a *-homomorphism ¢:A »~ B is said to be proper
if for any approximate unit {ei:i € I} per A, {@{ei) :i € I} is an approximate unit

per B.

5.2 THEOREM Suppose that ¢:A - B is proper —- then there is a unique unital

*-homomorphism ®:M(A) + M(B) extending o_:

PROOF It is a question of applying 5.1. Thus view B as a left Banach

A-module per 4.9 —— then B = AB. This said, given M € M(A), define ®(M) € M(B) by

o0 (@)B) = ¢ (ML,)B.
Then
o|L (A) = o_.
In fact, V A' € A,
(L ) (2(A)B) = ¢ (L L,)B
A’ A
=¢ (L )B

A'A


http:approxirna.te
http:awroxima.te

=L B
®(A'A)

= L L B
o(A') o(a)

L (¢(A)B)
d(A')

o_(L )(2(A)B).
Ai

5.3 NOTATION PRC*ALG is the category whose objects are the C*-algebras

and whose morphisms are the proper *-homomorphisms.

N.B. The assignment

is functorial, i.e., defines a functor

PRC*ALG + UNC*ALG.

Suppose that (U,1) is a wnitization of A -~ then (U,i) is said to be maximal
if for every embedding j:A -+ V as an essential ideal of a C*-algebra V, there exists

a *-homomorphism Z:V - U such that ¢ °o j = i:

|

LW
< — >

d!

o — >
|
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5.4 REMARK ( is necessarily injective (j(A) being essential) and, in fact,

is unique.
[Note: If
Uy ,ip)
_ (U,,i,)
are maximal unitizations of A, then there exists a *5ismnrphisra <I>:Ul > U2 such

that ® ¢ 1, = 1

1 =1i,.]

5.5 ILEMMA The pair (M(A),L) is a maximal unitization of A,

5.6 EXAMPLE Iet X be a noncompact locally compact Hausdorff space and let
BC(X) be the C*-algebra of complex valued bounded continucus functions on X -- then

C,(X) sits inside BC(X) as an essential ideal, hence there is a comutative diagram

c () —/—= c (X
i L

BC(X) —— M(C (X)),
4

where, as pointed out above, ¢ is injective. But here ¢ is also surjective, i.e.,

is a *-isamorphism.

Given a Hilbert A-module E, denote by <E,E> the linear span of the set
{<x,y>:x,v € E} — then the closure <E,E> of <E,E> is an ideal in A. Working with

an approximate unit from <E,E>, one finds that E<E,E> is dense in E.



Abbreviate

Hom‘;i (E,E) to Homz (E)

L (E,E) to L (E).

Then Hcmji (E) is a unital C*-algebra containing L (E) as an essential ideal.

5.7 LEMMA View E as a left Banach L _(E)-module —- then

L_(E)E = E.

PROOF Let {ei:i € I} be an approximate unit per L_(E) —— then it need only
be shown that eX >*X VXEE (cf£. 4.2 and 4.3). And for this, it suffices to prove

that e.,X > x ¥ x € E<E,E>., So suppose that
X = y<u,v>.
Then

.0 -+ 0 inL (E
el Y. Yy "’m( )

=2

(eiey,u) v) » @y,u(v) in E

e. (0 (v)) -0 u(v) in E

iy,u Ve

e, X -+ x in E.

5.8 THEOREM We have

M(L,(E)) = Hom} (E).



PROOF Iet
i:L (E) -~ HomK(E)
be the inclusion -- then the pair
(Homz (E),1)
is a unitization of L_(E), which we claim is maximal. To see this, consider an
embedding j:L_(E) -~ V as an essential ideal of a C*-algebra V. Imitating the

procedure utilized in 5.1, define z:V -» HmX(E) by

cv)Tx = (vj(M)x (X €E, TeL (B).

aAnd so forth... .

5.9 EXAMPLE Take A = C —- then the Hilbert C-modules are the complex Hilbert
spaces H, thus
M(EOO(H)) = Hcm("i(H) = B{H).

—

5.10 REMARK The relation
M{A) = Hcmz(A)

is a definition. On the other hand,
L.(A) = A

ML, (A) = Hom} (A) .

5.11 EXAMPIE Y n €N,

LA M (&)  (cf. 4.41)



?

ML, (Ah) = MO (A))

1

M_(M(A))

N

n
Horm} (A%)
[Note: v n € N,

MA™ = MA)™.

5.12 EXAMPLE Suppose that H is separable and infinite dimensional -- then

H

n

A H 2 A (cf. 4.19)

=>

0
-
=
©
=

L, ()

N

the symbol & . standing for the minimal tensor product (cf. §6).

[Note: L_(H) is nuclear, so there is only one C*-norm on L_(H) @ A.]

There is another approach to M(A) based on purely algebraic tenets.

Assume for the moment that A is just a complex algebra —— then a

left centralizer

of A

right centralizer




is a linear map

L:A -+ A
R:A » A

such that v A,B € A,

L{AB) = L(A)B

R(AB)

i

AR(B)

and a double centralizer of A is a pair (L,R), where

L is a left centralizer

R is a right centralizer

such that v A,B € A,

AL(B) = R(A)B.

Write DC(A) for the set of double centralizers of A —- then DC(A) is a complex

algebra under pointwise linear operations, multiplication being defined by
(Ll,Rl) (Lz,Rz) = (Lle,Rle) .
Since
(idA,idA) € DC(A),

it follows that DC(A) is unital.
Given A € A, define

LA:A > A

%:A—>A

L, (B) =

R, (B)

&

I
2
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Then the pair
(LA,RA) € DE(A)
and the map
A+ DC(A)
Ly
A > (LyR,)

is a homomorphism whose kernel is called the annihilator of A: Ann A.

5.13 1LEMMA 14 is surjective iff A is unital.
N.B. Therefore 1

A is an isomorphism iff A is unital.

5.14 IEMMA VYV A,BE€ A and v (IL,R) € DC(A), we have

L,L(B) = AL(B) = R(A)B = Ly () B
RR, (B) = R(BA) = BR(A) = Ry (2B
LL, (B) = L(AB) = L(A)B = L, \B
RAR(B) = R(B)A = BL(A) = RL(A)B.

Consequently, 1 A(A) is an ideal in DC(A) and

(LR Ly rRy) = (T, () /Ry, ()

(LA'%) {L:R) = (LR(A) 'RR(A)) -
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- ArmLA={AeA:AB 0v Be A}

Il

A={Aec A:BA=0vVv Be A}
AnnR

Then

ArmA=ArmLAﬂAnnRA.

Now specialize and assume that A is a complex Banach algebra.

5.15 LEMMA Suppose that
AnnLA = {0} and Ann.RA = {0}.
let (L,R) € DC€(A) —— then L and R are bounded:

L,R € B(A).
PROOF Let {An} be a sequence which converges to 0 with {L (An)} converging

to B (say) —— then ¥V C € A,

CB = C{ lim L(An))

n > «

lim CL (An)

n >«

1lim R(C)An

n-+ «

= 0,

Therefore

B € AnnRA {0}

So, by the closed graph theorem, L is bounded. The argument for R is analogous.
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5.16 REMARK The existence of a

T right approximate unit per A => AnnLﬁx = {0}

left approximate unit per A => Ann.RA = {0}.

[Note: In particular, these conditions are met by a C*-algebra.]

Maintaining the suppositions of 5.15, place a norm on DC(A) by stipulating
that
@R ] = max{] |n] |, [|R]]}.

Then DE(A) is a unital Banach algebra and

is contractive.

5.17 EXAMPIE ILet G be a locally compact topological group (Hausdorff is

assumed). Take A = ! (G) (left Haar measure) —— then vV f,g € L:L G),

O EN = swl]|Ex0] ]| [6]] < 1}
|lgl| = sup{||¢xg||:]|¢]] < 1}.
Therefore
- AnnLA= {0}
AnnRA= {o}.
Given 1 € M(G), define
H
e 8t@)
R


http:approxima.te
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by
- Lufr—-u*f
~ Ruf':f*u.
Then
Tl = el

1
. (Lu'Ru) € pe(L (@),

R, 1=l

and a classical theorem due to Wendel says that the arrow

T M@ - pet@)
3 u - (Lu,Ru)

is an isometric isomorphism.
Assume henceforth that A is a C*-algebra.

5.18 IEMMA Iet (L,R) € DC(A) -- then

Holl = [IR]].
PROOF Since
[aL@) || = [[R@B|| < [[R]| |[a]] [[B]],
we have
[lL® [| = sw |lan@) || < [[R]] |[B]]
||alf=1
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Dittos
Rl < [z]].

[Note: V X € A,

Ix|| = s = sy .
| 1{YT$31 | x| llYl}fngYXH

Define an involution

*:DC(A) - DC(A)
by ‘

(L,R)* = (R*,L*),

where T*(A) = T(A¥)*.

5.19 THEOREM Under the multiplication, norm, and involution defined above,

DC(A) is a unital C*-algebra.

PROOF To check that

I (@R*@B || = ||@R]]?,

note that v A € A of norm < 1,

L@ ||

i

(@) *L@) ||

il

| |lL*(av) @) | |

il

| |a*R* (L@)) ||

HaY

Hax ] | |r*@@) [

IA

|| R*) () ||
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A

| [R*L| |

|| (©,R)*(L,R) ||

@R ||?=|L]|?

It

Hiﬁﬂ REACNEN

< || @,R*@,R) ||
< || @ |>.
It is clear that V A € A,
1y B 1] = |1a]]
(L,,R)}*= (L ,R ).
Rt R )
Therefore
A - DE(A)
1A:
A Ly Ry)

is an isometric *-homomorphism.

5.20 LEMMA The ideal IA(A) is essential in DEC(A).
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PROOF If v A € A,

(LRI, (A) = 0 = 1, (A) (L,R),

then
T Ro@! = 0= TrayFra))

o)

L{A) = 0 = R{A)

=>
(LrR) = (0,0).
[Note: The quotient
C(A) = DC(A)/lA(A)

is called the corona algebra of A.]

The pair (DC(A) '1A) is thus a unitization of A, which we claim is maximal.

To see this, consider an embedding j:A - V as an essential ideal of a C*-algebra

V -- then the problem is to construct a *-homomorphism z:V - DC(A) such that

L e j= 1yt

A A

L

V —— DE(A).

C

Definition:

W) = (LR,
vhere

L&) = 37 (via)

R (A) = j'l(j(A)v).
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The computation

L, (@B) = 37 (vi (B))

il

57H w3 )5 8))

;7Y a)) B

Il

Lv (A)B

shows that Lv is a left centralizer of A. BAnalogously, RV is a right centralizer
of A. And

T oA, ® =T wIE) = 3T EEN T E) = 3G @vsE)

5 @vie).

il

R, B = 5 G @B = G @wITHE®)

Therefore the pair (LV,RV) is a double centralizer of A. That { is a *-homomorphism

is likewise immediate. Finally,

CG M= (T ) Ry )
But
T oL, (B =3 tE@sm) = 5N G@B) = AB = L (B)
J(A) 7\
R, (B) = 51(3®)§(A) = §7H(5(BA)) = BA = R (B)
_ 5 (A) J J J J RA
=>
(Lj (n) er (A)) = (LA'RA) = IA(A)'
I.e

C o j = 1;‘51.
[Note: The construction of 7 uses only the fact that j(A) is a closed ideal

in V.]
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5.21 THEOREM The C*-algebras M(A) and DC(A) are x-iscmorphic. Moreover,

there is a commtative diagram

MR —— D).

[This is because maximal unitizations are unique up to »-isamorphism. ]

[Note: One can therefore realize the corona algebra of A as the quotient

M(A) /L(A) . ]

5.22 REMARK ILet E be a Hilbert A-module -- then according to 5.8,
M(L,(E)) = Hom}(E),
so by 5.21,
HomK(E) * DE(L, (E)).
This can be explicated, viz. define
@:Hch(E) + DE(L (E))

by assigning to T € HomK(E) the pair (I‘I"RI') , where

T L) =T e 9

(¢ € L (E).

¢ oT

R (9)

Then ¢ is a *-isomorphism.
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[Note: V x,v,z € E,

‘ T o Gx,y(z) = Tx<y,z2> = G’I‘x,y(Z}
| S s T(z) = x<T*y,z> =0 (z).
s XY Ye X,T*y ]

Iet A,B be C*-algebras -- then an extension of A by B is a C*-algebra £ and

a short exact sequence
i m
0~>+A »~E »B-~0.
So: 1 is injective, 7 is surjective, and Im 1 = Ker .

N.B. There is a conmtative diagram

A—A

xl lmA

E — DC(A)
o

but ¢ need not be injective (since the closed ideal 1(A) need not be essential).

5.23 EXAMPLE The unitization extension is

v
0+-A> A > C~>0,

where 1{a) = (A,0) and 7{A,N) = A.

Two extensions

_ ‘1 kit
0>A—E, — B~»0

1

0+A—E —>B>0
1 2 m
- 2 2
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of A by B are said to be isomorphic if 3 a %-isomorphism Y:El > E2 rendering the

diagram

conmatative,
[Note: This notion of "isomorphic" is an equivalence relation and we write
Ext(A,B) for the corresponding set of equivalence classes.].

Suppose that

1 ™
0>+A—— E— B=>0

is an extension of A by B. Postcompose o:E + DC(A) with the projection pr:-
DE(A) » C(A) to get a x-homomorphism T from E/1(A) = B to C(A), the so-called

Busby invariant of the extension.

N.B. The diagram

1 ™
0 — A —» E —» B — 0

I Y

0 — A —— DC(A) —> C(A) — 0
1
A

is comutative.

5.24 LEMMA There is a pullback square

DC(A) XC{A}B ey B

e
DC(A) — C(A),
pr
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a *-isomorphism 7:E - DEC(A) XC(A? , amd a comutative diagram
1 T
0 A -+ E B 0
I |

0 —s A > DE(A) XC(A)B+B > 0,

Two extensions

of A by B with respective Busby invariants T, and T, are isomorphic iff Ty = Ty
Therefore the Busby irnvariant determines the iscmorphism class of an extension,

thus there is an injection
Ext(A,B) - Mor(B,C(A)),

that, in fact, is a bijection. Proof: Iet T € Mor(B,C(A)) -- then the Busby

invariant of the extension

0+~ A > DC(A) x B+-B~+0

C(A)

is 1T itself.

5.25 EXAMPLE Take A = C_(]0,1[), B = C — then up to isomorphism there are

four extensions of A by B:

1. = C_([0,1D) 3. E=c(lo,1)

2. E=c_(]0,1]) 4. E=c_(10,1]) @ C.
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5.26 IEMMA Iet 1:B > C(A) be the Busby invariant of the extension

1 i
0+ A ——>FE ——B~+0.

Then T = 0 iff E is x-isomorphic to A ® B.

5.27 REMARK If A is unital, then C(A) is trivial and, up to iscmorphism,

there is only one extension of A by B, viz.

0+A->A®B~+B~>0.



§6. TENSOR PRODUCTS

A monoidal category is a category C equipped with a functor ®:C x C ~C

(the multiplication) and an object e € Ob C (the unit), together with matural

isomorphisms R, L, and A, where
o RyiX 8 e X

LX:eQX*X

and
AX,Y,Z:X 2 (YR2Z) > (XQY) & 2,

subject to the following assumptions.

(MCl) The diagram
A A
Xe Y (zZaw) » XY)2 (2W) ~(XeY)Q2)aw
idﬁz\.l IA@id
X® ((YR2Z) W Xxe ¥Ye2)aw
A
comutes.,
(MCZ) The diagram
A
X2 e®Y) »~»XQe) QY
id@Ll lRQid
XY —— XQVY
comuites.

[Note: The "coherency" principle then asserts that "all" diagrams built up

from instances of R, L, A (or their inverses), and id by repeated application of &



necessarily commute. In particular, the diagrams

A A
e (XQY) > (e@X) QY Xa (YRae) > (XRY) Qe
Ll lL@id id&Rl lR
X8y Xeyv XY — X®2Y

comute and Le=Re:e®e—>e.]

N.B. Technically, the categories
c x (c x Q)

(€ xQ x¢

are not the same so it doesn't quite make sense to say that the functors

(X,(¢,2)) »x@ (Y  2)
e C X (gxg) > C

(f,(g,h)) > £ 2 (g2 h)

(X,v),2) ~ Xy @2z

e (CxQ) xC~>C

((f,9),h) > (fRg) &h
are naturally isomorphic. However, there is an obvious isomorphism
1

cx(ELxQ »(CxQ xg

and the assumption is that A:F > G ¢ 1 is a natural isomorphism, where



Accordingly,
v (X,(¥,2)) €0bC x (C xC)
and
v (£,(g,h)) € Mor C x (C x Q),
the square
By,
X® (Y az) XQY) @z
fe (ggh l l(f@g)@h
X'e (Y' e 2') X' 2 Y') @ 7'
Ax! ,Y".Z'
canmmutes.

6.1 EXAMPLE ILet VEC be the category whose objects are the vector spaces
over C and whose morphisms are the linear transformations -- then VEC is momoidal:

Take X 8 Y to be the algebraic tensor product and let e be C.

[Note: If

£:X X
g:¥ > Y',

then

R (f,g) =f@g:XQY->X'@aY'

sends x @ y to £(x) & g(y).]

6.2 EXAMPLE Let ALG be the category whose objects are the algebras over C



and whose morphisms are the multiplicative linear transformations —- then ALG is

monoidal: Take A ® B to be the algebraic tensor product and let e be C.

[Note: If

A,B € Ob ALG,

then the multiplication in A 8 B on elementary tensors is given by

(Al R Bl) (A2 ® B2) = AlAZ 2 BlB2']

6.3 EXAMPLE Let *ALG be the category whose objects are the *-algebras over
C and whose morphisms are the multiplicative *-linear transformations -- then *ALG

is monoidal: Take A @ B to be the algebraic tensor product and let e be C.
[Note: To say that $:A » B is *-linear means that

o(a*) = p(A)*

for all A € A.]

6.4 REMARK Each of these three categories also admits another monoidal
structure: Take for the multiplication the direct sum ® and take for the unit the

zero object {0}.

Let H and K be complex Hilbert spaces —- then their algebraic tensor product

f & K can be equipped with an inner product given on elementary tensors by
X By %y BYy> = <Xp,XpYhYp?

and its campletion H @ K is a complex Hilbert space.



A€ B(Hl,Hz)

B € B(K;.K,),
then
AQB:HlQKl+H2QK2
extends by contimiity to a bourded linear operator

a@B:, @K ~H, ek,

Recall now that HIIB is the category whose aobjects are the complex Hilbert

spaces and whose morphisms are the bounded linear operators (cf. 4.28).

6.5 LEMMA HILB is a mornoidal category.

PROOF Define a functor

®:HILB x HILB - HILB

by
and
A B
@(Hl -+ Hz,Kl - Kz) =ARB

and let e be C.

A symmetry for a monoidal category C is a natural isomorphism 7, where

gy XBY>Y Y,

such that

TY'X o TX'Y:X RY-X8QY



is the identity, RX = LX ° Ty or ard the diagram

A T
X2 (¥YRZ) — > (X8Y) RZ2 ——ZR(X82Y)

id @ TJ J'A

Xxe zY) ——eeees (X R Z) QY — (Z2RAX) QY
A T & id

comutes. A symmetric mornoidal category is a monoidal category C endowed with a

symmetry T. A monoidal category can have more than one symmetry (or none at all).

[Note: The "coherency" principle then asserts that "all" diagrams built up
from instances of R, L, A, T (or their inverses), and id by repeated application of
® necessarily cammute. ]

N.B. Let

BigxCc>Cxg

be the interchange —— then T is an isomorphism and T7:2 + & o f is a natural iso-
morphism.

It is clear that VEC, ALG, and *ALG are symmetric monoidal, as is HILB.

6.6 ILEMMA ILet H and K be complex Hilbert spaces —- then the linear map

B:B(H) & B(K) > B(H & K)
induced by the bilinear map
B(H) x B(K) ~ B(H & K)

(T,8) > T@S

is an injective *-hamomorphism.



From the definitions, C*ALG is a full subcategory of *ALG and while *ALG
is symmetric monoidal, it is definitely not automatic that the same is true of
C*AIG (the algebraic tensor product of two C*-algebras is not, in gereral, a
C*-algebra) .

Suppose that A and B are C*-algebras —- then a C*-rorm on their algebraic

tensor product A @ B is a nomm |- ||  which is submiltiplicative, i.e.,

CAIEREANTe

and satisfies the C*—condition, i.e.,

[ xex] |, = 11x]12.
[Note: The pair (A& B, ||| !O() is a pre-C*-algebra and its completion
A @oc B is a C*-algebra. ]
Definition: A norm ||-|| on A @ B is said to be a cross norm if v A € A,
v B € B,
llae B[] = ||al] |IB]].

6.7 LEMMA Every C*-rorm on A @ B is a cross romm.

6.8 EXAMPIE Given X € A @& B, let

~

x|l =inf{Z||a,|] [|B;|] :x=1Z A, & B;].

~

Then ||-|| is a submultiplicative cross norm on A 8 B and the completion A & B

“

is a Banach x-algebra. Still, ||-|| is rarely a C*-norm.

6.9 RAPPEL Every C*-algebra is isometrically *-isomorphic to a norm closed



x-subalgebra of B(H) for same H, or in different but equivalent terminology, every
C*~algebra admits a faithful *-representation on some complex Hilbert space (cf.

10.37).

6.10 ILEMMA Suppose that

$:A > C

Y:B » D

are *-homomorphisms of C*-algebras -- then there is a unique *-homomorphism

PRV ARB--C@0D

of algebraic tensor products such that

(¢ V) (a8 B) = 2A) & ¥(B)

for all A € A, B € B. And

% injective
=> ¢ @ ¥ injective.

¥ injective

Given C*-algebras , let

$:A - B(H)

¥:B -+ B(K)

be faithful *-representations -- then the camposition



b @V B
AR B — B(H) & B(K) ~ B(H & K)

is an injective *-homomorphism. One can therefore place a C*-norm on A @ B by
writing

x| ;= Beoean®|| &eAad.

6.11 1A |- Hmm is independent of the choice of ¢ and V.
[Note: If in the above ¢ and ¥ are arbitrary *-representations, then

@ ooanooll < x|y

One terms ||-| lmln the minimal C*-norm on A 8 B. Denote its campletion by

A 2 in B and call A 2 B the minimal tensor product of A and B.

6.12 EXAMPLE Fix a C*-algebra A. Given X € Mn((_:_) R A, write

Then the Aij are unique and the map

X - [Aij]

defines a »-isomorphism

Mn(g) 2 A~>M(A).

But Mn(A) is a C*-algebra (cf. 4.41), hence M_ (C) 8 A is a C*-algebra w.r.t. the

norm that it gets fram M (A). Owing to 1.2, this norm nust then be [1-] lmin' 50
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M @A=M(C 8. A

[Note: One can show directly that M (C) @ A is complete per |[-]] ; .

For if {X } is Cauchy and if

then for each pair (i,j), {A};j} is Cauchy in A, thus

. k co
lim A,. = A.., say.
DTS B & Led

Now put
Xo= L E.. A
i,y 20
and observe that
%, =% || . =112 E.@& @&, -2
o = Xl lnin fy i3 i3~ Pig! llgin
r
< I IIAgy - 2|
i3
> 0 (k-)-co).

Consequently matters can be turned arocund: The *-isomorphism
M (©C &AM (A

can be used to place the structure of a C*-algebra on Mn(A) .1

6.13 EXaMPLE Suppose that X and Y are compact Hausdorff spaces — then

cx gmin Cy) CcX xY).
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[Note: If instead, X and Y are noncompact locally compact Hausdorff spaces,
then

C(X) & . C_(Y) =C (XxY).]

6.14 EXAMPLE Fix a C*-algebra A and suppose that X is a compact Hausdorff
space -- then

C(X,A) = Cc(X) 8 i A
[Note: If instead, X is a noncompact locally compact Hausdorff space, then

Co(X,A) 2 C () & . Al

6.15 LEMMA If A and B are simple, then A Qmin B is simple.

6.16 EXAMPLE Suppose that H and K are camplex Hilbert spaces -- then
L, (H) R in L, (K)
is simple and
L ) & in LK) =L (HeK).

m

6.17 IEMMA Suppose that

P:A > C

_ ¥:B-~>0D

are x-homomorphisms of C*-algebras —- then

% V:AQB~>CQ7D
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extends by continuity to a *-homoorphism

ol ]

min‘i’:AQminB*C&. D.

min

6.18 REMARK Here
¢ injective
=> & Qmin ¥ injective.
¥ injective
E.g.: If A is a C*-subalgebra of C and if B is a C*-subalgebra of 7, then there

is an embedding

A . B->Cea . 7.
min min

. . s * H " wog " " 4
[Note: This is false in general if Qmi.n is replaced by "®& (cf. infra).]

There are canonical iscmorphisms
- — 3
R:AR . C(=ARC ~>A

: mi

LCR. . A(=Cai) »A4

2p,B,cA Qpin B o O > (Ae, Be, C

TA’B:A &min BB gmin A,

which are evidently natural.
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6.19 SCHOLIUM Equipped with the minimal tensor product, C*ALG is a symmetric
monoidal category.
[Define a functor

®:C*ALG » C*ALG

by
Q(A,B) = A Qmin 2]
and
9 y
(A~ C,B>1) =<I>®min‘i'

and let e be g.]

6.20 THEOREM ILet |

-Hocbeac*-normonA@B—-thenVXEAQB,

< | x|

-

I )

[Note: This result is the origin of the term "minimal tensor product”.]

6.21 LEMMA If A is nonunital, then any C*-norm

|+

|, on A & B can be

extended to a C*-norm on A" @ B.
[Note: Therefore if both A and B are nonunital, then any C*-nomm ||- || on

A Q B can be extended to a C*-norm on A+ 2 B+.]

6.22 IEMMA If A 2, B is simple for same C*-norm

]aonAQB, then

|- Hoa = ||| lmin and A and B are simple (cf. 6.15).

Given C*-algebras A and B, define the maximal C*-norm on A & B by

x|l = sup O[] |13,
v
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sup being taken over all x-representations of AR B. Iet A - B be the completion
11

of AR Bw.r.t.

-~thenAﬁmBisthen)axi.rnaltensorproductoanmdB

|.

I mae
and

A@ _B~Ct(Aa B),
max

where C*(A € B) is the enveloping C*-algebra of A B (cf. §9), hence there is an

arxrow
AQB+Ag B
max

6.23 IEMMA If $:A @ B + C is a sx-homomorphism, then there is a unique

*~homomorphism @maX:A Qmax B » C which extends 9.

6.24 THEOREM ILet H-Habeac*—nomonAQB-—thenVXEAQB,
EANEET ..
PROOF Thanks to 6.23, there is a surjective *-hamomorphism

A& B+-A@Q B,
max o
el e x|
for all X € A @ B.

6.25 REMARK Equipped with the maximal tensor product, C*ALG is a symmetric

monoidal category (cf. 6.19).
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A C*-algebra A is nuclear if there is only one C*-norm on A & B for every

C*-algebra B. So, if A is nuclear, then |

.

~Hmin=] [mxonA@Bandmwrite

A @ B for

6.26 EXAMPIE V n 2 1, the C*-algebra Mn(g} is nuclear {cf. 6.12).

[Note: More generally, every finite dimensional C*-algebra is nuclear

(use 1.4}).]

6.27 EXAMPIE If H is an infinite dimensional camplex Hilbert space, then
B(H) is not nuclear.

[There are a number of ways to see this, none of them obvicus. One method is
to show that

B(H) 2 .. B(H) = B(H) 2 < B(H).]

6.28 THEOREM Every coamutative C*-algebra is nuclear.

6.29 THEOREM A filtered colimit of nuclear C*-algebras is nuclear.

6.30 EXAMPLE BEvery AF-algebra is nuclear (cf. 3.17).

6.31 EXAMPIE Suppose that H is an infinite dimensional cawplex Hilbert
space -- then L _(H) is nuclear.

Note: Recall that

ML () = B(H) (cf. 5.9).
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Since B(H) is not nuclear, it follows that the multiplier algebra of a nuclear

C*-algebra need not be nuclear. ]

6.32 IEMMA The minimal tensor product A R in B is nuclear iff both A and

B are nuclear.

PROOF If B is not nuclear and if C is a C*-algebra for which

B
It

| i o0 B @ C, then the surjective *-homomorphism

B e C+Ba . C
max min

has a nontrivial kernel, thus the same is true of the camposition

(Agm.lnB) meC-*AQnﬁn (B@max(?)

F}Agmin (BﬁminC)

~Ae. Byea. C.
min min

Therefore A Qmin B is not nuclear. Conversely, if A and B are nuclear, then for
any C, we have

(A@ms) Qmaxc (AQHBXB) Qmaxc

i

TAR (Ba &)
max max

12

AR Be . O

[

Agmin (B@min(?)

= (A @min B) Qm:’m C.
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6.33 EXAMPIE If A is nuclear, then v n 2 1, Mn(A) is nuclear. 1In fact,

M (A) =M () RA

Mn((_f_) Qmin A (cf. 6.12).

6.34 EXAMPIE If H and K are complex Hilbert spaces, then

L) 8 L (K

is nuclear and, in fact, is *-isamorphic to

L (HRK (cf. 6.16).

6.35 REMARK Write NUCC*ALG for the full subcategory of C*ALG whose objects
are the nuclear C*-algebras equipped with the minimal tensor product —— then NUCC*ALG

is a symmetric monoidal category.

A C*-algebra A is said to be stable if A = A 2 . Ew(ﬁz) (= }_;_,OO(HA) (cf. 5.12)).

6.36 EXAMPLE gw(liz) is stable:

e’z ?
=>
2 20 L 2 o 2
L% e, L (6% =107 at?

2
1
S
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6.37 EXAMPLE If A is stable, then vn = 1, Mn(A) ~ A. Proof:

Mn (A)

L4

Mn(g) ﬁmin A

2

2
M© &, (Ae. L (£9)

113

2
AR (M40 R, L (L))

13

2
Al (L(C) &, L))

&
Py
5o
-
A
e
(o]

Two C*-algebras A and B are stably isomorphic if

2 2
AR L (L5 =Ba . L (£9.

6.38 EXAMPIE C and Ew(f.z) are stably isamorphic.

6.39 LEMMA If A is nuclear and if A and B are stably isomorphic, then B is
nuclear.

PROOF For
Anuwclear => AQ . L (£2) nuclear {(cf. 6.32)
min =
= B& . L (112) nuclear
min =

=> B nuclear {cf. 6.32).



19.

It is false in general that a C*-subalgebra of a nuclear C*-algebra is

nuclear. Still, there are properties of permanence.

6.40 IFMMA If A is nuclear and if I c A is a closed ideal, then I is

nuclear.

6.41 IEMMA If A is nuclear and if T < A is a closed ideal, then A/T is

nuclear.

6.42 THEOREM Suppose that T ¢ A is a closed ideal. Assume: I and A/I

are nuclear —— then A is nuclear.

If

0+J->B~+B/J~+0

is a short exact sequence of C*-algebras and if A is a C*-algebra, then
0—>AQHEXJ+AQHBXB'->AQWB/J+O

is again short exact. On the other hand, this need not be true if "max" is replaced
by "min", leading thereby to the following definition.
A C*-algebra A is said to be exact if it has the property that A .

preserves short exact sequences.

6.43 LEMMA Every nuclear C*-algebra is exact.

6.44 REMARK There are C*-algebras which are not exact and there are exact
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C*-algebras which are not nuclear.

6.45 IEMMA Every C*-subalgebra of an exact C*-algebra is exact.
[Note: Thus every C*-subalgebra of a nuclear C*-algebra is exact (but not

necessarily nuclear).]

The quotient of an exact C*-algebra is exact. Filtered colimits of exact
C*-algebras are exact but extensions of exact C*-algebras are in general not exact.
N.B. It is a famous theorem due to Kirchberg that every separable exact

C*-algebra can be embedded as a C*-subalgebra of a separable nuclear C*-algebra.

6.46 LEMMA If A and B are exact C*-algebras, then so is A gmin B.

6.47 REMARK Write EXC*AIG for the full subcategory of C*ALG whose obijects
are the exact C*-algebras equipped with the minimal tensor product -- then EXC*ALG

is a symmetric monoidal category containing NUCC*ALG as a full subcategory.



§7. STATES

Iet A,B be C*-algebras —- then a linear map ¢:A + B is said to be positive
if @(A+) c B+.

7.1 LEMMA Suppose that ¢:A +~ B is positive — then v AR, € A,
2(aghy) ¥ = S0
[Note: Since A = Az, it follows that

o(a)* = o(a*) (aeA.]

7.2 EXAMPLE A *-homomorphism ®:A - B is positive:

o(a*a) = 0(a%)2(a) = o(R)*e(n) € B,.

7.3 LEMMA Suppose that ¢:A - B is positive — then ¢ is bounded.

More can be said in the unital situation.

7.4 ILEMMA If A and B are unital and if 0:A - B is positive, then ||o|| =

-

||@(1A)

[Note: Accordingly, if ¢ is in addition unital, then ||?]|| = 1.]

7.5 EXAMPLE Take A =B = Mz(g) and let ¢ be the linear map defined by



11 %12 fn %22
o( ) =
1 3y 0 o .
Then |[o]|| = [[e(1,) || = 1 and ®(1,) = 0. Still, ¢ is not positive.

7.6 ILEMMA If A and B are unital and if ¢:A - B is a unital bounded linear

map such that ||®]|| = 1, then ¢ is positive.

Specialize now and take B = C —- then a linear functional w:A -~ C is said to

be positive if
A =20 =>w(a) 20.

N.B. Positive linear functionals are necessarily continucus (cf. 7.3).

7.7 LEMMA Let w:A -~ C be a positive linear functional -~ then V A € A,

w(d*) = w(a)

|w(a) |2

a3

| lo] |w(a*a) .

7.8 LEMMA Iet w:A > C be a positive linear functional -- then Vv A,B € A,

|w(@a*B) | 2 < w(a*n)w(B*B).

Fix an approximate unit {ei:i € 1} for A per 1.20.



7.9 LEMMA Let w:A + C be a positive linear functional -- then
|lw|| = lim wle,).

iex

In particular: If A is unital and if w:A > C is positive, then ||w|| =

w(lA) (cf£. 7.4).

[Note: This can be turned around. In other words, if w:A > C is a bounded

linear functional such that ||w|| = w(1,), then w is positive (cf. 7.6)

W
(W (lA) =1).]

If

are positive linear functionals, then their sum wy + o, is a positive linear

functional. And:

]le + w

=Tyl + |lo,
Proof:

o, + wyl] = Lim (g (e;) + y(e;))

It

lim w, (e + lim w,(e;)
jer T Y e 21

oy 1+ [,

Suppose that A is nonunital. Given a positive linear functional w:A - C,



define a linear functional w' on AV by

ot (a0 = 0@ + Al|wll.

Then &)+ is positive. In fact,
+
w (AN *A,0)

= o' (a*A + XA + AA*,0N)

= A% |lo]] + M@ + Aw@*) + o@*a).

But

1/2

@ + @) + 24 o] |Y? w@ara) Y2

A%

W@) + Aw@dr) + 2[A] @) (cf. 7.7)

v
(o]
*

Therefore

SHan* @) 2 (A el Y2 - s 7?2 2 o.

N.B. We have

"] =wfa )

A

6 (0,1) = ||wl].

i

7.10 1LEMMA Iet w:A » C be a bounded linear functional. Assume:
w(a*) = w(a).

Then 3 unique positive linear functionals

V A E A,



w+:A > C

w_A > C
such that

W= =W
and

I

!

Hog [T+ Ho_[ -

7.11 REMARK Let w:A » C be a bounded linear functional. Define w*:A - C

by
w* (A) = w(A¥*)
and put
- W+ wk
Re w = 5
Tm o =29
_ 2/-1
Then
Ww=Re w+ /-1 Im w.
Since
Re w(A*) = Re wW(A)
Im w(A*) = Im w(a),

it follows fram 7.10 that every bounded linear functional on A can be written as

a linear combination of four positive linear functionals.
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A state on A is a positive linear functional w of norm 1. The state space
S(A) of A is the set of states of A.
E.g.: S(C ® C) can be identified with [0,1] and S(M:Z (C)) can be identified

with §2.

7.12 EXAMPLE Fix a locally compact Hausdorff space X.
e If X is compact, then the dual C(X)* of C(X) can be identified with

M(X), the space of complex Radon measures on X:
I, I (f)= £au.
I u() Jy £au
Here
ull = [ufx),

u| the total variation of p. Therefore S(C(X)) = M (x) , the Radon probability
1

measures on X.

e If X is noncampact, then the dual C_(X)* of C_(X) can be identified with
M(X), the space of complex Radon measures on X:
u - IU' Iu(f) = fX £au.
Here
Hul] = [ul =0,

u| the total variation of p. Therefore S(C_ (X)) = M;(X), the Radon probability

measures on X.

7.13 EXAMPIE Given a complex Hilbert space H, denote by W(H) the set of

density operators (i.e. the set of positive trace class operators W with tr(W) = 1) -




then the arrow
w(Hy - S(Qm(H))

that sends W to W where
we(T) = tr(wr) (T € L ()
is bijective.
[Note: It is clear that
S(L,(H)) = S(B(H)),

the inclusion being proper if H is infinite dimensiomal.]

7.14 1EMMA S(A) is a nonempty convex subset of A*,

7.15 IEMMA S(A) is weak* closed iff A is unital.
[Note: So, if A is unital, then S(A) is weak* compact (Alaoglu), thus is the

weak* closed convex hull of its extreme points (Krein-Milman).]

If

2w, if w, - w

are positive linear functionals, write Wy z W, 1 is positive.

2
Now let w € S(A). Denote by [0,w] the set of all positive linear functionals
w':w z w' — then [0,w] is a convex set and w is said to be pure if [0,w] =

{tw:0 = t < 1}. Write P(A) for the set of pure states of A.


http:fumtiona.1s

7.16 EXAMPLE If X is a locally compact Hausdorff space, then

P(C(X)) = {6x;x € X} (X compact)

and
PC,(X)) = {6 :x € X} (X noncompact) .
7.17 EXAMPLE Suppose that H is a complex Hilbert space —- then
P(L () = {wX: ||| = 1}.
Here
wX(T) = <x,Tx>
or still,
wX(T) = tr(PXT),

P the orthogonal projection onto Cx.

[Note: Iet PH be projective Hilbert space (the quotient of the unit sphere
in H by the canonical action of U(1l)). Give PH the quotient topology -- then

P(L_(H)) supplied with the relativised weak* topology is homeomorphic to PH.]

N.B. The w _(||x|| =1) are the so-called vector states.

7.18 1EMMA If A is unital, then the extreme points of S(A) are the pure
states:

ex S(A) = P(A).

7.19 REMARK For any A (unital or nonunital), let S(A) stand for the set



of positive linear functionals of norm < 1 —— then S(A) is convex, weak* compact,

and
ex §(A) = {0} U P(A).

7.20 LEMMA Every multiplicative state is pure.
7.21 LEMMA Every pure state is multiplicative on the center of A.

7.22 SCHOLIUM If A is a commutative C*-algebra, then

P(A) = A(A).

Suppose that A is romunital. Given a state w € S(A), define as before a

linear functional w on A+: by

ot = w@ + A (o)) =D.
Then ' € S(AT). Moreover,

w € PA) <= o € P(Ay.

7.23 THEOREM If A' is a C*-subalgebra of A, then every state w' on A' can
be extended to a state w on A.
PROOF It suffices to establish this when both A and A' are unital with

1, =1 . Soletuw' € S(A'). Owing to the Hahn-Banach theorem, 3 a bounded linear
AI

functional w € A* that extends ' and is of the same norm. But

L= [lof] = [Jo']] =w'@ ) =w

).
A A
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Therefore w is positive (cf. 7.6), hence w € S(A).

7.24 THEOREM If A' is a C*-subalgebra of A, then every pure state w' on A'
can be extended to a pure state w on A.

PROOF Iet S (A) be the subset of S(A) consisting of those states that
wl

extend w' -- then $ (A) is rnot empty (cf. 7.23). On the other hand, S (A) is a
w' w!

weak* compact face of S(A), thus

ex S (A) = ¢ (Xrein-Milman) .
wl

But
ex S (A) c ex S(H).
w" -
And
wEexS (A =w=0=>0€ PA) (cf. 7.19).
w!

7.25 LEMMA Let A € A, -- then 3 w € P(A): lw@) | = ||all.

PROOF The C*-subalgebra C*(A) generated by A is commutative. Choose a
character w, € A(C*(2)): [w,(A)| = ||A|| and extend w, to a pure state w on A
(cf. 7.24).

Here is a corollary: If w{dA) =0 VY w € P(A), then A = 0. In fact,

v w € P(A),
w(Re A) =0
=>Re A=ImA=0.
w(ImA) =0
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7.26 IFMMA Tet A € A - then A € ASA iff w(ad) € R for all w € P(A).

7.27 IEMMA Iet A€ A — thenA€A+ iff w(a) € R, for all w € P(A).

>0

A weight on A is a function W:A+ + [0,*] such that

w(A + B) = w{p) + w(B) (A,B € A+)

w(0) =0, w(da) =w{d) (» >0, A€ A+).

E.g.: The prescription w(0) =0, w(d) == (A € A+,z-\ # 0) is a weight, albeit
a not very interesting ore.

Every positive linear functional is, of course, a weight. More generally, any
sum of positive linear functiomals is a weight (in fact, any sum of weights is a

weight) .

7.28 EXAMPLE Let H be a complex Hilbert space. Fix an orthonormal basis
{ei:i € I} for H and define

tr:B(H), > [0,]

by

tr(a) = I <e;,Ae;>.
i€l

Then tr is a weight.
[Note: Recall that tr is welldefined in the sense that it is independent of

the choice of orthonormal basis.]

7.29 EXAMPIE Take X = Bn —-- then the Riesz representation theorem identifies


http:fun:::tio:n.3.ls
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the positive linear functionals on Co (Bn) with the Radon measures and the positive
linear functionals on Coo(ljn) with the finite Radon measures. Therefore every Radon

measure y such that u(gn) = o determines a weight on Cm(gn) which is not a positive

linear functional (e.qg., u = Lebesgue measure) .
[Note: Recall that a positive linear functional on C_ (E_tn) is a linear

functional I:Cc(gn) + C such that I(f) = 0 whenever £ 2 0.]

Given a weight w on A, let

W - A+ = {7 € A+:W(A) < o},

7.30 IEMMA If A 2B 20andifAEw~A+, thenBEw-A+.

PROOF Write

A= (A -B) + B.

o > w(a) = w(A - B) + w(B).

Lw = {A € A:w(a*A) < o},

[Note: In general,

W(A*A) < o #> w(AR*) < ]

7.31 IEMMA LW is a left ideal.
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PROOF There are two points. First, V A,B € A,
(A+B*(A+B) + (A-B)*(A - B) = 2(A*A + B*B)

=

(A + BY*(A + B) < 2(A*A + B*B).
Second, ¥ X € LW&VAEA,

(AX) *AX = X*A*AX

il

IA

| Ia*a | |x*X

Il

| a] lzx*x.

7.32 IEMMA The linear spanw — A of w - A+ is the set of elements of the

form
n
{ T ¥*. :X.,Y. €L},
M 11 1 1 W
i=l
i.e., is
1L .
W W
PROOF If X,Y € L, then
3 X
wix = T (DR + CDXr i+ (DY),
k=0

which implies that

1*¥] < w - A,
W oW

1/2

In the other direction, if A €w - A+, then A € Lw’ thus

1/2, ., 1/2

A= (A7 7)*n € L::?LW'
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N.B. It follows that w — A is a x-subalgebra of A with
(w - A HA+=W—A+.
Given A € w — A, we can write

A=A —A2+J:IA3-/:IA4,

1
where Al’AZ'AB'ALI are in w - A+. 1f

A=A:‘L—Aé+f:fA§~/:TAjl

is another such decamposition, then

So

w(Al) + “’U‘%) = w(Ai) + W(Az) and w(A3) + w(AL'i) = w(A:',)) + W(A4)

W‘(Al) - w(Az) + J-:TW(A3) - /:fw(A4)

= W(AL'L) - w(Aé) + /:Tw(Aé) - /—TW(A&).
Therefore the prescription

w(@) = w(a) - w(Az) + JIIw(A3) - /-ZTw(A4)

unanbiguously extends w fromw - A to w - A.

7.33 REMARK Ifw-A+=A+,thenw—AzAandtheextensionofwtoAis

a positive linear functional, hence w is continuous.
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A trace on A is a weight w satisfying the condition

w{A*A) = w(AA*)
for all A € A,

N.B. If A is commutative, then every weight is a trace.

7.34 REMARK If w is a trace, then I_w is a *-ideal, thus the same is true

of w- A (cf. 7.32).

7.35 EXAMPLE 1If H is a complex Hilbert space, then
tr:B(H)+ + [0,]

is a trace and

tr - B(H) = L ().

A tracial state on A is a state w which is a trace.

N.B. If A is commutative, then every state is a tracial state.
7.36 EXAMPIE Take A =M (C) -- then the assignment
a,.] » = 2
i30Tm0 Kk

is a tracial state on Mn (C) (and there are no others).

7.37 EXAMPLE Let H be an infinite dimensional camplex Hilbert space --

then L (H) does not admit a tracial state. To see this, assume the opposite and
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suppose that w € S(L_(H)) is a tracial state, hence w has the same constant value

t > 0 on all rank one orthogonal projections (any two such being unitarily equiv-

alent). Let {ei:i € I} be an orthonormal basis for H. Given e s...,8 o let P
1 n

be the orthogonal projection onto their closed linear span -- then
e | < |ley Il = 1.

On the other hand,

A
|

-

w{P_) nt =>nt £1=>n
@) |

]

fraom which the obvious contradiction.




§8. REPRESENTATIONS OF ALGEBRAS

N.B. In what follows, the underlying scalar field is C.

Iet E be a linear space, L(E) the linear maps from E to E -~ then L(E) is
an algebra (mltiplication being composition).

Let A be an algebra —- then a representation of A on E is a homomorphism

m:A > L(E).

[Note: A repmresentation m:A > L(E) defines a left A-module structure on E

(viz. Ax = m(A)xX) and conversely.]

8.1 TERMINOLOGY
e m is faithful if 7 is injective.
e 7 is trivial if m(A) =0 V A € A.

e T is algebraically irreducible if 7 is not trival and {0} and E are the

only m-invariant subspaces.

e 1 is algebraically cyclic if 3 x € E such that {m(a)x:A € A} = E.

8.2 REMARK The definition of algebraically irreducible explicitly excludes
trivial representations. If they were not excluded, then the trivial representation

on a zero or one dimensional space would qualify.

8.3 LEMMA Iet T be a representation of Aon E # 0 — then 7 is algebraically

irreducible iff every nonzero vector in E is algebraically cyclic.

8.4 THEOREM Iet ™ be an algebraically irreducible representation of A on E.



Suppose that I < A is a nonzero ideal —- then the restriction 7|1 is either trivial
or an algebraically irreducible representation of 1. Furthermore, every algebra-
ically irreducible representation of I arises by restriction from some algebraically
irreducible representation of A.

[Note: If 1 c Ker 7, then T drops to an algebraically irreducible represent-
ation of A/T and every algebraically irreducible representation of A/I is obtained
in this fashion.]

8.5 IEMMA Let 7 be an algebraically irreducible representation of A on E.

Suppose that A € AnnLA -— then 7(a) = 0.
PROOF Fix y € E:y = 0, thus {n(B)y:B € A} = E. And

m(a) T (B)y

it

m(AB)y

m{0)y = O.

Consequently,

AnnLA < Ker 7.

Since AnnLA is an ideal, it follows that the induced homomorphism

A/AnnLA + L{E)

is an algebraically irreducible representation of A/AnnLA.

8.6 THEOREM Let T be an algebraically irreducible representation of A on
E —- then 7 can be extended to an algebraically irreducible representation T of

DC(A) on E. Moreover, T is unique.



PROOF Suppose that
TX)x = 1(¥)y X,Y € A, x,y € E).

Then VA € A& v (L,R) € DE(A),

T(A) (T(L(X))x - T(L(Y))y)

T(AL(X))x - T(AL(Y))y

T(R(A)X)x - T(R(A)Y)y

TR@A)) (TX)x - T(Y)y)

= 0,
But 7 is irreducible, hence

T(L(X))x = 7(L(¥))y.

Accordingly, if e € E and if

T rX)x
e =
_ Ty,
then the prescription
T om(LX))x
T((L,R))e = =
_m{Li))y

makes sengse and defines an algebraically irreducible representation of DC(A) on E.

Finally, v A € A,

m( (L, /Ry))e = m(L, (X))x

m{AX) %



]

A (X)) x

m(A)e.

Given a representation m of A on E, let

(A" = {T € L(E):Tn(a) = m(A)T(A € A) }.

8.7 I1EMMA TIet 7 be an algebraically irreducible representation of A on
E -- then 7{A)' is a division algebra.
[Note: In other words, w(A)' is a unital algebra in which every nonzero

element has an inverse.]

8.8 REMARK The converse is false, i.e., it may very well be the case that
m(A)' is a division algebra, yet m is not algebraically irreducible. E.g.: Iet
A be the algebra of all N-by-N matrices which have only finitely many nonzero
entries, let E be the vector space of all camplex segquences, and let 7 be the
canonical representation of A on E -- then 7(A)' can be identified with C, yet the

subspace of E consisting of those sequences that are finitely supported is mn-invariant.

Iet ™ be a representation of Aon E = 0 — then 7 is totally algebraically

irreducible if v T € L(E) and every finite dimensional subspace V <« E, 3 A € A:

TAlx = TX V x € E.

N.B. Evidently,

"totally algebraically irreducible" => "algebraically irreducible”.



8.9 LEMMA If w:A » L(E) is totally algebraically irreducible, then

m(A)' =C idE.
PROOF Iet T € w(A)' and suppose that for some x € E, x and Tx are linearly
independent. Since 7 is totally algebraically irreducible, 3 A € A:

TA)x = x

m{A)Tx = 0.

But then

0 =m@a)Tx = Tr(A)x = Tx,
a contradiction, So, VX E€E, 3 c, € C:Tx = C X. Ifx=0, v 20, and C, * cy,

then x + v and T(x + y) would be linearly independent. This being an impossibility,

the conclusion is that 3 ¢ € C:Tx = cx (x € E) or still, T = c(idE) .

8.10 LEMMA If m:A > L(E) is algebraically irreducible and if mw(A)' C 'dE,

it
0
e

then 7 is totally algebraically irreducible.

8.11 RAPPEL The only finite dimensional division algebra over C is C itself.

let T be an algebraically irreducible representation of A on E. Assume:
dim E < ® -- then 7 is totally algebraically irreducible. Proof: T7(A)' is a finite

dimensional division algebra, thus m(A)' = C idE. Now quote 8.10.

8.12 EXAMPIE If A is commutative, then every finite dimensional algebraically

irreducible representation m:A » L(E) of A is one dimensional.



[Suppose that E has two linearly independent vectors x and y. Choose

A,B € A:rm(A)x =%, m(A)y = 0, 7(B)x = y — then

T{(AB)x

T{A)T(B)x

i

i
o

m(A)y

m(BA) X

]

TB)m(@A)x = m1(B)x

i
<

But AB = BA, so we have a contradiction.]
[Note: The assumption dim E < « implies that m is totally algebraically
irreducible and this is all that is needed. Spelled out: If A is commutative,

then every totally algebraically irreducible representation of A is one dimensional.]

8.13 REMARK Iet 7 be an algebraically irreducible representation of A on E.
Assume: VYV A € A, m(A) is of finite rank -- then 7 is totally algebraically irre-
ducible.

Let m and T, be representations of A on E, and E,.

e An algebraic eguivalence is a linear bijection L:Ey > E, such that

Cﬂl(A) = ﬂg(A)?; (a € A).

® An algebraic intertwining operator is a linear map ’I‘:El > E2 such that

Tvl (a) = Ty Ayt (a e A).

8.14 IEMMA Suppose that ™ and T, are algebraically irreducible representa-
tions of A on El and E, == then all nonzero algebraic intertwining operators

between Ty and T, are algebraic equivalences.



Let 7 be an algebraically irreducible representation of Aon E. Fix x 2 0 =~
then I = {A € A:m(A)x = 0} is a modular maximal left ideal and the arrow A + Tm(A)x
implements a linear bijection z:A/I + E that sets up an algebraic equivalence be-
tween the canonical representation L of A on A/T and w.

[Note: To check modularity, choose e € AsT(e)x = x - then V A € A,

(e - Ax = 1@A)n(e)x -~ 1(A)x = T(A)x - m(A)x = 0.
Therefore

Ae - A ET (A € A).

I.e.: 1 is mpdular.]

* % % % %k * *

Assume henceforth that A is a Banach algebra and that E is a Banach space —-

then in this context a representation of A on E is a homomorphism 7:A + B(E), where

B(E) is the Banach algebra whose elements are the bounded linear maps from E to E.

8.15 TERMINOLOGY
e 7 is faithful if 7 is inijective.
e 7T is trivial if w{a) =0 v A € A.

e T is topologically irreducible if m is not trivial and {0} and E are the

only closed m-invariant subspaces.

e 7 is topologically cyclic if 3 x € E such that {m(A)x:A € A} is dense in E.

N.B. It is clear that the notions "topologically irreducible" and "topologically

cyclic" are weaker than their purely algebraic counterparts.



8.16 LEMMA Iet m be a representation of Aon E # 0 -~ then 7 is topologically

irreducible iff every nonzero vector in E is topologically cyclic {(cf. 8.3).

8.17 REMARK Suppose that I < A is a nonzero closed ideal ~-- then the re-
striction to I of a topologically irreducible representation of A is either trivial
or a topologically irreducible representation of I (cf. 8.4).

[Note: It is not claimed, however, that every topologically irreducible repre-

sentation of 1 can be extended to a topologically irreducible representation of A.]
8.18 RAPPEL A normed division algebra P is one dimensional: D = C.

8.19 THEOREM ILet 7 be an algebraically irreducible representation of A on
E -~ then 7 is totally algebraically irreducible.

PROOF Recall first that 7(A)' is a division algebra (cf. 8.7). Accordingly,
in view of 8.10, it suffices to show that m(A)' is normed. To this end, fix a

nonzero x € E. Given T € n(A)', put

[T lx = inf{||n (@) ||:A € A, T(A)x = Tx}.

Since 7 is algebraically irreducible, the RHS is not empty (cf. 8.3) and

0 < [[T[], <= Next

A

||| = [[r@x]| < ||v@ ] |[|=]]

el =] 17

A

e

Therefore




=>Tx:0'

S0 T = 0 (otherwise T Tx = 0 => x = 0). The verification that [l- 1], is a norm
is straightforward.

[Note: The commutant w(A)' of w(A) is computed in L(E) (not B(E)).]

8.20 REMARK Mamentarily drcp the assumption that E is a Banach space (but
retain the assumption that A is a Banach algebra). Consider an algebraically
irreducible representation m of A on E -~ then m is necessarily totally alge-
braically irreducible. To see this, recall that 7 is algebraically equivalent to
the canonical representation L of A on A/I for some modular maximal left ideal

I « A. But A/] is a Banach space (I being closed) and the operator LA:A/I + A/1

which sends B + I to AB + I is continuous (indeed, HLAH < ||al]). One may there-
fore apply 8.19.
[Note: It is thus a corollary that an algebraically irreducible representation

of a camutative Banach algebra is one dimensional (cf. 8.12).]

8.21 EXAMPIE If m is an algebraically irreducible representation of A on E,

then m(A)* =C idE (cf. supra) but this is false if "algebraically irreducible" is

replaced by "topologically irreducible”. Thus take for E a Banach space with the
property that 3 T € B(E) which has no nontrivial closed invariant subspaces
(Enflo) —-- then the identity representation T of the cammutative unital subalgebra
A of B(E) generated by T is a topologically irreducible representation. But
Acm(A)'... .

If 7 is a representation of A on E, then 7 is continuous if 3 K > 0 such that
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e || <k|[a]] Ged.

[Note: If in the terminology of §4, E is a left Banach A-module, then the

associated representation m of A on E is continuous:

[m@x|| = |lax[] < X][[a[] [|x]]

=2

Hr@ || < x[[a]].]

8.22 IEMMA Suppose that v x € E, the map

A->E
T
X
A~ 'ITX(A) (= m(a)x)
is continuous -~ then 7 is continuous.

PROOF Consider the set
{vrlele < 1} « B(A,E).
s I @] < [Ir@ || (@& €A.
I

So, by the uniform boundedness principle, 3 K > 0:
sy [Im || < K.
T X

And this implies that

.

[m)y || = IE[;?]) S1|[7T(A))%:H = T:l( ISlHﬂX(A)H < K| |a



1.

8.23 THEOREM Suppose that 7 is an algebraically irreducible representation
of Aon E -- then 1 is continuous.
PROOF In the notation of 8.22, the algebraic irreducibility of w implies

that there are two possibilities: 1. V x, us is continuous; 2. Vv x = 0, T,

is discontinuous. This said, the idea then is to assume that the second possibility
obtains and from there derive a contradiction. So take E infinite dimensional and
start by fixing a sequence of linearly independent elements x_ € E (| lxn[ | = 1.

Next, choose a sequence A € A with the following properties:
. -n
@ 1Al < 2™

(1) mA )%, = - = T(A) 0;

Xn—l =

-

(iii) Hﬂ(An)xn]l >n + Hﬁ(Al)xn +oeee + TT(An_l)xnl

That such a construction is possible will be detailed below. Proceeding, let

Then V k €N,

}[W(Ao)ka [m(a)x + -vn + m(a )% ||

v

er(Ak)ka - Hn(Al)xk + e TT(Ak__l)XkH

zk =k||xg|].
But ’IT(AO) € B(E), from which a contradiction.
[Note: The existence of the An can be established by induction if one can

prove: Ve >0, vVM>0, vme&N, there is an A € A such that
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lal] <& 1@x = oo = 1@xX 1 =0, |[v@)x || > M.
To this end, let
I, ={acAm@x = 0},...,I = {acAir@)x = 0L

On the basis of 8.19, 3 Xm £ A:

ﬁ(Xm)xm_l = 0, Tr(Xm)xm = X.

i (Xm)xl = e
Thas

X €I n--nT o, X g1

ILyne-nl ,+1 =4

Im being maximal. Therefore addition defines a continuous linear map of

Ipneeenl ol

1

onto A. By the open mapping theorem, 3 § > 0 such that for any C € A with
el < se,

EAEIlﬂ-"ﬂfm_l,Béfm

sach that
C=A+Band ||a|| <€, ||B]] < e.

Since the map T is discontinuous, one can find a C:|[c|| < 6e and |[w(O)x || > M.

For this choice of C, the corresponding A satisfies the required conditions.]

Let m and T, be representations of A on Ey and E,.

e A topological equivalence is a linear homeomorphism L:E) > E, such that
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@) =T, (A€ A.

@ A topological intertwining operator is a bounded linear map 'I‘:El > E2

such that

Twl a) = Ty (AT (n € A).

8.24 LEMMA Suppose that ™ and T, are algebraically irreducible represen—
tations of A on El and E, — then every algebraic equivalence C:El > E, is a

topological equivalence.
PROOF In view of 18.23, m and ™, are continuous. Fix Xy € El (xl z 0) and
let

I=1{ac¢ A:Trl(A)xl = 0}.

Put: x2 = Z;xl - then

I =1{n€A;:r (A)x2 = 0}.

Since the arrows

A

+

I~ Wl(A) Xy

A+ T > wz(A)xz

are topological equivalences between
Ll and M

L2 and Tos

the arrow

™ (a) X; > T, (A) X,
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is a linear homeomorphism. But

z( m (n) xl) =, (n) Xy

=, (a) Xy

Therefore ¢ is a topological equivalence.

The radical of A is the intersection of the kernels of all the algebraically
irreducible representations of A, thus is an ideal. Notation: rad A.

[Note: A priori, this is a purely algebraic notion, i.e., the representation
space E of an algebraically irreducible representation m of A is merely a linear
space, not a Banach space. However, as was pointed out in 8.20, one can always
place a norm on E w.r.t. which E is a Banach space, the m(a) (A € A) are bounded,

and 7:A + B(E) is continuous. ]

8.25 LEMMA The radical of A is the intersection of the modular maximal left
ideals in A, hence is a closed ideal.

[Note: One can replace "left" by "right".]

8.26 REMARK A modular maximal left ideal in A is closed but in general,
maximal left ideals need not be closed. E.g.: Take A to be an infinite dimensional
Banach space thought of as a Banach algebra with trivial multiplication (AB = 0
v A,B € A) and let T be any dense linear subspace of codimension 1.

[Note: If A has a right (left) approximate unit (cf. 4.1), then every maximal

left (right) ideal is closed.]
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N.B. If r:A -~ Ry is the spectral radius, then

i
o

rirad A =

8.27 IEMMA Iet I ¢ A be a closed ideal — then rad I = T N rad A.

[This is a trivial consequence of 8.4.]

If rad A = {0}, then A is said to be semisimple.

N.B. The quotient A/rad A is a semisimple Banach algebra:
rad(A/rad A) = {0}.

[The algebraically irreducible representations of A are of the form 7 ° pr,
where pr:A -+ A/rad A is the projection and m is an algebraically irreducible re-

presentation of A/rad A.]

8.28 EXAMPIE Every C*-algebra is semisimple. Proof: Iet A € rad A -- then

A*A € rad A => r{a*a) = 0.

1/2

| |a]| = r(a*a) (cf. 1.1).

Therefore A = 0.
[Note: Not all Banach algebras are semisimple and there are plenty of
instances at the extreme end, viz. those equal to their radical (hence having no

algebraically irreducible representations whatsoever). ]

8.29 THEOREM Iet A and B be Banach algebras. Assume: A is semisimple and

let ¥:B + A be a surjective homomorphism —- then ¥ is continuous.



l6.

PROOF Suppose that ¥ is not continuous -- then 3 a sequence {Bn} in B such
that B > 0 and ‘P(Bn) -~ A 2 0. Since A is semisimple, 3 an algebraically irre-

ducible representation m of A on a Banach space E such that m(aA) # 0 with 7 con-
tinuous. Because V¥ is surjective, m o ¥:B -~ B(E) is also algebraically irreducible,

thus is continuous (cf. 8.23). Therefore
'rr(‘P(Bn)) = (1 o V¥) (Bn) + (m o ¥)(0) = 0.
Meanwhile, thanks to the continuity of 7,
w(‘P(Bn)) -+ m{a) = 0.

Contradiction.

8.30 REMARK If A is in addition commutative, then it can be shown that any

homomorphism ¥:B8 +~ A is continucus.

8.31 THEOREM Any two complete norms on a semisimple Banach algebra are
equivalent.

[Apply 8.29 to :ixiA:A -+ A.]




§9., *-REPRESENTATIONS OF *-ALGEBRAS

N.B. In what follows, the underlying scalar field is C.

Iet E be a Hilbert space, B(E} the bounded linear operators from E to E ~—
then B(E) is a C*-algebra.

Iet A be a *-algebra — then a *-representation of A on E is a *-homomorphism

T:A - B(E).

9.1 IEMMA ILet m be a *-representation of A on E. Suppose that EycEisa

nm-invariant linear subspace of E — then E_ and E. are closed T-invariant linear

0 0
subspaces of E and

= £
E-EOG)EO.

[Note: ILet P.:E -~ % be the orthogonal projection —- then

0:

PO € m(AY'.]

9.2 RAPPEL A subset S ¢ E is total if the linear span of S is dense in E.

let T be a *-representation of A on E — then 7 is nondegenerate if the set

AE = {1{(A)x:A € A, X € E}
is total.
[Note: The trivial *-representation of A on a zero dimensional space is non-
degenerate. ]

E.g.: If 7 is topologically cyclic, then 7 is nondegenerate.


http:s];:6.ce

9.3 LEMMA ILet ™ be a *-representation of A on E —- then 7 is nondegenerate

iff v nonzero x € E, 3 A € A:m(A)x = 0.

9.4 LEMMA Let m be a *-representation of A on E -~ then 7 is nondegenerate
iff v x € E,

x € {r(a)x:A € A} .

Given a x-representation T of A on E, let E'rr be the closed linear span of AE ~--
then E_ is m-invariant and the restriction of 7 to E_ is a nondegenerate *-repre-
sentation of A. Write

E=E ®E.
Then ETJ; is m-invariant and the restriction of 7 to E; is a trivial x-representation

of A:

E;= N Ker m(a).

AcA

9.5 THEOREM Suppose that T is a nondegenerate *-representation of A on E —-

then there is an orthogonal decomposition

E= ® E,,
iex

where Vv i € I, Ei is a closed m-invariant subspace and the restriction of 7 to Ei

is a topologically cyclic x-representation of A.
PROOF Order the set of sets of mutually orthogonal, topologically cyclic, closed

m-invariant subspaces of E by inclusion and, via Zorn, consider a maximal element



{Ei::L €I},

Let m and Ty be *-representations of A on E, and E,.

e A unitary equivalence is a unitary operator U:El > E2 such that

U‘lTl(A) = 1T2 (au (aeA.

9.6 REMARK Let z::El > E2 be a topological equivalence. Write ¢ = U(z*7) 1/2

(polar decomposition) -- then v A € A,

1/2 1/2

]

(z*T) T (a) ™ (a) (g*1)

Uﬂl {A) = ?rz (A)U.

Therefore

Ty Ty topologically equivalent

LRI unitarily equivalent.

[To begin with,

crmy () = grm, (%) *

I

(Trz (A*)g)*

(C'ﬁl (a*))*

i

™ (a) ¢*



tZ*?;TTl (a) = E*TTZ A= ™ (A) c*¢

@0 ® = @0,
And then
om, @ (0 2 = v 2w @)
= zmy (A)
=T,R¢L
= T, (A U(5*T) 172,

But the range of (g*Z) 1/2 is dense, so

le a) = "rrz (ayu.]

9.7 LEMMA Let m and 7, be *—representations of A on E, and E,. Assume:

2 then m

m, is topologically cyclic with a topologically cyclic vector X, €E
is unitarily equivalent to ., iff ™ is topologically cyclic with a topologically

cyclic vector x, € Bl such that

1

<Xq,Ty (A)xl> = <x ,TTZ(A)X2> (A e A.

[Note: One can always arrange matters so as to ensure that Ux, = x

1 2']

In §8,

T(A)' = {T € LE):Tr@) = 1(A)T (A € A)}.



I.e.: The camutant of m was computed in L(E). However, for the purposes at hand,
it is best to let

T(A)Y = {T € B(E):Tn(da) = w(A)T (A € A)}.

9.8 ILEMMA Let m be a x-representation of A on E = 0 —— then 7 is topologic-

ally irreducible iff w is not trivial and m(A)' =C idE.

9.9 LEMMA Let 7 be a *-representation of Aon E # 0 — then 7 is topologic-
ally irreducible iff w is not trivial and m(A)' contains no nonzero orthogonal pro-
jections except for the identity map on E.

PROOF Assume that 7 is not trivial and that the condition on 7(A)' obtains.
To get a contradiction, suppose that m is not topologically irreducible. Let

E, # E be a nonzero closed m-invariant subspace and let P

0 be the orthogonal pro-

0

jection of E onto E, -~ then V A € A,

0

Py (®) Po T (A) PO.

Therefore

P T(R) = (M%) )*

(BT (B*)P) *

It

Pow ) Po

m(A) P,

P, € m(A)".



Let wi:A ~ B (i € I) be a *-representation. Assume: V A € A, 3 MA >0

such that

sup ||, (B) <M.
sup ||y @[] < o,

Form the (Hilbert) direct sum

& E..
i€l

Then vV A € A,

® 'rri(A) € B(@® Ei)
ieT iex

and the assignment

A+ & T (a)
ier

defines a *-representation of A on @ E,, the (Hilbert) direct sum of the S
i€r

[Note: It is clear that

® m
ier

is nondegenerate iff v i € I, m is nondegenerate. ]

N.B. If m is a *-representation of A on E and if M=V i € I, then the

*-representation

® m,
jer

is denoted by Im (I the cardinality of I). Under the identification
2
® ExEQ L),
ier -

IT becomes T R id.



[Note: Any x-representation which is topologically equivalent to a

*-representation of this type is called a multiple or amplification of m by I.]

The definitions and results that follow can be formulated for arbitrary
*-representations but matters simplify if we restrict to nondegenerate *-repre-
sentations which is not an essential loss of generality.

Let m, and T, be nondegenerate *-representations of A on E, and E, — then
™ and T, are disjoint if no nonzero sub *-representation of T is topologically
equivalent to a nonzero sub *-representation of Moo

[Note: Therefore two topologically irreducible #-representations of A are

disjoint iff they are not topologically equivalent. ]

9.10 EXAMPLE Every nontrivial nondegenerate *-representation of A on a finite
dimensional Hilbert space is the finite direct sum of topologically irreducible sub
*-representations (these are unique up to topological equivalence while their multi-~
plicities are unique period). So, if ™ and T, are two such, then to say ™ and

T, are disjoint means that the "same" topologically irreducible *-representation

cannot appear in the decompositions of T, and T, into topologically irreducible sub

*-representations.

Let m, and T, be nondegenerate *-representations of A on E, and E, -~ then

2

My and T, are geometrically equivalent if no nonzero sub *-representation of ™y is

disjoint fram T, and no nonzero sub *-representation of T, is disjoint from m -



9.11 EXAMPIE In the finite dimensional case (cf. 9.10), ™, is geometrically
equivalent to T, iff the "same" topologically irreducible *-representations occur

in their respective decompositions into topologically irreducible components but

not necessarily with the same multiplicity.

9.12 LEMMA Nondegenerate *-representations T, T, are geometrically equivalent

iff m is unitarily equivalent to a sub *-representation of a multiple of 7, and

2

vice versa.
[Note: Therefore a given nondegenerate #*-representation is geometrically

equivalent to any of its multiples.]

In particular:

"unitary equivalence" => "geometric equivalence".

9.13 REMARK If m is topologically irreducible and , is geometrically egquiv-
alent to T then T is unitarily equivalent to a multiple of ™. Thus if T is

also topologically irreducible, then ™ and T, are unitarily equivalent.

9.14 I1EMMA Nondegenerate *-representations M, are geometrically equivalent
iff 3 a cardinal number n such that nm is unitarily equivalent to nm,.
[To establish sufficiency, let 7 be a nonzero sub *-representation of 7, —

1

then 7 is not disjoint from nw,, hence is not disjoint from nm,, Or still, is



not disjoint from Tye It remains only to reverse the roles of wl,wz.]

N.B. One says that ™ is weakly equivalent to Ty if Ker m, = Ker m,. So, as

a corollary to 9.14,

"geometric equivalence" => "weak equivalence".

9.15 REMARK Let Rep A be the set of all nondegenerate *-representations of
A -- then in Rep A there are four standard notions of ejuivalence:

1. unitary equivalence;

2. topological equivalence;

3. geometric egquivalence;

4. weak equivalence.

All are eguivalence relations and we have 1 <=> 2 => 3 => 4. Moreover, these

implications are not reversible (except in certain special situations).

9.16 LEMMA Nondegenerate *-representations T/ Ty are disjoint iff they have

no geometrically equivalent nonzero sub *-representations.

A nondegenerate *-representation T of A on E is primary if every nonzero sub
*-representation of T is geometrically equivalent to T.

E.g.: If 7 is topologically irreducible, then T is primary (as is 7™ @ m which,
of course, is not topologically irreducible).

[Note: Arbitrary multiples of a topologically irreducible *-representation are

primary. ]
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9.17 LEMMA Nondegenerate primary *-representations T, T, are either disjoint

or geametrically equivalent.
PROOF Suppose that T .M, are not disjoint -- then 3 nonzero sub *-represen-—

tations wg of T 'n'g of LN with 'rrg geometrically equivalent to Tro

5 {cf. 9.16). But

n‘:{i is geometrically equivalent to ™ and 'n'g is geometrically equivalent to 'ng.

Therefore T is geometrically equivalent to e

 k k %k k k %

Assume henceforth that A is a Banach *-algebra (but maintain the assumption
that E is a Hilbert space).

9.18 REMARK There is no universally agreed to definition of the term "Banach
*-algebra". Here, it simply means that A is a Banach algebra supplied with an
involution. In particular: The involution is not necessarily continuocus.

[Note: In my book POSITIVITY, the involution was tacitly taken to be isometric
(i.e., ||a*|| = ||a|| for all A € A) which, of course, implies its continuity. Let

us also remind ourselves that this is automatic for C*-algebras.]

9.19 EXAMPLE Iet A be an infinite dimensional Banach space. Fix a Hamel

basis E = {e} for A subject to |[e|| =1V e € E. Let {e } be a sequence of distinct

elements of £ and put

For all remaining elements of E, put e* = e and then extend *:E = E to A by



11.

conjugate linearity. Taking now the multiplication in A to be trivial (AB = 0

v A,B € A) thus gives rise to a Banach x-algebra with a discontinuous involution.

9.20 REMARK If A is a Banach *-algebra, then the map

DC(A) -+ DC(A)

(L,R} » (R*,L¥),

where T* (A) = T(A*)*, is an involution, hence DC(A) is a *-algebra. If in addition,

AnnLA = {0} and AnnRA = {0},

then 5.15 (and subsequent discussion) implies that DC(A) is a unital Banach *-alge-
bra, in which case

1 A:A -~ DC(A)
is contractive.

[Note: In the presence of the involution,

ann A = {0} <= Ann A = {0}.
Therefore DC(A) is a Banach *-algebra if A admits a right or left approximate unit
(cf. 5.16).]

9.21 IEMMA Suppose that A is semisimple —- then the involution *:A » A is

continuous.
PROOF Denote a norm ||-|]* by ||a||* = ||a*|| -~ then the pair (A, ||-||*) is
a Banach algebra. But according to 8.31, ||-|| and ||-||* are equivalent, from

which the assertion.
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9.22 REMARK The image of a left ideal under the involution is a right ideal.
Therefore rad A is a closed *-ideal (cf. 8.25), thus A/rad A is a semisimple Banach

*-algebra and its involution is continuous w.r.t. the quotient norm.

A x-representation of A on E is a *-homomorphism m:A -~ B(E).

N.B. If the involution is isometric, then every #-representation is continuous,

a fact that persists in general (cf. 9.25).

[Note: A x-homomorphism from a Banach *-algebra with isometric involution to

a C*-algebra is continuous (indeed, contractive).]

9.23 EXAMPIE Iet H be a complex Hilbert space. Take A= B(H), E = EZ(H)

(the *~ideal in B(H) consisting of the Hilbert-Schmidt operators) -- then the left

regular representation m of B(H) on L,(H) is a *-representation:

T(A)T = AT (& € B(H), T € L, ().

[Note:
m(a) € BL, () (||r@ || = [[a[].
Moreover, ¥V T,T' € ]32(H) ’
<T’,AT>2 = <A, T>, = <1T(A*)T',T>2
~<'I",AT>2 = <T','IT(A)T>2 = <7 (A) *’I",‘I'>2

m{a¥*) = w(a)*.]
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9.24 IEMMA Iet T be a #-subalgebra of B(E) which is a Banach algebra under

an auxiliary nom ||-||, —- then 3 M > 0:

i) <mlfpfl, @em.

9.25 THEOREM Let m be a #-representation of A on E —— then 7 is continuous.
PROOF The image m(A) is a *-subalgebra of B(E) (hence is semisimple) and the

kernel Ker 7 is a closed *-ideal of A:
m(Ker m < rad m(A) = {0} = Ker 7 < Ker .
Therefore m(A) is a Banach algebra via transport of structure:
A/Rer m = mw(A),

the auxiliary norm ||- | ]0 being given by

@) |y = inf {[[B]|:7(®) = 7@},

-

@ ], < |l

It remains only to take T = n(A) and apply 9.24:

-

m@ || = M| @ ||, <m||a

[Note:

X € rad m(A) => X*X € rad w(A).

The spectrum of X*X thus consists of {0} alone, so the spectral radius r(X*X)
computed in B{(E) must vanish. But

X[ = rx*%) =0 => X = 0.]
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9.26 RAPPEL In a unital *-algebra A, an element U € A is unitary if U*U =

uu* = 1 A In an arbitrary x-algebra A, an element V € A is quasiunitary if V*V =

3

V + V.,

[Note: If A is unital, then the map A > 1 A~ A induces a bijection between

the unitary elements and the quasiunitary elements. ]

9.27 LEMMA Suppose that A is a Banach *-algebra -- then every element of A is
a linear cambination of quasiunitary elements.
[Note: This is a wellknown structural fact (its proof depends on Ford's famous

"square root lemma"}.]

Iet A € A - then

n
A= T AV (A, €0,
. i~ =
i=1
where the Vv, are quasiunitary.
n
[Note: Since 0 is quasiunitary, one can always assume that Z A, = 0.]
i=1
Put
n n
gd) =inf { £ |A.|]: T A, =0}
. it i
i=1 i=1

9.28 IEMVMA g:A ~ Ry is a submultiplicative seminorm such that gq(@*) = g(a)

for all A € A,

9.29 REMARK If A= rad A, let B{A) = 1 but if A = rad A, let B(A) be the
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norm of *:A/rad A -~ A/rad A, i.e., let

B{A) = sup {[[A’kd}-md'{\li : A E A~ rad A},
1A + rad Al

Then it can be slown that

q@) < 1+ BAN][a]l] @eA.

Iet 1 ¢ A be a nonzero *-ideal (it is not assumed that I is closed). Suppose
that m:1 - B{E) is a *~representation -- then we claim that 7 can be extended to a
*-representation T:A > B(E). To see this, recall that on general grounds there is

an orthogonal decamposition
_ L
E = E?r 5] EW,
where E_ is the closed linear gpan of IE and the restriction of 7 to ET‘:f is a trivial

x-representation of I. One can certainly extend the latter to a trivial *-repre-
sentation of A. So, to settle the extension question, one can assume that 7 is
nondegenerate.
n ~ —
If iél ﬂ(Ii)xi is a typical element in the linear span E of IE and if 7 is an

extension of 7, then Vv A € A,

n n
m(A) (iil ?T(Ii) Xi) = iil TT(A)TT(Ii)xi
n — —
= 151 TI'(A)TT(Ii)Xi
n
= ¥ T{AL.)X.
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n

= ¥ T7w(AIl.)x..
. i’
i=1

Since T(a) € B(E) and since IE is total, it follows that if T exists, then T is
unique.

One can also use this recipe to establish existence. For suppose that

n
T om(I.yx., = 0.
s
Then
¥ 12
I 7w(aL)
Kol k' %k
n n
= T I <m{ALl.)x.,m(AT.)x.>
i=1 =1 i 3
n n
= I T <x.,T(AL)*T(AL.)x.>
i=1 =1+ 7 1]
n n
= I I <x,,T(I¥*AL)x.>
i=1 j=1 oo
n n
= L L <m({I.)x,,7(A*AI,)x.>
i=l =1 7 )
n n
= I <Z 7m(I,)x,,"(A*AT.)x.>
=1 i=1 * * 1
= 0.
The prescription
n n

m(A) (iil W(Ii)xi) = i-—z—l “(M;L)Xi



17.

is thus a welldefined linear operator on E.

9.30 RAPPEL Suppose that E is a pre-Hilbert space. Let T:E -~ E be a linear

map -~ then a linear map T*:E ~ E is a formal adjoint of T if v %,y € E,

<Tx,y> = <x,T*y>.
Formal adjoints are unique and the subset

L, (E) ¢ LE

consisting of those T that have a formal adjoint is a unital *-algebra.
[Note: The mere existence of a formal adjoint does not imply boundedness.

If, however, U is a unitary element of Ly (E), then U is bounded:

<6X,€Ty> = <ﬁ*ﬁx,y> = <X,y>

= |[0x| 1% = |[x]1® = [[Gx|] = ||| = |[5]] = 1.

Incidentally, if E is a dense linear subspace of a Hilbert space E, then the formal

adjoint is the restriction to E of the Hilbert space adjoint.]

Next, T(A) has a formal adjoint, viz. T(A*). Proof:

nmn . n
<z m{J0v.,T{A Y on(I)x)>
2 @y5 M@ (I %)

m n
= I I <n(Jv.,m(AL.)x.>
3=1 i=1 33 ot

m n
I I <y.,m(¥)m(AL,)x:>
j=1 i=1 I Bt

m n
z L o<y.,m(J*AT.)x.>.
j=1 i=1 Y3 (3 1%

]
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On the other hand,

- m n
<TEX) (T T(I)ys), T m(I)R>
=1 73 =1 P E

m n
I <m@*J.)y.,m(I.)x.>
j=1 i=1 S

m n
= I I <y.,mA*J)*(I.)x.>
j=1 i=1 J 1

m n
I I <y.,T{(JXAI.)x.>.
j=1 i=1 ;e

il

Therefore

T(A)* = T(AX).

N.B. The definitions imply that T:A + L(E) is a *~homomorphi sm.

9.31 IEMMA If V € A is quasiunitary, then

id_ - T(W) € L(E)
E

is unitary.
PROOF We have

i

V) *(id_ - 7(V))
E

(id

=h

= id_ - T(V*) - V) + T(VF)T(V)
B

It

id_ + T(= V¥ - V + V*V)
E

Ty
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Ditto
(id_ - 7(V)) {d_ ~ T(V))* = id_.
E B E
Therefore
id_ - (V) € L(E)
E
is bounded (cf. 9.30).
Now write
n n
A= I AV (Z A =0.
i=1 i=1
Then
-~ n -~
ma) = I AmV,)
=1
n - n
= I ATV - T A dd
i=1 i=1 * E

it

n
LA (M) - id),
=1+t E

so T(A) is bounded, thus can be extended by continuity to a bounded operator
T(A) € B(E) and the resulting map T:A + B(E) is a nondegenerate *-representation
of A which extends T.

N.B. If A is merely a *-algebra, then it need not be true that a *-repre-

sentation m:1 » B(E) is extendible to a *-representation T:A > B(E).

9.32 LEMMA With the notation and assumptions being as above, T is topologic-
ally cyclic iff 7 is topologically cyclic and T is topologically irreducible iff

7T is topologically irreducible.
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9.33 EXAMPLE Suppose that A is a C*-algebra and let m:A > B(E) be a non—
degenerate *-representation -- then 3 a unique nondegenerate *~-representation T of

DE(A) on E such that v A € A, T(L /R = m(A). Assume further that m is topologically
irreducible. Since the same holds for T, given any Z in the center Z(A) of DE(A),
there exists a complex number C, (m) :

T(2) = cz(w)idE {cf. 9.8).

[Note: Iet us keep in mind that D€(A) is a unital C*-algebra and Z(A) is a

unital camutative C*-algebra. ]

The x-radical of A is the intersection of the kernels of all the topologically
irreducible x-representations of A, thus a closed *-ideal. Notation: #*-rad A.

If *-rad A = {0}, then A is said to be *-semisimple.

N.B. The quotient A/*-rad A is a *-semisimple Banach *-algebra.

9.34 THEOREM The x-radical of A is the intersection of the kernels of all the

*~representations of A.

[This will emerge from the machinery developed in 8§10 (cf. 10.29).]

Accordingly, if A admits a faithful *-representation, then A is *-semisimple.

E.g.: Every C*-algebra is *-semisimple (cf. 10.36).

9.35 EXAMPLE Consider Ll (G) (cf. 5.17) —-- then Ll (G) is a Banach *-algebra

with isometric involution but it is not a C*-algebra unless G is a singleton. Still,

L:L (G) is *-semisimple.
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[The 1ift to L-(G) of the left regular representation of G on L2(G) is a

faithful *-representation of Ll @).1

9.36 EXAMPLE Let D = {z € C:

z| < 1} -~ then by A(D) we shall understand the
algebra of all continuous complex valued functions on D that are holamorphic in
int D. Since A(D) < C(D) is closed in the supremum norm, it follows that A(D) is

a unital commutative Banach *-algebra, the involution being given by the rule

fx(z) = £(z).
Define a s-representation m of A(D) on L2(|z| = 1) by
() = Fo (pointwise product).

Then 7 is faithful, thus A(D) is x-semisimple.

[Note: A(D) is mot a C*-algebra (consider 1 + /-1 2).]

9.37 IEMMA Let m be a x-representation of Aon E -~ then vV A € A,

r@) || < r@sm /2,

r the spectral radius.

9.38 IEMMA We have
rad A ¢ x—rad A,
hence

A x-semisimple => A semisimple.
PROOF Let A € rad A — then

A*A € rad A = r{a*a) = 0
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[Im@) || =0 (v m => A € Ker (v m

A € x=rad A.

[Note: It can happen that rad A = {0} but *-rad A = {0}.]

Define v:A »> 1320 by

y@) =sup ||7@) ||,
T

where T ranges over the *-representations of A.

[Note: VvV A € A,

v(a) < r(A*A)l/z (cf. 9.37).
But

1/2 1/2.

r (A*n) < | |a*a] |
If now *:A > A is continuous, then 3 C, > 0:||a*|] < Ci l1all, so

y@) < CA ! IA‘ ll

which proves that v is continuous w.r.t. |]-|| (see below for the general case).]
9.39 LEMMA V A € A,
v(A) < q(a).
n n
PROOF If 7 is a *-representation of Aon Eand if A= I AV (Z )\i = 0),
i=1 i=1

then idE - 'n(vi) is unitary. Therefore



n
| {iil AT (Vi)Xl l

| T @) x| |

IE

. A (M) - id)x| |

IA

CE I D 1l
i=1

= ||r@) || < g@) = y@) < q@).

[Note: It is true (but not obvious) that vy = g.]

9.40 THEOREM VY A € A,

y(a) < (L + B(A) ||al]  (cf. 9.29).

9.41 REMARK Here is a different approach to the continuity of y w.r.t.

- []:v & € 4,

r(d3*a) = r{(d*A + rad A)

s | |a*A + rad A||
< ||a* + rad A|| ||a + rad A|]
< B(A) | |a + rad A]]?
< B |[al]?
-
ya) < 8 Y2 all.

In turn, this leads to another proof of 9.25 and also shows that
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where
1/2
m(A) = sup{r(A*A) : A€ A - {0}}
[|a]]
< g /2,
[Note:
||a + rad A|| < B(A) | |a* + rad Al]
2
< B(A°||A + rad Al]
=>
1< g(A).

If #:A > A is isometric, then *:A/rad A » A/rad A is isometric, hence in this case,

B(A) = 1.]

It is clear that Y is a submultiplicative seminorm and

y(a*a) = y(@)2 @€ A.

it

yLoh.

*=rad A

Therefore Y induces a C*-norm on the gquotient A/*-rad A. Denote the completion

of A/*-rad A by C*(A), the enveloping C*-algebra of A, and write p A for the canon-

ical *-homomorphism A + C*(A).

9.42 EXAMPLE Take A = LY(G) (cf. 9.35) —— then C*(G) = c* (1.} (G)) is called

the group C*-algebra of G.
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[Note: Since Ll (G) is *-semisimple, it can be viewed as a dense *-subalgebra

of C*(G).]

9.43 1EMMA If B is a C*-algebra and if ¢:A + B is a *-homomorphism, then

there is a unique *-homomorphism 3:C* (A) » B such that ¢ = § o Py

9.44 SCHOLIUM Themap T + T = T o P, Sets up a bijection between the set of

all *-representations T of C*(A) and the set of all *-representations 7 of A. This
correspondence preserves the following properties: trivial, nondegenerate, topo-
logically cyclic, topologically irreducible, unitary equivalence, geometric equiv-

alence.

9.45 REMARK It may very well be the case that 7 is faithful yet 7 is not
faithful.

[Note: It is also possible that m, and 7, are weakly equivalent but 'r_rl and

?rz are not weakly equivalent.]

The x-representation theory of Banach *-algebras, hard one to say the least,
simplifies enormously when specialized to C*-algebras. Further evidence for this
is supplied by 9.48 infra, a surprise if there ever was one. Its proof depends on

the two pillars of W*-algebra theory.

9.46 THEOREM Suppose that A is a nondegenerate *-subalgebra of B(E) -- then

the weak closure of A is A" (= (AY)").
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[Mote: In this context, to say that A is nondegenerate means that the set
AE = {Ax:A € A,x € E}

is total, i.e., A is nondegenerate in the sense used at the beginning per the

identity representation of A on E.]

9.47 THEOREM Suppose that A is a *-subalgebra of B(E) and let T be an element
in the weak closure of A —- then 3 a net T, in A such that v i, |[|T,|| = ||T[]| ana

Ti - T strongly.

[Note: If T is selfadjoint, then one can take the T, selfadjoint.]

9.48 THEOREM Let A be a C*-algebra and let w:A > B(E) be a *-representation.
Assume: T is topologically irreducible -- then m is algebraically irreducible.

PROOF Since A is a C*-algebra, the image m(A) is a norm closed *-subalgebra
of B(E). So, to establish algebraic irreducibility, we can replace A by m(A), the

claim being that vV x # 0, the set
{Ax:A € A}
equals E (cf. 8.3). To this end, note first that A is nondegenerate and
At = C id, (cf. 9.8) => A" = B(E).
Therefore the weak closure of A is B(E). Now fix x = 0, y in E. To construct an
A € A such that Ax = y, normalize the situation and take ||x|| =1, ||y]| = 1 and

for any z € E, let

P, x = %=z ([P, [[=llz[] |[x]D-.
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Accordingly, ||P 1 and

y’xl l

A

=1, so 3 A € A:{[a ]

IA
3%

| B x - Ax||

Y/ X

or still,

lly - ax|| = 27

1

|| <27 ana

Next, let y; =y - A;x -- then ]]Py xi[sz—l,soaAzeA:
l'

1

-2
| ]Pyl’xx -ax|| <2

or still,

-2
[y - ax - Ax|| <275

Proceeding, 3 A € A: \ lAn] | < 2™ such that

n -1l
lly - = ax|]=<2™.
i=
Put
[e]
A= L An.
n=1

Then A € A and Ax = vy.
[Note: It is thus a corollary that every topologically irreducible *-repre-

sentation of a C*-algebra is totally algebraically irreducible (cf. 8.19).]

et A be a C*-algebra and let m:A » B(E) be a topologically irreducible

*-representation. Suppose given
xl, e X € E

Yyre--0¥, €E,
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where the x, are linearly independent.

9.49 LEMMA 3 A € A:

W(A)xl = yl,...,w(A)xn =Y,

9.50 IEMMA Assume that

'I'xl = yl,...,'l‘xnzyn

for some selfadjoint T:E -+ E —— then 3 a selfadjoint A € A:

W(A)xl = yl,...,w(A)xn = Y-

9.51 LEMMA Take A unital and assume that

Vxl = yl,.r..,Vxn = Yn

for sare unitary V:E + E — then 3 a unitary U € A:

'rT(U)x:L = yl,...,’ﬂ’(U)xn = Y

PROOF It suffices to establish this under the additional supposition that

the x, are orthonormal, hence that the Yy are also orthonormal. Let EO be the

linear span of Kypeeos® iYyreeerYpe Extend

XyrenoXy to an orthonormal basis Xypeee X for E0

Yyr-e-e¥p to an orthonormal basis Yyre1¥y for EO‘

l1,...,m. Let €1s---48

ClboseaunitaryVO:E -+ BE. such that V.x. =yj & -

¢ 0 0™
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be an orthonormal basis for EO:

Ve, = e, (A, €C, A | =1).
073 JJ(J --’1:1I )

Write }‘j = @ J (tj € R) and put

m

T= I t.P.,
3=1 33

where Pj is the orthogonal projection of E onto gej — then T:E - E is selfadjoint

and Tej = tjej. Accordingly, 3 a selfadjoint A € A:

T(A)e, = t,e. f. 9.50).
(Ae 323 (c )

J
LetU=e’/:l-A-~thenUEAisunitaryand
m(We, = W(eﬁA)e.
J ]
_ /-1 m(a)
= e e.
J
/=1 t,
= @ Je.
]
= A.e.
3]
=V0ej.
Therefore 7(U) equals V. on E., thus

0 0’

(U) X, = Voxi =Y

as desired.

9.52 REMARK Iet A be a C*-algebra —— then every algebraically irreducible




30.

representation of A is algebraically equivalent to a topologically irreducible

*-representation of A.

9.53 LEMMA Let A be a C*-algebra. Suppose that ity and T, are algebraically

equivalent topologically irreducible *-representations of A on E., and E, — then

1
T and T, are unitarily equivalent.

PROOF Since m, and 7, are algebraically irreducible (cf. 9.48), if C:E; » E,

is the algebraic equivalence at issue, then ¢ must be a topological eguivalence

(cf. 8.24), so ™™ and m, are unitarily equivalent (cf. 9.6).

One of the objectives of the theory is the classification of all the non-
degenerate *-representations of a given C*-algebra A, the simplest situation being
when A is commutative.

Notation:

® Bor A(A): The o-algebra of Borel subsets of A(A).

® Pro E: The lattice of orthogonal projections of E.
Suppose that
P:Bor A(A) -~ Pro E

is a spectral measure. Let

@) = [, A WEW (A€ A).

ENIERENIN

and the assigrment A - TFP(A) is a unital *-representation of A on E.
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[This is a simple consequence of the generalities that govern spectral

integrals. 1In fact,

Fa
[ (AB} = [ AB (w) dP (w)

A(A)

= fA(A)w(AB)dP(w)

=7

ACA) wA)wBYdr(w)

= Uy a0 B W) (/4 0(BIGP )

A(A)

= TTP (n) TTP (B)
and

Ty B)* = (f, 0 AW)AP () *

A(A)

= IA(A)A(w)dP(w)

= IA(A)w(AidP(w)

= f w (A*) AP (w)

A{A)
= 1, @%).]
N.B. If A is unital, then
'rrP(lA) = fMA)w(lA)dP(w) = IA(A)ldP(w) = ldE
Terminology: P is regular if V S € Bor A(A),

P(S) = sup{P(K):K < S, K compact}.
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[Note: This is "imner" regularity. It forces "outer" regularity:
P(S) = inf{P(U):U > S, U open}.]

We then claim that s is nondegenerate if P is regular. Proof: There are
two points.
(i) First, by regularity,

id, = P(A(A)) = sup P(K).
e KecA (A)

Therefore
{P(R)x:K < A(A),x € E}
is total.
(ii) Second, if £ =1 on K < A(A) (f € C(A(A)) (A unital) or £ € C_(A(A))
(A nonunital)), then

i

(ff_\(A) £dp) UA(A) XKdP)

= (fA(A)fdP)P(K)

Ran P(K) < Ran f&(A)fdp.

Therefore

{u gdP)x:A € A,x € E}

A(A)

is total, i.e., 7©_ is nondegenerate.

P
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We thus have a map P - N from the set of regular E-valued spectral measures

on A{A) to the set of nondegenerate *-representations of A on E.

9.54 S5NAG Themap P » 7

P is bijective.

The details are relatively straightforward. Given x,y € E, set

u. _(8) = <x,P(8S)y> (S € Bor A(A)).

X,y
Then By v is a complex Radon measure on A{A).
If now P and Q are regular and if Tp = T then P = Q. Thus define Ve v per
Q: VAEA,

fA(A)Adux,y = <X”qﬂl>(‘my>

= <X’TTQ(A)Y>

= IA(A)A&\JX’Y

=
il

. \)x,y (V x,y € B)

P(S) = Q(S) (Vv S € Bor A{A))

P = Q.

Therefore the map P -+ o is injective.

To prove surjectivity, assume initially that A is unital (so A(A) is compact)
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and let m:A - B(E) be a nondegenerate *-representation (so TT(lA) = id;) -- then

by the Riesz representation theorem, V X,y € E, one can find a unique complex Radon

measure U y on A(A) such that v A € A,
H4

~

Taapy,y = = m@y>.
Since ¥V S € Bor A(A),
e ) 12 s (9w _(8)
XY XX YiY
< BN (AA)
= 112 1yl 13,

there exists a unique operator P(S) € B(E) such that

ux’y(S) = <x,P(S)y>.

It is clear that P(S) is selfadjoint and idempotent, i.e., P(S) is an orthogonal

projection. Moreover, the assignment

Bor A{(A) - Pro E

5 =+ P{(S)

is a regular spectral measure on A(A). Finally, V A € A,
<%, T (A)y> = <x, ”A(A)MP)Y>

~

= Taa Py, ¢

<x,T(a)y>,

implying thereby that Ty = .
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It remains to consider a nomunital A. So let m:A - B(E) be a nondegenerate

*-representation. Extend T to At by writing

@A) = 7@ + A id.

Then 7 :AT - B(E) is a nondegenerate *-representation, thus 3 a regular spectral

measure
: P+:Bor A(A+) > Pro B
+
sach that m ., = 7 . But
P+
AAYY oyt (e, 52).
And

pt ({=}) 1 (R)

~ o4
= f X 101 AAP
syt !

P ({=}) =0

p ) = pran T - o

]

i

Pt - (oh) U {=})
= ptah
= idE.

If now P = B |A(A), then

P:Bor A(A) -~ Pro E
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is a regular spectral measure such that Ty = .

9.55 EXAMPLE Let A be a commutative C*-algebra. Suppose that u € MI (A(A))
(cf. 7.12). Take E = L2(A(A),n) and define ™ (&) by
(WD) W =AWEW (Eem,
Then ™ is a nondegenerate x-representation of A on E and its associated spectral
measure Pu is the prescription

PU(S)f = xSf (S € Bor A(A}).

Let
P:Bor A{A) -~ Pro E

be a regular spectral measure — then the support of P, denoted spt P, is the set

of all w € A(A) such that P(U) = 0 Vv open neighborhood of w.
[Note: The support of P is a closed subset of A(A).]

N.B. If Tp = T, then spt P is called the spectrum of .

9.56 LEMMA Suppose that m:A > B(E) is a nondegenerate *-representation of A —
then Ker 1 consists of those A € A such that A vanishes on the spectrum of 7.

[Note: m is faithful iff its spectrum is all of A(A).]

9.57 REMARK The machinery assembled for the proof of 9.54 and its consequences

provides a direct route to the spectral theorem for normal operators.



§10. OGNS

Iet A be a Banach *-algebra -- then a linear functiomal w:A + C is positive

if v A € A, w(d*a) =2 0.

10.1 LEMMA Let w:A > C be a positive linear functional -- then V A,B € A,

w (A*B) = w(B*A)

and
lw@*B) | < »@*A)w (B*B) .
N.B. Suppose that A is unital -~ then ¥V A € A,
w@*) = w@)
and
wa P < w (1) w B*A).

[Note: Therefore

w(lA) =0 = w = 0.]

10.2 EXAMPLE There are Banach x-algebras that have no nonzero positive linear
functionals. Thus take any unital Banach algebra A = {0} and form the cartesian

product A x A. Introduce operations and norm by (Al’B}_) + (Az,Bz) = (Al + A,

B +B,), ABB) = OATD, BB By B) = Ay BE), B,BF = (B2), and
|1 @&,B) || =max(|]a]], ||B]]) —— then A x A is a Bamach *-algebra with unit

Lo xoa = Qygrlp)e



Since
(o=t ™ Ggomlp) = = Qge 2y,
it follows that every positive linear functional on A x A must vanish at (lA’lA)”

hence from the above, must vanish identically.

If A is a C*-algebra, then positive linear functionals are continuous (cf. 7.3)

but if A is just a Ranach *-algebra, this need not be true.

10.3 EXAMPLE Let A be the Banach space C[0,1], take the multiplication to
be trivial (fg = 0 v £f,g) and set f* = f — then A is a Bamach *-algebra and every
linear functiomal w:A - C is positive. On the other hand, A is infinite dimensional,

thus admits a discontinuous linear functional.

Let w:A ~ C be a positive linear functional. Given B € A, define mB:A ~ C by

wP@) = wB*AB) (A € A).

10.4 I1EMMA Ve have
WP@ | < w(BB)Y@A) = o(@EBnA) |[a]].
[Looking ahead, the computation

!mB(A) [2 = |w(B*AB) |2

IA

w(B*B) w (B*A*AB)

= w(B*B) u (a*a)

shows that wB satisfies condition H with



[16®] |, < w(B*B).
Therefore o is representable (cf. 10.10), hence (cf. 10.12)
WP | s (o] Ly

< w(B*Bv@).]

Let w:A > C be a positive linear functional. Given B,C € A, define

wB’C:A ~+ C by

wPC@) = wEAC) (€ A).
10.5 IFEMMA We have
WBrCa | < wEm e Yy @
< o (@B Y2 ) Y nw | a] .
PROOF 1In fact,
B C @ |7 = uierac |2
< w{B*B)w {C*a*nC) (cf. 10.1)
C
= o (B*Blw” (A*A)
=>
PCay| < wetB Y 2E @ara) /2
< w(B*B) Y% (c*) Y2y ara) /2

o BB Y2 ) 12 (y @) 2 /2

It

12, cxe) Y2y @)

w{B*B)



< w(B*B) /2, {c*C) 1/2m(A) | Al

N.B. Recall from 9.41 that

vy@ <m@ |all @€ A.

10.6 THEOREM Suppose that A has a left approximate unit (cf. 4.1) -- then
all positive linear functionals on A are continuous.

PROOF Let w:A -~ C be a positive linear functional.

Step 1: wl|*-rad A = 0. Thus let A € *-rad A and using 4.6, write A = B*C,
where Be A, C € A c #x-rad A. Repeat and write C* = E*D*, where E* € A,
D*¥ € AC* ¢ *=rad A, so C = DE, where D € AC** ¢ x-rad A, E € A. Therefore A = B*DE

and

lw (@) |2 |w (B*DE) |2

‘wB’E(D) l2

/2, (erm) /2y (p)

s

w (B*B)

1/2

I

w(B*B) /2, @*E) Y20 = o.

Step 2: Since w drops to A/*-rad A, it can be assumed that A is *-semisimple,

hence semisimple (cf. 9.38). In particular: The involution *:A » A is continuous

{cf. 9.21).

Step 3: Let A € Abe a sequence in A such that A, > 0. Claim: w() >0
(=> w is continuous). To see this, use 4.8 to first write An = A*B;, where B; > 0.
But then, thanks to the continuity of the involution, Bn + 0, thus by a second

: 3 + - Rk * - A%
application of 4.8, we can write Bn B Cn' where Cn -+ 0, so An A CnB and Crl -+ 0.


http:approx:in1a.te

Therefore

il

lw(a) 2 |w(a*C_B) 12

i

iA

w(a*A)w (B*B)m (A) % | e, | &

+ 0 (I]—>oo).

10.7 IEMMA Suppose that A is unital —— then all positive linear functiomals

on A are continuous. Moreover, if w:A -+ C is one such, then

[wl]] = w(ly)mA).

PROOF V A = 0,

lw @) 1 _ lw (lZAlA) l
lall | At

Tarlp
_ lw @) |
|al

1/2

A

w12 @) nw

IA

Holl < 01)mA).

[Note: If #:A > A is isometric, then B{A) = 1 (cf. 9.41) and

m(d) < B Y2 =1



IA

[fol] < wiry

which can be improved to
ol | = vy

when A is a C*-algebra (cf. 7.4).]

10.8 EXAMPIE It is not always true that ||w]|| < w(ly). Thus let A= B(gz),

where (_:2 has the norm

= |z,| + t]z (t > 2).

1! A

2—-—

Represent the elements of A as 2-by-2 complex matrices [}\ij] and put [Ri.]* =

J
[_}:ji] -~ then A is a Banach *-algebra with a continuous (but not isometric) invo-
lution. Define w:A + C by w(D‘ij]) = I Xij -- then w is a positive linear
i,J

functional on A such that w(lA) =2, If

then

A =t




=>
al] =t
=
w(A) t2 + 1
Hol] = ==F=>t>2=w(l,.
|al]
n
10.9 REMARK Write A+ for the set of all finite sums of the form = A{Ai -
i=1

then the linear span of A+ is A2 (a.k.a. the linear span of the A*B). Proof:

A*B = V=D *@a+ (VDB)*@a + (V=B

3
z
k=0

Y

If A2 is not closed or is closed but not of finite codimension, then one can use a
Hamel basis for A to construct a discontinuous linear functional w that vanishes on

Az. Such an w is necessarily positive.
Note: [It therefore follows that a necessary condition for the continuity of

all positive linear functionals on a Banach x-algebra A is that AZ be closed of

finite codimension. ]

Let w:A ~ C be a positive linear functional.

* w is said to be representable if 3 a topologically cyclic *~representation

m of A on E with a topologically cyclic vector x € E such that

w(a) = <x,m1(a)x> A€ A.

e @ is said to satisfy condition H if

ol ly = supllo@) |*@*a) <1} < =,



10.10 THEOREM ILet w:A » C be a positive linear functional -- then w is

representable iff w satisfies condtion H.

N.B. The equivalences in 10.10 are of central importance for the theory. One

direction is immediate, viz.:

10.11 IEMMA Suppose that w:A - C is representable -- then w satisfies con-
dition H.
PROOF By definition,
w@) = <x,7(@A)x> (A €A,

where x € E is topologically cyclic. Therefore

'U.)(A) ‘2 = l<x"n'(A)x>12
< (||| ||m@=|h?
= |1x]|? <m@x, 7@ x>

2
= ||x|]° <x,7(@a*n) x>
= | x| %0 a*a)
==
Holly < x| 2.

I.e.: w satisfies condition H.

[Note: Since x € E is topologically cyclic, we have

%] 1% = | o]

H



In fact,

)

x| 12 = supf <, 3% |Iy]] < 1}

supd [<x, 7 @) x>|%: | |7 @x|| < 1}

i

apl @) 210 @*) < 1}

ool |-

10.12 REMARK 1In view of 9.25, a representable  is necessarily continuous.

[Note: This can be pinned down in that

lw@ 12 < [x[* ||n@*a) ]|
< 1x]1? v@*a)
= x| 1% y@)?
lw@ | < x/1? @
= ol y@
< |lull, m) |[a]]
Hwl| <

o] |y m(A).]

10.13 LEMMA Suppose that w:A - C is representable —- then w is hermitian:
Y AEA,

wA*) = w{a).
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PROOF In fact,
w{d*) = <x,m(@a*)x>

<x,m(A) *x>

il

<m{(A)x,x>

Il

<x,m(A)x>

= w(A).

The proof that

"condition H" => "representable"

is a special case of the Kolmogorov construction. However, proceeding to the
details, we shall first look for conditions on a Banach x-algebra that are sufficient

to ensure that all its positive linear functionals satisfy condition H.

10.14 IEMMA If A is unital, then every positive linear functional w:A - C

satisfies condition H and ||w||; = w(l,).

PROOF To begin with,

Accordingly,

w{A*)

w{A*1 A)

= w(lKA) (cf. 10.1)

f

w@) .
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Therefore

]

lw@ |2 = [o@Er|?

wa*) |2

2

l(k)(A*lA) i

IA

w (A*A) w (1X1A) (cf. 10.1)

w(A*A)w(lA)

e

£
=
[

< m(lA).

On the other hand,

IA

= [lul [y

o

w(lA)

"

[Note: If w(l A) = 0, then w is the zero functional and matters are trivial.]

10.15 LEMMA If A is a C*-algebra, then every positive linear functional

w:A ~ C satisfies condition H and ||w| |H = | |w

PROOF Work with an approximate unit {ei:i € I} per 1.20: Vv A € 4,

@) % = Lim Jwle;n) |?
ier
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I

lim |w(e#A) | 2
iex

IA

lim inf w{e¥*e,)w(A*n) (cE. 10.1)
ier t

lim inf © (e?) w{A*A)
. i
i€l

A

[ o] o (a*n)

[olly < Twll.
On the other hand,

e¥ e,
i i

ol Y2 (le1¥?

=>
2
. wle.)
ol by = w6—tpm? = —
| lw]| [ fwl]
=>
w(ei)2
[l |,; =
i€er ||w||

2
= Loll™ (e, 7.9y
ol

ol

The preceding lemmas are special cases of the following result.
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10.16 THEOREM Suppose that A has a left approximate unit (cf. 4.1) -~ then
every positive linear functional w:A - C satisfies condition H.
PROOF There is no loss of generality in taking A x-semisimple (see the proof

of 10.6), so the involution *:A -+ A is continuous (cf. 9.21). If now {ei:i €1}

is a left approximate unit per A and if M > 0O:

le;I| <M (i € I), then arguing as

in 10.15 (bearing in mind that w is continuous (cf. 10.6)), v A € A, we have

lw(n) 12 lim lw(eiA) [2

ieT

i

il

Lin |w((e)*a) |?
ier

A

lim inf w(e.e.*)w(A*n)
N i7i
il

A

lim inf |le;e;*|| ||uw||w(a*a)
i€y

A

Lim inf [le; || [leg*|] [luw|lw(a*a)
ier

in

Lim inf |le; |[* BA) |[o] [oa*n)
i€T

M2B(A) | |w| |w(a*a)

A

->

ol |y < 128(A) .

[Note: Here B(A) is the norm of the involution *:A »~ A (cf. 9.29).]

Returning to 10.10, assume that w satisfies condition H and put

[63]
A= WA,



where Am is the left ideal

{a € A:w(A*n) = 0}

14.

~ A€A N\ T oA+ A
Given , Write in place of
_ BeA S _ B+ A,

<a” B> = o(aB)

equips A with the structure of a pre-Hilbert space (=> ||a”] Iw = w(A*A)

Define 1° by

™ @B® = @),

Then

1A > L, (AY)

is a s~homomorphism.

N.B. 7°(aA) has a formal adjoint, viz. Tl'w(A*) . Proof:

< (n) B“’,c“’>m

7 (n) *

il

i

w W
<(AB) ,C >
w( (AB) *C)

w (B*A*C)
w W
<B”, (A*C) "> "

<B?,1* (a%) c>

7 (A%) .

(cf. 10.1).

1/2

-~ then the prescription

).
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10.17 LEMMA V A € A, 1°(a) is bounded.

PROOF This is because m° (A) can be written as a finite linear combination
of unitary elements of L, (A®) (cf. 9.31 and subsequent discussion).

[Note: It is thus a corollary that V A € A,

sup{w (B*A*AB) :B € A,w(B*B) < 1} < o],

Let E® be the Hilbert space completion of A —~ then 7 extends by continuity
to a *-representation of A on Ew, denoted still by 7. Since w satisfies condition

H, it vanishes on Aw’ hence induces a linear functional on A“ which is continuous

w.r.t. ||| lw' thus extends to E' with the same bound, namely ||w| 1é/2: VAEA,

i 1
@ | = ol |7 2@ Y2 = | lo] 1/2] 121,

Owing to the Riesz representation theorem, I a unique vector X, € E® such that

W
= L > .
w(®d) X A

Here
e, 112 = 1ol ],
10.18 LEMMA V A € A,
’nw(A)xw =AY,
PROOF V B € A,
<®(n) X - 1—\(’),135(%{D

= <x , (@) *BY> - <«a¥ BY
w w W
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W W
= < * - *
X T (a*)B >w w (A*B)

il

< * (1)> - *
X 0 (A*B) ® w (A*B)

w(A*B) - w{A*B)

= 0.

To summarize: m° is a topologically cyclic *-representation of A on EY with
topologically cyclic vector X, € £Y such that
- W
w(d) = <x ,m (A)xw>w aeA.
Therefore w is representable, which campletes the proof of 10.10.

[Note: 7 is called the NS representation attached to w.]

10.19 EXAMPLE Take A unital -- then vV A € A,
™ (W1 = A%,
S0 1{2 is topologically cyclic. And

[( I ] W
<1A,Tr (a) lA>w

w LW
= < >
lA’A W

t

w( (1;‘{) *A)

1

w(A)

W
W lA‘

»
it
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10.20 IEMMA Suppose that 7 is a topologically cyclic *-representation of A

on E with topologically cyclic vector x € E —- then 1 is unitarily equivalent to

1 for some satisfying condition H.

PROOF Define w:A + C by

w@ = <x,1@)x> @eA.
Then w is representable, hence satisfies condition H (cf. 10.11), so
3
w(n) = <K T (A)xw>w A € A).
Now quote 9.7.
[Note: The trivial *-representation on the zero dimensional Hilbert space

nigt T!.U-;O .1

10.21 LEMMA Suppose that 7 is a nondegenerate *-representation of A on E —

then 3 a set Q of representable positive linear functionals w on A such that m is

unitarily equivalent to @ ™ and VA € A,
wes
lr@) || = swp | |7 @ ]].
WER

[This is an immediate consequence of 9.5 and 10.20.]

Suppose that w:A -~ C is a positive linear functional which satisfies condition

H -- then w is said to be a state if HwHH= 1.

[Note: This terminology is consistent with that used for C*-algebras (cf. 10.15).]

If w 2 0 satisfies condition H, then v £ > 0, tw satisfies condition H:

el Iy = ¢ ol ;-
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Also V A € A,

il

woow
w (A) <X, (A)xm>w

tw(n)

i

</E 2, 1% @) vE x >.

And ﬂtw is unitarily equivalent to ¥ via the arrow Etw ~ E” that sends Atw to

VEaY@ e A).

10.22 THEOREM Every nontrivial topologically cyclic *-representation of A is
unitarily equivalent to 7 for some state w (cf. 10.20).

PROOF If w = 0, then

w
[l I,
is a state.
If
- wle ~C
w2:A > C

are positive linear functionals satisfying condition H, write Wy Z W, if Wy = Wy

is positive.

10.23 IEMMA If w,w':A -~ C satisfy condition H and if w > w', then 3

T e (A" (0 <T < I) such that

w' (A) = <xw,1rw WTx > (A€ A).



190

PROOF Noting that

wzw =>A cA ,
w
w'

put
a” BY> = u' (a*B).

wl

o (a*B) |2

IA

w' (A*A) w' (B*B)

A

w (A*A) w (B*B)

il

wy2 w2
129112 1187 2.
Therefore < , > can be extended to ExE'. FixTeE 8(Ew):

w'
w' (A*B) = <Aw,TBw>w.

Then
wzw' 20=0=<T=<I,
and Vv A,B,C,

N (o)) 'I'Bw>w
= <q” (C”’)A"{,'I’BwﬁJJ
= <(C*A)°°,TB°°>w
= @' (A*CB)
= <Aw,T(CB)w>w

= <a”,m*(c) B‘“’>w
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T e 1A,

Finally, choose a sequence {An} in A such that Ag > X

lo* (2 - ) 12

IA

Hw'HH w' (AR - A)*(AA_ - A))

IA

o'y o((@a - m* @ - &)

ot 11y e, - »¢))2

ol @ a° = x) 12 (cf. 10.18)

1A

ot [ 1@ 12 1182 - | 2

+ 0 (n >

w'(A) = lim w' (AAn)

n >

= lim w'((A*)*An)

n+00

lim <(a*) %, %
naow
n —- <«

= <(A%) erxw>w

w
o o *
= <7 (A )xm’TXw>w {cf. 10.18)

w
= < >
X 0T (A)wa o
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[Note:

1/2

T e (A =>T7° e 1A

w' (B)

w
< >
X T (A)wa "

« @ %0l 2%y >
[N w w

«pl/ 2xw, a7/ 2xw>w. ]

Suppose that w # 0 satisfies condition H —— then w is said to be pure if

wzw == tw (3 £t =20).

10.24 IEMMA If 7 is topologically irreducible, then w is pure.

PROOF Assuming that w 2 w', produce T € 'n'w(A) ' per 10.23:

0<T<sI=>T=¢tl (0 <t <1) (cf. 9.8).
So, VA € A,
' - w
wt(@) = <X T (R) (tI)Xm>w
= t<x ,m0(A)x >
[N ww
= tw(a).

10.25 IEMMA If w is pure, then ™ is topologically irreducible.
PROOF ILet P € n°(A)' be a nonzero orthogonal projection. Define w':A > C by

. _ w
w' @) = <wa,”n' (A)wa>w (A €A,



22.

Then

lw' (B) |2

2
|<ex , 7" (@) Px > |

IA

2 w 2
lex |12 [ |2

i

2 w
||wa|] <Px ,T (A*A)Px >

= |12x, | 10" am).

Therefore ' satisfies condition H. And

wen) = || @x |]2
> [l @x |12
= || @ex |12
= w' (A*A)
=>
wzw'.

But w is pure and w' is nonzero, hence w' = tw (3 t > 0). So, Y A € A,

0 = w'@A*A) - tw(a*a)

<’ P - tI) A‘”>w.

Since AY is dense in Ew, it follows that P= tI => t = 1, thus 7 is topologically

irreducible (cf. 9.9).

10.26 THBEOREM Suppose that = 0 satisfies condtion H -~ then ™ is topo-

logically irreducible iff w is pure.
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PROOF Caombine 10.24 and 10.25.

10.27 THEOREM Every topologically irreducible *-representation of A is
unitarily equivalent to 1" for some pure state w (cf. 10.22).

PROOF If w is pure, then

!
[l 1y
is a pure state. Proof:
>0t = o o= w wr
™ ol
H
= ol o' = t
= ' = t(—2—)
o]l
10.28 EXAMPIE Take A =1L (H) (H a complex Hilbert space ) -- then the pure

states are the w_(||x|| = 1), where

wx(T) = <x,Tx> {cf. 7.17).
Since the identity representation m_of L_(H) on H is a topologically irreducible

*-representation (cf. 9.8 (m_(L_(H))' =C idH)) , it follows that v x, 7_ is unitarily

w,
equivalent to w %, on the other hand, an arbitrary topologically irreducible
a
x-representation m of L _(H) is unitarily equivalent to some n X (cf. 10.27). There—

fore m is unitarily equivalent to 7_.
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[Note: Every nondegenerate x-representation of L (1) is unitarily equivalent

to a direct sum of copies of T _.]

10.29 THEOREM The *-radical of A is the intersection of the kernels of all

the x-representations of A (cf. 9.34).

The proof requires same ancillary considerations. Thus given a nondegenerate

*~representation m of A, let

o@) = ||n@) ||
and for any w satisfying condition H, put

@ = || @ .

10.30 IEMMA 3 a set I of pure states with the property that V A € A,

o@a) = sup a(a).
we

Grant this temporarily --— then
10.30 => 10.29.

For in the first place, it is obvious that

N RKer m < x=-rad A,
i

where N is taken over all the *-representations m of A. Conversely, let
™

A € *-rad A —— then A is annihilated by all the ™ (w pure). In particular:

VweR, o'(a) = 0=>0(a) =0=>AE Ker .
Therefore

N Ker m = x-rad A.
'

Given 7,



25.

Proceeding:
e Write S(A) for the set of positive linear functionals w on A that

satisfy condition H subject to ||uw]| | = 1 and write S(A,0) for the subset of
s w
S(A) consisting of those w such that o < o.
® Write P(A) for the set of pure states w on A and write P(A,0) for the

subset of P(A) consisting of those w such that & < a.

N.B. S(A) and S(A,0) are convex sets.

[Note: If W, ¢y both satisfy condition H, then so does w, + w, and

g + 0yl = Tyl + 1yl

Therefore S(A) is convex. Suppose further that Wy, € S(A,0) and let 0 < X £ 1 —
then

}\wl + {1-2) Wy ;\wl {(1-)w

supic ~,0 2}

)

IA

-w W
sup{o l,o 23

Il

< ag.}

10.31 LEMMA Suppose that w:A - C satisfies condition H —— then w is a pure

state 1ff w is a nonzero extreme point of S(A) (cf. 7.19).

10.32 ILEMMA P(A,0) is the set of nonzero extreme points of S(A,0) and

P(A,0) U {0} is the set of all extreme points of S(A,0).

Equip S(A,0) with the topology of pointwise convergence —- then the image of
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S(A,0) in ] o(A)D (product topology) under the natural embedding
- AEA -

w > {w(a):A € A}
is closed, hence S(A,0) is campact.

[Note: Recall that v A € A,

w(a) = <xw,1rm(A) X >
=
lo@ | = [[7°@ || |]x |[?
[#3] w
= (&) | |w] g

’(a) < o(a).]

A

10.33 LEMMA The closed convex hull of P(A,0) U {0} is S(A,0).

PROOF Apply the Krein~-Milman theorem.

Let us pass now to the proof of 10.30 - then i a set Q of representable

positive linear functionals w on A such that Vv A € A,

o(a) = swp ”(A)  (cf. 10.21)
=
and we claim that
o(a) = sup (@),
wen

T
where Q‘Tr = P(A,0).

To this end, fix A € A and € > 0 - then it suffices to produce w € P(A,0)
such that

Cfm(A) > g{A) - €.
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Choose W, € Qs
We
o (@A) > o) - e.

tw w
Because ¢ C =0 ° (t > 0}, we can assume that . is a state, hence w. € S(A,0).

Using 10.33, choose a net Wy (i € I) that converges to W s where each Wy is a convex

combination of elements fram P(A,0) U {0} — then 3 i, € I:

0

“o
o (Aa) >o@) -¢ (mo = wio).

Iet Wyyeee, W be the elements of P(A,0) which occur with nonzero coefficients in

the expression of W, as a convex canbination per the above. Since

Wy 4 eov + 0
7(1 n

is unitarily equivalent to a sub *-representation of

w W

i 1 D e BT n

with
W, + <o+ +W w W
o1 D osuplo L,...,0 ™,

there is an index k € {1,...,n}:
owk(A) > o(A) - e.

Therefore

o= sup o°

P(A, )

as claimed.

10.34 REMARK It is false in general that a nondegenerate *-representation T
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decamposes into a direct sum of topologically irreducible *-representations.

However, on the basis of the preceding discussion, V A € A,

@) || = || & n@]].
wes
m
Set
TIUN=@Trm,

w

where w ranges over those positive linear functionals that satisfy condition H

(meaningful since V A € A, ||7°@) || < y(&)) -- then Ty 1S @ nondegenerate

x-representation of A. It is "universal" in the sense that every nondegenerate
*—representation of A is unitarily equivalent to a sub *-representation of a multiple

of TTUN.

N.B. We have

x-rad A = Ker 7«

and vV A € A,

v(2)

il

| lﬂUN(A) [.

Therefore the extension ?TUN of TN to a *-representation of C*(A) is isometric

(cf. 9.44), so the image
?rUN(C*(A))

is a norm closed *-subalgebra of Ex =9 Y,
w

[Note: Suppose that A is *-semisimple:

*~rad A = {0}.
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Then m, is a faithful *-representation of A.l

10.35 RAPPEL If A is a C*-algebra, then every positive linear functional

w:A -+ C satisfies condition H (cf. 10.15).

10.36 LEMMA Suppose that A is a C*-algebra and let A € A be nonzero — then

3 a topologically irreducible *-representation m of A such that

Hr@ || = [[a[],
hence A is *-semisimple.
PROOF Choose w € P(A):
w((a*)?) = H(A*A)zll (cf. 7.25)
4
= ||al]".
Then
2] 12 = w(@m 3?2
1/2

1]

w((Aa*a) (a*An))

w
[ @) 7|

w w
|| @na] |

3] [
[ @]

in

W w
] | 1a%],

It

7@ || |12,
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But
[189]] = w2
2 1
< ||wl 172 ||a*a| |2
< |[a]].
Therefore
Hall < [In@ |].
On the other hand,
7@ || < e Y2 (cf. 9.37)
= ||a]] (ef. 1.1).
So
@ || = |1a]],

thus it remains only to recall that ™ is a topologically irreducible x~representation

of A (cf. 10.26).

Put
w
Tom = @ T .
AT era)
Then 10.36 implies that 7 _, is a faithful *-representation of AonE_ .= & E”.

AT AT

WEP(A)

10.37 SCHOLIUM Every C*-algebra is isametrically x-isamorphic to a norm closed
*-subalgebra of the bounded linear operators on same complex Hilbert space.

[Note: Every separable C*-algebra is isometrically #*-isamorphic to a norm
closed x-subalgebra of the bounded linear operators on some separable camplex Hilbert

space. |
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If I c¢ A is a nonzero #-ideal (ot necessarily closed), then every rorndegen-
erate *-representation m:I - B(E) can be extended to a rondegenerate *-represen-
tation 7:A > B(E) (see the discussion leading up to 9.32).

[Note: Recall that
T topologically irreducible => T topologically irreducible. ]

Suppose row that A' ¢ A is a C*-subalgebra -—- then a *-representation
msA > B(E) is said to be an extension of a x-representation w':A' » B(E') if 3
a closed subspace X c E which is invariant under w|A' and has the property that

the sub representation
m|AT:AY > B(X)

is unitarily equivalent to w'.

10.38 LEMMA Every topologically irreducible x-representation 7':A' » B(E')

has a topologically irreducible extension to A.
¥
PROOF Take T = 7" , where ' is pure (cf. 10.27). Using 7.24, extend w' to

a pure state w on A and let X be the closure of

{n"(a")x A" € A'}
in E® —- then X is invariant urder Tr“’{A' and if x(:) is the orthogomal projection of
xw onto X, we have

Trm(A')xw = wa(A')X;) (ar e A"),

SO x(:j is topologically cyclic for the sub representation of ﬁwIA' on X.



Finally, Vv A' € A',

w
<x',m (A")x'>
w w w

il

W
<x ,7 (A'Yx >
w w W

w(a") w'(AY)

¥
Therefore ﬂw[A' on X is unitarily equivalent to ™ (cf. 9.7).

[Note: The same kind of argument shows that every topologically cyclic
*-representation 7':A' > B(E') has a topologically cyclic extension to A, thus
every nondegenerate x-representation m':A' + B(E') has a nondegenerate extension

to A (cf. 9.5).]

10.39 IEMMA Suppose that A' ¢ A is a commutative C*-subalgebra -- then
vV w' € A(A"), 3 a topologically irreducible *-representation m:A »> B(E) and a nonzero
vector x € E such that vV A' € A',
T(A")x = w' (A')x.

[This is a special case of 10.38.]

10.40 REMARK The analog of 10.38 for Banach *-algebras is false in general.

[Consider an A whose only *-representations are trivial.]

Let H be an infinite dimensional complex Hilbert space —- then B(H) is a unital
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C*-algebra but its representation theory is far more complicated than that of
L (H) (cf. 10.28).

10.41 DICHOTOMY PRINCIPLE Suppose that m is a topologically irreducible

*-representation of B(H) —- then either

m(L_(H)) = {0}
or
7 is unitarily equivalent to the identity representation of B(H) on H.
[The point is that if w is a pure state on B(H), then either w|L_(H) = {0}
or w =uw, (3 x:||x|| =1.]

10.42 REMARK Every rordegererate k-representation of B(H) is unitarily
equivalent to orne of the form

™ e (@ wi) P
where T is nondegererate and vanishes on L_(H) and T is unitarily equivalent to

the identity representation of B(H) on H.

)
10.43 1=Ma I W ,w, are pure states on B(H), then 1 is unitarily equiv-

w
alent to 7 2 iff 3 a unitary U:sH ~ f such that v A € B(H),

w @A) = w, (U“lAU) .

PROOF If there is a U € U(H) with the stated property, then VvV A € B(H),



http:cf.10.28
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w
=<x T Z(U_lAU)xw >,
2 2 %2

w w w
< 2(U)xw , T 2(A)Tf 2(U)xw >m .
2 2 2

3 [}
Therefore w 1 and 7 2 are unitarily equivalent (cf. 9.7). Comversely, suppose that

¥y ) js T
T~ and 1 T are unitarily equivalent ard let W:E ~ + E © be a unitary operator such
that
®1 )
Wr T{A) =1 T(A)W (A € B(H)).
Wy o Wy
Choose a unitary V:E © + E Vx| =Wz - then 3 U € U(H):
2 1
Wy
m (U)Xw =wa {cf. 9.51).
2 1
So, Vv A€ B(#H),
¥y
W (A) = <X 7 (A)X >
1 ml wy Wy
W
= < Wt Z(A)wa >
1 171
)
= <wa ;T T (AW >
1 Wy Wy

w w w
< Z(U)xw il Z(A}Tr ‘?‘(U}xm >w
2 2 72
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V)
<X T 2 (U-lAU) x >
) Wy Wy

i

-1
o (U au).

10.44 EXAMPLE 1If H is a separable infinite dimensional complex Hilbert space,

c
then there are 2  unitary equivalence classes of topologically irreducible x-repre-

sentations of B(H).

[This is a counting argument.

1. The cardinality of B(H) is c.

tQ

2. The cardinality of P(B(H)) is 2 .
3. The cardinality of U(H) is c.

Now let « be the cardinality of the set of unitary equivalence classes of topo-

logically irreducible *-representations of B(H). Stipulate that pure states Wy /0,

are equivalent (denoted w; ~ w,) iff 3 a unitary U:f +~ H such that v A € B(H),

Il

-1
Wy (n) Wo, (U au).
Then in view of 10.43,

#(P(BH)) /).

~
It

But each equivalence class of pure states has at least one and at most ¢ members.

Therefore

c
kK < #(P(H) = 27 < k¢ = max(k,c).

c c
Since ¢ < 27, it follows that k = 27.]



§11. STRUCTURE THEORY

Given a C*-algebra A, denote by A the set of unitary equivalence classes [7]
of topologically irreducible x-representations 7 of A —-— then A is called the

structure space of A.

E.g.: If A is commutative, then

al

A <—> A(A).

11.1 EXAMPLE ILet f be a complex Hilbert space. Take A =1 (H) -~ then

#(A) =1 (cf. 10.28).

11.2 DICHOTOMY PRINCIPIE Let m:A + B(E) be a topologically irreducible

x-representation -— then either

m(A) > L_(E)
or
m(A) N L _(E) = {0].

11.3 EXAMPLE Let

- TleA > B(El)

TFZ:A -> B(EZ)

be topologically irreducible x-representations of A such that Ker m., = Ker Tye

1

Assume:

m (A n L, (&) = {0}



Then T and T, are unitarily equivalent.

[Note: Therefore a topologically irreducible x-representation m of A is
determined by its kerrnel to within unitary equivalence provided m(A) contains a

nonzero compact operator. But all bets are off if w(A) n L_(E) = {0} (cf. 11.11).]

11.4 LEMMA If #(A) = 1, then 7 is faithful ([r] € A) and A is simple.

PROOF Vv A = 0,
[|m@a) || = ]lal]l >0 (cf. 10.36).

Therefore Ker 7 = {0}. If I ¢ A is a proper closed ideal, then I = {0}. This is
because A/I, being a C*-algebra, admits a topologically irreducible x-representation

the lift of which to A is unitarily equivalent to 7, so I < Ker m = {0}.

A C*-algebra A is said to be elementary if A is s-isomorphic to L_(H) for same

complex Hilbert space H.

11.5 ILEMMA Let m:A » B(E) be a *-representation. Assume: 7 is nondegenerate

ard 7(A) < L _(E) —- then 1 is discretely decomposable, i.e., there is an orthogonal

decomposition

where each E; is a closed m-invariant subspace of E on which 7 acts irreducibly.
[Note: To be completely precise, v 1 € I, the assigmment

A > B(E.)
i

A~ 7(a) ]Ei



is a topologically irreducible x-representation of A on Ei.]

11.6 THEOREM Suppose that A is x-isamorphic to a C*-subalgebra of an
elementary C*-algebra —— then A is *-isomorphic to a (C*) direct sum & Ai (cf. 3.19)

i
of elementary C*-algebras Ai.

If A is elementary, then #(A) = 1 (cf. 11.1) and this can be reversed provided

A is separable.

11.7 THEOREM Suppose that A is separable and #(A) = 1 — then A is elementary.
PROOF The rontrivial argument is lengthy and best broken up into pieces.
Step 1: Take m per 11.4, say m:A - B(E) -- then E is separable. Thus fix
Xx # 0 inE and let D ¢ A be a countable dense subset of A -- then 1(D)x is dense
in m{A)x, which is dense in E.
Step 2: Let A' ¢ A be a maximal commutative C*-subalgebra -- then A(A') is
countable. In fact, V o' € A(A'), 3 a unit vector x{w') € E:v A' € A',
TAx(W') = w' @A) x(w") (cf. 10.39).
x t t [ .
Given W) # w, IAYE ASA'
w]‘_(A') z wé(A').
Therefore

w:'z (a") <x(wi) ,x(wé) >

<x(w]‘_) ,wé a’ )x(mé) >

<x(w]'_) ,Tr(A')x(w'Z) >



< (B x(w]) ,x(wy) >

<wi (A‘)x(wi) ,X(wé) >

it

wi Aa")y<x (w‘l) ,x(w‘z) >

<x(wi) ,x(w§)> = 0.

So if A(A') was uncountable, then E would have uncountably many mutually orthogonal
unit vectors contradicting its separability.
Step 3: A(A') is a countable locally compact Hausdorff space, hence by the

Baire category theorem, has at least one isolated point w On the other hand,

¥
0
A' = C_(A(A")),
so there is a projection P in A' (P = P* = P2) such that w(')(P) =1lamd w'(P) =0
for w' = w('). Moreover, every element A' € A' decomposes as
A' = )P + B',
where A € C and B'P = PB' = 0.

Step 4: let A € A - then

il

A' (PAP) (AP + B') (PAP)

= APAP

APAP + PAPB!

il

PAP ()P + B')

= (PAP)A'.



But A' is maximal:

PAP € A' => PAP c A',

Step 5: Since w is faithful, w(P) # 0. Therefore Ran 7(P) is a nonzero
closed linear subspace of E which is invariant under the commutative x-algebra

PAP. Derpte by T the associated x~representation

PAP -+ m(PAP) |[Ran T(P) (A € A).
Then o is topologically irreducible. Proof: Iet x,y € Ran 7(P) with x # 0 and
choose a ret {A;:i € I} in A:

T(A)x >y (cf. 8.16)

=z>

'IT(PAiP)X *zT(P)Tr(Ai)’:T(P)x

'rr(P)Tr(Ai)x
> 1Py =y.
That T is topologically irreducible follows upon citing 8.16 once again.
Step 6: Due to the topological irreducibility of 7, the T (PaP) (A € A)

are scalar operators {(cf. 9.8). In turn, this forces Ran 7(P) to be one dimensional,

i.e., m(P) is rark 1. BAccordimly,

m(A) n L (B) = {0}

m(A) > L_(E) (cf. 11.2).

Step 7: The inverse image 'rr-l (L (E)) is a nonzero closed ideal in A, so, as A
is simple (cf. 11.4),

L @) = A



Therefore

m:A > L_(E)

is a x-isamorphism or still, A is elementary.

11.8 REMARK Consult Akamnn—-Weaver+ for a discussion of the situation when

A is nonseparable (but #(A) = 1).

11.9 RAPPEL A primitive ideal of A is an ideal which is the kernel of a

topologically irreducible *-representation of A.

Write Prim A for the set of primitive ideals of A and equip it with the hull-
kernel topology -- then Prim A is TO'
The cbvious arrow

A - Prim A

[f] -+~ Ker m

is surjective (but, in general, is not injective). Therefore the hull-kernel
topology on Prim A can be pulled back to ;i to give what is called the regional
topology on K

[Note: A subset S ¢ :‘: is open in the regional topology iff it is of the form
{[n] & R:Ker 7 € 0} for same subset O < Prim A which is open in the hull-kernel
topology. ]

N.B. 1In general, A need not be Ty but if it is Ty it need not be Ty but if

+Proc. Natl. Acad. Sci. USA, 101 (2004), 7522-7525.



it is Ty, it need not be T, (c£. infra).

11.10 LEMMA The following conditions are equivalent: (i)A is Tyi (ii) Two

topologically irreducible x-representations of A with the same kernel are unitarily
equivalent; (iii) The canonical map A -+ Prim A is a homeomorphism.

[This is a simple deduction fram the definitions.]

11.11 EXAMPLE Suppose that A is simple ~- then Prim A = {0}. So, if A has
more than one element, then A will not be TO.

[Note: There are simple A for which A is uncountable ("Glimm algebras").]

11.12 EXAMPLE Let H be an infinite dimensional complex Hilbert space. Take

A= goo(H)+ -— then #(A) = 2, say A = {ﬂl,wz}. Here Ker 7, = {0}, Rer w

1 = EM(H) ’

2

s0 A is Ty- But A is not Ty: [’ﬂ'l] is a dense open point ([TTZ] is a closed point).

11.13 EXAMPIE Let

A0
A = {f € C([0,1],M,(C)):£(0) = (3 2ueQ) .
_ 0 |-
Then
A=10,11 U {n,m)},
where
t <—> £(t) (0 <t < 1)
and

T(E) = £00) 1, To(E) = £(0),,.



Topologically, 10,1] has its usual topology and sets of the form {ﬂl} U lo,¢el,

{'rrz} U 10,el are also open. Therefore A is T;. Still, it is not T,:

1
- >
n

o A
¥
|

11.14 IEMMA Tet S ¢ A — then
['rr]€§<=> N Ker S « Ker .
[8]€es

B.g.: If S= {[S]} and Ker S = {0}, then S = A.

11.15 THEOREM Suppose that A is separable —- then for a given [7n] € A,

the following conditions are equivalent: (i) [7] is closed in ;‘:; (ii) m(A) = L_(E).
PROOF Assume (i) —— then
{[n'] € A:Ker T c Ker '}
is a one eleament set (cf. 11.14), so the C*-algebra mw(A) is elementary (cf. 11.7),
hence 3 a *-isomorphism ®:m(A) ~ L_(H) (H a complex Hilbert space). But the identity

representation of m(A) on E is topologically irreducible, thus 3 a unitary operator

U:H - E such that Vv A € A,

U@(w(zx))u”l = 7(a).
T.e.:

UL (U™ = 1 (A)
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L (B) = m(A).

Assume (ii) and consider a [no] € [n], thus Ker 1 < Ker s (cf. 11.14), so

there is a topologically irreducible *-representation n' of L _(E) on E' such that
Ty = m' o T, Bearing in mind 10.28, fix a unitary operator U:E + E' with the prop-
erty that vV A € A,

1

i

ur(a)u T (n(a)) (= Ty (B)) .

Then obviously

(] = [nl,

which establishes that [7] is closed in A.
[Note: The proof of the implication (ii) => (i) does not use the assumption

that A is separable.]

A C*-algebra A is said to be liminal if for every topologically irreducible

*~representation m:A » B(E), we have m(A) =L _(E}.

11.16 EXAMPLE Every camutative C*-algebra is liminal.
11.17 EXAMPLE Every finite dimensional C*-algebra is liminal.
11.18 EXAMPIE Every elementary C*-algebra is liminal.

N.B. If H is an infinite dimensional complex Hilbert space, then B(H) is not
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liminal (just consider the identity representation of B(H) on H).

11.19 IEMMA Suppose that A is liminal — then its C*-subalgebras are liminal
(in particular, its closed ideals are liminal).

[One has only to apply 10.38 (restrictions of compact operators are campact).]

11.20 LEMMA Suppose that A is liminal -- then VvV closed ideal T c A, the

quotient A/T is liminal.

If A is unital and liminal, then its topologically irreducible *-representations

are necessarily finite dimensional (v m,7 (1l A) = idE) . This said, let H be an infinite

dimensional complex Hilbert space -~ then I_,m(H)+ is not liminal (consider w(a,Xx) =

A+ Xd). Still, L (H) is a liminal closed ideal of L (H)' and the quotient

L_(H /L () = C is liminal as well.

11.21 1EMMA If A is liminal, then A is Ty the converse being valid if in

addition A is separable (cf. 11.15).

11.22 EXAMPLE Suppose that A is x-isomorphic to a C*-subalgebra of an ele-~
mentary C*-algebra —— then A is liminal (cf. 11.19), hence A is T, and, in fact,

A is discrete.

A C*-algebra A is said to be postliminal if for every topclogically irreducible

*-representation m:A ~ BE), we have n(A) > L_(E).
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Trivially,

"liminal" => "postliminal".

11.23 EXAMPLE ILet H be an infinite dimensional complex Hilbert space —- then

L ()" is postliminal (but not liminal).

11.24 1EMMA Suppose that A is postliminal -- then its C*-subalgebras are

postliminal (in particular, its closed ideals are postliminal).

11.25 LEMMA Suppose that A is postliminal -- then V closed ideal I < A,

the quotient A/I is postliminal.

11.26 1LEMMA Iet I ¢ A be a closed ideal. BAssume: T and A/7 are postliminal —-
then A is postliminal.
[Note: If T and A/T are liminal, then A is postliminal (but, as observed

above (and will be seen again below), A need not be liminal).]

11.27 EXaMPLE Take H = 132 with its usual orthonormal basis {en} ard let S

be the unilateral shift characterized by Sen = @

'l then the Toeplitz algebra

T is the C*-subalgebra of B(H) generated by S. It is wellknown that T properly
contains L _(H) and T/L_(H) = C(T). Since L _(H) and C(T) are liminal, hence post-
liminal, it follows fram 11.26 that T is postliminal. WNevertheless, T is not
liminal: The identity representation is topologically irreducible and T properly

contains I:W(H) .
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N.B. One consequence of 11.25 and 11.26 is this: Suppose that A is non-

unital — then A is postliminal iff A" is postliminal.

11.28 LEMMA Suppose that A is postliminal. Iet

Trl:A - B(El)

be topologically irreducible x-representations of A such that Ker T = Ker m, —

t+hen

[Wl} = [TFZ} {cf. 11.3).

Therefore A is T and the canonical map A - Prim A is a howmeomorphism (cf.
11.10).

[Note: A is Ty if A is liminal (cf. 11.21).]

11.29 REMARK It is a fact that if A is separable and A is Tor then A is post-

liminal.

[Note: This is definitely not obvious.]

11.30 IEMMA Suppose that A is simple and postliminal -- then A is elementary.
PROOF Iet m:A > B(E) be a topologically irreducible x-representation -- then

m(A) o L _(E). But w_l (L_(E)) is a closed ideal, thus A = Tr_l(gm(E)) . At the same

time, 7 is faithful. Therefore m:A +~ L (E) is a *-isomorphism, so A is elementary.
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An elementary C*-algebra is unital iff it is finite dimensional. Combining
this with 11.30, we conclude that an infinite dimensional unital simple C*-algebra

is not postliminal.

11.31 EXAMPLE Iet H be a separable infinite dimensional complex Hilbert

space — then the quotient B(H)/L _(H) is not postliminal, hence B(H) is mot post-

limimal either (cf. 11.25).

[Note: For the record, Prim B(H) = {0,L_(H)} (cf. 10.41), while

~ [
$(B(H) ) = 20 (cf. 10.44).]

11.32 THEOREM Suppose that A is postliminal —- then every primary *-represen-
tation of A is geometrically equivalent to a topologically irreducible x-representation

of A or still, is unitarily equivalent to a multiple of a topologically irreducible

*-representation of A.

11.33 LEMMA Iet A and B be C*-algebras and suppose that A is postlimimal. Fix

a C*-rorm ||-]| [u on A 8 B -- then every topologically irreducible x-representation

z of A Qoz, B is unitarily equivalent to one of the form m & ¢, where [n] € A and
[z] € B.

PROOF On elementary general grounds, there are nondegenerate *-representations

Z;AZA -+ B(E)

(z:A @a B » B(E))

C,B:B - B(E)
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such that vA € A, v B € B,

Ta (&) zB(B)

(A ®B) =

Lg(B) gy ().

Both ¢ A and g are primary. But A is also postliminal, so 3 a topologically irre-
ducible x-representation m of A such that ¢ A is unitarily equivalent to Im = 7 @ id
(cf. 11.32). And, under this equivalence, g takes the form id & n, where n is a

topologically irreducible *-representation of B.

11.34 THEOREM Suppose that A is postliminal — then A is nuclear.
PROOF Let B be a C*-algebra and let X € A® B (X 2 0). Given a C*-norm

- loa on A 8 B, choose a topologically irreducible s-representation ¢ of A @ B

such that

[xll, = [lcx) || (cf. 10.36).
Then

[xll, = llr@m || (cf. 11.33).
But

Horem @ || < [xl] ;, (cf. 6.11)
=2
gy = T

gl = Iy

Therefore A is nuclear.
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11.35 REMARK It can be shown that

A,B postliminal => A @ B postliminal.

11.36 EXAMPLE Iet H be an infinite dimensional complex Hilbert space -—-
then B(H) is not postliminal.

[In fact, B(H) is not nuclear (cf. 6.27).]

[Note: If H is not separable, then for each cardinal K < dim H there is a

closed ideal 1'K c B(H) containing L (H), hence B(f)/L_(H) is not simple.]

11.37 IEMMA TFix A € A — then the function
[7] > ||m@) ||

is lower semicontinuous on A.
PROOF Fix € > 0. Given a topologically irreducible *-representation
m:A > B(E), choose unit vectors x,y € E:

<, m@y>| > [lr@ || - 5.

Then 3 a neighborhood U of [n] such that v [n'] € U, there are unit vectors x',y’
in E' for which
', @y'> - <« T@y>| < 5,

2
thus

|<x', 1t @)y'>| > ||r@) || - €

[rr@y || > ||m@ ]| - e.
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Suppose now that {[Tri] :1 € I} is a net in A:

[Tri] - [m].

Then [’ITi] is eventually in U, so

lim inf {]Tri(A)][ > ||lr@ || - ¢
i€T
or still,
lim inf Hwi(A)H z | jm@ || (e > 0).

iex

11.38 REMARK In general, the function

[r] + [|m@)|]
is not continuous on A but it will be if A is T2 {see the next lemma)

(a compact

subset of a Hausdorff space is closed).

[Note: The contimuity of the function
[r] > [|m @) ]

¥ A € A is equivalent to the condition that A be Tz.]

11.39 IEMMA Fix A€ Aand r > 0 —— then
s @) = {0l € A:||r@ || =}
is a compact subset of 7\
PROOF lLet {Si:i € 1} be a decreasing net of relatively closed nonempty subsets
of Sr(A) -- then it will be enough to prove that 121 Si z #. To this end, let

1. = N Ker 7.
[Tr}esi



17.

Claim:
la+ I, [] 2 x.
In fact,
A+ 1;][ = sw ||A+ Ker ||
[n]es;
But
||la + Rer m|| = inf ||a + B]].
B&Ker
and V B € Rer T,
r<|lr@|[]=[[r@+ B)]]
< |I=ll [la+ BY]
< ||a + B||.
Continuing, put
I=(ig:[ 1.y,
SO
lla+ I]| 2 r.

Since A/1 is a C*-algebra, 3 a topologically irreducible x-representation m of A:

ITcrRer m& ||n@a+ D] = |la+1]] (cf. 10.36).

Therefore

[w] € S, a).

But v 1 € I,

IicKer'rr

[7] € S, (cf. 11.14)
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[m] €8; (8 = §i n s, ()

n S, = 4.
jer *

11.40 THEOREM A is locally campact.

PROOF Fix [770] € A — then the claim is that ['IrO} has a basis of campact

neighborhoods. Thus let U be an open neighborhood of E"rrO]. Since S = A - U is

closed, 3 A € A:

TTO(A) 2z 0 and S(a) 0v [8] € § {(cf. 11.14).

Choose r > O:r < H‘ITO(A)H -- then

>

{Im] € A:||mr@) || > r}

is open (cf. 11.37), so

P

{In] € A:||w(@®)]] 2 r}

is a compact neighborhood of [11‘0] (cf. 11.39) which is contained in U.

11.41 REMARK If A is unital, then :‘1 is compact. Proof:
{[r] € A:] ln(lA) [| 2 1}

is a compact subset of A. But

Hr@ = idgll  (r:A + B(E))

= l.
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[Note: The converse is false: If H is an infinite dimensional complex

Hilbert space and if A = L (H), then #(A) = 1 (cf. 11.1), yet id, # L (H).]

N.B. The preceding considerations imply that Prim A is locally compact,
Prim A being compact if A is unital.
Using the notation of 9.33, each Z in the center Z(A) of DC(A) determines

a bounded continuous complex valued function
XZ:’Z‘ > _Q
via the prescription
XZ([TF]) = CZ(ﬂ).
If instead, we hold [7] fixed and let Z vary, then the assignment
Z > Xy (IT])
defines a character O of Z(A) (note that
O (pegy? = D -

In summary:

Xg, € BC(A)

@ L] € AEA)).

11.42 RAPPEL 2n element Z € Z(A) is a pair (Z,7) such that V A,B € A,

¢(A)B = £(AB) = A (B).


http:stm:JTta.ry

20.

11.43 IEMR v [7] € A,
Ker Ol = {2 € Z(A):z(A) < Ker 1}.

[One has only to recall that by construction (cf. 9.32),
_ n n

m(2) (I wa)x) = I Tr(g(Ai))xi.]
i=1l i=1

It follows that w[ﬂ] depends only on Ker m, so there is a continuous function

¢:Prim A » A(Z(A))
such that vV 7,

¢({Ker ) = w[ﬂ].

11.44 THEOREM The map

Z(A) » BC(Prim A)

Z>7 0 ¢

is a »—isamorphism.

[Note: We have

(Z o ¢) Rer w) = Z(ww])

= O (Z)

%y ([T .1

The only issue is surjectivity and for that we'll need a couple of lemmas, the

first of which is standard fare.
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11.45 ILEMMA Iet Ik cA (k=20,1,...,n) be closed ideals. Suppose that

AEIO+Il+---+In.

'Ihen\;r'€>0,3Ak€ Ik:

A=RAj+A +--- +A and HAkH < 2+ ¢)||al].

PROOF Proceed by induction, the statement being trivial if n = 0. To pass
from n to n + 1, choose

BEIO+11+-~+In
such that A - B € T . Since
n+l

(Tg + wee v T W1

= (I0 + aes + JI.’n)/(IO F oeee + In) g In+l’

one can assume that

[BI] < @+ enllal],

where €' > 0 will be specified below. Iet £" be another positive parameter which
will also be specified below -- then the induction hypothesis applied to the pair

(B,e") gives rise to a decomposition

B=A,+ A +~-+An (Akel'k)

4 1
with
[ [ = 2+ em [[B]].
Put
A, =A-B.
Then

A=B+ (A - B)
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= A + A. + e+« + A

0 1 e+l
=>
HAOH s 2+eM|Bll = 2+em@+en]nl
A [l = @+en|Bl] = @2+ em@+e)][all
a1 < [all + 1[Bl] s @+ e llall.
Now take €',€" small enough to force
26" + €" + g"e' < £,

N.B. Take € = 1 to get the estimate

Al = 3liall.

To simplify the writing, let P stand for a generic element of Prim A and let

prP:A + A/P be the quotient map -- then

N Ker pr, = {o}.
P

11.46 IFMMA Fix e > 0 and A € A, Tet £ € BC(Prim A) -thenaBgeAsuch

that V P € Prim A,

HPrP(Bg) - £@pr, @ || < e.

PROOF BAssume for sake of argument that f£:Prim A + [0,1]. Fix n and define
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open sets
R k-1 k+1
Ok = {P € Prim AS"H"‘ < f£(P) < -'-n—'-} k = 0,1,...,n).
Obviocusly,
n
Prim A= U Ok
k=0

and each P € Prim A belongs to at most two of the Ok' Let

1 =ﬂ{PEPrimA:PEOk}.

k
Then
Peok<=>1k¢?9
and
I0+Il+' +In=A
By 11.45, 3 A € I :
A=Ry+Aa + - +A and |l < 3[[a]].
let
n
Bn= z %Ak
k=0

Then v P € Prim A,

| |prP (Bn) - £(P) Pry (@) ||

n
k
2 Grpp®y) - £(P)pr, (3)) ||

It

Tk
szo G - £@)pr 3y ||

<2 |Iall.
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Choose n > > 0:

and put

N.B. If Bé also has the stated property, then

|IB. - B'|] < 2e.
e €

Proof:
lIB. - Bl = sw ||rB, - BN
[r]€A
= sup | lpr, (B) - pr_(B") ||
PEPrim A T © PE
< sw (|lpr, (B) - £(@)pr @ ||
PEPrim A bre P

+ [lE@ pry @A) - pry (B |

< 2e.

The sequence {B _} generated per 11.46 is therefore Cauchy, hence converges

o1
to an element T(f,A) € A, and V P € Prim A,
prP(T(f,A)) = f(P)PrP(A) r
an equation that characterizes T(f,A) (since N Ker pr, = {oh.

P
Let

c:f(A) = T(f,n) (A € A).
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Then gf:A + A is linear.

[Note:

= =>f:= -
Le = g, g

Proof: v P € Prim A,

Pry (T(£,A)) = 2 (T(g,7))

£ (P) Prp (n) g(P) Py (a)

£ (P)

g(P) (3 A:prP(A) z 0).]

11.47 IEMA V A,B € A,

z;f(A)B = gf(AB) = ACf(B).

PROOF V P € Prim A,

pry, (T(£,2)B) = pr,, (T(£,A)) pr, (B)

i

£(p) Py (n) Prp (B)

£(P) Py (AB)

il

28 (T(£,AB)).

Put

Zf = (z.;f; Cf) .
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Zc € Z(A) (cf. 11.42)

and we claim that

~

Zfoq‘u:f,

thereby establishing surjectivity in 11.44.

First,v m & V A,

T(ce () = T(z)T(A)
= Xy ([T]) 7 (R)
= (2, ° @) (Ker MT(@).
But
(g, (a))
Zf ° ¢
ST, W) - (2 0 ) (Ker WA+ (Zg © ¢) (Ker MA)
Zf ° &
Sn, @) - (20 &) (Ker MA) + 1((Z, © ¢) (Ker MA)
Z. 0 9
£

= ﬂ(T(gf ° ¢,A) - (gf o ¢) (Ker m)A) + Tr((/Z\f o ¢) (Ker 7)A)

T((Zg © ¢) (Ker A

(2 © §) (Ker M)

it

SoV w& VA,

Tr(cf(A)) m{z (a))

Zfocb
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=>
@ =, A
Zf ° &
==>
e =G
f ~
Zf o ¢
=>
f= Zf o ¢.

11.48 REMARK One can work with A rather than Prim A provided A is T,
(cf£. 11.10), in which case

Z(A) ~ BC(A).

11.49 L1LEMMA The map
Prim A - Prim DC(A)
that sends

Ker m to Ker m

is a continuous injection with a dense range.

[The closure of the image of Prim A in Prim DE€(A) consists of those Q:

0> N Ker 7.1
T

Since DC(A) is a unital C*-algebra, Prim DC(A) is compact. And, as will be
seen momentarily, one can assign to each

f € C(Prim DEC(A))
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an element
o(£f) € BC(Prim A)
with the property that

o(f) (Rer 1) = f(Rer m.

11.50 THEOREM The map

I— C(Prim DC(A)) -+ BC(Prim A)

£ > ¢(f)

is a #-iscmorphism.
PROOF Injectivity is implied by 11.49, leaving surjectivity. To deal with it,

note that the arrow

l“ Prim A - Prim Z(A)

Ker m ~ Ker 7|Z(A)

factors as

Prim A -+ Prim DPC(A) - Prim Z(A)

fram which an induced map

C(Prim Z(A)) - C{Prim DC(A)) i{i BC(Prim A).
But

C(Prim Z(A)) = C(A(Z(A)))

so from 11.44, the arrow
C(Prim Z(A)) - BC(Prim A)

is bijective, hence ¢ is surjective.
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11.51 RAPPEL Let X be a toplogical space -- then a Stone-Cech campact-

ification of X is a compact Hausdorff space X and a continuous map BX:X -+ BX

such that for every compact Hausdorff space Y and every continuous function f:X - Y

there is a unique continuous function £':BX » Y with £ = f' o BX.

[Note: It is not assumed that X is Hausdorff. Still, BX always exists
{cf. 11.53) and is essentially unique. Incidentally, the image of X in BX is dense

and is all of BX if X is campact. ]

11.52 REMARK Let TOP be the category of tepologicalspaces and continuocus
functions and let CPT, be the full subcategory of TOP whose objects are the compact
Hausdorff spaces -- then the Stone-Cech compactification determines a functor

g:TOP - CPT,.
Indeed, if X,Y are topological spaces and if f£:X + Y is a continuous function then

there is a comutative diagram

X — ¥

Wl A

BX —> BY ’

Bf being the unique filler for

X Y

sxl lsy

BX -++>BY .
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On the other hand, there is a forgetful functor

CPT, - TOP

iy TAYE

and B is its left adjoint, so B preserves colimits (cf. 3.24). E.g.: If {Xi:i €1}

is a collection of campact Hausdorff spaces, then its coproduct in CPT,, is

8] x,).
i

11.53 ILEMMA ILet X be a topological space. Define e€:X + Prim BC(X) by e(x) =

Ker €yt where € is evaluation at x — then the pair
(Prim BC(X) ,€)

is "the" Stone~Cech campactification of X.
[Note: BC(X) is a unital commutative C*-algebra, hence Prim BC{X) is a compact

Hausdorff space.]

E.g.: Tracing through the various identifications, we have

B Prim A = Prim BC(Prim A)

144

Prim Z(A) {cf. 11.44).



§12. W*-ALGEBRAS

et H be a complex Hilbert space -~ then a *-subalgebra A ¢ B(H) is non-

degenerate if the linear span of the set

AH = {Ax:A € A,x € H}
is dense in H, i.e., if AH is total.

[Note: A unital x-subalgebra A < B(H) is automatically nondegenerate. ]

12.1 REMARK If A c B(H) is a C*-subalgebra, then H is a left Hilbert

A-module (||ax|| < ||a]] ||x|]), hence in this situation, AH is a closed linear

subspace of H (cf. 4.2), thus H = AH if A is nondegenerate,

12.2 RAPPEL The arrow

B(H) - L (M)*

that sends A to }\A (A € B{H)), where

A (T) = tr(AT) (T €L, (H),

is an isometric isomorphism, thus B(H) can be equipped with the weak* topology
arising from this identification.
[Note: Accordingly, the weak* topology on B(H) is generated by the seminorms

Hallp = [er@) | (T €Ly (H).]

12.3 THEOREM Suppose that A is a nondegenerate *-subalgebra of B(H) -- then

A is dense in A" per the weak, the strong, and the weak* topologies.



So, as a corollary, if A ¢ B(H) is a nondegenerate x-subalgebra, then the

following conditions are equivalent:
1. A= A";
2. A is weakly closed;
3. A is strongly closed;
4. A is weak* closed.

N.B. Therefore A is necessarily unital.

A von Neumamn algebra is a *-subalgebra A < B(H) such that A = A".

E.g.: A' is a von Neumann algebra, In fact, (A')" = A''' = A',

12.4 REMARK A von Neumann algebra A is weakly closed, hence norm closed, so
A is a unital C*-algebra.

[Note: Suppose that A is a weakly closed C*-subalgebra of B(H). Let

HO = N Ker A.
AcA

Then Hé is A-invariant and A]Hé is a weakly closed nondegererate *-subalgebra of

B(Hé} , hence is a von Neumann algebra. ]

12.5 EXAMPLE B(H) is a von Neumann algebra. On the other hand, L _(H) is not
a von Neumam algebra if H is infinite dimensional. To see this, fix an orthonormal

basis {ei:i € I} for #. Write P, for the orthogonal projection onto Ce, and given

a finite subset F < I, put



Then the net {PF} is strongly convergent to idH' But idH g L_(H.

12.6 LEMMA If S is a subset of B(H) which is closed under the x-operation,

then S§" is the smallest von Neumann algebra containing S (the von Neumann algebra

gererated by S).

12.7 RAPPEL Suppose that {Ai:i € I} is a bounded increasing net of self-
adjoint operators on H -~ then

sup A, € B(f)
ier * SA

exists, call it A. So, Vi, A, <A and if B € B(H)SA has the property that Vv i,
Ai < B, then A < B.

[Note: We have
1. Ai -+ A weakly;
2. A:i. + A strongly;

3. A, > A weak*. ]

If A ¢ B(H) is a von Neumann algebra and if {Ai:i €1} c ASA is a bounded

increasing net, then it is clear that

sup A, € A_.,.
jer * Asa

Conversely:

12.8 THEOREM ILet A c B(H) be a unital C*-algebra. Assume: Y bounded



increasing net {Ai:l €I} c ASA’

sup A, € .
jer * =

Then A is a von Neumann algebra.

A C*-algebra A is monotone camplete if every bounded increasing net {Ai:i €I}

in ASA has a supramm in ASA'

E.g.: Every von Neumann algebra is monotone camplete.

12.9 IEMMA Suppose that A is monotone complete —— then A is unital.

PROOF Let {ei:i € I} be an approximate unit per A (cf. 1.20). Put

e = sup e,
ier

and let m:A > B(E) be a faithful *-representation of A (cf. 10.37) — then, due
to the nondegeneracy of , Tr(ei) - idE strongly. But v i €I, Tr(ei) < m(e), thus
idE < m(e), so m(e) is invertible in B(E) or still, is invertible in 7m(A) + C idE.

Accordingly, YA € A, VYV c €C,

) me) Tim@) + o id) = m(a) + ¢ id.
Wri te
me) L = m(A,) + ¢ id;

and take A= 0, ¢ = 1 to get

m{e) (TT(Ae) +c, idE) idE = idE’



Tr(eAe + cee) = ldE

idE € m(A).

Therefore A is unital.

12,10 REMARK Iet A be a unital commutative C*-algebra -~ then A is monotone
complete iff A(A) is a compact extreamely disconrected Hausdorff space.

[Note: The term "extremely disconnected" means that the closure of every

open set is open. ]

A W*-algebra is a C*-algebra A which is *-isomorphic to a von Neumann algebra.

N.B. A W*-algebra is unital and monotone complete.

12.11 REMARK Iet A be a unital commutative C*-algebra —- then A is a
Wr-algebra iff there exists a locally compact Hausdorff space X equipped with a
positive Radon measure u such that A is isometrically *-isomorphic to the algebra
L7”(X,1) of essentially bounded p-measurable furnctions on X.

[Note: The pair (X,u) is not unigue.]

If A and B are monotone complete C*-algebras, then a positive linear map
9:A > B is said to be normal if for every bounded increasing net {A.:i € I} c A,

we have

o (sup Ai) = SUp @(Ai,) .
iex iel
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12.12 IEMMA A *-iscmorphism between monotone complete C*-algebras is normal.

Take B = C —— then it makes sense to consider normal positive linear function-

als on A, in particular rnormal states on A:Sn(A) c S(A).

12.13 LEMMA Suppose that A is a von Neumann algebra. Let w:A >~ Cbe a

positive linear functional -- then w is normal iff w is weak* continuous.

12.14 THEOREM Suppose that A c B(H) is a von Neumann algebra. ILet

w € S(A) —— then w is normal iff 3 a density operator W € W(H) such that vV A € A,

w(@d) = tr(wa).

[Note: Recall that a density operator is a positive trace class operator W

with trW) =1 (cf. 7.13).]

N.B. It is thus immediate that the normal states separate the points of A,

i.e., YA 20, 3wE€E Sn(A) :w{n) = 0.

[Note: Consequently, VA = 0, 3 w € Sn(A) () = 0.]

Suppose that
A < B(H)

B < B(K)

are van Neumann algebras.

12.15 ILEMMA Iet ¢:A - B be a positive linear map -- then ¢ is rormal iff

¢ is weak* contimpus.



12.16 THEOREM ILet ¢:A -+ B be a *-hawmorphism. Assume: ¢ is normal -- then
Ker ¢ is weak* closed and Ran ¢ is weak* closed.

[Note: It follows that Ran ¢ is a von Neumann algebra if ¢ is unital.]

12.17 EXAMPIE Let w € S(A) and consider its GNS representation m° —- then
™A > BEY) is a unital *-hamcmorphism. Moreover,
w normal => ™ rormal,

hence ww(A) c B(Ew) is a von Neumann algebra.

A projection in the center of A is called a central projection.

12.18 IEMMA Suppose that I c A is a weak* closed ideal —- then 3 a unique

central projection P such that 7 = PA (= AP) and V A € A,

0

PA = P(PA) P(arP) = (PA)P = AP.
[Note: We have

= PA ® PTA.]

p-
L

12.19 REMARK In the context of 12.16, one can thus say that there exists
a unique central projection P such that Ker ¢ = PA ard ¢ is a *-isomorphism of PYA

onto Ran ©¢.

Suppose that A is a W*-algebra —— then A is monotone complete and the normal
states separate the points of A. Comnversely, as we shall now see, these properties

are characteristic.
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[Note: If AO c B(HO) is a von Neumann algebra and if ¢:A - Ao is a x-iso-
morphism, then ¢ is normal (cf. 12.12). So, V wy € Sn(AO), wg © 2 € Sn(A).

But Sn(AO) separates the points of AO' Therefore Sn (A) separates the points of A.]

12.20 ILEMMA Suppose that A is monotone complete. Iet w be a normal positive

linear functional on A -- then for any bounded increasing net {Ai:i €1} < AS.A’

™ (Ai) converges strongly to ™@) (A= sup Ai) .
ier

PROOF Let U € A be unitary —- then

vAy L = sup UAiU'l

ieT

<1® (1) X s (@) W) xw>w

=<x ,m (U"IAU)x >
{3} w W
= w(U‘lAU}

= sup w(U—lAiU)
ier

W yp=L
= Sup <X ,T (U AiU) X370
iel

= sUp <TTw(U)X ,ww(A‘.)ﬁw(U)x >
- W i W w
1el

1/2Trw 1 12

. w w
Lim || (r"@) - (8)) m

(Nx
ier w

= 0,



Since the finite linear combinations of unitary elements exhaust A and since
TTm(A)Xm is dense in Ew, it follows that

(@ - @2

corverges strongly to zero, which implies that ™ (Ai) converges strongly to ™(@a).

12.21 THEOREM Iet A be a C*-algebra. Assume: A is morotone complete and
the normal states separate the points of A -~ then A is a W*-algebra.

PROOF Let

W
T .

=

T ®
MR e (W)

Then TNOR is a faithful #-representation of A on

Eyor = @ E®.
WESn (A)

Mor:A * Tyor (A

is a *-isomorphism, thus to prove that A is a W*-algebra, it suffices to prove that

Mo A« BlEgg)

is a von Neumann algebra and for this, we shall appeal to 12.8 ( (A) is unital

"™NOR

(cf. 12.9)). ILet {A,:i €I} c AS be a bounded increasing net and put A = sup A, ——
* A ier *

thenv w € S!}(A) . 'n'm(Ai) converges strorgly to m(a) (cf. 12.20), hence WNOR(‘A]._)

converges strongly to TNOR (A). Mearnwhile

TorPi) * SR Tyon

a.)
11 1

strongly. Therefore
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s TorBi) = Mor®) € Myop(A) -

I.e.: WNOR(A) is monotone camplete.

12.22 REMARK There are examples of monotone complete C*-algebras A:

S (A) = {0}. Such an A canmot be a W*-algebra.

The predual of a von Neumann algebra A is the set of all weak* continuous

linear functionals on A. Notation: A,.
So, e.q.,

B{H)y = Ly (H) -

12.23 IEMMA Iet w:A » C be a weak* contimuwous linear functional.
v A€ A,

w@d®) = @Y.

Then 3 unique weak* continuous positive linear functionals

w, A > C

w_tA+C
such that

W=, T W
and

_|

Hofl = e |1+ o

Assume:
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[Note: It is a corollary that every element of A, can be written as a linear

cambination of four weak* contimuous positive linear functiomals (cf. 7.11).]
12.24 LEMMA A, is a norm closed subspace of A*.

Therefore A, is a Banach space.

12.25 THECREM Let A be a von Neumann algebra — then the arrow I':A » (A )*
defined by the rule

A (w = w@) AcA wed))
is an isometric isamorphism,
[Note: T is also a homeomorphism if A and (A,)* are endowed with their re-

spective weak* topologies, thus the closed unit ball Al of A is weak* campact.]

Let X be a camplex Banach space — then a camplex Banach space Y is called a
predual of X if X is isametrically isomorphic to Y*.

[Note: If X is reflexive, then X = (X*)*, thus the dual X* is a predual.]

E.g.: Take X=A, ¥V = A,.

12.26 LEMMA Let A be a C*-algebra ~- then up to isometric isomorphism, A

admits at most one predual.

12.27 EXAMPIE In general, preduals are not unique: Take H = £l and let
T Y. =c

-~ then ¢ is not isametrically isamorphic to Cyr YOt c* and cg are
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both isometrically isamorphic to £1.

12.28 THEOREM Iet A be a C*-algebra. Suppose that A has a predual V —
then A is a W*-algebra.

Because the proof is samewhat involved, it will be convenient to proceed via
a series of lemmas, the goal being to finesse the matter by an application of 12.21.
So let A be a C*-algebra with a predual V — then by definition, there is an
isametric isamorphism ¢:A > V*, Use ¢ to transfer the weak* topology on V¥ to A
and call it the V*-topology. This done, given v € V, define wV:A + C by

w, (a) = <v,¢(n)> (a € A).
Then the set

{w,:v € v}
is the subset of A* consisting of those linear functionals that are continuous per
the V*~topology.

[Note: To say that A, + A in the [*-topology means that vV v € U,

w, A) > (a).]

12.29 1IEMMA A is unital.

PROOF The closed unit ball Al of A is compact in the V*-topology (Alaoglu),

hence has an extreme point (Krein-Milman). Therefore A is unital (cf. 1.30).

12.30 RAPPEL (Krein-Smalian) Iet E be a complex Banach space; let E* be its

dual and let B* be the closed unit ball in E* ~— then a convex subset S < E* is
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weak* closed iff each of the sets § n rB* (r > 0) is weak* closed.

[Note: Here is an application. Suppose that w:E* > C is a linear functional —-
then » is weak* continucus iff the restriction w|B* is weak* continuous. Proof:
Ker w N B* is weak* closed, thus Ker w is weak* closed, which implies that w is

weak* continuous. ]

12.31 1EMMA ASA is closed in the V*—topology.
PROOF It is enough to prove that

1 _ 1
AS -ASAHA

is closed in the V*-topology (Krein-Smulian). So let {Ai:i € I} be a V*~convergent

netinAéAandwritethe limit as X + /-1 ¥ (X,Y € A

sp) + the claim being that ¥ = 0.

To establish this, note that v n € N, {Ai + V=1 nlA} is V*—convergent to X + V-1

(nlA+ Y). And then

1+nH2 HAi + s/’:]fnlAH
=9
(1 + 0?2 > Lim inf | [a, + /2T n1,]|
ier .

v

1%+ /=1 (n1, + V) ||

'

|In1, + ¥[].
If Y is not zero, one can assume that its spectrum contains sane r > 0 (otherwise
work with {- A,:i € I}), thus Vv n €N,

r+n s |inlA+YH < 1+ )2
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or still,

r2+2rn+n231+n2,

an impossibility. Therefore ¥ = 0, as claimed.

12.32 LEMMA A+ is closed in the V*-topology.
PROOF It is enough to prove that
1 1
A+ = A+ nA
is closed in the V*-topology (Krein-Smulian). But

1.1
_-2-(A + 1

1
A sa Q-

+

12.33 ILEMMA A is monotone complete.

PROOF Let {Ai:i € I} be a bounded increasing net in ASA' Because AéA is
compact in the V*~topology, there is a subnet {Aj:j € J} which is cormwergent to an
element A € ASA' But ¥ A, Aj is z 4, eventually, hence A = A, (A+ being closed in
the V*—topology (cf. 12.32)). On the other hard, if B € ASA and if B > A, for all i,
then B = Aj for all j, so B 2z A. Therefore

A = sup Ai'
i€eT

which proves that A is monotone camplete.

Bearing in mind 12.21, to finish the proof of 12.28, we have to show that the
normal states separate the points of A. Ard for this, sane additiomal preparation

is required.
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12.34 RAPPEL (Uryschn) Let X be a topological space. Suppose that {xi}

is a net in X - then lim x; = x iff every subnet {xj} has a subnet {xk} such that

lim X = X.
[1f X, does rot converge to x, then 3 a redighborhood U of x with the following
property: v i, 33 = i:xj £ U. But the subnet {xj} has a subnet {x_} such that

the ¥, are eventually in U.]

12.35 I1EMMA The involution *:A -+ A is (*-continuous.

PROOF The V*-topology is the initial topology per the linear furctionals
A (A) (v ewn.

So, to conclude that the involution *:A + A is V*~continuous, it suffices to prove
that v v € V, the arrow
*
A > mV(A )
is V*-continuous and for this, it can be assumed that ||A|] =< 1 (cf. 12.30).
Accordingly, fix v € V and suppose that A, >0 in the V*-topology —-- then the
contention is that w _(A%) > 0. Consider an arbitrary subnet {mV(Ag) }. Since

[asl] = Tlagll < 1,

it follows fram the V*~campactness of Al that the net {Aﬁf} has a V*-convergent

subnet {Aﬁ}:

A§—>B.

Claim: B = 0. To see this, note that
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Ak+AJ:->0+BEA
i S N
/T /T

ASA being closed in the V*-topology (cf. 12.31). But

B* = , (-..].3._)*=__§_
V=1 /=1
=>
(- B ¥ _-B _ B __B
/I Y e S
=>
B = 0.

Therefore
w, (B) > w (0) =
Now apply 12.34 to get

%*
wV(Ai) -+ 0.

12.36 LEMMA If W, is positive, then W, is rormal.

PROOF In the notation of 12.33,

o= .
A = Ai W, n = W, (Al

A

2

)

=> mV(A) > sup w_{A,).

1€eT

w_(A.) < sup w_(A.)
v ieT vl
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w_(a) = lim w_(A.) < sup w_(A,).
v jes ¥V ier V1

[Note: Recall that Aj + A in the V*-topology and wv:A » C is contimuous in

the V#*-topology.]

12.37 RAPPEL (Halm-Banach) Iet E be a real Bausdorff ICIVS. Tet S ¢ E be
a closed convex cone — then vV x € E - §, 3 a continuous linear furctional 6:E -+ R

such that 6(x) < 0 and 8|S 2 0.

E.g.: Take E = A

s’ S= A+ and work with the V*-topology -- then

Y A€ ASA - A+, 3 a V*-continuous linear functional G:ASA -~ R such that 6(A) < 0
and 8|A, = 0.
N.B. Extend 6 to a linear functiomal w on all of A by writing

WX+ /~1Y) = 8{X) + /-1 8(Y) (X,Y € ASA).

Then w is *-continuous (cf. 12.35) and, by construction, is positive, hence normal

(cf. 12.36}.

12.38 IEMMA Iet A € A and assume that W, (A) = 0 for all V*—continuous
positive lirear functionals W, on A — then A = 0.
PROOF Write

A=Re A+ v-1 ImA.

Then V wv,
wv(Re A =0

wv(Im A) =0

L R RN
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and from this we want to conclude that A = 0, which will be the case if

ReA =0

Im A

Il
o)

Consider Re A:

ReA = (Re D), - (Re B) _.
Suppose that Re A £ A+ => (Re A) _ = 0) -- then 3 W, :
wv(Re A) <0 (cf. supra).

As this can't be, it follows that (Re A) = 0. BAnalogous considerations apply to

Im A, thus (Im A)_ = 0. Therefore
A= (Ren), + /:f(IInA)+
and ¥ w_,
v

u)v((Re A)+) =0

il
o

w, ((Im ) )

Consider (Re A)+. If (Re A)+ z 0, then
- (Re A)+ € ASA - A+ (CE. 1.24),

SO 3 W s

wv( - (Re A)+) <0 (cf. supra),

a contradiction, hence (Re a), = 0. similarly, (Im A), = 0. Therefore A = 0.

The upshot, then, is that the normal states separate the points of A, which
canpletes the proof of 12.28.
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12.39 REMARK Write A, for the subspace of A* spanned by the normal positive
linear functionals —- then

A, = {u)V:V € VI.

Suppose that A is a von Neumann algebra.

e Write Pro(A) for the set of all projections P in A.

e Write Fn(A) for the set of all norm closed faces F in Sn(A) .

—

o Write IL(A) for the set of all weak* closed left ideals I in A,

—

Equip each of these entities with their natural ordering.

12.40 THEOREM

® There is an order preserving bijection

o:Pro(A) > F (4.

® There is an order reversing bijection
¥:Pro(A) - IE(A) .

e There is an order reversing bijection
@:FE(A) - II_J(A).

[The relevant definitions are as follows.
o: Iet

o) = {w e Sn(A):w(P) = 1}.

Then ®—l (F) = P, where P is the smallest projection such that w(P) = 1 for all w € F.
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b
r

Y{P) = {A € A:AP = 0}.
Then ‘P_l(I) = P‘L, where P is the unique projection such that T = AP.

9: Take 0=V o gL - then

O(F) = {A € A:w(A*A) = 0 V w € F}

o) = {we S_(A):w(@a*a) = 0 v A € 13.]

Given P € Pro(A), let

F_. = &(P),

thus

Fp = {w € Sg(A):w(P) = 1}.

12.41 LEMMA Every Y in the convex hull of F, UF | can be written as a unique

Pp

canvex carbination
Yy=Xx0+ (1 -« XN,

where ¢ EFp, T € FPL.

Iet FP c Sn(A) be a norm closed face —-- then FP is said to be a gplit face if

the convex hull of FP UP 1dis all of S_(A).
pt 2

12.42 LIEMMA Fp is a split face iff P is a central projection.
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[Note: Suppose that P is a central projection —-- then

wE Fy <=>VAE A, w(®a) = w(@).]

Tet » € S_(A) and form w> as in 10.4:

WB@) = w(B*AB) (A € A)
or still,
B W oW o)
w (A) = <B",m (A}B >0
If w(B*B) = 0, then
B W W
M: < -——-B———]-_/—/f R -n'w(A) ___E__..]?i_>w.
w (B*B) w (B*B) w{B*B)
But
18], = wEm 2 (of. 510).
Therefore
B
w. = w
B w (B*B)

is a vector state which, moreover, is normal (cf. 12.17).

12.43 1EMMA Iet F, < Sn(A) be a split face. Fix w € Fp and suppose that

w(B*B) # 0 -~— then wy € Fp.

PROOF We have

1}.

Fp = {w € SE(A) :w(P)

Since Fp is a split face, P is central, so
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w(B*B)uy (1) = o2 (ph)
= w(B*PJ'B)
= u((B*B)PY)
< w(B*B) l/zw(Pl) 12 (cf. 7.8).
l=wﬂﬂ=w@+PH

= w(P) + wEh

1+ w@Et)

=> u)(PJ') =0 = wB(PJ-) =0 => wB(P) =1 = € FP_



§13. THE DOUBLE DUAL

Given a C*-algebra A, let

weS (A)

Then 7 is faithful. Moreover, the image A=T(A) is a nondegenerate x-subalgebra

of BEY E= @ EY). Therefore A is dense in A'! per the weak, the strong,

wES (A)

and the weak* topologies (cf. 12.3).

13.1 LEMMA Each w € S(A) has a unique extension to an element w € Sn(Z”):
w=wo T.
PROOF Uniqueness follows from 12.13. BAs for existence, view X € E” as an

element x of E and let & be the restriction to A'' of the vector state w_ -- then

xw
VA EA,

w(A)

w
<x ,m (A)x >
) o w

= <— b= X >
xwi“(A)Xw

= w_ (T(A)
X
W

= (@ o M(n).

N.B. The procedure is exhaustive in that every element of sn(',i- ') arises in

this way.

13.2 REMARK On Z”, the weak and the weak* topologies coincide.



[Every normal state on A'' is a vector state.]

13.3 THEOREM The map

S(A) ~ SQ(A' ')

w > w

is an affine isomorphism and extends to an isometric isomorphism

Ax > (Arry,
0 Q.
PROOF The only thing that has to be checked is the fact that
Holl = Hell (e A%).
However, according to 9.47, the closed unit ball AL (= TAh) is weakly dense in

the closed unit ball of A''. But & is weakly continuous (cf. 13.2), so

[lo]] = sup |[(@ o ™ (&) |
acAt
= sup |w(A) ]
acAt
= ||wf}.

13.4 REMARK The dual of the arrow
Ax > (K")*
is an isometric isomorphism

((AT1), )% ~ A%x,



Therefore (A''), is a predual of A**. As it will be shown below that A** is a

C*-algebra (cf. 13.20), this means that A** is actually a W*-algebra (cf. 12.28).

There is an arrow
Ave L ((K")*)*,

viz.

TA) (0 = @) (cf. 12.25).

Denote by A the composite
- I“ —
Ary 5 ((VAII)*)* > Ak

Then v A € A'', A(R) is that element of A** which sends w to ®»(A) and by construction,
A is an isametric isomorphism.

N.B. The diagram

cammutes. For let A € A — then on the one hand, Zg(w) = u(a), while on the other,
ATA)) () = 0(T@)) = (W o T (@A) = w@).

To proceed further, it will be convenient to introduce some formalities.

So let A be a Banach algebra.

e Given A € A, define linear maps A ~ A by

AB

L, (B)

BA.

i

R, (B)



L;\.: A* o A%

IS"_‘\:A* > A%,

® Given w € A*, define
w, € A*

w € A*

Wy = (Lz) (w)

e
]

A0 = (RE) (@)

e Given f € A**, define

£ @ =f (wA)

wf(A) = f(Am).

13.5 ARENS PRODUCT Given f,g € A** define

fLXgEA**

fXRgEA**



by

13.6

13.7

13.8

13.9

We have

We have

(w,)

We have

We have

2’8 = “aB’

Ul

(fog) (w) =f(gm)
_ (fog)(w) =g(mf).
g1 < 1wl 11a]
ol b < ol | |Ial].
(g = plug), AW = ,q0.
Hewll = [wl ] [£]]
[lwgll = [l [1€]].



13.10 IEMMA We have

HE L < gll = [EL] Tlgl]
e xgall = Ll sl
13.11 LEMMA We have
fogw=f(gw)
wfog (wf)g.
Now bring in the canonical injection
TOA > ARE
Ao
13.12 IEMMA We have
o=
A A
W, = Wy
13.13 LEMMA We have
T A xE=AX_ f= L&)
£ xg:fx le—

y R A= (®RE%) (D).



13.14 THEOREM Either Arens product makes A** into a Banach algebra and the
arrow A > A** ig an injective homomorphism w.r.t. both:

”~

~ A
A . xB= (aB)

A
(AB) .

=
X
(vo 357
!

[Note: If A is unital, then lA is a unit for either Arens product.]

x _ colncide (in

Definition: A is Arens regular if the two products L% X g

which case we simply write £ X g).
13.15 EXAMPIE Take G per 5.17 -- then Ll(G) is Arens regular iff G is finite.

1 oo
—_ —_— x *%k —
12.16 EXAMPLE TakeA—co then <3 £ andt:0 £, HereLX XR

and is just the elementwise multiplication on L.

Suppose in addition that A is a Banach x-algebra. Assume: The involution

*:A + A is continuous.

*Given w € A*, define w*:A > C by

w*(A) = w{a*).

Then w* € A*, the map w -+ w* is a linear involution on A*, and

(mA) * = " {w*)

(Aw)* = (w*)A*.



® Given f € A**, define f*:A* > C by

£*(w) = £(w¥).
Then £* € A**, the map £ » £* is a lirear inwdlution on A**, and

(w*)

*
(fw) o

(w*) .
f*

() *

13.17 EXAMPIE Take A to be a C*-algebra -- then
ARY & Axk

is x-linear: v A € A",
A(B*) = AA)*.

In fact, v w € A*,

A(B*) (w) = w(a*),
while
A@)Y*(w) = A(R) (w*)
= (w*) (&)
= (w)*(B)
= B(B*).

13.18 IEMMA We have



(£ L X g)* = g* x _ £*

k. % *
Expo*=g  x £

Consequently, if A is Arens regular, then A** is a Banach *-algebra.

13.19 THEOREM Suppose that A is a C*-algebra —- then A is Arens regular.

PROOF Given %,y € E, define w_ _ by

w_ (T) = <x,Ty> (T € B(E)).

Then

w o T E A¥*

and V £ € A**, the expression

is conjugate linear in X, linear in y, and

[£__em| = [I£]] o _ ol
X,y X,y
< el =l Hyll,
so 3 a unique operator
Qp € B(E)

such that
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The map
A¥* . B(E)
Q2
f— Qf
is norm preserving (|[2g|| = [[|£|]) and v A € 4, Q@) = T(A), i.e., there is a

commtative diagram

A ——— Axk

AT

B(E) — B(E).
Lastly:
y>

=f_ xg(w _eom
X,y

£(_(w o )
93,3

£ (w o )

§,szg§

= <§,Qf§zg§>.

]

£xoglw _om
X,y

g((w_ . ° T?)f)

X
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li
Q
—~
e

Q
=t

[Note: It is clear that the span of the w_ _ ° 7 is all of A* but more is

true: Every w € A* "is" an w_ _ °o T.]
X,y

N.B. We have

>
X
@

i

ey

f*

[To check the second point, write

XK,0 ¥>=f*w__o°m
£* X,y

= f((w__ o m*

I
Fh
Ay
S
]
a

i
A
]

g
<1
vV
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13.20 LEMMA Suppose that A is a C*-algebra -- then A** ig a C*-algebra.
PROOF V £ € A**,

[[£% < £]]

I
B)

l
B)
._h
*
O

il

2
*

O

|
G

Maintaining the supposition that A is a C*-algebra, note that Q(A**) = Av

and consider the composite A o Q:

Q A

Ak o> A" 5 Ak
Then vV £ € Ax*,

(Ao Q) (£) = A(Q)

M) (w_ _ o T

il
€
1
O

|
£
O
|
v
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Therefore

Ae R=1dd .
Ak

13.21 IEMMA A is a *-isomorphism.
PROOF We already know that A is an isametric isamorphism which, moreover,

is *-linear (cf. 13.17), thus one has only to show that

A(BB) = A(R) x A(B) (B,B e AM).

But

A(AB) A(,Qfﬂg) A=Q., B=Q)

il g

A(Q

%, g

=fxg

It

A(Qf) x A(S'zg)

A@) x A(B).

il

N.B. Therefore A is normal {cf. 12.12).

[Note: Recall that A** is a W*-algebra (cf. 13.4), hence is monotone camplete.]

13.22 EXAMPLE Iet H be a camplex Hilbert space -~- then

L (*

3!

L, (H)

L, ()% = B(H).
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And the isometric isomorphism B(H) + L_(H)** arising therefram is a x-isomorphism,

vhere L_(H)** carries the Arens product.

13.23 I1EMMA ILet 7 be a nondegenerate x-representation of A on E — then

there is a unique normal *~hamomorphism 7" of A" onto m(A)" such that T o T = 7

T
Ac—b A"

T l J"IT"
T(A)" — m(A)".

PROOF Take for 7" the composite

- f_\ 'n"k*
Au > A** Y ('IT(A)")**

inc*

((T(A)") ) *

Here

(MA) ") —— (m(A)")*

inc*
(m(A)Y")** —((m(AY") ) *.

X € (A" => ;( € (m(A)")**
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1"1 o inc*(X) = X.

There remains the claim that ™ o T = 7. So let A € A:

AR(A)) = A

~ N
T**(A) = A o 7* = 7 (A)

-1 . a
T o inc*(w(A)) = w(A).

[Note: 7" is necessarily weak* continuous (cf. 12.15).]

Now specialize and assume further that A < B(H) is a von Neumann algebra.
Let m:A » B(H) be the identity map —- then I a unique central projection P in A"
such that Ker 7" = PA" and 7" is a *-isomorphism of P'A" onto A (cf. 12.19).

N.B. VA € A,

™ (w(@d) = w(@d) = A,

80
™ (PR A)) = 7 (Y T (F @)
= 1 AA
= A.
Therefore
p'A = PR

and 1™ is a x-isomorphism of P'A onto A.



16.

Definition: S(A) is the convex direct sum of convex subsets 81,52 c S(A)

if each w € S(A) admits a unique decomposition

w = }\wl+ (1 - k)mz (wl esl,mzesz, 0sx<s1).
Notation:
S(A) =Sl ® 82.
cvx

A norm closed face F < S(A) is said to be a split face if there is a face

Foc S(A) such that S(A) is the convex direct sum of F and Fl:

S(A) =F ® F .
[04%5:4

[Note: F~ is norm closed and is uniquely determined by F.]

13.24 IEMMA Sn(A) is a split face of S(A).

PROOF Let

Fpl c SQ(A")

be the split face corresponding to pt per 12.40, thus

FPL = SE(K"):&(PL) = 1}.

Taking into account the identification

S(A) <—> sn(Z") (cf. 13.3),

let

F<—>F ,
P.E_

the contention being that

P = SE(A) .
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Thus let u € S (A) and consider w o n" € S_ (A") — then

—

A
o
ﬁ:ﬁ
)
VF-
1
e
-

Therefore

Sg (A) c F.

As for the other direction, let w €EF, socw = o 7 (GEFL). To verify that

P
w € Sn(A) , let {Ai:i €I} c ASA be a bounded increasing net and put A = sup A, ——
= i€T
then
Pi%(Ai) + PR (D)
=>
(T)(Piﬁ(Ai)) + BEA))
="
6(%(Aj_)) + o(m(a))  (cf. 12.42)
=
w(Ai) + w(a)
=
w € SQ(A) .
Therefore

chg(s‘\).
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Consequently,

L
S(A) = Sn(A) ® Sn(A) .
- cvx =

L . ,
N.B. The elements of SE(A) are said to be singular.

E.g.: A pure state is either normal or singular.

13.25 REMARK We have

Sn(A") =F © F,
- P cvx
and
T F <> S (A)
pt 2
L
F, < SE(A) .
13.26 ILEMMA Fix Wy € S(A) —-— then W is singular iff there is no nonzero

weak* continuous positive linear functional w on A such that w < Wy

PROOF Write W

=20+ (1-NT (0ES (A, € sn(A)*). If w, is not singular,
then Ao is a nonzero weak* continuous positive linear functional on A such that

A < Wy+ Suppose, conversely, that there is such an w. Introduce

®

by | (cf. 13.3).

€1
£l
0
el
i
€

Since w > 0 is weak* continuous,

seehy = |&]] > o,
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hence

QO(PJ‘) > ol >0

Wy & FP.

Therefore Wy is not singular.

13.27 EXAMPLE Suppose that H is an infinite dimensional complex Hilbert space.

Let w € S(B(H)) -- then w is singular iff w|L_(H) = 0.

13.28 REMARK Iet w € B(H)* -- then w is weak* continuous iff ||w]|| =

| |w|§m(H) |].



§14. FOLIA

Suppose that A is a C*-algebra. Let T be a nondegenerate *-representation of

Aon E. Take 7" as in 13.23 (so 7" o m = 1) — then 3 a unique central projection

P(m) in A" such that Ker n" = P(m)A" (cf. 12.19). Now put

cim =pP(m*

and call C{w) the central cover of 7.

N.B. 1" is a *-iscmorphism of C(mA" onto m(A)" (cf. 12.19).

14,1 IEMMA Ilet T and T, be nondegenerate *-representations of A on El and

E2 - then

C(’ﬂ'l) = C('rrz) <=> Ker ™ o= Ker -

[This is trivial:

=
A
=
et 2
i

c(my) A"

0
K
ﬂ—
il

“L-“
5 C(wz) A"

14.2 RAPPEL Suppose that A is a x-algebra. Let m and Ty be nondegenerate
*-representations of A on Eq and E, — then my and T, are geanetrically equivalent
iff 3 a *-isanorphism

Bem) (A" > 1y ()"
such that V A € A,

@(Wl(A)) = wZ(A) .




14.3 I1EMMA Iet T and 5 be nondegenerate x-representations of A on El and
E, -- then ™ and m, are gecmetrically equivalent iff C(Tfl) = C(ﬂz) .
PROOF Suppose first that T and ™, are geamnetrically equivalent and take ¢

as in 14.2 -- then ¢ is normal (cf. 12.12), hence is weak* continuous (cf. 12.15),
and V A € A,

<I>(1rl(A)) =, (n)

or still,

o(n] (m(A))) = m (T @) .
But A = 7(A) is dense in A" per the weak* topology, so

@(WE(A)) = w;',: (n) (ne AM).

Therefore

Ker 'rrl = Ker 'rr2,
i.e.,

C(Trl) = C(’rrz).
Conversely,

C(?Tl) = C(1T2) => Ker Tri = Ker 7,

thus the prescription
o(rj(a)) = my@) (A€ A

makes sense.

14.4 SCHOLIUM Let Rep A be the set of all nondegenerate x-representations

of A (cf. 9.15) and let C(A) be the set of all central projections in A" —— then



Rep A/~ <—> C(A)

fr] <—> C{m).

E.g.: C(m) = 0 corresponds to m:A > {0}.

Given w € Rep A, write T ST, if ury is geametrically equivalent to a

1’2

sub x-representation of Ty

14.5 I1EMMA We hawve TS T, iff c(wl) < c(wz).

E.g.: VTERep A, ™ <.

14.6 REMARK 7, and T, are disjoint iff C(Wl)C(ﬂz) = 0.

1

Definition: A folium F is a norm closed convex subset of S(A) which is
"invariant" in the sense that if w € F and if w(B*B) = 0, then wy € F.

[Note: Here

WP@) _ w(B*AB)

w (B*B) w (B*B)

w, (A) =

B -

Given a nondegenerate x-representation m:A - B(E), put

Aﬂ = mw(A}"
and let
F(m) = {w o Tiw € SE(AW)}.

14.7 I1EMMA F(m) is a folium.



[To check invariance, suppose that

{(w e My (B*B) = 0
and then write

wlm(B*AB}) _ w(m(B)*m(A)mw(B))
w(m(B*B) ) wlm(B)Y*w(B))

= W () (m(a))

= (wW(B) o m) (A).

But W (B) € SE(AH) (see the discussion prefacing 12.43).]

14.8 IEMMA V T € Rep A,

Ker 7™ = N RKer w o .
wESE(AW)

[The normal states separate the points of Aﬂ.]

14.9 THEOREM ILet T and T, be nondegenerate x—representations of A in E,

and E, —= then T and T, are geanetrically equivalent iff F(Tfl) = F(Tl”z) .

PROOF Suppose first that Ty and T, are geametrically equivalent and take ¢ per

14.2. Since ® and & © are weak* continuous, the arrow

TS S ()

2 1

w2->m20<1>

is bijective, thus F(Trl) = F(Trz) . Turming to the converse,



F(wl) = F(’ﬂ'z) => Ker m; = Ker 7 (cf. 14.8),

2

from which a *-isomorphism

d:my (A) >y (A)

d)(ﬂl(A)) = w2(A) (aeA.

Next, V w, € Sn(ATr Y,

2 "nm,

Wy o M, € Fm,) = Fim)

o T, = o

5 = Wy ° My (3 wy € SI_’_I(A‘{T )

w
2 1

(y © 6) (1) @) = w, (1,(B) = w (m @),

Therefore Wy © b (= wl) is weak* continuous. But every weak* continuous linear

functional on WZ(A) is a linear cambination of (restrictions) of elements of

Sn(ATT ). Accordingly, from the very definition of the weak* topology as an initial
- 2

topology, ¢ (and its inverse) must be weak* continuous, so 3 a weak* continuous

x~isomorphism ¢:A_ > A such that ®|A = ¢. Now quote 14.2 to conclude that ™
1 2

and T, are geometrically equivalent.
The following generality was tacitly used above.

14,10 IEMVMA Iet H and K be camplex Hilbert spaces. Suppose that A < B(H)

is a C*-subalgebra and ¢:A -+ B(K) is a linear map. Assume: ¢ is weak* continuous --



then ¢ extends uniquely to a weak* continuous linear map ®:A" - B(K). Moreover, if
¢ is a x-homomorphism (hence ¢(A) is a C*-subalgebra of B(K)), then & is a x-homo-
morphism and ®(A") = ¢(A)".

[Note: In particular, every weak* continuous linear functional w:A > C

extends uniquely to a weak* continuous linear functional w:A" - C.]

14.11 IFEMMA We have T < T, iff F(Trl) c F(TTZ) .

E.g.: V7 ERep A, F(m < F(m (= S(A).

14.12 REMARK 1., and ™, are disjoint iff F('rrl) n F(Tl'z) = #.

1

Given w € S(A), let
Flw) = F(m).
Then
w € F(w).

Proof: V A € A,

w
= < >
w(A) X T (n) X >0

On the other hand, the orthogonal projection Pw of EY onto gxw is a density operator
and the assignment
A>tre @) = w@)

is an element of F(Wm) .

N.B. F(w) is the smallest folium containing w.



14.13 IEMMA If F is a folium in S(A), then 3 a 7 € Rep A, determined up
to geometric equivalence, such that F(w) = F.

[One has only to take for © the direct sum of the ™ (we F).]

The folia in S(A) are thus in a one-to—one correspondence with the geometric
equivalence classes in Rep A.

[Note: Conventionally, the empty folium corresponds to m:A + {0}.]



§15, C*-CATEGORIES

Given a category C, denote by Ob C its class of cbjects and by Mor C its class
of morphisms. If X,Y € Ob C is an ordered pair of objects, then Mor(X,Y) is the set
of morphisms (or arrows) fram X to Y. An element £ € Mor (X,Y) is said to have

damain X and codomain Y, One writes £:X > Y or X EY.

We shall now impose a series of conditions which in total lead to the notion of
C*~category.

l. v X,Y €0bC, Mor(X,Y) is a complex vector space and camposition

Mor (X,Y) x Mor(Y,Z) - Mor(X,2),

denoted by (£,9) > g o £, is bilinear.

2. VY X,Y €0bC, Mr(X,Y) is a Banach space and

f € Mor (X,Y)

v o g e £]] < |lgl] T£]

g € Mor(Y,2)

.

3. 3 an involutive, identity on objects, cofunctor

*:C ~»

10}

Spelled out (in superscript notation):

VXEOC, X*=X
and

¥ X,Y € Ob C, #:Mor(X,Y) - Mor(Y,X)

subject to

(af + bg)* = af* + bg* (a,b € Q.



In addition,

Frx = f

(g o £)* = £* o g*.

4, VX, Y€EObCs&f € MriXY),
2
HENT = [|£* o £]]
and

f* o £ € MOI'(X,X)+.

Summing up: C is said to be a C*-category if conditions 1,2,3,4 are satisfied.
N.B. VX € Ob C, Mr(X,X) is a unital C*-algebra.

[Note: Every unital C*~-algebra A can be viewed as a C*-cateogory with one

object. ]
15.1 EXAMPIE Take C = HILB (cf. 4.28) — then C is a C*-category.

15.2 EXAMPIE Iet A be a C*-algebra and take C = H*MOD, (cf. 4.27) — then C

is a C*-category (use 4.26).

15.3 EXAMPIE Iet A be a unital C*-algebra — then by End A we shall understand
the C*-category whose objects are the unital x-hamomorphisms ¢:A - A and whose arrows
® +~ ¥ are the intertwiners, i.e.,

Mor (9,¥) = {T € A:Te(n) = Y(A)T v A € AL
Here, the composition of arrows, when defined, is given by the product in A and
lA € Mor (%,9%) is ly- Bs for

x:End A > End A,



take it to be the identity on objects and then define

*:Mor (¢,¥) - Mor (Y, ¢)

by sending T to T*.

15.4 EXAMPIE Given a C*-algebra A, there is a C*-category whose cbjects
are the elements 7 of Rep A (cf. 9.15) and whose morphisms my * 7, are the topo-
logical intertwining operators, i.e.,

Mor (m,m,) = {T € B(E},E,):Tm, (A) = m,(A)T V A € AL,
[Note: Mor (m,,T,) is a nonempty closed subspace of B(El'Ez) which, moreover,

is trivial iff m; and m, are disjoint.]

15.5 EXAMPLE Iet A be a unital C*-algebra -- then by Mat A we shall understand
the category whose objects are the natural numbers and whose morphisms n -+ m are the

n-by-m matrices with entries in A (cf. 4.41). Here, composition of

A € Mor(n,m)

B € Mor (m,p)
is the prescription

B o A = AB,
where AB is the usual multiplication of matrices, and idn is the unit diagonal
n-by-n matrix, i.e., idn = diag lA. as for

*:Mat A > Mat A,
take it to be the identity on objects and then define

*:Mor (n,m) - Mor (m,n)



1 *
by sending [Aij] to [Aji] .

15.6 REMARK The technical requirement that
f* o £ € Mor(X,X)

is not an automatic consequence of the other conditions. To see this, consider the

category with two objects X and ¥, where

Mor(X,X) = Mor{Y,Y) =

1
9]

Mor (X,Y) = Mor(Y,X) = C,

and composition is multiplication of camplex numbers. Take the norm of z € C to be
|z| and define * by
X*=X, Y*=Y

and

N1

if z € Mor(X,X) or Mor(Y,Y)

- z if z € Mor(X,Y) or Mor(Y,X).

Then V z € Mor(X,Y),

2 ez= (-2 () =- |2|? # Morx,x,.

Let C and D be C*-categories -- then a functor F:C ~ D is said to be a
C*~functor if v X,Y € Ob C,
F:Mor (X,Y) - Mor (FX,FY)

is linear and v f € Mor(X,Y),



F(£*) = (Ff)*.

N.B. Vv X & 0bC, the map

Mor (X,X) - Mor (FX,FX)

is a unital x-hamomorphism.

15.7 LEMMA Suppose that F:C -+ D is a C*-functor —— then v £ € Mor(X,Y),

el | < |I€]].
PROOF By hypothesis, 3 A € Mor(X,X) such that

f* o £ = A% o A,

But
||F@a* o A)|] < ||Aa* o A|| (cf. 1.7).
Therefore
[|F(E* o £) || < ||E* o £]|]
=>
|| EE)* o PE|| < ||£% o £]]
=>
|Ieel % < |1g 1%

Accordingly, if F:C + D is a C*-functor, then the linear maps

Mor (X,Y) - Mor(FX,FY)

are continuous.

15.8 LEMMA Suppose that F:C - D is a C*-functor. Assume: F is faithful --

then v £ € Mor(X,Y),



[IFEl} = [I£

.

PROOF V X € Ob C, the map

Mor (X,X) - Mor (FX,FX)

is injective (F being faithful), hence v A € Mor(X,X),

||F(a* o A) || = ||a* o A]| (cf. 1.8).

Now repeat the arqument of 15.7.

Let C be a C*-category —— then a representation of C is a C*-functor

m:C > HIIB.

15.9 THEOREM Fix X € Ob C and let w € S{Mor(X,X)) -- then there is a rep-
resentation 'rrw:(_l - HILB and an element X € m™X of norm 1 such that
wi{f) = <x¢ Trw(f)x >
w’ W

for all £ € Mor (X,X) .

[This is a straightforward extension of the standard GNS construction.]

15.10 THEOREM Suppose that C is small —— then C admits a faithful repre-

sentation w:C - HILB.
PROOF Fix X € Ob C and let Sy be the full subcategory of C consisting of those
Y € Ob C such that Mor(X,Y) = {0}. cGiven w € S(Mor(X,X)), choose ﬂw:gx ~ HILB

per 15.9 and set


http:faithf.ul

where ® is taken over S(Mor(X,X)). Claim: 7 is faithful. For let g € Mor(Y,2)
w

and choose f € Mor(X,Y):

|£]| = 1 —- then 3 A € Mor(X,X) such that

(o f)* o (gof)=2A*%o0A,

thus
[1al1? = 119 « £]1%
But 3 w € S(Mor(X,X)):
w@* o A) = ||a]]%  (cf. 7.25),
SO
wllg e )% o (g o) = |lgo £l
from which

5@ ] = |lg

Therefore T is faithful. Now put

Then m:C + HIIB is faithful.

15.11 RAPPEL Let C, D be categories and let

&>

-
-

10
Hwj

-3

P
G:

10
Hw)

be functors —— then a natural transformation % from F to G is a function that assigns

to each X € Ob C an element EX € Mor (FX,GX) such that v £ € Mor(X,Y) the square




[1]

X
FX — GX
FE l l Gf
FY > GY
.':’Y
comutes.
Let C, D be C*-categories and let
T FiC D
G:C > D

€ Nat(F,G), put

[zl

be C*~functors. Given a natural transformation

Bl = s |5,
X €0bC
and call Z bounded if
HEN < o,

15.12 REMARK A natural transformation Z:F - G need not be bounded. Thus let
C = D be the C*-category whose objects are the positive integers 1,2,... with
Mor (n,m} = C, camposition being induced by multiplication in C with involution

camplex conjugation. Take F = idc arnd define E:idc > idC by specifying that

En:n -+ n sends z to nz -~ then £ is not bounded.

15.13 LEMMA Iet C, D be C*-categories -— then the category [C,D]*whose objects
are the C*-functors F:C ~+ D and whose morphisms are the bounded natural transformations

5:F > G is a C*-category.



[To define

*:[919]* > [9,]_3]*,

take it to be the identity on objects and given Z:F » G, specify 5*:G » F in the
obvious way, viz.

By € Mor (FX,GX) => E;{ € Mor (GX,FX) .

Then v £ € Mor(X,Y), the square

X
X > FX
Gfl lFf
GY > FY

ok

=

commutes. Indeed,

FE o 5% = F(£%%) o B%
= F(£%)* o 2%
= (Z, o F(£*))*

X

= (G(£*) o E,)*

I

o G(f*)*

E

|
[1]

o G(f**)

|
[1]

<4 ok

o GE.
Moreover, =* € Mor(G,F), i.e., is bounded:

— 2 - -
22112 = |1z, o 22l



[Note:

E.g.:

10.

< 1ggl] 11zl

IENEEEEIRES

Strictly speaking, [C,Dl* is a metacategory, not a category.]

The objects of [C,HILB]* are the representations of C.



§16. THE CATEGORY OF CATEGORIES

Iet i:A > Y, p:X > B be morphisms in a category C -~ then i is said to have

the left lifting property with respect to p (LIP w.r.t. p) and p is said to have

the right lifting property with respect to i (RIP w.r.t. i) if for all u:A - X,

v:¥y *Bsuch that p ou=v o i, thereisaw:Y > Xsuchthat we i=u, pow=v.

Schematically: The commtative diagram

u
A —>X
T
Y —>B
v

admits a filler w:Y » X.
Consider a category C equipped with three composition closed classes of mor-

phisms termed weak equivalences, cofibrations, and fibrations, each containing the

isamorphisms of C. Agreeing to call a morphism which is both a weak equivalence

and a cofibration (fibration) an acyclic cofibration (acyclic fibration), C is said

to be a model category provided that the following axioms are satisfied.

(MC-1) C is finitely complete and finitely cocamplete.
(MC-2) Given composable morphisms f,g, if any two of f£,g, g o f are weak
equivalences, so is the third.
(MC~-3) Every retract of a weak equivalence, cofibration, or fibration is
again a weak equivalence, cofibration, or fibration.
[Note: To say that £:X + Y is a retract of g:W -~ Z means that there exist
morphisms 1i:X > W, rsW~+ X, 3:¥Y > Z, s:Z >»Ywithgoei=7Jof, for=so0g,

roi=idX,s°j=idY, thus there is a commutative diagram



X—> W —> X

e
Y —_—> Z — Y,
j s
Fact: A retract of an isamorphism is an isomorphism. ]

(MC-4) Every cofibration has the LIP w.r.t. every acyclic fibration and
every fibration has the RLP w.r.t. every acyclic cofibration.

(MC-5) Every morphism can be written as the composite of a cofibration and
an acyclic fibration and the camposite of an acyclic cofibration and a fibration.

N.B. For a systematic introduction to model category theory (with numerous

examples), see Chapter 12 of my book TOPICS IN TOPOLOGY AND HOMOTOPY THEORY.
16.1 REMARK A model category C has an initial object (denoted @) and a final
object (denoted x). An object X in C is said to be cofibrant if ¢ +~ X is a cofibra-

tion and fibrant if X + % is a fibration.

16.2 NOTATION CAT is the category whose objects are the small categories and

whose morphisms are the functors.

Definition: Given small categories C, D, a functor F:C -~ D is a cofibration
if the map

ObC~0bD
X -~ FX
is injective.

Definition: Given small categories C, D, a functor F:C -~ D is a fibration



if ¥ X € Ob C and Vv isomorphism y:FX + Y in D, 3 an isamorphism ¢:X + X' in C

such that F¢ = ¢.

16.3 THEOREM CAT is a model category if weak equivalence = equivalence,

the cofibrations and fibrations being as above.

The first step is the verification of MC-1 which, being of independent interest,
will be isolated.

16.4 THEOREM CAT is finitely complete and finitely cocamplete.

16.5 RAPPEL The following conditions on a category C are equivalent.

(1) C is finitely camplete.
(2) C has finite products and equalizers.
(3) C has finite products and pullbacks.

(4) C has a final object and pullbacks.

Let 1 be the category with one object and one arrow — then 1 is a final object

in CAT.

Finite Products Given objects C, D in CAT, their (binary) product is the

category C x D defined by

Ob(C x D)

il

Ob C x Ob D,

Mor ({(X,Y), (X',Y'))

i

Mor (X,X'} x Mor(Y,Y")

id(X,Y) = idy x idy,



with composition
(£',9") o (£,9) = (£' » £,g' o g).
[Note: If a category has a final object and (binary) products, then it has
finite products.]
Equalizers Given objects C, D in CAT and morphisms F, G:C > D in CAT, their

equalizer eq(F,G) is the inclusion inc of the subcategory of C on which F, G

coincide:
inc F S
eq(F,G) > g > ]21
G
where
Ob eq(F,G) = {X € Cb C:FX = X}

Mor eq(F,G) = {f € Mor C:Ff = Gf}.

T S
Pullbacks Suppose that A ~ C + B is a 2-sink in CAT. Form the product
pr pr
a2 ax3 —253B
and note that
T ¢ pr

R
X
w
0

Iet

o

*c B =eq(T ° pr,,S o pry).



pry ° inc

1) e
0

is a pullback square. I.e.: The 2-source

perinc prBOinc
Ae——— BAX.B——>B
T S
is a pullback of the 2-sink A +~ C « B.

[Note: In SET, there is a pullback square

Obz_kxonObl_s_‘ > Ob B
1 L
ObA — Ob C.]

16.6 RAPPEL The following conditions on a category C are equivalent.

(1) € is finitely cocomplete.
(2) C has finite coproducts and coequalizers.
(3) C has finite coproducts and pushouts.

(4) C has an initial object and pushouts.

Let 0 be the category with no objects and no arrows -- then 0 is an initial

object in CAT.




Finite Coproducts Given objects C, D in CAT, their (binary) coproduct is the

category C || D defined by

ob(Cc || D)

I
Q
o

@]

Mor (C ﬂ D)

!

5
=

§
o

the coproducts on the RHS being taken in SET with the obvious camposition of mor-
phisms.
[Note: If a category has an initial object and (binary) coproducts, then it

has finite coproducts. ]

Coequalizers Given objects C, D in CAT and morphisms F, G:C -~ D in CAT, con-
sider the smallest equivalence relation on Ob D w.r.t. which FX and GX are equivalent

for all X € Ob C and let SF G be the set of pairs (Ff,Gf), where the domain and co-

damain are equivalent. Denote by ~ the principal congruence on D generated by this

pro
data and form the quotient D/x (cf.1L ) — then D —> D/~ is a coequalizer of F,G:

_F,  pro
C . D > coeq(F,G) .
G

T S
Pushouts Suppose that A <« C -+ B is a 2-source in CAT. Form the coproduct

iny ing
>A || B<—2B

A

and note that

T Theory Appl. Categ. 5 (1999), 266-280.
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Then the commutative diagram

S
¢ > B
Tl lprooj_nB
A > A || B
prooinA C
is a pushout square. TI.e.: The 2-sink
prOOinA prooinB
a >2 || B<—— B
c
T 8
is a pushout of the 2-source A « C + B.
[Note: In SET, there is a pushout square
S
Cb C > Ob B
" | |
Ob A >0bA || ObB.]
Ob



There remains the verification of MC-2, MC-3, MC-4, and MC-5.

16.7 IEMMA If F:C » D and G:D +E are equivalences, then G o F:C ~ E is an

equivalence.

16.8 LEMMA Suppose that F:C + D and G:D ~ E are functors. Assume: F and

G o F are equivalences —- then G is an equivalence.

PROOF Choose F':D - C such that

FoPF'=x

2
e
J”

F' o« P = id...

e

Choose H:E » C such that

GoF oHZ

5

HeGePF = id..

IetG'=F°H-the.nG°G':idEarxi

G'OG=F°H<>G=F°H°G°idD

13
j
o

Hoe GoF o F!

16.9 LEMMA Suppose that F:C ~ D and G:D + E are functors. Assume: G and



G ¢ F are equivalences — then F is an equivalence.

Therefore MC-2 is satisfied.

16.10 IFMMA A retract of an equivalence is an equivalence.

PROOF Consider a commutative diagram

i r
C —K —>¢C
Pl o]
D —>L —>0D,
3 s

whererOi=id,s°j=idD, and A is an equivalence —— then the claim is that

F is an equivalence. Thus fix A':L - K such that

Ao A'

1

idy

A" o A ::idK.

Then
rofA'ojoF=ropA"opoi
eridKOi
=r<>i=idc
and

F or oA ! ojzsvoA'oj

u

SOidLOj
=s<>j=idD.
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16.11 IEMMA A retract of a cofibration is a cofibration.

PROOF Consider a commutative diagram

5

190 < 2
=

I — IR
e

S el [ 9

where r o i =id,, s o j = idD, and A is injective on objects -- then the claim is

that F is injective on objects. So suppose that

FX=FY (X,Y € 0bC).

JFX = JFY => MX = MY
=> iX = iy

= riX = ri¥ => X = Y.

o
N.B. ILet I denote the category with objects a,b and arrows ida, idb, a~+b,

B
b~+a, where o o B = idb, B oo= ida -- then F:C »D is a fibration iff every

commutative diagram

H
1 > C
ﬁl lF (m(x) = a)
I —>0D
v
admits a filler p:I »~C, i.e.,
_ N
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16.12 IEMMA A retract of a fibration is a fibration.

PROOF Consider a caommutative diagram

U i r
1—>Cc——>K—>¢C
oloelowl e
I —>D—>L-—>D,
v 3 s

whereroi:idc, S°j=idD, and A is a fibration -- then 3 A:I - K such that

so if p =1r o A:I > C, we have

DoeM=Yro)AoTs=

F or o} =

=
°

©
it

Therefore MC~3 is satisfied.

16.13 IEMMA Every cofibration

PROOF Consider the commutative

'ﬁ:iou

has the ILIP w.r.t. every acyclic fibration.

diagram



12,

where F is a cofibration and A is an acyclic fibration -- then the claim is that
3W:D>Ksuch that We F=U, A e W= V. Since A is an equivalence, it has a
representative image, hence, being in addition a fibration, it is surjective on
objects. Accordingly, define W on objects by first demanding that WFX = UX

(X € Ob C) (F is injective on objects, thus this makes sense). Next, given

Y € Ob C, choose A € Ob K such that AA = V¥ and put WY = A, all the while main-
taining the relation WFX = UX (possible, as VFX = AUX). Turning to morphisms,

there is an arrow

Mor (Y,Y') >~ Mor(VY,vY').
On the other hand,
Mor (WY, WY') = Mor (AWY, AWY') = Mor (VY,VY').

So the data at hand does indeed give rise to a functor W:D - K with the chosen

object map such that W e F =T, A e W= V.

16.14 I1IFMMA Every fibration has the RLP w.r.t. every acyclic cofibration.

PROOF Consider the commutative diagram

where F is an acyclic cofibration and A is a fibration -- then the claim is that 3
W:D ~ K such that We F=1U, A e W= V. The initial step is to construct F':D + C

subject to

= P' o P =id

@]

FoPF'z

t
‘._l.
cs
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which can be done by the usual procedure, viz. given Y € Ob D, choose an object
F'Y € Ob C and an isomorphism FF'Y + Y, where if Y = FX, we take F'FX = X (per-
missible, F being injective on objects). As regards the natural isomorphism

E':F o F' +idD, matters can be arranged so that V X € Ob C,

5 - t 1

“FX'FF FX > 1de
is idFX‘ With this preparation, we shall start by defining W on objects, observing
first that vV Y € Ob D,

AUF'Y = VFF'Y.

Eé:FF'Y +~Y

V”:,S'{:VFF'Y - VY,

thus, since A is a fibration, 3 an object WY € Ob X and an isomorphism £ :UF'Y ~ WY

with

AT,Y VE‘;{ (WY = VY).
We can further assume that

‘:Fx=idux (WFX = UX) .

Passing to morphisms, let g € Mor(Y,Y') and define Wg € Mor (WY,WY') by

Wg=¢ oUP'ge co.

Yl

Then W:D ~ K is a functor with the desired properties.

Therefore MC~4 is satisfied.
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16.15 IEMMA Every morphism can be written as the composite of a cofibration

and an acyclic fibration.
PROOF Suppose that F:C + D is a morphism in CAT. ILet D' be the category with
ObD'=0bC ||]ObD

and for
X, X' € Ob C

Y,¥' € 0b D,

viewed as objects in D', let

Mor (X,X') = Mor (FX,FX'), Mor(X,Y') = Mor(FX,Y'")

Il

Mor (Y,X") Mor (Y,FX'), Mor(Y,Y') = Mor (Y,¥Y').

Define a functor U:C - D' by
UXx=X (X€0bCQ

Uf

]

Ff (f € Mor(X,X")).

Then U is injective on objects, hence is a cofibration. Define a functor V:D' = D

by
VX

it

FX (X € 0bC)

VY=Y (Y € ObD)

and on each of the four possibilities for morphisms, take V to be the identity, thus
V is fully faithful and surjective on objects, so V is an acyclic fibration. And

from the definitions, F=V o U.

16.16 ILEMMA Every morphism can be written as the composite of an acyclic
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cofibration and a fibration.

PROOF Suppose that F:C + D is a morphism in CAT. ILet C' be the category
whose objects are the triplés (X,E,Y), where X € Ob C, Y € Ob D, and E:FX > ¥
is an isomorphism. Put

Mor ( (X,Z,Y), (X',B',¥Y")) =Mor(X,X").

Define a functor U:C - C' by
UX = (X,idFX,FX)
Uf = £ (£:X > X").
Then it is clear that U is an acyclic cofibration. Define a functor V:C'+ D by

V(X,2,Y) = Y
-1

33

VE = 2' o Ff o

In this connection, note that
VE:V(X,2,Y) > V(X',5',Y"),
i.e.,

vE:Y -~ ¥t
Meanwhile, Z' o Ff o =1 i the camposition

-1

-t

Y ——>» FX

th
t

FX‘

[1]

> Y.

o U) (£) = id oFfoid;§=Ff.
:E‘)(!
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To verify that V is a fibration, let

P:V(X,2,Y) - Y
be an iscmorphism —— then we want to produce an iscmorphism
$: (X,2,Y) »~ (X',5',¥Y")
such that V¢ = . To this end, take
X'=X, E' =19 o E,
and let

¢ = idX € Mor(,(XrErY)l(er o ErY'))c

=1

indeo:

§
]
=
[+
[

OE"']..:woj_dY:w.

]
€
°
[1]

Therefore MC~5 is satisfied.

16.17 REMARK In CAT, all cbjects are both cofibrant and fibrant.

In addition to the categories 0 and 1, let 2 be the category with two objects
and one arrow not the identity, let d2 be the discrete category with two objects,

and let p2 be the category with two objects and two parallel arrows —-- then the

canonical functors
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are cofibrations, hence every acyclic fibration has the RIP w.r.t. each of them

(cf. MC-4), a property that turns out to be characteristic.

16.18 LEMMA Let F:C + D be a morphism in CAT.

(u) F has the RIP w.r.t. u iff F is surjective on objects.
(v) P has the RIP w.r.t. v iff F is full.

{(w) F has the RIP w.r.t. w iff F is faithful.

Consequently, if F:C * D has the RIP w.r.t. u,v,w, then F is an acyclic
fibration. Proof: F is surjective on objects and fully faithful.
[Note: By comparison, recall that F:C -+ D is a fibration iff F has the RLP

w.r.t. m:1 »~ I (which is an acyclic cofibration).]

16.19 IEMMA et

FiC + D

F' :C| > D'

be cofibrations. Consider the diagram

FXidC,

¢ xg > D xC'
id, x P! C x D! | D x C idy x F!
C - - e o T Y

/— ) \J—LF'
¥
A
C x D' > D x D'.

indD,
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Then F [_]_ F' is a cofibration.

[Note: Working in SET, suppose that X ¢ ¥, X' ¢ ¥' -— then

XxX'= (XxY')n{Yxx"

and the diagram

X x X! > Y x X!
X*xY¥'" — 5 (XxY') U (Y xX"

is a pushout square, thus trivially the arrow

XxY') Uy (¥YxX") »yxY'

is one-to-one.]

N.B. If in addition, either F or F' is an equivalence, then so is F || F'.

16.20 RAPPEL A category C with finite products is said to be cartesian closed

provided that each of the functors — x Y:C - C has a right adjoint Z ~» ZY, S0

Mor{X xY,2) = Mor(X,ZY) .

The object 7% is called an exponential object. The evaluation morphism evy, o, is
’

themrphisznzYXY+Z such that for every arrow ¢:X X Y - Z there is a unique
Y _ ,
arrow Ad:X =+ 27 such that ¢ = eVY,Z o (A X% ldY).
[Note: Each Y € Ob C determines a functor F:C ~ C defined on objects by

£
FZ=ZYandonmxphismsZ+be

FPEf = X(f ¢ ev Z}t




19.

]:"1‘3:1&Y - XY.
On the other hand, each X € Ob C determines a functor G:goP -+ C defined on objects
Y . g9
by GY = X~ and on morphisms Z - ¥ by

Gg:}(Y > XZ.]

Functor Categories Given small categories C,D, [C,D] is the small category

whose objects are the functors F:C + D and whose morphisms are the natural trans-

formations Nat (F,G) from F to G.

16.21 ILEMMA CAT is carteslian closed:

D
Mor(C x D,E) = Mor(C,E ),

D
where E = [D,E].

16.22 REMARK The product operation

x : CAT x CAT - CAT

equips CAT with the structure of a symmetric monoidal category (here, e = 1).

16.23 LEMMA Let F:C -+ D be a cofibration and let A:K - L be a fibration.
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Consider the diagram

D D
K > L
T
¢ D
R x ¢k
L
E a
¢ ¢
K > L

Then T’ is a fibration.

PROOF One has merely to show that every camwutative diagram of the form

M D
1 > K
l lI‘ (m{*) = a)
c D
I > K X L
= 2 c =
AV I—j-

D
admits a filler p:I + K, i.e.,

©
o
=}
I
=

But this lifting problem is equivalent to a lifting problem for the diagram

Cx1I
¢

1l o
<1°
J )

p > Li.

D
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Since 7 is an acyclic cofibration, the same holds for F || n. Therefore A has

the RLP w.r.t. F || 7 (cf. MC-4), from which the assertion.

N.B. If in addition, either F or A is an equivalence, then so is T.

16.24 NOTATION GRD is the full subcategory of CAT whose objects are the

groupoids, i.e., the small categories in which every morphism is invertible.

16.25 REMARK GRD is a model category if the cofibrations, fibrations, and

weak equivalences are defined per CAT.

16.26 RAPPEL ILet iso:CAT > GRD be the functor that sends C to iso C, the
groupoid whose objects are those of C and whose morphisms are the invertible mor-
phisms -~ then iso is a right adjoint for the inclusion 1:GRD > CAT. let

:CAT > GRD be the functor that sends C to wl(g) , the fundamental groupoid of C

b1
(a.k.a. the localization of C at Mor C) —- then Ty is a left adjoint for the

inclusion 1:GRD -+ CAT.

16.27 NOTATION SISET is the category of simplicial sets.

16.28 RAPPEL There is a functor

Cc:SISET - CAT

that assigns to each simplicial set X its categorical realization cX and there is

a functor

ner:CAT > SISET




§17. THE UNITARY MODEL STRUCTURE

In this § we shall take up the C*-analogs of the purely categorical results
that were obtained in §l6.

17.1 NOTATION C*CAT is the category whose objects are the small C*-categories

ard whose morphisms are the C*-functors.

N.B. 0 is an initial object in C*CAT and 1 is a fimal object in C*CAT.

17.2 THEOREM C*CAT is finitely complete and finitely cocamplete.

[Note: The inclusion

UNC*ALG - C*CAT

preserves finite limits (obvious) but does not preserve finite colimits (as can

be seen by considering binary coproducts).]

Let C,D be small C*-categories —- then their algebraic tensor product C & D
is the category defined by

&
102
)
(Rw)
I
@]
X
&
1g

ard
Mor ((X,Y), (X', ¥")) = Mor(X,X") QC Mor (Y,¥")

equipped with the inwvolution

(Zz L (E 8 g )% 'zlkf*agk
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Consider the diagram

3
\ v
1

H

IR

X
lt"‘(3

et

Y

c c
K > L

Then T is a fibration.

PROOF One has merely to show that every cammutative diagram of the form

b D
1 > K
J 11' (n(*) = a)
c’ D
T > K x L
2 2 c=
Vv E"

D
admits a filler p:I + K, i.e.,

cx1 1l px1 > K
cx1

FJ_j_TfJ JA
D xI > L.
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Since 7 is an acyclic cofibration, the same holds for F _u 7. Therefore A has

the RIP w.r.t. F _ﬂ 1 {(cf. MC-4}, from which the assertion.

N.B. If in addition, either F or A is an equivalence, then so is T.

16.24 NOTATION GRD is the full subcategory of CAT whose objects are the

groupoids, i.e., the small categories in which every morphism is invertible.

16.25 REMARK GRD is a model category if the cofibrations, fibrations, and

weak equivalences are defined per CAT.

16.26 RAPPEL Iet iso:CAT + GRD be the functor that sends C to iso C, the
groupoid whose objects are those of C and whose morphisms are the invertible mor-
phisms -~ then iso is a right adjoint for the inclusion 1:GRD - CAT. lLet

7 :CAT ~+ GRD be the functor that sends C to m,(C), the fundamental groupoid of C

(a.k.a. the localization of C at Mor C) —- then My is a left adjoint for the

inclusion 1:GRD - CAT.

16.27 NOTATION SISET is the category of simplicial sets.

16.28 RAPPEL There is a functor
Cc:SISET + CAT

that assigns to each simplicial set X its categorical realization cX and there is

a functor

ner:CAT - SISET
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that assigns to each small category C its nerve ner C.

Fact: c is a left adjoint for ner.

Let [ = m o c -- then
TT:SISET + GRD

is a functor that sends a simplicial set X to its fundamental groupoid |[X.

16.29 IFMMA The functor

1 o [[:SISET ~ CAT

is a left adjoint for the functor

ner o 1 o iso:CAT - SISET.

PROOF v X & Vv C, we have

Mor((1

[+]

N X),0) = Mor (1 (TTX),C)

Mor (1 o m, (cX),Q)

u

Mor ('rrl (cX) ,iso C)

X!

Mor (cX,1{iso C))

i

Mor (X,ner 1(iso C)).

Take SISET in its canonical model category structure —— then it can be shown
that 1 o || preserves cofibrations and acyclic cofibrations while ner © 1 o iso

preserves fibrations and acyclic fibrations.



§17. THE UNITARY MODEL STRUCTURE

In this 8 we shall take up the C*-analogs of the purely categorical results
that were obtained in §16.

17.1 NOTATION C*CAT is the category whose objects are the small C*-categories

and whose morphisms are the C*-functors.

N.B. 0 is an initial object in C*CAT and 1 is a fimal cbject in C*CaT.

17.2 THEOREM C*CAT is finitely complete and finitely cocamplete.

[Note: The inclusion

UNC*ALG -+ C*CAT

preserves finite limits (obvious) but does not preserve finite colimits (as can

be seen by considering binary coproducts).]

Let C,D be small C*-categories —- then their algebraic tensor product C & D
is the category defined by

Mor{(X,¥),(X',¥")) = Mor(X,X") QC Mor(Y,¥Y*)

equipped with the involution

Tz (f @g)*=1 ‘z'k(f;; 8 g¥).
k k




This said, there are small C*-categories

g.

10
B
o

which reduce to the usual minimal and maximal tensor products of C*-algebras
(details left to the reader).

N.B. The canonical functors

10
B
1o
!
0
(4
(w0

are faithful.

17.3 LEMMA C*CAT is a symmetric monoidal category per

@ __:C*CAT x C*CAT - C*CAT,

the unit e being the camplex numbers (viewed as a C*-category).

17.4 REMARK The functor — 8 D admits a right adjoint, viz.

1
+

[D,E]*,

thus

n

Mor(C &  D,E) = Mor(C,[D,El*)

or still,

[ce . D.E* =z [C [D,EI*I*.

3



In any C*-category, an arrow £:X » ¥ is unitary if f£*f = idX and ff* = id,.

Definition: Let C,D be objects in C*CAT -- then a C*~furctor F:C -~ D is a

unitary equivalerce if 3 a C*-functor G:D + C and natural isomorphisms

— u‘
G<>I5‘->~:Lc“ig

V|
F°G+idD

such that

v X € Ob G/ uy € Mor (GFX,X) is unitary
vYeobC, vy € Mor (FGY,Y) is unitary.

[Note: An isomorphism C » D is necessarily unitary.]

17.5 LEMMA A functor F:C + D is a unitary equivalence iff it is fully

faithful and vY € b D, 3 X € Ob C and a unitary isomorphism FX - Y.

Definition: Given small C*-categories C,D, a functor F:C -+ D is a cofibration
if the map
ObC~+CbD
X+ FX
is injective on objects.
Definition: Given small C*-categories C,D, a functor F:C + D is a fibration
if v X € Ob C and Vv unitary isamorphism ¢:FX -~ Y in D, 3 a unitary isamorphism

¢:X » X' in C such that F¢ = y.



17.6 THEOREM C*CAT is a model category if weak equivalence = unitary

equivalence, the cofibrations and fibrations being as above.

[The proof is similar to but not identical with that of 16.3.1]
Iet G be a small groupoid, i.e., let G € Ob GRD —- then by fr G we shall
understand the category whose objects are those of G but
Mor

frg &Y

is the free complex vector space generated by MorG (X,Y), thus the elements of

M:)rfr g (X,Y)
are the formal finite linear combinations
n
i=1l =
with composition law
n m n,m
(I c.d.) o (£ dA.ps) = £ (c.d.)d: o U..
=1 ** =1 43 i,5=1 Tt ]
17.7 I1EMMA The prescription
n n -1
(Z cip)*= T c.o;
jop 1 jop 1

generates an involutive, identity on objects, cofunctor

x:fr G ~ fr G.

Note: Vv ¢ € Mor, (X,Y), ¢* = b .1

Py



A representation of fr G is a *-preserving linear functor m:fr G - HILB.

[Note: In particular, the elements of 'ﬁ(MorG (X,Y}) are unitary operators

from X to 1Y¥.]

Given £ € Morfr e X,Yy, let

gl = s [ ],
T

where the sup is taken over the representations m of fr G —- then ||£]| lmax < o,

Proof: v w,

() ]|

I

n
InCE cyop ]

A
™~
a
fte
=
2
-
pte
St
n
™ 3

lcil < e,

Tt is therefore clear that fr G is a pre-C*-category, herce its completion is a

C*-category, call it C*_ (G).

17.8 EXAMPLE Take G =1I as in §16 and form C;r'\ax(p (= fr I here) -~ then

a
a ~ b is unitary and for every small C*-categary C, the C*-functors C*_ (I) +C

are in a one-to-ore correspordence with the unitary elements of Mor C.

17.9 LEMMA The association G + C*_ (G) defines a functor

C* _:GRD - C*CaT.
max’— &

PROOF Let G,H be small groupoids and let F:G + H be a functor —-- then F induces



in the evident manner a functor fr F:fr G > fr H (on morphisms

n n
fr F(‘Z ciq>i) = -E cin)i).
i=1 i=1

Accordingly, one has only to show that vV X,Y € Ob G,

fr F:Mo:ffr G x,) ~» Mc:)rfr u (FX,FY)

is continuous. But for any representation m of fr H, m o fr F is a representation

of fr G, so v £ € Mor G (x,Y),

fr

o £ BE[| < |]€]]

=

Heer@ (| < 1]

N.B. C*  takes equivalences to unitary equivalences.

Let uni:C*CAT - GRD be the functor that sends C to uni C, the groupoid whose
objects are those of C and whose morphisms are the unitary morphisms -- then uni is

a right adjoint for C*__:
Mor (C* _ (G),C) = Mor(G,uni C).

Indeed, to proceed fram the IHS to the RHS send
F:C* {(G) »~ C
max = =

to the composition




17.10 ILEMMA We have

uni[C* (@) ,Cl* = [G,wni C].

PROOF The bijection on objects is the gist of the preceding observations.
Suppose mow that F,F':C* (G) ~ C are C*-functors ard let Z:F - F' be a unitary
natural isomorphism, so

¥YXeEObC* (G =0bg,
max - -

3 a unitary arrow E,:FX > FX' in C and V £:X > Y in Mor C*__(G), there is a

X

camutative diagram

"X
FX > FIX
FfJ lF'f
FY > F'Y,
:Y

It is thus immediate that the data gererates a natural isomorphism Fp - F'o.

17.11 EXAMPIE Iet G G2 be small groupoids and let C be a small C*-category --

7=

then there is a string of isamorphisms of categories:
uni [C* (G x G,),Cl*
= [Ql x ermi cl
= [§l,1§2,lmi Cl]

=[Gy milCk  (G,),Cl*]

i

wilCr  (G)),[Ch (G, ,Cl*1*




~ 3 * * *
uni [C (§l) L] Cm(gz),(_;] .
[Note: It follows that

Grax(G * &) ® QxS Brax Crax (€22 -

et

17.12 1rMMA The functor

. *
Il :SISET - C*CAT

is a left adjoint for the functor

ner o i1 ¢ \ni:C*CAT - SISET.

PROOF V X & V C, we have (cf. 16.29)
. %
Mor (Il (X),C) = Mor(Ck  (TX),C)

= Mor (IIX,uni C)

it

Mor(ﬂl(cx) ;uni C)

[

Mor (cX, 1 (uni C))

L&

Mor (X,ner 1(uni C)).

Take SISET in its canonical model category structure — then it can be shown
that II preserves cofibrations and acyclic cofibrations while ner ¢ 1 ¢ uni

preserves fibrations and acyclic fibrations.
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