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§1. GROUP SCHEMES

1: NOTATION SCH is the category of schemes, RNG is the category of

commutative rings with unit.

Fix a scheme S -- then the category SCH/S of schemes over S (or of S-schemes)

is the category whose objects are the morphisms X + S of schemes and whose morphisms

Mor(X - S, Y » S)

are the morphisms X » Y of schemes with the property that the diagram

N —— X
0 —nr

commutes.

[Note: Take S = Spec(Z) -- then

SCH/S = SCH. ]

2: N.B. If S = Spec(d) (A in RNG) is an affine scheme, then the terminol-

ogy 1is "schemes over A" (or "A-schemes") and one writes SCH/A in place of

SCH/Spec(a) .

3: NOTATION Abbreviate Mor(X + S, Y + 8) to Mm:s (X,Y) (or to MorA(X,Y) if

4: REMARK The S-scheme idS:S + S is a final object in SCH/S.




5: THEOREM SCH/S has pullbacks:

XISY >1(
X > S.
[Note: Every diagram
Z
a 4v
XXSY > Y
P l J g (fou=go v
> X > S
u £
admits a unique filler
(u,v)S:Z > X Xq Y
such that
pe (uv)g=u
_ae vg=v.]
6: FORMALITIES Let X,Y,Z be objects in SCH/S -- then
X XS S = X,
X Xg Y=Y g X,
and
(Xst) xszzxxs (Y><S Z).




: REMARK If X,Y,X',Y' are objects in SCH/S and if u:X - X', v:Y¥ > Y'

are S-morphisms, then there is a unique morphism u X V (or just u x v) rendering

the diagram
u
X > X' > S
r A
P
u xXg v
X g Y > X' ><S Y'
q
Y > Y! > S
v
commutative.
[Spelled out,

uXSv=(u°p,v°q)S.]

: BASE CHANGE Iet u:S' - S be a morphism in SCH.

e If X > S is an S-object, then X Xq S' is an S'-object via the projection
X Xg s' » s,

denoted u*(X) or X and called the base change of X by u.

(s")

e If X+ S, Y~ S are S-objects and if f: (X - S) » (Y >~ S) is an S-morphism,

L 1
XXSS >YXSS

J |

s' s'




is a morphism of S*-objects, denoted u*(f) or f and called the base change of

(s')
f by u.

These considerations thms lead to a functor

u*:SCH/S > SCH/S'
called the base change by u.

9: N.B. If u':S'' » S' is another morphism in SCH, then the functors

(@eu')*and (u')* o u from SCH/S to SCH/S'' are isomorphic.

10: LEMMA Let u:S' + S be a morphism in SCH. Suppose that T' -+ S' is
an S'-object —— then T' can be viewed as an S-object T via postcomposition with u

and there are canonical mutually inverse bijections
Y > 17
Morg: (T', X(gny) . Morg(T,X)

- functorial in T' and X.
11: NOTATION Each S—scheme X -+ S determines a functor

(say/s)*  set,
viz. the assigmment

T ~ Morg (T,X) = Xg(T),

the set of T-valued points of X.'

[Note: In terms of category theory,

Xg(T) = hy | o(T > 5).]




12: IEMMA To give a morphism (X - S) £

> (Y > S) in SCH/S is equivalent

to giving for all S-schemes T a map
£(T) :XS(T) > Yg (T)
which is functorial in T, i.e., for all morphisms u:T' - T of S-schemes the diagram

‘f(T)

XS(T) —> Y (T)
xs(u) l JYs(u)
(T'") —— > Y. (T")
X5 Py S

camutes.

13: DEFINITION A group scheme over S (or an S—group) is an object G of

SCH/S and S-morphisms
m:G Xg G > G ("multiplication")
e:S > G ("unit")
i:G > G ("inversion")

such that the diagrams

mXidG
GXSGXSG >GxSG
J.dem lm
G




6.

(ldGle)S
G XS S > G XS G
jm
G > G
J'ﬁG
(1dG.1)S
G > G XS G
|-
> G
e

commte.

4: REMARK To say that (G;m,e,i) is a group scheme over S amounts to

saying that G is a group object in SCH/S.

15: LEMMA Let G be an S-scheme -- then G gives rise to a group scheme

over S iff for all S-schemes T, the set GS(T) carries the structure of a group

which is functorial in T (i.e., for all S-morphisms T' - T, the induced map

GS'(T) + Gg (T') is a homaomorphism of groups).

16: REMARK It suffices to define functorial group structures on the GS (n),
where Spec(A) > S is an affine S-scheme.

[This is because morphisms of schemes can be "glued".]

17: LEMMA ILet u:S' - S be a morphism in SCH. Suppose that (G;m,e,i) is

[—




a group scheme over S -- then

(G xS S'; m(Sv,)r e(sp)r i(S'))

is a group scheme over S'.
[Note: For every S'-object T' » S',

(G xg §") g (T") = Gg(T),

where T is the S-object T' - S°' 2 5s.]

8: THEOREM If (X,OX) is a locally ringed space and if A is a commutative
ring with unit, then there is a functorial set-theoretic bijection
Mor(S,Spec(d)) = Mor(A,I‘(X,OX)) .

[Note: The "Mor" on the IHS is in the category of locally ringed spaces and

the "Mor" on the RHS is in the category of caommtative rings with unit.]

'—l

: EXAMPIE Take S = Spec(Z) and let

AR = Spec(Zlty,.--,t ).

Then for every scheme X,

l

n
Mor(X,A") = mr(Z[tl,...,tn],r(x,Ox))

n

X, 0" (0 > (00t ,enn,0(E))).

Therefore A" is a group object in SCH called affine n-space.

[Note: Here I‘(X,OX) is being viewed as an additive group, hence the under-

lying multiplicative structure is being ignored.]




20: N.B. Given any scheme S,

Ag=Aans+s

is an S-scheme and for every morphism S' »> S,

AR x s' ~ A"

,~n
s *s X7 8 %5 8" = Agy -

S

21: NOTATION Write Ga in place of Al.

22: NOTATION Given A in RNG, denote

Ga x2 Spec ()

i G
by Ga @ A or still, by 6,,ar

Ga’A = spec(Z[t]) x, Spec(A)

= Spec(Z[t] & A) = Spec(Alt]).

24: LEMMA GaAisa group object in SCH/A.

’

There are two other "canonical" examples of group objects in SCH/A.
™ Gm,A = Spec(Alu,v]/(uv-1))

which assigns to an A-scheme X the multiplicative group I‘(X,OX)>< of invertible
elements in the ring I'(X,OX). »
-1



which aésigns to an A-scheme X the group
GLn(I’(X,OX) )

of invertible n x n-matrices with entries in the ring I'(X,OX) .

25: DEFINITION If G and H are S-groups, then a hamomorphism from G to H

is a morphism f£:G -+ H of S-schemes such that for all S-schemes T the induced map

£(T) :GS (T ~» HS (T) is a group homomorphism.

26: EXAMPLE Take S = Spec(A) ~— then

detA:GLn,A > Gm,A

is a homomorphism.

27: DEFINITION let G be a group scheme over S —- then a subscheme (resp.
an open subscheme, resp. a closed subscheme) H ¢ G is called an S-subgroup scheme
(resp. an open S—-subgroup scheme, resp. a closed S—-subgroup scheme) if for every

S-scheme T, HS(T) is a subgroup of Gg (T).

28: EXAMPLE Given a positive integer n, is the group object in SCH/A

£ En,a
which assigns to an A-scheme X the multiplicative subgroup of I‘(X,Ox) X consisting
of those ¢ such that ¢n= 1, thus

W, a = Spec(alt]/(t"-1))

_.n'

and U, pisa closed A-subgroup of Gm,A'

29: EXAMPIE Fix a prime number p and suppose that A has characteristic p.




10.

Given a positive integer n, o

% A is the group object in SCH/A which assigns to
[

an A-scheme X the additive subgroup of I"(X.OX) consisting of those ¢ such that

n
o =0, thus

n
o , = Spec@Altl/ (P ))

-n,A

and N is a closed A-subgroup of Ga',A'

30: CONSTRUCTION Let £:G + H be a hamamorphism of S-groups. Define
Ker (f) by the pullback square

Rer(f) = S

X

HG — G

(5 P
—_—
Hh

Then for all S-schemes T,

£(T)
so Ker(f) is an S—group.
31: EXAMPIE The kernel of det, is SLn,A’
32: N.B. Other kernels are y—n,A and gn’A.

(98]
w
..

CONVENTION If P is a property of morphisms of schemes, then an S-group

G has property P if this is the case of its structural morphism G -+ S.




11.

E.g.: The property of morphisms of schemes being quasi-compact, locally of

finite type, separated, étale etc.

34:  ILEMMA Let

Xt — s X
flj lf
Y — Y

be a pullback square in SCH. Suppose that f is a closed immersion —- then the
same holds for f'.

35: APPLICATION let g:Y + X be a morphism of schemes that has a section
s:X + Y. Assume: g is separated -~ then s is a closed immersion.

[The commutative diagram

s
X s Y
Sl JAy/x
Y——-———>YXXY
(idy,s © g)y

'is a pullback square in SCH. But g is separated, hence the diagonal morphism

AY /X is a closed immersion. Now quote the preceding lemma. ]

If G+~ S is a group scheme over S, then the composition
e

S > G ———> S

is idS. Proof: e is an S-morphism and the diagram




12.

S——— 8

camutes. Therefore e is a section for the structural morphism G + S:

e
G > S > G.

36: I1EMMA ILet G +~ S be a group scheme over S —~ then the structural
morphism G + S is separated iff e:S + G is a closed immersion.

[To see that "closed immersion" => "separated", consider the pullback square

m o (:'udc x 1)
37: LEMMA If S is a discrete scheme, then every S-group is separated.

38: APPLICATION Take S = Spec(k), where k is a field —- then the structural

morphism X + Spec(k) of a k-scheme X is separated.




§2. SCH/k
Fix a field k.

: DEFINITION A k-algebra is an object in RNG and a ring homamorphism

k > A.

: NOTATION ALG/k is the category whose objects are the k-algebras

k - A and whose morphisms

(k >2a) > (k > B)

are the ring hamamorphisms A + B with the property that the diagram

|

>

Ry 3

cammtes.

: DEFINITION Let A be a k-algebra -- then A is finitely generated if

there exists a surjective hamomorphism k[tl,. .. ,tn] -+ A of k-algebras.

: DEFINITION Let A be a k-algebra -- then A is finite if there exists

a surjective hamomorphism k? > A of k-modules.

5: N.B. A finite k-algebra is finitely generated.

Recall now that SCH/k stands for SCH/Spec(k).

6: LEMMA The functor

A -+ Spec(d)



from (aLG/K)* to SCH/k is fully faithful.

: DEFINITION Let X - Spec(k) be a k-scheme -~ then X is locally of

finite type if there exists an affine open covering X = U Ui such that for all
ieT

i, U, = Spec (Ai) » where A, is a finitely generated k-algebra.

8: DEFINITION Let X - Spec(k) be a k-scheme —— then X is of finite type

if X is locally of finite type and quasi-campact.

9: LEMMA If a k-scheme X + Spec(k) is locally of finite type and if U ¢ X

is an open affine subset, then I'(U,Ox) is a finitely generated k-algebra.

10: APPLICATION If A is a finitely generated k-algebra, then the k-scheme

Spec(d) - Spec(k) is of finite type.

1l: IEMMA If X » Spec(k) is a k—scheme of finite type, then all subschemes

of X are of finite type.

.

2: RAPPEL let (X,OX) be a locally ringed space. Given x € X, denote the

stalk of OX at x by Ox,x — then OX,x is a local ring. And:

e m, is the maximal ideal in OX'X.

e k(x) = OX,)/mx is the residue field of OX,X'

3: CONSTRUCTION let (X,OX) be a scheme. Given x € X, let U = Spec(3)

e hey

be an affine open neighborhood of x. Denote by p the prime ideal of A corresponding




to x, hence 0 = ( = A_ (the localization of A at p) and the canonical
X,x U,x R

homomorphism A > Ap leads to a morphism
Spec(()x,x) = Spec(Ap) + Spec(d) = U cX

of schemes (which is independent of the choice of U).

14: N.B. There is an arrow OX < k(x), thus an arrow Spec(k(x)) -

— ’
Spec(Ox’x) , thus an arrow

ix:Spec(K(x)) + X

whose image is x.

Let K be any field, let f:Spec(K) - X be a morphism of schemes, and let x be
the image of the unique point p of Spec(K). Since f is a morphism of locally ringed
spaces, at the stalk level there is a homaomorphism

0 +0

X,x ~ Yspec(®),p " ¥

of local rings meaning that the image of the maximal ideal m, < OX x is contained
14

in the maximal ideal {1} of K, so there is an induced homomorphism
1:k(x) -+ K.
Consequently,

f = ;i.X o Spec(1i).

15: SCHOLIUM There is a bijection

Mor (Spec(K),X) » {(x,1):x € X, 1:x(x) » K}.




If X » Spec(k) is a k-scheme, then for any x € X, there is an arrow

Spec(k(x)) + X,
from which an arrow
Spec(k(x)) - Spec(k),

or still, an arrow k » «k(x).

16: LEMMA Let X > Spec(k) be a k-scheme locally of finite type —— then

X € X is closed iff the field extension k(x)/k is finite.

17: APPLICATION Let X - Spec(k) be a k-scheme locally of finite type.
Assume: k is algebraically closed —— then

{x € X:x closed} = {x € X:k = x(x)}

= Mork(Spec (x),x) X(k).

18: DEFINITION A subset Y of a topological space X is dense in X if ¥ = X.

19: DEFINITION A subset Y of a topological space X is very dense in X if

for every closed subset F ¢ X, FNY = F.

20: N.B, If Y is very dense in X, then Y is dense in X.

[Take F=X:XNY =Y = X.]

21l: LEMMA Let X - Spec(k) be a k-scheme locally of finite type -- then
{x € X:x closed}

is very dense in X.

22: DEFINITION Let X + Spec(k) be a k-schame -- then a point x € X is

P




called k-rational if the arrow k -+ k(x) is an isamorphism.

23: N.B. Sending a k-morphism Spec(k) - X to its image sets up a bijection
between the set

X(k) = Mork(Spec(k) 1 X)
and the set of k-rational points of X.
24: REMARK X(k) may very well be empty.
[Consider what happens if k'/k is a proper field extension.]
Given a k-scheme X -+ Spec(k) and a field extension K/k, let
X(K) = Mork(Spec (K) ,X)

be the set of K-valued points of X. If x;Spec(K) - X is a K-valued point with

image x € X, then there are field extensions

k > k(x) - K.

25: N.B. Spec(K) is a k-scheme, the structural morphism Spec(K) -+ Spec (k)
being derived from the arrow of inclusion j:k - K.]

let G = Gal{(K/k). Given o:K » K in G,

Spec (o) :Spec(K) + Spec(K),
hence

Spec (o) X

Spec (K} ————— > Spec(K) > X,

and we put

0+ X=X o Spec(o).




® O * x is a K-valued point.

[There is a commutative diagram

(o}
K > K
JI [j
k >k ’

soge j=73jo idk= j, and if m:X »> Spec(k) is the structural morphism, there is

a coommutative diagram

Spec(K) ———— X

Spec(3) l j T

Spec (k) Spec(k) ,

so m o x = Spec(j). The claim then is that the diagram

X o Spec(o)
Spec (K) > X
Spec(3) J J Tr
Spec (k) Spec (k)

commites. But

T © X o Spec(0) = Spec(j) o Spec(0)

Spec(c o j)
= Spec(j).]
e The operation
G x X(K) » X(K)

(0,X) —> 0 * x




is a left action of G on X(K).

T o]
[Given o,T € G:K > K > K, it is a question of checking that

(0o1) *x=0- (1T x).
But the IHS equals
X o Spec(0 o T) = X o Spec(t) ° Spec(o)
while the RHS equals

T « X o Spec(0) = x o Spec(T) o Spec(0).]

26: NOTATION Let

[

K® = Inv(Q)

be the invariant field associated with G.

7: LEMMA The set X(K)C of fixed points in X(K) for the left action of

G on X(K) coincides with the set X(K°).
28: APPLICATION If K is a Galois extension of k, then
x®)°C = X(k).
Take K = ksep’ thus now G = Gal(ksep/k) .

29: DEFINITION Suppose given a left action G x S - S of Gon a set S —-
then S is called a G-set if V s € S, the G-orbit G - s is finite or, equivalently,

the stabilizer GS c G is an open subgroup of G.

30: EXAMPIE et X -+ Spec(k) be a k-scheme locally of finite type —— then



8.

V x € X(k°P), the G-orbit G - x of x in X(k°°P) is finite, hence X(x°P) is

a G-set.

31: DEFINITION Let X -+ Spec(k) be a k-scheme —- then X is étale if it

is of the form

X = Spec (Ki) ’
1€l

where I is same index set and where Ki/k is a finite separable field extension.

There is a category ET/k whose objects are the étale k~schemes and there is a
category G-SET whose objects are the G-sets.
Define a functor
9:ET/k + G-SET

by associating with each X in ET/k the set X(kK°®P) equipped with its left G-action.
32: LEMMA ¢ is an equivalence of categories.
PROOF To construct a functor
Y¥:G-SET ~ ET/k
such that

Yoo =id and ¢ o ¥ = id ’
f1/x G-sET

take a G-set S and write it as a union of G-orbits, say

S=J_lG-si.

1€T

Let K; > k be the finite separable field extension inside kP corresponding to



the open subgroup GS c G ard assign to S the etale k-scheme J_l Spec(Ki).
i 1€T

Proceed... .

The foregoing equivalence of categories induces an equivalence between the

corresponding categories of group objects:
étale group k-schemes = G-groups,
where a G-group is a group which is a G-set, the underlying left action being by
group autamorphisms.
33: CONSTRUCTION Given a group M, let M_be the disjoint union

|l spec(x),
M

the constant group k-scheme, thus for any k-scheme X + Spec(k),

Mor, (X,M,)
is the set of locally constant maps X + M whose group structure is multiplication
of functions.
[The terminology is standard but not the best since if M is nontrivial, then

MDrk(X,Mk) =M

only if X is connected.]
34: EXAMPLE For any étale group k-scheme X,

X %, Spec (k*°P) = X(ksep)k X Spec (K°€P) |

[Note: Here (and elsewhere),

X

x = *spec (k) *}



10.

35: RAPPEL An A in RNG is reduced if it has no nilpotent elements = 0

(i.e., #a = 0:a~ =0 (3n)).

36: DEFINITION A scheme X is reduced if for any nonempty open subset
U c X, the ring I"(U,OX) is reduced.
[Note: This is equivalent to the demand that all the local rings OX % (x € X)
’

are reduced. ]

37: DEFINITION Let X be a k-scheme — then X is geometrically reduced if

for every field extension K > k, the K-scheme X X Spec (K) is reduced.

38: LEMMA If X is a reduced k-scheme, then for every separable field

extension K/k, the K-schame X x, Spec(K) is reduced.

k

39: APPLICATION Assume: k is a perfect field -- then every reduced k-scheme

X is geometrically reduced.

40: THEOREM Assume: k is of characteristic zero. Suppose that X is a
group k-scheme which is locally of finite type -- then X is reduced, hence is

geometrically reduced.



§3. AFFINE GROUP k-SCHEMES

Fix a perfect field k.

[Recall that a field k is perfect if every field extension of k is separable

(equivalently, char(k) = 0 or char(k) = p > 0 and the arrow x - % is surjective).]

1l: DEFINITION An affine group k-scheme is a group k-scheme of the form

Spec(A), where A is a k-algebra.

2: EXAMPLE

Ga,k = Spec(k[t])

is an affine group k-scheme.

3: EXAMPLE

_ -1
6y, 3 = Spec (klt, t™1)

is an affine group k-scheme.

4: EXAMPLE

u

by i = Speckltl/(” = 1)  @eN

is an affine group k-scheme,
There is a category GRP/k whose objects are the group k-schemes and whose
morphisms are the morphlsns £:X + Y of k-schemes such that for all k-schemes T

the induced map

£(T) :lVbrk (T,X) - I.Vbrk (T,Y)

is a group homomorphism.



NOTATION

|4

AFF-GRE/k

is the full subcategory of GRP/k whose objects are the affine group k-schemes.

: NOTATION

P

GRP-ALG/k
is the category of group objects in ALG/kK and
cre- (ALG/1) ¥

is the category of group objects in (gI_B_/k)OP.

7: LEMMA The functor

A - Spec(d)
fram (:_Al'.g/k)oP to SCH/k is fully faithful and restricts to an equivalence

are- (a1g/k) > AFF-GRE/K.

: REMARK An object in GRP- (A]'.G/k)oP is a k-algebra A which carries the

structure of a camutative Hopf algebra over k: 3 k-algebra hamomorphisms
A:A —»AﬂkA, €:A + k, S:A~+ A
satisfying the "usual" conditions,

9: N.B. There is another way to view matters, viz. any functor ALG/k - GRP
which is representable by a k-algebra serves to determine an affine group k-scheme
(and vice versa). From this perspective, a morphism G +~ H of affine group k~-schemes

is a natural transformation of functors, i.e., a collection of group homomorphisms




G(A) > H(A) such that if A » B is a k-algebra homomorphism, then the diagram

G@A) ——— > H@A)
G(B) ———— > H(B)

commutes.

[Note: Suppose that

G = X = Mor (X,-)

Y

H=h =Mr(,).

Then from Yoneda theory,

Mor (G,H) =~ Mor (Y,X).]

10: EXAMPLE k[t,t_l] represents G, and

Jk

-1

k[t tonr det(E; 7]

ll,o-o'

Given any k-algebra A, the determinant is a group homomorphism

represents GLn, X

GLn,k(A) > Gm,k(A)

detk € Mor (GLn,k’ C}n,k) .
[Note: There is a homomorphisam
K -1 -1
[t,t ] -> k[tll" uo'trm,det(tij) ]

of k-algebras that defines det,. E.g.: If n= 2, then the homomorphism in question

serds t to tllt22 - tthZl']



11: PRODUCTS Let

T 6= H (X in ALG/K)
Y :
H=h" (Y in AIG/K)

be aff ine group k-schemes. Consider the functor
G x H:ALG/k + GRP
defined on objects by
A+ G@) x H@A).

Then this functor is represented by the k-algebra X 8 Y:

n

Mor (X @_Y,A) = Mor (X,A) x Mor(Y,A)

= G(a) x H().
12: EXAMPLE Take
G =G, p
Then
(B, g * G, ) R) = R x R ="
and
=" x c~.

(6, g * Gy p) (C) =

Iet k'/k be a field extension -- then for any k-algebra A, the tensor product

AR k' is a k'~algebra, hence there is a functor

ALG/k + ALG/K'



termed extension of the scalars. On the other hand, every k'-algebra B' can be

regarded as a k-algebra B, from which a functor

ALG/K' -+ ALG/k

termed restriction of the scalars.

13: LEMMA For all k-algebras A and for all k'-algebras B',

Mor, , (A @ k',B') = Mor, (A,B).

14: SCHOLIUM The functor "extension of the scalars" is a left adjoint

for the functor "restriction of the scalars".

Let G be an affine group k-scheme. Abusing the notation, denote still by G
the associated functor
ALG/k > GRP.

Then there is a functor

th :ALG/k' > GRP,

namely
Gk' a") = G@®A) '

where A is A' viewed as a k-algebra.
15: LEMMA Gyr is an affine group k'-scheme and the assignment G - Gy
is functorial:
AFF-GRE/k > AFF-GRP/K'.
X
[Note; Suppose that G = h -~- then

Mor,, (X @ k',A") = Mory (X,A)




= G(a) = Gy @a'".
Therefore Gy is represented by X 2 k':
Xe k'
Gk' = h L]
Matters can also be interpreted "on the other side":
Gy = Spec (X X1 k') = Spec (X) Xy Spec (k') > Spec (k')
G = Spec (X) > Spec (k). ]

16: DEFINITION G, is said to have been obtained from G by extension

of the scalars.

17: NOTATION Given an affine group k'-scheme G', let G

K /k be the functor

ﬁ/k -+ GRP
defined by the rule
A~>G'@A Qk k").

[Note: If k' =k, then Gk'/k = G.]

18: THEOREM Assume that k'/k is a finite field extension -- then Gk'/k
is an affine group k-scheme ard the assignment G' -» Gk'/k is functorial:

AFF-GRP/k' > AFF-GRP/K.

19: DEFINITION G‘k' /k is said to have been obtained from G' by restriction

of the scalars.




20: LFMMA Assume that k'/k is a finite field extension -- then for all

affine group k-schemes H,

~ '
I-Vk)r:k(I-I[G"k.l/]{) ~ mrkl (H!<QI'G )-

2l: SCHOLIUM The functor "restriction of the scalars" is a right adjoint
for the functor "extension of the scalars".

[Accordingly, there are arrows of adjunction

€ > Gk

1
(Gk’/k)k‘ +G'.]
22: NOTATION
Res,, /kzéF_F«—‘GRP/k' -+ AFF-GRP/k
is the functor defined by setting

Resk,/k(G') = Gk‘/k'

So, by definition,

Resy, , (G') B) = G' (& &) k'),

And in particular:

Resk,/k(G') k) =G'(k ﬂk k') =G'(k").

EXAMPLE Take G' = Ai, -~ then

N
w
.

n nd _ .
Resk,/k(Ak,) = Ak d= [k':k]).



24: EXAMPLE Take k=R, k'=C, G' = Gm cr and consider
— 4
ReSC/R (Gm,C) .
Then
‘ X
ResC/R (Gm,C) Ry =C
and

X X
Resc p (G, ) (€) = € x "
[Note:
Rese p (G o)

is not isomorphic to Gm R (its group of real points is Rx) .1
r

25: LEMMA Let k' be a finite Galois extension of k —- then

(Resk./k(G' M = IeTGal /K oG'.

[Note: V o€ Gal(k'/k), there is a pullback squa.ré

oG' ———> Spec (k')
Spec (0)
G' — > Spec (k') .1
26: EXAMPLE Take k =R, k' = C, G' = G, o -~ then
(Rese /g G, )¢ = G, ¢ * %, c
= Gm,C X Gm,C'

Let G be an affine group k-scheme.



27: DEFINITION A character of G is an element of

X(@G) = IVbrk (G'Gm,k) .

Given y € X(G), for every k-algebra A, there is a homomorphism
X
A) :G > =A.
X®):G@) > 6 @)
Given X17X2 € X(G), define

(X +Xp) B):G@) G @) =&

by the stipulation
(X + Xp) @) (&) = x; (B) (£)X, () (£),

from which a character Xp X, of G, hence X(G) is an abelian group.

— then the characters of G are the morphisms

: EXAMPIE Take G = G
m,k

G ~+G

of the form
m,k

t >t (meD,
i.e.,

XG) = Z.

29: EXAMPLE Take G = Gm EIERTIS Gm Kk (d factors) -- then the characters

of G are the morphisms G » Gm K of the form
[4

Sl |
(Epreeerty) > &) oo g @p,e..ng € D),

i.e.,

X(G) = Zd.
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30: EXAMPLE Given an abelian group M, its group algebra k[M] is
canonically a k-algebra. Consider the functor D (M) :ALG/k - GRP defined on objects

by the rule

A > Mor(M,A%).
Then Vv A,

Mor M,A) = Mor (k[M],A),
so k[M] represents D(M) which is therefore an affine group k-scheme. And
X(D(M)) = M,
the character of D(M) corresponding to m € M being the assignment
D(M) (&) = Mor (M,A”)

f > £f(m)
: X
> A = Gmrk(A) .

31l: NOTATION Given X' € X(G'), let Nk./k(x') stand for the rule that
assigns to each k-algebra A the hamomorphism

X

defined by the composition
\ Gr B —> G' (& B k")
GAag k') —> G (AR k') = (Ag k')

X
> A .

a8 k)*
Here the first arrow is the canonical isomorphism, the second arrow is x'(a Qk k"),

and the third arrow is the norm map.
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32: LEMMA The arrow

is a homomorphism

X(G") > X(Gyi )
of abelian groups.

33: THEOREM The arrow

X' > Nkl/k()(')
is bijective, hence defines an isamorphism
X(G') ~» X(Gk./k)

of abelian groups.

4: APPLICATION Consider

Resg g (G, o) -
Then its character group is isomorphic to the character group of Gm cr i.e., to Z.
Therefore

Resc/p Gy, ¢

is not isamorphic to Gm,R X Gm,R'



84, ALGEBRAIC TORI
Fix a field k of characteristic zero.

: DEFINITION Let G be an affine group k-scheme — then G is algebraic

if its associated representing k-algebra A is finitely generated.

: REMARK It can be shown that every algebraic affine group k-scheme is

isomorphic to a closed subgroup of some GLn K (3 n).

3: CONVENTION The term algebraic k—group means "algebraic affine group

.

k—-scheme".

4: N.B. It is automatic that an algebraic k-group is reduced (cf. §2,

#40) , hence is geametrically reduced (cf. §2, #39).

5: LEMMA Assume that k'/k is a finite field extension -- then the functor
Resy , , :AFF-GRP/k' + AFF-GRP/k
sends algebraic k'-groups to algebraic k-groups.
Given a finite field extension k'/k, let I be the set of k-embeddings of k'
into k%P and identify k' @_k*P with (°P)” via the bijection which takes x @ y

to the string (cfx)y)cez.

6: LEMMA ILet G' be an algebraic k'-group -- then

sepy .o '
(Ger ) X Spec(k™™) N(EOG'



where oG' is the algebraic ksep—group defined by the pullback square

0G! —————————> Spec (ksep)
l 1 Spec (o)
G' ——— > Spec (k') .

[Note: To review, the 1HS is
(ReSk. /k(G ))ksep

and the Galois group Gal (ksep/k) operates on it through the second factor. On the

other hand, to each pair (t,0) € Gal(ksep/k) x I, there corresponds a bijection

oG' +» (T ° 0)G' leading thereby to an action of Gal &*P/x) on

TT oG'.

oEL

The point then is that the identification

(Resk'/k(G'))ksep = O—L-I;: oG'

respects the actions, i.e., is Gal(ksep/k) -equivariant. ]

7: N.B. Consider the commutative diagram

(t © 0)G' —— 5 Spec (k™)
: Spec (1)

0(;' > Spec (k5P
} Spec (o)

G' > Spec(k') .



Then the "big" square is a pullback. Since this is also the case of the "small"

bottom square, it follows that the "small" upper square is a pullback.

: DEFINITION A split k-torus is an algebraic k-group T which is isomorphic

to a finite product of copies of Gm k*
r

: EXAMPLE The algebraic R-group

Resc o (G )

is not a split R-torus (cf. §3, #24 and #34).

10: IEMMA If T is a split k-torus, then X(T) is a finitely generated free

abelian group.

11l: THEOREM The functor

T + X(T)
from the category of split k-tori to the category of finitely generated free

abelian groups is a contravariant equivalence of categories.

12: N.B. v k-algebra A,
T(A) ~ Mor (X(T),A").

[Note: Explicated,

=
R

Spec(k[X(T)1]) (cf. §3, #30).
Therefore

T(A)

2

Mor (Spec (3) ,T)

= Mor (Spec(A) ,Spec (k[X(T) 1)

n

Mor (K[X(T)]1,A)

Mor (X(T) ,A%).]

n



13: DEFINITION A k~torus is an algebraic k-group T such that

= Sep
Tksep T N Spec (k™)

is a split k°®P-torus.
14: N.B. A split k-torus is a k-torus.

15: EXAMPLE Let k'/k be a finite field extension and take G' = Gm k' "
14

then the algebraic k-group Gk' /k is a k-torus (cf. #6).

16: DEFINITION lLet T be a k-torus -- then a splitting field for T is a

finite field extension K/k such that TK is a split K-torus.

17: THEOREM Every k-torus T admits a splitting field which is minimal

(i.e., contained in any other splitting field) and Galois.

18: NOTATION Given a k-scheme X and a Galois extension K/k, the Galois
group Gal (K/k) operates on
xK =X X Spec (K)
via the second term, hence 0 - 1 8 o.

[Note: 1 & o is a k-automorphism of XK.]

19: NOTATION Given k-schemes X,Y and a Galois extension K/k, the Galois

group Gal (K/k) operates on mrK(XK,YK) by the prescription

of = (18 o)F(1L & o) L.

[Note: If f € ybrK(XK,YK) , then the condition of = f for all ¢ € Gal(X/k)



is equivalent to the condition that f is the lift of a k-morphism ¢:X > Y, i.e.,

f=¢81.]

20: LEMMA Iet K/k be a Galois extension and let G = Gal(K/k) -- then

for any k-algebra A and for any k-scheme X,
G
X(A 2 K)~ = X(4).

[Note: This generalizes §2, #28 to which it reduces if A = k.]

21: DEFINITION Iet G be a finite group -- then a G-module is an abelian

group M supplied with a homomorphism G » Aut(M).

22: N.B. A G-module is the same thing as a Z[G]-module (in the usual

sense when Z[G] is viewed as a ring).

23: DEFINITION Iet G be a finite group —— then a G-lattice is a Z-free

G-module M of finite rank.

24: LEMMA If T is a k-torus split by a finite Galois extension X/k, then

X(TK) = MorK(Tt{,Gm )

X K

is a Gal(K/k)-lattice.

25: THEOREM Fix a finite Galois extension K/k -- then the functor

T - X(TK)

from the category of k-tori split by K/k to the category of Gal (K/k)-lattices is

a contravariant equivalence of categories.

26: N.B. Suppose that T is a k-torus split by a finite Galois extension



K/k. Form K[X(TK)] , thus operationally, Vv ¢ € Gal(K/k),

c(? aixi) = i cs(ai)c(xi) (ai €K, x; € X(TK)) .

Pass now to the invariants
K[X(TK)] (G = Gal(XK/k)).

Then

H
133

Spec (KIX(T,) 1) .

T(A e K)G = T(A)

Y

Mor (Spec (A) ,T)

Y

Mor (Spec (A) ,Spec (K[X (TK) ] G)

= Mor (K[X(T,) 1°,2)

= MorK(K[X(TK) 1,A 2 K)G

~ Mor, (X(Ty) , (A & ) )¢

X
= er[G] (X(T) , (A 2 K) ).

[Note: Iet T = ResK/k(Gm K) ~- then on the one hand,

X X
Mor; 1 (ZIG], (A g K)) =~ A K,
while on the other,
X
Resy 1 (6, ) (A) = (A @ K)
X
= MorZ[G] (X(TK) . (A @k K) ).

Therefore

X(TK) ~ Z[G].]



Take k = R, K = C, and let o be the nontrivial element of Gal(C/R) —- then
every R-torus T gives rise to a Z-free module of finite rank supplied with an
involution corresponding to o. And conversely... .

There are three "basic" R-tori.

1. =@ In this case,
m,

R

and the Galois action is trivial.

2. T = ResC/R(Gm,C)' In this case,

X(T X(G

¢) = X6 o *x G

m,C) (cf. §3, #26)

~Ix1Z
and the Galois action swaps coordinates.

;3° T = 502. In this case,

X((SOZ)C) = X(Gm,C)
~ 7
and the Galois action is multiplication by -1.
[Note:
50,:ALG/R +~ GRP

is the functor defined by the rule

a b
50, (@) = { . abeEAsa®+b =1}
-b a

Then SO2 is an algebraic R-group such that

(S05) ¢ = G ¢



o) 302 is an R-torus and SO,(R) can be identified withS (= {z € C:zz = 1}).

27: THEOREM Every R-torus is isamorphic to a finite product of copies

of the three basic tori described above.
Here is the procedure. Fix a Z-free module M of finite rank and an involution
1:M >+ M —— then M can be decomposed as a direct sum
M, OM_OM ,
where 1 = 1 on M, is a sum of 2-dimensional swaps on Msw (or still, Msw =

® Z[Gal(C/R)]),and 1 = -1 on M .

28: SCHOLIUM If T is an R-torus, then there exist unique nonnegative

integers a,b,c such that

T(R) = (R92 x (C)P x sC,

3

: REMARK The classification of C-tori is trivial: Any such is a finite

product of the G .

30: RAPPEL Let K/k be a finite Galois extension and let A be a k-algebra -—-

then there is a norm map
Bag K +2 (= Aag K.

31: CONSTRUCTION Let K/k be a finite Galois extension -~ then there is a

norm map

NK/k:ResK/k(Gm,K) - Gxn,k'



[For any k-algebra A,

Resy /3 (G, ) ()

Gm,K(A Qk K)

X X
(a e K)' > A = Gm,k(A) .

[Note: NK/k is not to be confused with the arrow of adjunction

G,k > RSk i (G ) -]
32: N.B.
NK/k € X(ResK/k(Gm'K)).
33: NOTATION Let Reslg}]l ) be the kemnel of N, , .
34: LEMA Resé}])( ) is a k-torus and there is a short exact sequence
(l)

1~ ResK/k K) > ResK/k(Gm,K) -> Gm,k »> 1.

35: EXAMPIE Take Kk = R, K= C —— then
(1)
ResC/R(G C) = SO
and there is a short exact sequence
1-> 502 - ResC/R(Gm,C) > Gm,R - 1.

[Note: On R-points, this becames

1+S+C >R +>1.]
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36: DEFINITION Let T be a k-torus —— then T is k-anisotropic if X(T) = {0}.

w
|\.
(1]

EXAMPLE 502 is R-anisotropic.

w
s

THEOREM Every k-torus T has a unique maximal k-split subtorus TS

|

and a unique maximal k~anisotropic subtorus T,- The intersection Tg n T, is

finite and Ts . Ta =T.

39: LEMMA Res'l) (6 ) is k-anisotropic.

. 14

PROOF Setting G = Gal(K/k), under the functoriality of #25, the norm map

N /iBesy (G 2) > G g

corresponds to the hamomorphism Z + Z[G] of G-modules that sends n to n( Zo),
G

the quotient Z[G]/Z( Zo) being X(TK), where
G

).

- (1)
T = ResK/k(Gm,K

2161° = 2( 30).
G

40: N.B. ResP) (G .) is the maximal k-anisotropic subtorus of
_—= K/k* m,K

ReSK/k(Gm,K) ‘

41: DEFINITION lLet G,H be algebraic k-groups -- then a homomorphism ¢:G -~ H

is an isogengy if it is surjective with a finite kernel.
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42: DEFINITION Let G,H be algebraic k-groups —- then G,H are said to be

isogeneous if there is an isogengy between them.

43: THEOREM Two k-tori T', T'' per #25 are isogeneous iff the Q[Gal(k/k)]-

X(T) 8, Q
X(Te') 8, Q

are isomorphic.



§5. THE LIC

1l: N.B. The term "LIC" means "local Langlands correspondence" (cf. #26).

Iet K be a non-archimedean local field -- then the image of I'eCK:KX - Gf;b

is Wib and the induced map K > WIE{b is an isomorphism of topological groups.

2: SCHOLIUM There is a bijective correspondence between the characters

of W, and the characters of K :
Mor (W, C*) = Mor(K,C7).
[Note: "Character” means continuous homomorphism. So, if )(:WK +>Cis a
character, then y must be trivial on W§ (c* being abelian), hence by continuity,

trivial on W%, thus x factors through WK/W*I'{_ = W;b.]

let T be a K-torus —- then T is isomorphic to a closed subgroup of some

GLn % (3 n). But GLn K(K) is a locally compact topological group, thus T(K) is
14 ’

a locally compact topological group (which, moreover, is abelian).

3: N.B. For the record,

X
Gm,K(K) =K =6L; ,(K).

1,K

4: EXAMPLE Let I/K be a finite extension and consider T = ResL/K (Gm L) —
— 14

then T(K) = L".

Roughly speaking, the objective now is to describe Mor (T (K) ,Cx) in terms of

data attached to WK but to even state the result requires some preparation.



is local class field theory... .

|

N.B. The case when T = Gm

(K

EXAMPLE Suppose that T is K-split:

T =~ Gm,K X eee % Gm’K (d faCtorS) -
Then
d X d X X
IT Mor(WK,C ) = ‘lj Mor (K ,C")
i=1 i=1
d
~ Mor (T X°,C7)
i=1

Mor (T (K) ,C) .

0

Given a K-torus T, put

X$(T) =Mor (T L6 )
K K>°P k%P
X = MorKsep(G sep'T sep)

m,K

7: LEMMA Canonically,
X X
X (T) 8, C = Mor(x*(T),C").
PROOF Bearing in mind that

Mor (G ,G ) < ZI
Ksep m,Ksep

define a pairing

X*(T) X Xy (T) ——> 7



by sending (x*,X,) to x* o X, € Z. This done, given y, @ z, assign to it the

homomor phi sm

<X*rXx>
X* >z

3: NOTATION Given a K-torus T, put

T = Spec(C[X, (T)]).
9: LEMA T is a split C-torus such that

X4 (T)

Q

X*(T) = I«brc (T, Gm, C)

1

X, (T) = Mor, (Gm,C,'f‘) X* (T) .

Therefore

X A X
Mor (X, (T),C) = Mor (X*(T),C")

‘ A X

2= X, (T) Z C

X
= X*(T) QZ c.

10: ILEMMA

T(C) = X*(T) e, c.

PROOF In fact,

4

T(C) = Mor (X*(T),CY)  (cf. s4, #12)

]

Mor (X, (T) ,C")

13

X
X*(T) QZ C.




DEFINITION 'f‘ is the complex dual torus of T.

11:
12: EXAMPLE Under the assumptions of #6,
T(C) ~ X*(T) @, C"
= e, ~ €9
Therefore
d X
= I Mor(WK,C )
i=1

Mor (T(K),C).

i

13: RAPPEL If G is a group and if A is a G-module, then

1
H (G,a) = ZGAL

B (G,A)

. Z1 (G,A) (the l-cocycles) consists of those maps £:G + A such that
v o,T € G,

f(o1) = £(0) + o(£(1)).

® Bl (G,A) (the l-coboundaries) consists of those maps f£:G - A for which

Jana €A suchthat v 0 € G,
f(o) = ca - a.

[Note:

Hl (G,n) = Mor(G,A)

if the action is trivial.]



14: NOTATION If G is a topological group and if A is a topological
G-module, then

Mor_(G,A)

is the group of continuous group homomorphisms from G to A. Analdgously,

Zi (G,A) "continuous l-cocycles"

1
Bc (G,n)

"continuous l-coboundaries"

and

1
Zc (G,n)

1
H-(G,A) = .
c BCI (G,A)

Iet T be a K-torus —- then GK (= Gal (Ksep/K)) operates on X*(G), thus

W, © Gp operates on X*(G) by restriction. Therefore "f‘(C) is a WK-n‘odule, so it

makes sense to form

(W,
C

*<,T(C) ) .

15: NOTATION ’105< is the category of K-tori.

16: LEMMA The assignment
T > Hl W, ';'(C))
c' K’

defines a functor



[Note: Suppose that Tl - T2 - then

> (T,)
2 gSeP

@) gep
X*(T,) > X*(T,)

T, (C) > T, (C)

H (W, T, (C)) > HE (W, (C).]

17: ILEMMA The assignment

T > Mor_ (T (K) ,C9

defines a functor

}i}_:_ THEOREM The functors
T > Hg':(WK,T(C))

and

T > Mor_(T(K),C)
are naturally isomorphic..
19: SCHOLIUM There exist isomorphisms

1 H (B, T(C)) > Mor (1), )



such that if Tl -+ T,, then the diagram

1
T

1 ~ 1 x
Hc (WK,Tl(C)) > Ifbrc(‘I'l(K) ,C)

L. |

HL (W, , T, (C)) > Mor (T, (K) ,C°)

commutes.

20: EXAMPLE Under the assumptions of #12, the action of GK is trivial,
hence the action of WK is trivial. Therefore

HS (W, T(C)) = Mor (W, T(C))

X
M)rc(T(K) L.

[

[Note: The earlier use of the symbol Mor tacitly incorporated "continuity".]

There is a special case that can be dealt with directly, viz. when I/K is a

finite Galois extension and

T = ReSL/K(Gm,L) .

The discussion requires some elewmentary cohomplogical generalities which have been

collected in the Appendix below.

21: RAPPEL WL is a normal subgroup of W of finite index:

WK/WL ~ GK/GL = Gal(L/K).

Proceeding,

T~ T o8 (cf. 46),
kP seGal(t/k)




X*(T)

where

Z[WI L

= L]

It therefore follows that

T(C)

Y]

R

2]

Consequently

H (i, T(0))

3

u

~
L~

Q

114

which completes the proof modulo

sort out.

114

ZIWe/We ],

W

Indw

L

] /A

1

e Z.
Z [WL]

X
X* (T) QZ C

X

Z[WK] QZ[WL]Z QZ c

X
JA [WK] 2, [WL] C

%
"

W
1 K.x
H (WK,I_ndeC )
1 X .
H (WL,C ) (Shapiro's lemma)
IVbr(WL,Cx)

Mor (L, C)

Mor (T(K) ,C"),

"continuity details" that we shall not stop to



22: DEFINITION The L~group of T is the semidirect product

bp = 2(0) x| W,.

Because of this, it will be best to first recall "semidirect product theory".

23: RAPPEL If G is a group and if A is a G-module, then there is a
canonical extension of G by A, namely

i il
0>A—>AXx|G—G~+1,

where A x| G is the semidirect product.

24: DEFINITION A splitting of the extension

i m
0+A—>AX|G—>G~>1

is a homomorphism s:G > A x| G such that 7 o s = id..

25: FACT The splittings of the extension

i m
0+A—>AxX|G—>G~>1

determine and are determined by the elements of Zl (G,a).

Two splittings Sy,S, are said to be equivalent if there is an element a € A

such that
5,(0) = i(a)sz(o)i(a)—l (6 €G).

If
fl <> Sl

f2 <> 52
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are the l-cocycles corresponding to , then their difference f2 - fl is a
S .
2

1-coboundary.

26: SCHOLIUM The equivalence classes of splittings of the extension

i m

0-+A > A x| G >G~»>1

are in a bijective correspondence with the elements of Hl(G,A) .

Return now to the extension

0 > T(C) » T(C) x| W » W, >1

|l
L,

but to reflect the underlying topologies, work with continuous splittings and call

them admissible homomorphisms. Introducing the obvious notion of equivalence, denote

by O (T) the set of equivalence classes of admissible homomorphisms, hence
0 (T) = HL(, T(0).
On the other hand, denote by AK(T) the group of characters of T(X), i.e.,

Ag(T) = Mor (T (K) .

27: THEOREM There is a canonical isomorphism
<I>K(T) - AK(T) .
[This statement is just a rephrasing of #18 and is the ILIC for tori.]
28: HEURISTICES To each admissible homomorphism of W, into Lr, it is

possible to associate an irreducible automorphic representation of T(XK) (a.k.a. a

character of T(K)) and all such arise in this fashion.
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It remains to consider the archimedean case; C or R.

e If T is a C-torus, then T is isamorphic to a finite product

Gm,(.‘, X X GIm,C

T(C) =~ Mor (X*(T),C)
= X, (T) @, C".
Furthermore, WC = ¢ and the claim is that
HL (W, T(C) = Mor_(C*,T(C))
C .
is isamorphic to
X
mor_(T(C) ,C7).
But

x A
Nbrc(C ,T(C))

X X
Morc(c ,X*(T) @Z Cc)

4

Mor_ (C* ,Mor (%, (T) ,C))

43

n

X X
Mor (X, (T) &, C",C")

X
mor_ (T(C),C).

13

e If T is an R-torus, then T is isomorphic to a finite product

a b c
(Gm,R) X (ReSC/R(Gm,C)) X (502)

and it is enough to look at the three irreducible possibilities.
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GmR' The point here isthatwabz R = T(R).

&=
M
1

2. T= Resc/R(Gm C) . One can imitate the argument used above for its non-
r

archimedean analog.

3. T= 502. The initial observation is that X(T) = Z with action n + -n,

so T(C) = C* with action z +%. And ... .

APPENDIX
let G be a group (written multiplicatively).

DEFINITION A left (right) G-module is an abelian group A equipped with

a left (right) action of G, i.e., with a homomorphism G -+ Aut(a).

2: N.B. Spelled out, to say that A is a left G-module means that there
is a map
GxA->A
(0,a) + ca
such that

1{ca) = (to)a, la = a,
thus A is first of all a left G-set. To say that A is a left G-module then means
in addition that
o{a + b) = ga + ob.
[Note: For the most part, the formalities are worked out from the left, the
agreement being that
"left G-module" = "G-module".]
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3: NOTATION The group ring Z[G] is the ring whose additive group is the

free abelian group with basis G and whose multiplication is determined by the

multiplication in G and the distributive law.

A typical element of Z[G] is

£ mo,
ceG o

where m € Z and m, = 0 for all but finitely many o.

4: N.B. A G-module is the same thing as a Z[G]-module.

LEMMA Given a ring R, there is a canonical bijection

|

Mor (Z[G] ,R) ~ Mor(G,RY).

()]

CONSTRUCTION Given a G-set X, form the free abelian group Z[X] generated

by X and extend the action of G on X to a Z-linear action of G on Z[X] —-- then the

resulting G-module is called a permutation module.

: EXAMPIE ILet H be a subgroup of G and take X = G/H (here G operates on

G/H by left translation), from which Z[G/H].

: DEFINITION A G-module homomorphism is a Z[G]-module hamomorphism.

: NOTATION MODB is the category of G-modules.

10: NOTATION Given A,B in M')DS’ write HanG(A,B) in place of Mor(A,B).

l: LEMMA Let A,B € M()D3 ~— then A QZ B carries the G-module structure

=



14.

defined by o(a @ a') = ca 8 ca' and Hom,, (A,B) carries the G-module structure

defined by (o¢) (@) = o¢(0 " a).

12: IEMMA If G' is a subgroup of G, then there is a homomorphism Z[G'] »

Z[G] of rings and a functor

of restriction.

3: DEFINITION Let G' be a subgroup of G — then the functor of induction

G
Indg, :MOD;, + MOD,

sends A' to
Al 8 A'-
[Note: ZI[G] is a right Z[G']-module and A' is a left Z[G'l-module. Therefore
the tensor product
ZIGl 877y A
is an abelian group. And it becomes a left G-module under the operation o(r & a') =

or & a'.]

1l4: EXAMPLIE Let H be a subgroup of G. Suppose that H operates trivially

on Z -~ then

Z[G/H] = Indgz.

15: FROBENIUS RECIPROCITY ‘V A in IVDDS, v A' in MODS.,

Hom,, (A" ,Resg.A) ~ }bnG(Irxig,A' ,A).
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16: REMARK V A in MOD,

G

Indg,"Resg,A ~ 72[G/G'] @

71G] A.

[G operates on the right hand side diagonally: o(r & a) = or 2 oca.]

7: LEMMA There is an arrow of inclusion

Z[G] QZ[G'] A' » HcmG. (Z[G],A")

which is an isamorphism if [G:G'] < «.

18: NOTATION Given a G-module A, put

AG={aEA:0a=aVcEG}.

[Note: AG is a subgroup of A, termed the invariants in A.]

19: LEMMA AG = HanG(Z,A) (trivial G-action on 7).

[Note: By camparison,
A= chnG(Z[G] /A).]

G _
20: LEMMA Ham,(A,B) = Hom,(A,B).

e

l.vr)D3 is an abelian category. As such, it has enough injectives (i.e., every

G~module can be embedded in an injective G-module).

2l: DEFINITION The group cohamology functor Hq(G,--) :M:)D3 + AB is the right

derived functor of (—) G.

[Note: Recall the procedure: To compute Hq(G,A) , choose an injective
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resolution

0- A +IO-> Il F eee o

Then H*(G,A) is the cohamology of the camplex ()®. In particular: B°(G,a) = aC.]

e HZ (G,A) is independent of the choice of injective resolutions.

22:
23: IEMA Hq(G,A) is a covariant functor of A.
24: IFEMMA If

"0>A>B~>C~>20

is a short exact sequence of G-modules, then there is a functorial long exact

sequence
0 » 1%(e,a - 1%(e,B) » H(G,C)
> HY(G,A) + HY(G,B) + HF(G,C) + H2(G,A) + -+
... »13c,a) »1d@,n -ulgG,0 »a¥leG,a -+ ...
in cohomology.

25: N.B. If G= {1} is the trivial group, then'
1’(c,a) =a, 84G,A =0 (q>0).
[Note: Another point is that for any G, every injective G-module A is
cohomologically acyclic:

v g > 0, H3(G,n) = 0.]

26: THEOREM (SHAPIRO'S LEMMA) If [G:G'] < =, then V q,

- #l@,a) = e, mdan.
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27: EXAVPLE Take A' = Z[G'] — then

134

1d(c',zl6'1) = Hi(@G,Z[G] @ Z[G'])

Z[G']

ud(G,zIa]).

i

28: EXAMPIE Take G' = {1} (so G is finite) -- then Z[G'] = Z and

1((1},2) =~ v(G,zIal).

But the IHS vanishes if g > 0, thus the same is true of the RHS. However this

fails if G is infinite. E.g.: Take for G the infinite cyclic group: Hl(G,Z[G])
~ Z.

[Note: If G is finite, then H'(G,Z[G]) = Z while if G is infinite, then

1%(c,Z1G]) = 0.]
29: EXAMPIE Take A' = Z -- then

14(G',7) =~ Hq(G,Indg,Z)

14, Z[e/c']).

13



86. TAMAGAWA MEASURES

Suppose given a Q-torus T of dimension d — then one can introduce

T(Q) < T(R), T(Q) < T(Qp)

U
T
(Zp)
and
T(Q) < T(A).
1l: EXAMPIETakeT=GmQ——thentheabovedatabecares
X X X X
R,
Q" < ¢ <0
U
ZX
p
and
Qe A =1,

: LEMMA T(Q) is a discrete subgroup of T(A).

3: RAPPEL I' = Rer

, where for x € I,

.

A

ly = TT el

pse

And the quotient I]‘/Q>< is a compact Hausdorff space.

Each x € X(T) generates continuous homomorphisms

-]
PR

X
B
X e} x
X! TR) + R —Z R



from which an arrow

W > %

x> 7 xp(xp).

pseo

4: NOTATION

THA) = 0 Ker .
XEX(T)

5: N.B. The infinite intersection can be replaced by a finite intersection
since if XpreeerXg is a basis for X(T), then

d
TH(A) = n Ker(x,),-

i=1
6: THEOREM The quotient 'I']‘(A) /T(Q) is a compact Hausdorff space.
7: OCONSTRUCTION Let O’I‘ denote the collection of all left invariant d-forms
on T, thus Qj is a 1-dimensional vector space over J. Choose a ’nonzero element
w € Qp — then w determines é left invariant differential form of top degree on

the T(Qp) and T(R), which in turn determines a Haar measure My ,u OO the T(Qp)
pl

amiaHaarmeasureuRwonT(R).

The product

TTw (T(Z))
D Qplw P

may or may not converge.



8: DEFINITION A sequence A = {Ap} of positive real numbers is said to

be a system of convergence coefficients if the product

1T Ap (T(Z.))
P Aprrw P

is convergent.

: N.B. Convergence coefficients always exist, e.g.,

A = 1 )

P
0 )

10: LEMMA If the sequence A = {A p} is a system of convergence coefficients,
then
= A e
uuo,]\ TJ qup,w uR,oo
is a Haar measure on T(A).
1ll: N.B. ILet A be a nonzero rational number -- then
qu,N,u = IMI;\UQp,m' MR T ‘Aloo“R,w'

Therefore

13}

uAm,A _g Aqup,Am % uR,)\w

il

T T Agg o % Ml
D P b pr,w R,w

p<e

= uw,/\‘



And this means that the Haar measure LI is independent of the choice of the
r

rational density w.-
Iet K> Q be a Galois extension relative to which T spiits -- then

X(T,) = Mory (TG o)

is a Gal(K/Q) lattice. Call Il the representation thereby determined and denote

its character by Xpe et

L(SIXH’K/Q) = TT Lp(SIXHIK/Q)
|

be the associated Artin L-function and denote by S the set of primes that ramify

in K plus the "prime at infinity".

12: IEMMA VpP £ S,

= -1
qu,w(T(Zp)) Lp(llXHcK/Q) .

13: SCHOLIUM The sequence A

{Ap} defined by the prescription

Ay = L KQ) if p£S

l&)=1ifpes

is a system of convergence coefficients termed canonical.

4: LEMMA The Haar measure Hyop OB T(A) corresponding to a canonical
’

system of convergence coefficients is independent of the choice of K, denote it

by .

15: DEFINITION U is the Tamagawa measure on T(A).

oS




5.

Owing to Brauer theory, there is a decomposition of the character X of I
as a finite sum

M
= dXO + I m.Xj,

where x, is the principal character of Gal(¥K/Q) (x,(0) = 1 for all ¢ € Gal(X/Q)),
the mj are positive integers, and the X5 are irreducible characters of Gal(K/Q).

Standard properties of Artin I~functions then imply that

a M m.
L(s /@ = t(9)7 TT Lisix; K/Q .
]=

m.
L(L,x;/K/Q) J20 @s<3ism.
Therefore

M m.
Lim (1) “Lis,xp &/Q = TT L(Lyxs,&/Q)
s+ 1 ' j=1 J

=z 0.

17: I1EMMA The limit on the left is positive and independent of the choice

of K, denote it by Prpe

8: DEFINITION pT is the residue of T.

Define a map

x .d



by the rule
T(x) = (X)) g &) reeerXxg)p®)).
Then the kernel of T is Tl(A) , hence T drops to an isomorphism

L. (A) /T (A) - (R’;O)d.

19: DEFINITION The standard measure on T(A)/Tl(A) is the pullback via

Tl of the product measure

x ,d

on (R>O) .

Consider now the formaliam
A(T(A)) = d(T(A) /T (A))d (T (A)/T(Q))d(T(Q))
in which:

e d(T(A)) is the Tamagawa measure on T(A) multiplied by — .

1
Prp

e d(T(A)/TF(A)) is the standard measure on T(A)/TL(A).
e d(T(Q)) is the counting measure on T(Q).

20: DEFINITION The Tamagawa mumber T(T) is the volume

T(T) = 1

r
% (A) /T(Q)
of the compact Hausdorff space Tl(A)/T(Q) per the invariant measure

a(rt(A)/T(Q)



such that

'z

- = A(T(A)TE () AT (A)/T(Q))d (T(D)) -
T

21: N.B. To be completely precise, the integral formula

foiny = f !
TA "oy /rHa) TR

fixes the invariant measure on 'I'l(A) and from there the integral formula

/ -y s
o TO

fixes the invariant measure on Tl(A) /T(Q), its volume then being the Tamagawa
number T(T).

[Note: If T is Q-anisotropic, then T(A) = T-(A).]
22: EXAWPLE Take T = G o and w = X — then

1
1 Zx =SP—_1=1__
vol .. (p) 5 5

el

and the canonical convergence coefficients are the
1,-1
l - = .
( p)
Here d = 1 and

lim (s-1)z(s) = 1 => Op = 1.
s~>1

Working through the definitions, one concludes that tT(T) = 1 or still,

vol (IY/Q%) = 1.



. - a _ . . .
23: REMARK Take T ResK/Q( m,K) then it turns out that T(T) is the
Tamagawa number of Gm R computed relative to K (and not relative to Q...). From

this, it follows that T(T) = 1, matters hinging on the "famous formula"

r r

(21T)
lim (s-1)z, (s) =
i (Dl = 7 e
24: LEMMA Iet F be an integrable function on (R>0) -— then
=y F (T (x))diy, (x)
bp “T(A)/T(Q) Hr
™(T) =
dt dt
1 d
I F(ty,eee,ty) — cee — .
(R34 @y T

25: EXAMPIE Take T = G o —— then

I Fllx|pdug e
™7T) = 1/ ’

© F(t)
fo —¢ at

P being 1 in this case. To see that T(T) = 1, make the calculation by choosing

F(t) = 2te "F

[Note: Recall that
TTZX X
p o
is a fundamental domain for I/QX.]

26: NOTATION Put

7 (Q,m = B (GalQ%P/Q), T(Q%F))



and for p < =,

= @ sep Sep
Hl(op,T) Hl(aal(op /0. TS

27: LEMMA There is a canonical arrow
H' QD) ~ H QD).
PROCF Put

G =cGal(Q/Q (Q = Q%P

and

- i) g = qSeP
G, =6GlQ/Q) @, =0a).

N

1. There is an arrow of restriction

Then schematically

p:Gp - G
and a morphism T(Q) - T(ap) of Gp—modules, T(Q) being viewed as a Gp—module via -
2. The canonical arrow
H QT ~ H QM
is then the result of composing the map

T (G, T(Q) Hl(Gp,T(,Q))
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with the map

Hl(Gp,T(Q)) > Hl(Gp,T(Qp)) )

28: NOTATION Put

WD) = Ker (@ @, > || #Q,D)-

pse
29: DEFINITION IT) is the Tate-Shafarevich group of T.
30: THEOREM I(T) is a finite group.

3l: EXAMPIE If K is a finite extension of Q, then
H'(Q,Resy ;g (G ) = 1.
Therefore in this case
#(I(T)) = 1.
32: REMARK By camparison,
(1) o a% X
B (QRes/) (6 ) = QN 0 (K.
[Consider the short exact sequence

(1) Ne/o

s R VLY

> Gm,Q -+ 1.]

33: NOTATION Put

Y(T) = CoRer(®'(Q,T) + || Hl(Qp,T)).

ps
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34: THEOREM Y(T) is a finite group.
35: MAIN THEOREM The Tamagawa number t(T) is given by the formula
_ #(U(T))
oM = Frmy

36: EXAMPIE If K is a finite extension of Q, then
H' (Q,Res 0 (6 ) = L.
Therefore in this case
#(U(T)) = 1.
It follows fram the main theorem that t(T) is a positive rational number.

Still, there are examples of finite abelian extensions K > Q such that

(1)
T (ResK/QGm,K)

is not a positive integer.



