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These notes are the product of my writing milestone project with Professor Julia Pevtsova at the
University of Washington. They are adapted from the lecture notes of an introductory course
on tensor triangulated geometry taught by Professor Julia Pevtsova during the Winter quarter of
2024. The original document was a collaborative effort between everyone in the class, as every
day a different student was assigned to transcribe and later type up that day’s lecture in a shared
LaTeX document. I would like to thank those students for their contributions. Since I did not
attend this class myself (as I was not yet a student at Washington), this project would not have
happened with without their diligent work.
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Ansel Gosh Jackson Morris Eric Zhang

When I set out to write up these notes, my intended audience was myself from three years in
the past, i.e. an early graduate student who wants to learn some of the fundamental notions of
tensor triangulated geometry and is comfortable with homological algebra. Ideally, readers should
also have familiarity with either the derived categories of a ring or scheme, modular representation
theory, or stable homotopy theory.

I tried to loosely follow the original class notes and to add more expository material while keeping
the text as self contained as possible and with ample references. Chapters 1 through 3 cover the
material from Paul Balmer’s original paper [Bal05] on tensor triangulated categories while Chapters
3 through 5 cover some of the material from [Ball0]. Chapter 6 covers some material on big tensor
triangulated categories.



0 Introduction

Mathematicians of all stripes have long toiled to classify their favorite objects of study; be they
topological spaces, quasi-coherent sheaves, or modules over a p-group, mathematicians love to round
them up and put them into neat little boxes. Sometimes they are successful after a long struggle,
as in the case of finite simple groups, but sometimes it becomes clear that the damn things are
just too wild, as is the case in many flavors of homotopy theory. When faced with impossibility,
the mathematician’s trick is not to capitulate, but to change the rules of the game. The term “up
to isomorphism” is relaxed to “up to homotopy”, prompting the advent of triangulated categories.
Later, “homotopy” is relaxed to “stable homotopy”. Ground is gained, but still the task seems
intractable, even when the scope of the battle is narrowed to nice classes of objects.

Still, there are innovations to be made. When describing the structure of an algebraic object,
algebraists don’t often determine the behavior of individual elements, and instead study substruc-
tures. This amounts to no longer asking if x = y, but instead asking if  and y may be obtained
from one and other through various operations, i.e. comparing the ideals generated by x and y.
In the context of stable homotopy theory one deals with categories that are not just triangulated
but tensor triangulated. In this case, one asks if x can by obtained from gy through the operations
of tensoring, taking direct sums, direct summands, cones, and suspensions. Therefore, if we wish
to study any kind of stable homotopy theory, we should take inspiration from the ring theorist.
Instead of looking at when x = y, we should study when x may be obtained from gy through these
algebraic operations, i.e. when x is contained in the thick tensor ideal generated by y. From a
more zoomed out perspective, we are studying the lattices of certain suitable subcategories of our
larger ambient category.

The first steps in this direction came from algebraic topology, primarily in work to do with
Ravenel’s conjectures and the work of Devinatz-Hopkins-Smith in chromatic homotopy theory; see
[DHS88]. Hopkins was the first to start transplanting these results to other areas of research, specif-
ically the derived category, but there were issues with his proof which was rescued by Neeman; see
[Hop&7] and [Nee92]. Later, Thomason clarified the matter definitively in [Tho97], and in doing so
highlighted the importance of the tensor structure in the proof. That same year, Benson, Carlson
and Rickard made analogous advances in modular representation theory. The first axiomatic ap-
proach was taken by Hovey-Palmieri-Strickland in their monograph “Axiomatic Stable Homotopy
Theory”, [HPS97].

Later, Balmer provided a perhaps more elementary axiomatic approach to studying stable homo-
topy theory in [Bal05]. In this context, we can assign a topological space to our tensor triangulated
category 7 which acts as a universal support variety for 7. This space, called the Balmer spec-
trum of 7 and written Spc(7T), classifies thick tensor ideals of 7 and provides a shared framework
unifying many of the previous advances.

In the first chapter we will define tensor triangulated categories and all of the necessary accompa-
nying structures. We will also look at the context from which tensor triangular geometry descends,
namely, stable homotopy theory, derived categories of schemes and rings, and the representation
theory of finite groups. This leads directly into the second chapter where we will define and estab-
lish some of the key properties of the Balmer spectrum, which will then allow us to carry out the
classification of thick tensor ideals for tensor triangulated categories.

The Balmer spectrum Spc(7) is well understood in certain cases, but is in general hard to
compute. One approach to this problem is to try to relate Spc(7) to more familiar algebro-



geometric structures. In this vein, the third chapter focuses on the comparison map p* : Spc(7) —
Spec(End7(1)) which relates the Balmer spectrum of 7 to the spectrum of the graded endomor-
phism ring of the monoidal unit of 7. We will also see that Spc(7) may be given the structure of a
locally ringed space, and that the comparison map is a morphism of locally ringed spaces, at least
when 7T is rigid.

In the last chapter, we will see that tensor triangulated categories often live inside of stable
homotopy categories as the full subcategory of compact objects. Though the Balmer spectrum
cannot be defined for these large categories for set theoretic reasons, we can use the Balmer spectrum
of the subcategory of compact objects to lift a notion of support to the larger ambient homotopy
category.



1 Tensor Triangulated Categories

We begin our journey by introducing the basic notions from [Bal05] and developing some of the
basic machinery required to study tensor triangulated geometry. Some familiarity with homological
algebra and triangulated categories is required, and for this our two main references will be [Nee(1]
and [Wei94]. After that, we will introduce the main examples of tensor triangulated categories that
we would like to study.

1.1 First Definitions
Definition 1.1 (Monoidal Category). A monoidal category is a category C equipped with

1. A functor
K:CxC—=C_C

(a,b) —a®b

called the tensor product.
2. an object 1 € C called the unit object or tensor unit,
3. a natural isomorphism

a:((5)e (=)o) = (e (-)e(-)
of the form
Opye: (TQY)®2 TR (YO 2)
called the associator,

4. natural isomorphisms

~

AM(1®(-) == (—) and p:(—)®@1 " (-)

of the form
M 1l®zr—2 and p,:21—=x

such that the following diagrams commute

Qg 1,y

@ (1®y)

1) ®
Pw@m A@)\y

(r®

w®a: & y®z

(w@z)®y)®2 (z®(y®2))
\Law,z,y(@idz idy ®az,y74\
(WR(r®z) =z o—— » w((z®y) ® 2)



Definition 1.2. A braided monoidal category is a monoidal category C equipped with another
natural isomorphism
Bry:2@y—>yQuw

called the braiding which that the following two kinds of diagrams commute for all objects involved.

2 b®c) %5 boo)®
/’ X
(a®b)® b® (c®a)

a®bm %I@Ba,c

bRa)®c —">b® (a®c)

—

a®b)®c&b§c®( ®b)

a®(b®c
idg Qm ) %Mébidb
a

R (c®b) 24— (a®c) @b

—

—~
(e}
®

2
®
S

We say that C is a symmetric monoidal category or a tensor category if it is a braided monoidal
category for which the braiding B, : * ® y — y ® x has the property By, o B, , = id;g, for all
objects z,y in C.

Definition 1.3. A triangulated category is a triple (7,3, A) where 7 is an additive category
equipped with an auto-equivalence

X:T =T

called the shift or suspension and a class A of ezact (or distinguished) triangles, which are triples

of composable morphisms:

:1:—f—>y—g—>z—h—>2x

They are called triangles because they are sometimes represented in diagrams of the kind below,
where the dotted line represents a map from z to Yx.

Some authors condense notation into the following form: (x,y, z; f, g, h). We require that 7 satisfies
the following axioms

(TR1) (Bookkeeping)



a. % 2 50— D is exact for each object x € T.

b. Distinguished triangles are closed under isomorphisms.

. . . ) . ..
c. T i> Y 9y 5 I $ip s exact if and only if y NN —f> Yy is exact. This is called
rotation.

(TR2) (Cones) For each morphism z N y there is an object cone(f) (unique up to non-unique
isomorphism) referred to as the cone of f which fits into an exact triangle

xéyiﬂzone(f)LEx

Sometimes cone(f) will be used instead of cone(f).

(TR3) (Extension) Given two exact triangles x ER y Lz by sz and o L y Loz "y 2’ and

arrows & —s 2’ and ¢/ LN y/ such that o f = f’ o a, then there exists z — 2’ making the
diagram below commute

f>y Iz
!
!
!
!

Iy lEa

f g b’
' >y > 2/ > '

Such a commutative diagram is called a morphism of triangles.

(TR4) (Octohedral) Given a composition z ERN Yy %y + there exists dotted arrows which form an
octohedral diagram,

cone(gf)

N/
Ly




or an exact triangle

For other more precise presentations of the octohedral axiom, refer to Appendix A.

Definition 1.4 (Tensor Triangulated Category). A tensor triangulated category (or a tt-category)
is a category T equipped with a tensor structure (7, ®,1) and a triangulated structure (7,%, A)
and a natural isomorphism

e:N(-)Ry = B(-2-)

with components
ery ST RY = N(zRY)

such that
1. ® is additive and exact in both arguments (takes exact triangles to exact triangles),

2. e satisfies the following commutative coherence pentagon for all objects x,y, z in T.

Y(roy)®z
GZ%V W
CrRy)®z Y((r®y) ®z)

laEz,y,z \Lzaz,y,z

Sz ® (Y@ 2) L S @ (y®2)

3. the Koszul sign rule is satisfied:

(1) ® (X01) —~— xaotiq

\LBZ‘“II,EF’II J(*l)ab

(1) ® (21) —~— %oty

If we are talking about two different tt-categories we might adorn their units and tensor products
with subscripts in order to avoid confusion, e.g. ®7 and 1.

Definition 1.5. Let 7 and 7' be tt-categories. A functor F': T — T is called an exact functor
if it is equipped with functorial isomorphisms & : F(Xx) — X F(z) such that an exact triangle
(x,y,2; f,g,h) in T is taken to an exact triangle (F(x), F(y), F(2); F(f), F(g),&:F(h)) in T".

Furthermore, F' is called ®-ezact if F(17) =1 and if F(z ® y) = F(z) ® F(y).

Definition 1.6. Given a triangulated category (T, %, A), a triangulated subcategory is a pair (C, A”)
such that



1. C is an full additive subcategory of 7 which is preserved under ¥ such that > : C — C is an
auto-equivalence,

2. A'=ANC, and
3. (C,%,A) is a triangulated category.

Remark 1.7. Note that the above definition immediately implies that if z - y — 2z — Xz is an
exact triangle in 7 and any two of x,y, z are in C then the third is in C. As a consequence, thick
®-ideals are replete, which is to say, thick ®-ideals are closed under isomorphisms.

We are now ready for our first propositions.

Proposition 1.8. For objects a,b,c € T the distributive property holds:

(a®b)@c=E(a®c)® (bR c)

Proof. By corollary A.8 a NP RN Y (a) is an exact triangle. By applying exactness of the
— ® c functor,

a®c 2B, ab)@c 22 pee L ) ® (1)
is exact, as is
a®c22 (a®c) @ (b®c) 225 b®c——>2( ® c) (2)

by another application of corollary A.8. By applying TR1(rotation), TR2, and TR3 we can get a
morphism of exact triangles between the triangles on lines (1) and (2) above that is the identity
on the first and third components and an isomorphism on the fourth as ¥(a ® ¢) = ¥(a) ® c. By
proposition A5 (a®b) ®@c= (a®c) B (b® c). O

Proposition 1.9. For any morphism f :a — b in a tt-category T there is an isomorphism
s ® cone(f) = cone(f ®idy)

for all objects s € T.

Proof. By TR2 the triangle a ENYAEA cone( f) 2y S0 and since ® is exact in both variables it follows
that the top row of the triangle below is exact. The bottom row is also exact by TR2.
5 — b® T2 cone(f) ® s —=55 %

a®s 129 b®s —2 5 cone(f ®id,) SN Y(a)®s

fRids g®id h®ids (

By TR3 the dotted line exists to make the diagram a morphism of triangles, and by proposition A.5
it is an isomorphism. ]

Remark 1.10. Tensor Triangular geometry is largely inspired by the rich geometry found in the
realm of ring spectra, though I would argue that it is not immediately obvious from the definitions
above that one should be able to develop such a theory on tt-categories. It’s also worth noting
that we could have proved the proposition above if our category had an internal-hom structure, but



this proof makes it clear that distributivity of the tensor product over direct sums directly comes
from the triangular structure communicating well with the tensor structure, which is a sign that
our tt-category should behave somewhat like a ring. With this in mind, we shall seek out other
parallels between tt-categories and commutative rings.

Definition 1.11. If 7 is a triangulated category then C C T is a thick subcategory if it is a
triangulated subcategory of T and C is closed under sums, meaning that a,b € C if and only if
adbel.

If, in addition, 7T is a tensor triangulated category, and C is a thick subcategory of 7 that is closed
under ®, i.e. a € C and b € T implies that a ® b € C, then we say that it is a thick ®-ideal. Given
a collection of objects S C Obj(7), write (S) to denote the ®-ideal generated by S. Equivalently,
this is the smallest ®-ideal containing S.

It is important to keep in mind that to describe a full subcategory it is sufficient to merely
describe all the objects within the subcategory, which we will do regularly.

Remark 1.12. Though not immediately obvious from the definition, it’s worth noting that if Z is a
triangulated subcategory of 7 then a,b € C implies that a @ b € C, so C being thick only adds the
requirement that direct sums of objects in 7 decompose within C.

Additionally, note that we are not distinguishing between left, right, or two-sided ideals. This
is because our monoidal structure is symmetric, though it should be said that there is no reason
that we could not consider a non-commutative analogue to the definition above in the scenario that
we relax the condition that ® be symmetric. See [NVY21] for an exploration of noncommutative
tensor triangulated geometry.

Notation 1.13. If C is a subcategory of a triangulated category 7T, we write thick(C) be the
smallest thick subcategory of 7 that contains C. This is called the thick closure of C in T.

Proposition 1.14. Let T be a tensor triangulated category with unit 1. If thick(1) = T, then all
thick subcategories of T are ®-ideals.

Proof. Let Z be a thick subcategory of T and let S={a € 7 |a®Z C Z}. Our aim is to show
that S is a thick subcategory of T.

Ifx € Zand a,b € T then z®(a®b) = (x®a)P(x®Db), and since Z is a thick subcategory it follows
that a,b € S if and only if a ® b € S. Additionally, if a € S then ¥(z ® a) = z ® (Xa) = (X¥7) ® a,
and since Yz € T it follows that ¥a € §. Finally, if a« — b — ¢ — Yc is an exact triangle and
a,b e Sthena®r = bRx — c®xr — Ya®x is exact as T is a tt-category, and since aQz,bQx € T
it follows that c® x € 7 as T is a triangulated subcategory, so ¢ € S.

Hence, S is a thick subcategory of 7. Since 1 € S trivially, it follows that thick(1) C S. It then
follows that thick(1) = T forces T = S, making 7 a ®-ideal. O]
1.2 Verdier Localization

Much of our thinking about tt-categories will be inspired by the structure of rings, and two of the
most important ways to build new rings our of old ones are quotients and localizations. Verdier
localization generalizes both ideas simultaneously.
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Definition 1.15. Let F': 71 — T2 be an exact functor of triangulated categories. The kernel of
F is defined to be the full subcategory C of 71 whose objects map to objects of T isomorphic to
0.

Proposition 1.16. The kernel C of a triangulated functor F : D — T is a thick subcategory of T .

Proof. Anobject x € Disin C if and only if F/(x) = 0, but then F(Xx) = XF(z) = 0,s0 XF(z) € C.
Additionally, if  — y — z — Xz is an exact triangle in D, then F(x) — F(y) — F(z) — X F(x)
is also an exact triangle in C. If x and y are in C, then F(z) — F(Y) — F(z) — XF(x) must be
isomorphic to the zero triangle, making z € C, so C is a triangulated category. Now if t @y € C
then F(x @ y) = F(x) ® F(y) as F is an additive functor, but since F(x @ y) = 0, it must be that
F(x) and F(y) are isomorphic to 0, putting « and y in C. O

Theorem 1.17. Let T be a triangulated category and C C T a triangulated subcategory (not
necessarily thick). Then there is as universal exact functor Fypiy : T — T /C where C C ker(F).
In other words, there exists a triangulated category T /C and an exact functor Funy : T — T /C
so that if there is another triangulated functor G : T — D with C C ker(G), then there is a unique
factorization of G:

TFum'v T/C—>D
Proof. See the proof of theorem 2.1.8 in [NeeOl]. O

The quotient category 7 /C is called the Verdier quotient of T by C, and the natural map
Funiv : T — T /C is called the Verdier localization map. Discussing the structure of 7 /C in detail
is outside the scope of this text, and the interested reader should consult [[{ra21] or chapter 2 of
[NeeO1]. For now, we simply need to know that the objects of 7 /C are the objects in 7 and Fypiy
is the identity on objects, and that F,,;, sends morphisms whose cone lies in C to isomorphisms. In

fact, every morphism of 7/ C may be written gf ! : X — Y where f and g are morphisms Z i) X

and Z % Y such that f fits into an exact triangle Z i> X - W — XZ where W is an object of
C. Recall that an exact functor F' takes an object C to 0 if and only if it takes an exact triangle

. . . . id .
AL B0 YCtoa triangle isomorphic to the image of X —% X — 0 — XX, meaning that
F(h) is an isomorphism. Therefore, all morphisms that are of the same form as f above must be
sent to isomorphisms by Fypniy, which is why we may invert f. To summarize:

Fact 1.18. Let Z be a triangulated subcategory of 7 and set S = {f € Mor(T) | cone(f) € Z}.
Then,
T/T=T[S™Y

where T[S™!] is the category obtained from 7 by formally inverting the morphisms in S.

Notice that proposition 1.16 tells us that the kernel of a triangulated functor is thick, but in
theorem 1.17 we are quotienting out a triangulated subcategory C that may not be thick and that
C is merely contained in the kernel of Fy,;y where Fip;y is induced by quotienting out by C. It turns
out that ker(Finiv) = C where C is the thick closure of C, the full subcategory whose objects are
direct summands of C. Indeed, it’s not hard to show that C is a thick subcategory if and only if
Cc=C.

So far we have only discussed localization for triangulated categories, but have yet to invoke
a tensor structure. Thankfully, Verdier localization behaves well with respect to tt-categories,

11



meaning that if we are given a thick ®-ideal Z with a 7 then the Verdier localization 7 /Z is a
tt-category and the universal exact functor = : 7 — T /Z is an exact ®@-functor.

1.3 Examples

Tensor Triangulated categories come in many flavors, some of which we will outline. This text will
primarily focus on the three examples below, but it should be noted that tt-categories show up in
many places. Examples can be found in motivic theory, stable Al-homotopy theory, the equivarient
K K-theory of C*-algebras, and in Fukaya categories of Calabi-Yau manifolds, to name a few.

1.3.1 The Derived Category

Some of the most well understood tt-categories are those from algebraic geometry and commutative
algebra. The prototypical abelian category is R-Mod for a ring R, and in some sense these are
the only abelian categories due to the Freyd—Mitchell theorem embedding theorem, which roughly
states that if A is a small abelian category then A is equivalent to a full subcategory of left R-
modules for some (unital, not necessarily commutative) ring R, so going forward, we have that A is
just R-Mod for some ring R. From A we can construct Ch(.A4), the category of chain complexes of A.
By embedding A into Ch(.A) we can approximate objects of A via resolutions of more well behaved
objects. In this text, we will only care about projective and injective resolutions. Unfortunately,
there is “too much noise” in Ch(.A), meaning that a projective or injective resolution of M € A
will not be unique up to isomorphism, but is instead unique up to homotopy of chain complexes.
Recall that in Ch(.A), we say that two maps f, g : Ce — D are chain homotopic if there is a chain
homotopy h : Ce — Dey1. Recall that a chain homotopy h from f to g is a collection of maps
hy @ Cp — Dypaq such that f, — g, = Ophy + hn—10¢. This is summed up in the following diagram:

dc ¢

"'*>Cn+l Cn71*>"'

Ch
h o
tlls fﬂg |l
K’ g
D, 0

% Dpis Dy —s e

Op

We say that f and g are homotopic if f — g is null-homotopic, that is, if there is a homotopy from
f — g to 0, and we write f g. It’s straightforward to check that the null-homotopic maps from C,
to D form a subgroup of HomCh( A)(C., D,)

We care about all this because in order to make resolutions functorial, we need to pass to some
sort of category in which homotopy equivalences are actually isomorphisms. Enter: K(.A), the
homotopy category of chain complexes over A. The category K(.A) has the same objects as Ch(.A),
but we define Homg4)(Ce, D) := Homcy,(4)(Ce, Ds)/null(C, D) where null(C, D) is the subgroup
of null-homotopic maps. This category is naturally triangulated. The auto-equivalence ¥ is simply
the shift functor [1] : K(A) — K(A) where C[1],, = C,,—1. Any morphism f : Ce¢ — Do may be fit
into a composition

Ce L> Dy — cone(f)e — C[1]s

where cone(f) is the mapping cone of the morphism f (see [Wei94] for details). Therefore, define
the class of exact triangles of K(.A) to be triangles that are isomorphic in K(A) to a composition
of the form above.

Much may be gleaned through studying K(.A), but it is still unfortunately not entirely satisfactory.
For one thing, there are chain maps which ought to be identified in K(.A), but are not homotopy

12



equivalences; see [nl.a25]. Part of the problem is that we want to be able to identify an object
of A with a resolution of that object. To do this, we need the derived category D(A). This
is obtained from K(A) by quotienting out by the triangulated subcategory of acyclic complexes
Kac(A), i.e. complexes with zero homology. This is equivalent to localizing at the collection of
quasi-isomorphisms, which are chain maps that induce isomorphisms on all homology groups.

There are a number of advantages to studying D(A) over K(A). One such advantage is that D(.A)
is the most natural setting to study derived functors. If we take A to be R-Mod or quasi-coherent
sheaves over a scheme X, then one such functor is — ®H§ — : R-Mod x R-Mod — R-Mod, the derived
tensor product. This equips D(R) with a monoidal structure with R concentrated in degree 0 as
the unit, and this in turn makes D(R) into a tt-category.

In addition to K(R) and D(R) there are other triangulated categories associated to A, such as
K*(R), K~ (R), and K°(R), whose objects consist of bounded below, bounded above, and totally
bounded complexes respectively. Of course these have derived counterparts D ~°(R) as well. Of
particular interest to us is Dpf(R), the derived category of perfect complezxes, i.e. totally bounded
complexes of finitely generated projective modules. The other derived categories are in some sense
too large for us to easily study at present, but this is not the case for DPf(R). More on this later.

For a much more detailed account of derived categories in the context of commutative algebra,
see [CFH24]. For a rapid introduction to derived categories in the context of algebraic geometry,
see the first three chapters of [Huy06].

1.3.2 The Stable Module Category

Modular representation theory is a branch of representation theory focusing on the study of linear
representations of finite groups over fields k of prime characteristic p where p divides |G|. In ordinary
representation theory, i.e. in the case that char(k) = 0, finite dimensional (left) kG-modules
(representations) are classified by their characters whereby two representations are isomorphic
if and only if they have the same character. Any character may be uniquely constructed from
irreducible characters, of which there are only finitely many. Irreducible characters themselves
correspond to simple modules, and according to Maschke’s theorem, simple modules are precisely
the indecomposable modules. The Krull-Schmidt theorem then tells us that all finite length modules
may be decomposed into a unique-up-to-ordering finite direct sum of indecomposables. Therefore,
we may classify finite length left kG-modules, which coincide with finitely generated kG-modules
as kG is a left-Artinian ring.

This is much more tractable than the modular case where indecomposable modules may have
the same character despite being non-isomorphic. In fact, it turns out that indecomposable kG-
modules are usually unclassifiable. To have any hope of understanding kG-modules, one then
needs to aim for coarser classifications. Categorically, the goal is to study kG-Mod, the category
of kG-modules and the full subcategory of finitely generated kG-modules respectively, by looking
at certain informative subcategories. It turns out that a kG-module M is projective if and only if
it is injective, and there are only a finite number of projective/injective indecomposables, each of
which has a unique top composition factor S where S is also the unique bottom composition factor.
Simple modules then correspond to indecomposable projectives, where a simple S is associated to
its projective cover P(S).

Once one understands the projective modules, it becomes convenient to study modules modulo
projectives, which leads one to define StMod(kG), the category which has the same objects as kG-
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Mod but the morphisms that factor through a projective have been killed. Also of prime interest
is stmod(kG), the full subcategory of StMod(kG) whose objects are finitely generated kG-modules.

Hom, (M, N) := Homyg(M, N)/ PHomyg(M, N)

where PHomy (M, N) is the linear subspace of homomorphisms from M to N that factor through
some projective module. Given a module M, let P(M) and I(M) denote a projective and injective
envelope of M, respectively. To see that PHomyg (M, N) is a linear subspace of Homyg (M, N),
note that M — N factors through some projective if and only if it factors as M — P(N) — N, and
since projectives are the same as injectives, this happens if and only if it factors M — I(M) — N.

The category StMod(kG) doesn’t end up being abelian however. By the discussion above, mor-
phisms M — N become equivalent to both surjective homomorphisms M @& P(N) — N and
injective homomorphisms M — I(M) @ N, so one cannot appropriately examine cokernels and
kernels. Instead, StMod(kG) ends up being a tt-category.

To define the triangular structure of StMod(kG), let M be a kG-module and consider an epimor-
phism « : P — M where P is projective. Define the first syzygy Q(M) = ker(«). Dually, given a
monomorphism 3 : P — M we define Q~(M) = coker(3). We then have short exact sequences

0=QM)-P—-M—=0 0-M-=P-=Q(M)=0

Within StMod(kG), Q(M) becomes an object independent of a choice surjection P — M, so
Q(M) is well defined. The same goes for Q~1(M). Additionally, due to the discussion above, any
morphism M — N yields a morphism Q(M) — Q(N), which makes Q and Q! into endofunctors
of StMod(kG). The short exact sequences above then yield Q71 o Q(M) = M = Qo Q~1(M), so
is an auto-equivalence with inverse !, justifying the notation used. It makes sense to then define
Q' =QoQi~! foric Z

To define the triangles of StMod(kG), let X and Y be kG-modules. Given a short exact sequence
0—=Y — P — QYY) — 0 one can then examine the following exact sequence

Homyq(X, P) — Homyg (X, Q7 H(Y)) — Extj(X,Y) — Extiq(X, P)
Since P =2 0 in StMod(kG), it follows that Hom(X, P) = Extj,(X, P) = 0, and therefore

Homyo(X, Q71 (Y)) = Extpq(X,Y)

Now let 0 — L % M 2 N — 0 be a short exact sequence. Viewing Ext},(N, L) as extensions of
N by L, this short exact sequence corresponds to an element of EX'EIIC(;(N , L) and therefore to an
element + of Homj (N, Q2 (L)). Then the short exact sequence fits into a commutative diagram
with exact rows:

0 L—“sM—" 4N 0
[ I
0 L P QL) ——0

where P is injective. It then makes sense to say that a triangle in StMod(kG) is exact exactly when
it is isomorphic to a sequence of morphisms

LS M NS
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It is straight forward to show that Q~! and this collection of exact triangles endows StMod(kG) with
a triangulated structure. Without too much more effort, it can also be shown that the monoidal
structure on StMod(kG) induced by the usual monoidal structure of kG-Mod makes StMod(kG)
into a tt-category. Explicitly, given kG-modules V' and W, the object V@ W is V ®; W as a
k-vector space, where kG acts diagonally, i.e. g v ®r w = (gv) ®% (gw) for all v € V, w € W,
and g € G. The monoidal unit is the trivial representation k, which is a kG-module via the map

€ : kG — k where E(deg cgg) = EQEG Cq-

More generally, this construction can be carried out by replacing kG with A where A is a Frobenius
algebra, that is, A is a finite dimensional unital associative algebra over a field k equipped with a
bilinear form o : A x A — k that satisfies the equation o(a - b,¢) = o(a,b - ¢). Finite dimensional
Hopf algebras are Frobenius algebras, and group algebras of finite groups are Hopf algebras. Even
more generally, we can replace kG-mod with a Frobenius category A, which is an abelian category
with enough projectives and injectives and whose class of projectives and injectives coincide.

For more details, see [Hap&g], [Kra2l], or [BIKI11].

1.3.3 The Stable Homotopy Category

The following discussion will be a little more informal than the last two, in large part because of
the amount of machinery involved in the background. It is meant for people who have taken a
first course in algebraic topology. Some of the following material loosely follows the short survey
[Mall4] by Cary Malkiewich, which goes into more depth than we do here.

If we are in the mood for topology, we care about the category of compactly generated weak
Hausdorff topological spaces. Denote this category Top. We also care about the full subcategory
of spaces that are homeomorphic to CW complexes, which we will denote CW. Of course, Top
category is too complicated to truly understand as continuous maps can be extremely wild, so we
smooth out the noise by studying continuous maps up to homotopy. The homotopy category of CW
complexes CW has the same objects as CW has homotopy classes of continuous maps as morphisms,
so we have a functor CW — CW which is the identity on objects and takes continuous maps to
their homotopy class.

We then define the homotopy category of spaces HoTop to have the same objects as Top and set
morphisms from X to Y to be homotopy classes of maps between CW approximations of X and
Y. A map on topological spaces f : X — Y is called a weak homotopy equivalence if it induces
isomorphisms on all homotopy groups, that is

fo i (X 2) 2, (Y, f(y)) Vee X,VneN

Whitehead showed that a weak homotopy equivalence between CW complexes which induces iso-
morphisms is actually a homotopy equivalence; that is to say, a f : X — Y is a weak equivalence
if and only if f is an isomorphism in HoTop. Therefore, to study homotopy we need to study
homotopy groups of CW complexes. Since CW complexes may be assembled out of spheres, we
would like to understand the homotopy groups of the spheres, m(S™) where S™ is the n-sphere.
Unfortunately, this too turns out to be extremely difficult. While there are many patterns in the
homotopy groups of the spheres, there are no general combinatorial formulas that calculate what
7 (S™) should be. Nevertheless, we press on.

For a based space X, there is the suspension homomorphism

Yomp(X) = mp1(2X)
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where for f a homotopy class in m(X),
Sf=fVidg : SFl =P A8t 5 X AS=%X

where XX is the topological suspension of X and A V B denotes the smash product of the spaces
A and B. Freudenthal showed that if X is an (n — 1)-connected space for n > 1, then the map X
above is a bijection if k < 2n — 1. If we keep applying the suspension homomorphism, we get a
sequence of homotopy groups:

b)) b b))
Wk(X) — ’/T].H_l(ZX) —_— ... 7Tk+r(ZTX)
Since X" X is (n + r — 1)-connected, the suspension homomorphism
S M (B X) = Mg (BT X)

is an isomorphism for k + r < 2(n + r) — 1. In other words, for fixed n and k, sequence above
stabilizes when » > k — 2n + 1. For an (n — 1)-connected space we then define the k-th stable
homotopy group,
(X)) =M (X"X) for r>k—2n+1
This definition generalizes to spaces that may not be (n — 1)-connected:
T (X) = colim mg4, (X" X)

In particular, we are interested in the stable homotopy group of the spheres. Since .8 = §7+!
for all n > 0, the suspension map m,(S™) = Tuixe1(S™H1) is an isomorphism for n > k + 1,
so we have 7§ (S") = m;_ (S%) for n > k, and therefore the stable homotopy groups of S" can be
expressed in terms of the stable homotopy groups of SY. Determining the behavior of the stable
homotopy groups of spheres has been one of the central problems of algebraic topology since they
were first defined, and has driven an enormous amount of innovation in mathematics.

Just as the homotopy category filters out the wild behavior of continuous maps, we want to
pass to a new category that filters out unstable behavior in homotopy groups. One of the defining
features of HoTop was that isomorphisms were detected by homotopy groups. Analogously, we
want to pass to a category in which isomorphisms are detected by the stable homotopy groups.
The right category for the job is called the stable homotopy category, denoted SHC. An object
of SHC is called a “spectrum”. There are many different definitions of the category of spectra,
most of which are not equivalent, each of them has an associated definition of the stable homotopy
category, and these are almost always equivalent.

Earlier we saw that in calculating the stable homotopy groups of the spheres we only needed
to look at S as 3S™ = S"*+!. Since isomorphisms in SHC are detected by the stable homotopy
groups, it might occur to us that instead of looking at all the spheres separately in SHC, they
should all be rolled up into one construction 3*°S™. Extending this philosophy, there should be
a functor X*° : HoTop — SHC which sends each suspension of X to the same place. The usual
reduced suspension functor should then give rise to an equivalence on SHC:

CW —= s CW

| |

HoTop BN HoTop,

|== ES

SHC — 2 4 SHC
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This means that object of SHC is the suspension of some other object. This should look strange,
since not every space is the suspension of another space in Top or HoTop. The functor ¥°° has a right
adjoint 2°° : SHC — HoTop. As the notation suggests, there is a loopspace functor €2 : SHC — SHC
which fits into a diagram below:

CW<TCW

I |

HoTop o HoTop,

o] ]
SHC ¢—— SHC

The functors X and € are inverse equivalences. This means that every object of SHC is the loopspace
of some other object.

Many topological constructions become algebraic in SHC. The hom-set Homgpc(X,Y') becomes
an abelian group, and composition of morphisms becomes bilinear. Additionally, the one point
base space * becomes a zero object, turning SHC into an additive category. The wedge sum X VY
is now the direct sum of X and Y in SHC. It can also be shown that the smash product A induces
a monoidal structure on SHC for which the sphere spectrum S := %£>°8° is the monoidal unit.

We now have almost all the ingredients for a tt-category, save for the exact triangles. In Top
there are the classical cofiber sequences

A= X 5 X/A—-3XA

and classical fiber sequences
OB —+F—-F—B

As one might expect, ¥*° takes cofiber sequences to exact triangles in SHC and 2°° takes exact
triangles in SHC to fiber sequences in Top. Let A denote the exact triangles of SHC. With these
ingredients, it can be shown with some care that (SHC, A, S, ¥, A) is a triangulated tensor category.
There is also the stable homotopy category of finite spectra, shc, which is essentially small.

1.4 Rigidity

Motivation. Let M, N € stmod(kG) for G a finite group and k a field. As explained in subsubsec-
tion 1.3.2, the monoidal structure of stmod(kG) is given by tensoring over k and we make M @5 N a
kG-module via the diagonal action where g(m ®jn) = (gm) ®j gn for g € kG, m € M, and n € N.
We can similarly make Homy (M, N) into a kG-module via a diagonal action: for & € Homy (M, N)
and g € kG, define (g - a)(m) = ga(g~'m).

Definition 1.19. For M a kG-module, we define the invariant submodule
MY ={meM|g-m=mVgeG}

This defines an endofunctor on kG-Mod

One can then verify that for any kG-module M and N there is an isomorphism

Homy,; (M, N) = Homy, (M, N)¢
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Additionally, one can also verify that for a kG-module L the usual hom-tensor adjunction of k-vector
spaces,
Homy (L ®; M, N) = Homg (L, Homg (M, N))

is compatible with the kG-module structures. In particular, it is an isomorphism of kG-modules.
By applying the invariant functor, we obtain

Homyg (L ®; M, N) = Homyq (L, Homy (M, N))

In other words, the functor — ®j M has a right adjoint Homy (M, —). More generally, we could
replace kG with a Hopf algebra A over k. For more details in the group theoretic case, see lecture
1 of [BIK11].

Exercise 1.20. Verify the above claims.

Definition 1.21 (Hom-Tensor Adjunction). An additive symmetric monoidal category (C,®,1) is
called closed if C has an internal hom functor, that is to say, a functor

hom(—,—) : C* xC = C

such that for any y € C the functor (—) ® y is the left adjoint of hom(y, —). The unit and counit
of this adjunction are denoted

Ny 'y — hom(z,z®y) and €, :hom(z,y) @z —vy

In this case, the dual of an object = € C is defined to be z¥ := hom(x,1).

Example 1.22. The functor Homy(—, —) : stmod(kG)°P x stmod(kG) — stmod(kG) is the internal
hom of stmod(kG).

Definition 1.23. Let C be a closed monoidal category. Given objects. For objects z,y € C, there
is a natural evaluation map
z¥ ®y — hom(z,y)

given by tracking what happens to the identity map on y through the composition below.

(idy ®€z,ﬂ)*
_—

Home (y, y) — Home(y ® 1, y) Home(y ® ¥ ® z,y) = Home(y ® 2", hom(z, y))

We say that an object z is rigid if the evaluation map ¥ ® y — hom(z, y) is an isomorphism for
all y. If all objects of C are rigid, then we say that C is rigid.

Exercise 1.24. Show that stmod(kG) is rigid. Hint: The evaluation map Homy (M, k) @ N —
Homyg (M, N) is of the form below:

¢ Rk n = [m— ¢(m)n]

for ¢ € Homy (M, k), m € M, and n € N.
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Remark 1.25. Note that C being rigid is equivalent to the existence of a functor D : C°? — C such
that there is a natural isomorphism

Home (¢ ® y, 2) = Home(z, D(y) ® 2)

which is natural in all three variables. If such a functor exists then we can define the internal hom
hom(y, 2) == D(y) ® z, so really the functor D is serving as the dual functor (—)V. Additionally,
if C is rigid, then there is a natural isomorphism zV¥ = z. One can also show that the functor
¥ ® (—) is both a left and right adjoint to # ® (—), and that the functor hom obeys hom-tensor
adjunction that Home does, i.e.

hom(z ® y, z) = hom(z, hom(y, z))

Fact 1.26. Let 7 be a rigid tt-category. If hom(z,y) = 0 then the only morphism between = and
y is the trivial morphism.

Proof. This is a routine calculation:

Hom7(z,y) = Hom7 (1 ® z,y) = Homy (1, hom(z,y)) = Hom7(1,0) =0
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2 The Spectrum of T

In this chapter we will define the Balmer spectrum and show that it is a spectral space before then
going on to state the main classification theorem for thick subcategories. Crucially, we will require
that our tt-categories be essentially small.

Definition 2.1. A category C is small if it has a small set of objects and a small set of morphisms,
where we use the term small to emphasize that these really are sets as opposed to proper classes.
If C is equivalent to a small category then we say that C is essentially small.

We make this provision because the points of the Balmer spectrum are the prime ®-ideals of T
(defined below) and we need there to be no more than a sets worth of prime ®-ideals contained in
T to be able to define a sensible topological space on them.

A warning to the reader

Before we begin the real content of this section, the reader should be warned. The Balmer spectrum,
which will be our main object of study, behaves like and is defined similarly to the Zariski spectrum
Spec(R) of a commutative ring R, and much of the theory of tt-geometry is inspired by this
similarity. Indeed, the Balmer spectrum will be a spectral space, meaning that it is homeomorphic
to the Zariski spectrum of some commutative ring. However, there is a key difference that one
must pay mind to, and that is that the Balmer spectrum appears to be topologically “backwards”
— by this I mean that closed points correspond to minimal primes (to be defined) in 7 and generic
points correspond to maximal ideals.

The reason for this backwardness is surprisingly deep and unfortunately beyond the scope of this
text to explore in its entirety, but there are authors who have written on the subject; see [BKS07]
and [KP15]. For now I will simply say that it comes down to the fact that Balmer’s choice of a
closed basis ends up yielding the Hochster dual of what some consider to be the more natural choice
of topology for the Balmer spectrum. This is will be expounded later in subsubsection 2.4.2.

2.1 Definition of Spc(7T)
This section follows section 2 of [Bal05].

Definition 2.2. A thick ®-ideal P C T is called prime if for any a,b € Obj(7) such that a®b € P
then either a € P or b € P. We define Spc(7) to be the collection of all prime ®-ideals in 7. A
mazimal ®-ideal is a proper ®-ideal of T that is maximal with respect to inclusion.

Later on we will define Spec7 to be the set Spc(7T) equipped with a particular ringed space
structure, so we will hold the notation Spec 7 in reserve until then. To put a ringed space structure
on Spc(T), we first need to put a topology on T.

Definition 2.3. For any S C Obj(T), we write Z(S) :={P € Spe(T) | SNP = 0}.
Proposition 2.4. For any tt-category T the following hold:
1. Nier 2(8i) = Z(U;er Si) for a family {S;}icr where S; € Obj(T) for each i € 1.
2. Z(S1 @ S2) = Z(851) U Z2(S2)
3. Z(T)=0
4. Z2(0) = Spe(T)
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where S| ®Sa ={a®b|a € S1,b € Sa}.

Proof.

1. P €Nier 2(S)) if and only if PNS; = 0 for all i € I if and only if PN (U;c; Si) = 0 if and
only if P € Z(J;c; Si)-

2. P ¢ Z(S1®S2) then Ja®b € P where a € S1,b € S. But as P is a thick ®-ideal a,b € P,
so P intersects both S and Sy non-trivially and therefore P ¢ Z(S1) U Z(S2). On the other
hand, if P is not in either Z(S1) or Z(S2) then P must intersect both S; and S», so take
a€PNSiand b e PNSs. Then a®b € P and therefore PNS1NSs # 0, s0 P & Z(S1 4 So).

3. and 4. are obvious from the definition. O

It immediately follows that we can define a Zariski topology on Spc(7) with closed sets Z(S).

Definition 2.5. For any a € Ob(T), we define Supp(a) = {P € Spc(T) | a ¢ P}. For any family
T of objects of T, we write

suppZ = U Supp(a)
a€l

Remark 2.6. It is the case that given an object a € T, Z({a}) = supp(a); however, it is not always
the case that suppZ = Z(7).

We could also define the topology using open sets of the form below:

Definition 2.7. Given Z(S) a closed set in Spc(7) define

U(S) :==Spc(T)\ Z2(S) ={P € Spc(T) : SNP # 0}

Definition 2.8. A subset S C T is called a ®-multiplicative subset if for any a.b € S, a @b € S.
Proposition 2.9. Let T be a non-zero tt-category. Then,

1. If S C T is a @-multiplicative subset which does not contain 0, then there exists P € Spe(T)
such that SN'P = ().

2. If C C T is a proper thick ®-ideal then there exists a proper maximal @-ideal M C T such
that CC M CT.

3. Spe(T) # 0

Proof. This proposition follows easily from an application of lemma 2.10 below to the ideals gen-
erated by 0, C, and 1 respectively. ]

Lemma 2.10. Let 7 be a ®-ideal of T and S C T a ®-multiplicative subset. If TNS = () then
there exists P € Spe(T) such that T C P and PNS = 0.

Proof. Define J :={a €T :3s € S,a®s € Z}. I claim that this is a thick ®-ideal containing 7.
Clearly T C J since a® xz € Z for any a € Z and any =z € T.

Now we want to show that J is closed under taking cone, so suppose that a i> b is a morphism
in J. Since a,b € J there are s, s’ € S such that a®s,b®s € Z. In fact, we can just take s = s’ by
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replacing s with s ® s’ since a ® s € Z implies that a® s® s’ € Z and s® s’ € S. By proposition 1.9
s ® cone(f) = cone(f ® ids). Since T is a thick subcategory and a ® s,b ® s € T it follows that
s®cone(f) € Z. Therefore, cone(f) € J, and by the same token we can see that J is closed under
3, so J is a triangulated subcategory of 7.

Now suppose that a,b € J. It follows from corollary A.9 that a &b € J, so ds € S such that
(a®b)®s €Z. Then, since (a®b)®s = (a®s)P (b®s) it follows that a®s,b®s € Z,s0 a,b € J,
so J is a thick triangulated subcategory. To see that J is a ®-ideal, let ¢ € J with s € S such
that a ® s € Z, and since 7 is a ®-ideal we see that for any b € T, (a ® s) ® b € Z, but then by
associativity of ® we have a ® b € J. Additionally, 7 NS = ) since if a € SN J then ds € S such
that a ® s € Z, but then a ® s € ZNS as a,s € S implies that a ® s as S is ®-multiplicatively.
closed, which is a contradiction.

Now let C be the collection of thick ®-ideals J where

(1) gnS =40,
(2) If a € T such that there is some s € S where a® s € J, thena € J
B)IcJT

The paragraph above shows that C' is nonempty. Now let {.J;} be an ascending chain (via con-
tainment) within C'. Then clearly the full subcategory of T generated by the union of the objects
within {J;} is also a thick ®-ideal satisfying the conditions above, so by Zorn’s lemma there exists
a maximal element P of C. To see that P is prime, suppose that a @ b € P and b ¢ P. Then
define (P : a) to be the full subcategory of T generated by {z € T : x ® a € P}. This subcategory
is easily shown to be a thick ®-ideal of 7 by essentially the same methods used to show that J
above was a thick ®-ideal. If x € P then z ® a € P by definition of a ®-ideal, so P C (P : a), but
be (P:a)\P, so the containment is proper. Hence (P : a) € C, so one of the three properties
above fails for (P : a). Clearly it can’t be condition (3), so suppose that x € T such that there
is some s € S where 2 ® s € (P :a). Then x ® s ® a € P, but by condition (2) this implies that
x ® a € P, and therefore x € (P : a). Therefore the only condition that (P : a) could fail is (2),
which means that 3s € (P : a) NS, so a® s € P. But then a € P by condition (2). Hence P is
prime. ]

Corollary 2.11. Maximal thick ®-ideals are prime.

Definition 2.12. A thick ®-ideal Z C T is radical if for all a € Obj(T), a € Z whenever a®" € T
for some n € N. Equivalently, Z is equal to the radical of Z, denoted v/Z where

VI :={aecT |a®" €T for some n c N}

The thick ®-ideal \/(0) is referred to as the nilradical.

By definition a is contained in every P in Spc(7T) if and only if U(a) = Spc(7). Similarly, a is
contained in every P € Spc(T) if and only if Suppa = 0.
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Corollary 2.13.

(1 P={acT |U()=Spc(T)}
PeSpe(T)
={a €T | Supp(a) =0}
={acT |a®" =0 for somen € N}

=0
Proof. One direction is obvious, as 0 € P for any P € Spc(7T). Now suppose that a®” # 0 for any
n € Nand let S = {a®"},,en. S does not contain 0, so by proposition 2.9, there exists P € Spc(7T)
such that SNP = 0, but then Supp(a) # 0. By the contrapositive, we both containments. O
Corollary 2.14. An object a & P for all P € Spc(T) if and only if (a)® =T

Below we list some readily verified properties of sets of the form U(a) and supps(a) where

a € Obj(T).

Proposition 2.15. Let T be a tensor-triangulated category and a,b,c € Obj(T). The following
hold:

1. U(0) = Spe(T) & supp(0) =0

2 U(1) =0 & supp(1) = Spe(7)

5. U(a®b) = U(a) N U(5) & supp(a & b) = supp(a) U supp(b)

4. U(Xa) =U(a) & supp(Xa) = supp(a)

5. For an ezact triangle a — b — ¢, U(a) NU(c) C U(b) & supp(a) Usupp(c) 2 supp(b)
6. Ula®b) =U(a)UU(b) & supp(a ® b) = supp(a) N supp(b)

Remark 2.16. The interaction between the tt-structure and the Zariski topology can be interpreted
as the support remembering more than just the additive structure.

Corollary 2.17. The collection {U(a) : a € T} provides an (open) basis for the topology. The
collection {supp(a) = Spc(T) \ U(a)} provides a (closed) basis for the topology.

2.2 Spc(T7) is a Spectral Space
This section follows the rest of section 2 of [Bal05].

So far, we have defined prime ideals and equipped 7 with a topology that is analogous to the
Zariski topology found in the world of commutative rings. It turns out that there is a class of
topological spaces, referred to as spectral spaces which exactly corresponds to the Zariski spectrums
of commutative rings. The goal of this section is to show that Spc(7) is also a spectral space.

Definition 2.18. A topological space X is called irreducible if it cannot be written as the union of
two proper closed subsets of X. A topological space X is called sober if every nonempty irreducible
closed subset of X is the closure of exactly one point of X. Given such an irreducible closed subset
Y of X the unique point y € X such that § =Y, the point y is called the generic point of Y.

Definition 2.19. Let X be a topological space and K°(X) the set of quasi-compact open subsets
of X. X is spectral if
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—

. X is quasi-compact and Tj.

2. K°(X) is a basis for X.

3. K°(X) is closed under finite intersections.
4. X is sober.

Given spectral spaces X and Y, a spectral map X i> Y is a continuous map such that for any
quasi-compact open U C Y the pre-image f~1(U) is quasi-compact.

We will now proceed to show that Spc(7) is also spectral.
Proposition 2.20. Let P € Spce(T). Then P ={Q € Spc(T): Q C P}.

Proof. Let S = T \P. Then,

2(S) = Z(T\P)
={Q: 9N (T\P) =0}
={Q:Q9CP}

Clearly P € Z(S) and by definition Z(P) is closed, so P C Z(S). Now suppose that P C Z(S’)
where &' is some other collection of objects in 7. Then NP =0, so 8’ C T\ P = S, which
implies that Z(S) C Z(8’), and therefore Z(S) is minimal amongst closed sets containing P. [

Remark 2.21. As mentioned before, this might be confusing for those used to thinking about Spec R
for a commutative ring R, so one should take care when switching between these two contexts. In
subsubsection 2.4.2 we will try to clarify this situation.

Corollary 2.22. If P1,P2 € Spe(T) and Py = Py, then P1 = Po. Consequently, Spc(T) is Tp.
Proof. Immediate from proposition 2.20. 0

Proposition 2.23. There exists a minimal prime in T, that is, there exists a prime ®-ideal
P € Spc(T) such that if Q € Spe(T) where (0)® C Q C P, then either Q = (0)® or Q = P.

Proof. The proof is more or less identical to the proof using Zorn’s lemma used in standard ring
theory. O

Remark 2.24. A point is called closed if x = Z. By proposition 2.20 the only closed points of
Spc(T) are exactly minimal primes. As a result, any closed set of Spc(7) contains a closed point.
Lemma 2.25. Leta € T and S C T be a collection of objects. Then the following are equivalent.
(a) Ul(a) CU(S) (or equivalently Z(S) C supp(a)).
(b) There exist finitely many objects by, ...,b, € S such that by @ by @ ... @ by, € (a)®.
Proof. (a) = (b). Let Z = (a)® and &' be all finite tensor products of elements in S and suppose
that ZNS’ = (. Then by lemma 2.10 there exists P € Spc(T) such that Z C P and PNS’ = 0.

Therefore, P € U(a), but P € U(S) as U(S) C U(S’). By the contrapositive, U(a) C U(S) implies
that T NS’ # 0.
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(b) = (a). Assume (b). Let P € U(a). Then a € P so (a)® C P. In particular, by, ...,b, € P.
Since P is a prime ideal, there exists some b; € P, so PNS # (. Hence P C U(S). O

Proposition 2.26.
(a) Spc(T) is quasi-compact.
(b) U(a) is quasi-compact for all a € T .

(c) Any quasi-compact open set has the form U(a) for some a € T .

Proof. Since U(0) = Spc(T), we get (a) from (b).

We will first prove (b). Let a € 7 and U(a) C [J;c; U(S;) be an open cover where I is an indexing
set. Then set S == (J;c;Si. Then U(S) = U;c; U(S). By lemma 2.25 there exists a finite subset
81, ...,Sp and objects by, ..., b, where b; € S for 1 <4 < n such that by ® ... ® b, € (a)®. Now let
P € U(a). Then (a)® C P and therefore by ®...®b,, € P and since P is prime there is some b; € P.

Thus P NS; # 0 and so P C U(S;). Hence, U(a) is covered by the finite subcover U(S)1, ..., U (L )n.
Now let U(S) be a quasi-compact set. Then

(a1)U...UU(an)by (b)
(a1 ®...Qap)

Remark 2.27. Given proposition 2.26 might be tempting to think that Spc(7) is always Noetherian
(as a topological space) since Spc(7T) is Noetherian if and only if any Z C Spc(7) can be realized
as supp(a) for some a € T. However, this is not the case as Thomason showed in [Tho97] that
given a quasi-separated quasi-compact scheme X one has a homeomorphism Spc(DPf(X)) = X,
so of course Spc(DPf(X)) cannot be noetherian when X is not. Barthel, Heard, and Sanders give

other examples of non-Noetherian Balmer spectrum in [BHS23].

O]

Corollary 2.28. The set of quasi-compact open subsets of Spc(T) form a basis for the space, and
this basis is closed under intersections.

It remains to show that Spc(7) is a sober space.

Proposition 2.29. Any closed irreducible subset Z C Spc(T) has a unique generic point, making
Spc(T) a sober space.
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Proof. Our goal is to be able to find for any Z a P € Spc(T) such that Z = P. Uniqueness of the
generic point P will follow from corollary 2.22. Suggestively, denote P :={a €T : U(a) N Z = 0}.
We will show that P is a prime ®-ideal and that Z = P.

Currently P is merely a full subcategory of 7 and it must be upgraded to the status of prime
®-ideal. For closure of @, let a,b € P. Suppose that a ® b ¢ P. Then

D=U(adb)NZ=Ua)nUOB)NZ=Ua)NZ)NUb)NZ)

This is a non-empty decomposition of Z into two disjoint and open subsets, which cannot happen
as Z is irreducible, so a ® b € P.

Now let a i> b be a morphism in P. By TR1 f fits into an exact triangle a i> N cone( f) LN
exact, and we want to see that ¢ € P. Since (a @ b)® is the smallest ®-ideal containing a and b, it
follows that ¢ € (a @ b)®. Hence U(a & b) C U(c), and since a & b € P by the paragraph above it
follows that

D£U(adb)NZCU(c)NZ

and therefore ¢ € P.

Closure under the translation functor ¥ is easy, as U(Xa) = U(a) by proposition 2.15, and so
a € P if and only if ¥a € P. We now have that P is a triangulated thick subcategory. Now let
a € P and b e T. Then

Ulaob)NZ=(U@uU®)NZ=(U@nNZ)UU®nZ)

Note that U(a) N Z # () as P, so the intersection above is nonempty and therefore a ® b € P. The
expression above also shows us that P is prime, as U(a ® b) N Z # () implies that either U(a) N Z
or U(b) N Z is non-empty and therefore either a or b are found in P.

It remains to show that Z = P. By proposition 2.20 P = {Q: Q C P}. Let Q € Z and a € Q.
Since Q € U(a), U(a)NZ # 0. Then a € P and so @ C P and therefore Q € P and therefore
Z CP. Since Z is itself closed, it suffices to show that P € Z to finish the proof. By corollary 2.17
we can write

2= (] swpo

ZCsupp(a)

If a is an object such that Z C supp(a) then a ¢ P, and thus P € suppa. As a was picked generally,
P € Z, and hence Z = P. O

Corollary 2.30. Spc(7) is a spectral space.

2.3 Nilpotence

Definition 2.31. A morphism f : a — b in T is called ®-nilpotent if there exists n > 1 such
that f®" : a®" — b®" is zero. If a is an object where id, is ®-nilpotent, then we say that a is
®-nilpotent.

Remark 2.32. Recall the nilradical of T

V0 :={a € Obj(T) | a®* = 0 for some n € N} = m P
PeSpe(T)
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In other words, ®-nilpotent objects of T are precisely those objects that belong to all prime ®-
ideals, and are therefore the objects with empty support. Proposition 2.33 is an analog of this fact
for morphisms.

Proposition 2.33. A morphism [ is ®-nilpotent if f is zero locally, i.e. f is sent to the zero
morphism in T /P for all P € Spc(T).

Proof. Suppose that f:a — b is a ®-nilpotent morphism.

Suppose that f is zero in T /P for all P € Spc(T). Recall that a morphism is only sent to the
zero morphism under a Verdier localization if it factors through an object in the kernel. Therefore,
f factors through an object ¢cp € P for all P € Spc(T). We can then write

Spe(T) = |J Ulep)
PeSpe(T)

Since Spc(7) is quasi-compact, there is a finite subcover

n

Spc(T) = U U,

i=1
corresponding to a finite collection Py, ..., Py, € Spc(T). Then,

n

U(0) =Spe(T) = | JU(e:) =U(e1® ... @ c)
=1

Therefore, ¢; ® ... ® ¢, € P for all P € Spe(T) so ¢1 ® ... ® ¢, is ®-nilpotent. By assumption f
factors through each ¢; and so f®" factors through ¢; ® ... ® ¢,, but the latter is ®-nilpotent and
is therefore zero for some ®-power m > 1. Hence, f&™" = 0. O

Remark 2.34. Let X be a quasi-separated and quasi-compact scheme. Thomason proved in [Tho97]
the following highly nontrivial result: a morphism f : X, — Y, of complexes with quasi-coherent
cohomology in D9°(X) is ®-nilpotent if and only if f ®p, k() : X, ®éx k(z) = Y ®éx k(x) is zero
in D(k(z)) for all z € X. This was a crucial step in Thomason’s classification of thick subcategories
of DPf(X) (discussed later in subsection 3.5), and is analogous to proposition 2.33.

2.4 Stone Duality and Spectral Spaces

In this section I will make good on my promise to talk about why the Balmer spectrum feels
backwards from the usual ring theoretic perspective. We will first take a brief digression into Stone
duality before talking about Hochster duality and the specialization order on a spectral space. We
will not prove anything in this section as some of the results are highly non-trivial and would take
us too far out of the scope of this text. Readers in a hurry may want to just skim over 2.4.1 as
it is enlightening but not strictly essential. We will however need the results stated in 2.4.2. The
presentation of 2.4.1 roughly follows section 1.2 of [KP15], which references [Joh&82] for results on
Stone duality.
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2.4.1 Stone Duality

There are several categorical dualities between certain categories of topological spaces and categories
of lattices. Usually these dualities fall under the umbrella term of Stone duality as they generalize
Stone’s representation theorem for Boolean algebras. The key insight of Stone duality is that the
essential data of a topological space X lies in the natural lattice structure on open sets of X,
denoted O(X). In fact, O(X) is a type of lattice known as a frame.

Definition 2.35. A frame F is a poset (viewed as a category) such that,
(a) F has all set indexed coproducts, which we call joins and denote V,
(b) F has finite limits called meets, denoted A,

(c) and F satisfies the infinite distributive law,

on (Vi) =V )

el il

A morphism of frames is a covariant functor between frames, so frames form a category.

Remark 2.36. Equivalently, we can define a frame as a complete distributive lattice in which finite
meets distribute over arbitrary joins, and a morphism of frames as a morphism of lattices that
preserves arbitrary joins.

Example 2.37. Let X be a topological space and O(X) be the set of open sets of X. Then O(X)
is a poset where U <V when U C V, and it is a frame with join and meet as union and intersection
of sets respectively.

There is a contravariant functor from topological spaces to the category of frames, which sends
X — O(X). There is a less obvious functor going back from frames to topological spaces, and it
is a right adjoint to O. To construct it, let * denote a singleton as a topological space. Note that
O(x) = {0, {*}}, so for clarity we will just identify O(x) with the frame {0,1} where 0 < 1. We
define a point of a frame F' to be a morphism p : F' — O(x), and denote the set of points of F' as
Pt(F'). This set has a natural topology where open sets are of the form

U(z) = {p € Pt(F) | p(z) = 1}

for some x € F. The topological spaces in the image of the points functor are sober, and in fact any
sober space may be realized this way (up to homeomorphism). Going the other way, the frames
that come from O are called spatial frames, which are the frames in which any two elements are
separated by some point. The intuition here is that any two open sets (represented by the elements
x,y € F) there is a point p which belongs to one open set but not the other. This is formally
captured in the definition below.

Definition 2.38. A frame F is called spatial if for any two elements x,y € F there exists p € Pt(F)
such that p(z) # p(y).

One can show that the adjoint pair (O - Pt) defines a contravariant equivalence of categories
between sober spaces and spatial frames.

In his thesis, [Hoc69], Hochster defined spectral spaces and then showed that any spectral space
may be realized as the spectrum of a commutative ring. As we saw in the previous section, spectral
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spaces form a category with spectral maps as morphisms and spectral spaces are by definition sober.
It follows that they must have a corresponding subcategory in the category of spatial frames. To
characterize these frames, we restate the definition of a spectral space as follows: a topological
space X is spectral if it is sober and the collection of compact opens, K£°(X), is a basis for X and a
sublattice of O(X). With this in mind, we can define the frames corresponding to spectral spaces.

Definition 2.39. An element z of a frame F is called compact if, for any cover of x there is a finite
subcover of z, i.e. given A C F we have

mg\/a — EIﬁniteBCAwhere:ng\/b
a€A beB

Let K(F) = {x € F | x is compact}. Then we say that F'is coherent if K(F) is a sublattice of F
and all elements of F' are joins of elements of K (F'). A morphism of frames is called coherent if it
takes compact elements to compact elements.

One can show that coherent frames are spatial and that the equivalence between spatial frames
and sober spaces given by O and Pt restricts to an anti-equivalence between coherent frames and
spectral spaces. In fact, spectral spaces are now more commonly called coherent spaces. Though it
is a non-trivial result, one can also show that a coherent frame F' may be recovered from K (F') as
the frame of ideals of K(F).

Definition 2.40. Let L be a distributive lattice. We call a subset I C L an ideal if it is closed
under finite joins and if @ € [ and x < a then x € I, i.e. I is a down set of L.

An ideal P of L is called prime if

aANbe P <= acPorbe P

When viewing a distributive lattice L as a category, taking the frame of ideals of L, denoted
Id(L), amounts to passing to the cocompletion of L. These two functors are an equivalence of
categories between coherent frames and bounded distributive lattices, though this takes a little
work to show. The following theorem summarizes this discussion.

Theorem 2.41 (Stone, 1939; Joyal, 1971). The category of spectral spaces is contravariantly equiv-
alent to the category of coherent frames, which in turn is equivalent to the category of distributive
lattices.

2.4.2 Hochster Duality and the Specialization Order

Hochster also showed in [Hoc69] that a spectral space X may be equipped with a dual topology
called the Hochster dual or inverse topology.

Definition 2.42. Given a spectral space X with quasi-compact basis K£°(X), define Xj,, to be
the topological space with the same underlying set X but whose open sets are those of the form
Y = Ujcq Yi where X'\Y; is quasi-compact open for all i € 2. In other words, the set of complements
of the sets in K°(X) becomes K°(X")

This yields an involution functor on the category of spectral spaces because it can be shown that
Xiny is also spectral and that (Xjny )inv = X.

Under the Hochster dual Xj,, the closed and generic points of X become the generic and closed
points respectively of Xi,y. This is a special case of a more general fact. Given a topological space
X and points z,y € X, we say that x specializes to y if y € {z}.
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Definition 2.43. Given a subset of a topological space Y C X, Y is said to be specialization closed
if Y has the property that y € Y implies {y} C Y or if, equivalently, Y is an arbitrary union of
closed sets.

Definition 2.44. Every topological space is equipped with a natural quasi-order (a relation that
is reflexive and transitive) called the specialization order where

ry = ye{z}

Fact 2.45. The specialization order on a topological space X is a partial order if and only if X is
To. In particular, the specialization order on a spectral space is a partial ordering. It’s worth noting
that in a 7 space, all singletons are closed, so the specialization order ceases to be interesting for
T spaces.

Fact 2.46. Let X be a spectral space. Then Xj,, has the reverse specialization order of X.

Now we are ready to see why the Balmer spectrum looks the way it does. The prime ®-ideals
of T form a bounded distributive lattice, and therefore we may equip Spc(7) with the Zariski
topology for lattices, lets call it Spcy,.(7) to distinguish it from the Balmer spectrum. If we were
to examine the closed sets of Spcy,,(7) we would find that they are of the form Z7,(S) = {P €
Spe(T) | S € P} with S as some collection of objects in 7. This looks like the closed sets that
we are used to in commutative algebra, where the specialization order and the ideal containment
order coincide. One can then show that Spc(T )iny = Spcr,.(T), i.e. the Balmer spectrum is the
Hochster dual of the Zariski spectrum on the distributive lattice of prime ®-ideals in 7. It is for
this reason that some authors interpret Spc;,,(7) as the more natural topology to work with. This
perspective has led some authors to generalize the content of the following sections to lattices; see
[KP15] and [BKSO07].
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3 Support Data and the Main Classification

From subsection 3.2 onward this chapter largely follows section 3 of [Bal05].

At this point we now know that Spc(7) is a spectral space, so Spc(7) is homeomorphic to the
spectrum of some commutative ring. This helps us understand many abstract characteristics of
Spc(T), but the point of defining the Balmer spectrum is to leverage algebro-geometric intuition
to study the structure of the lattice of thick ®-ideals of a given tt-category. This means that at
the end of the day we would like to be able to compute what Spc(7) is for a given tt-category T .
This is a rather difficult task in general due to the abstract nature of a general tt-category. The
natural remedy for this is to try to relate Spc(7) to more familiar contexts.

This will lead us to the notion of support data and morphisms of support data on a tt-category 7T,
which will be formally defined in subsection 3.2. A support data is a topological space X along with
an assignment of objects of T to set of closed sets of T, which satisfies some conditions that any
sensible notion of support ought to satisfy. We go on to prove in subsection 3.3 that the topological
space Spc(7) and the assignment supps(—) is the universal support datum for 7, and that this
support datum classifies radical thick ®-ideals of 7. After this, we will see that all support data
that classifies radical thick ®-ideals of T are actually isomorphic to each other.

But before all this, we will first need some intuition for what a support datum should look like.

3.1 Supports of Modules

Let R be a commutative ring. One of the most productive ideas in commutative algebra is to relate
R-modules to subsets of the spectrum of prime ideals. There are many ways to do this, and they
are usually called support theories. The classical definition of the support of an R-module is as
follows.

Definition 3.1. Let M be an R-module. The classic support of M is the set of points of Spec(R)
at which M does not vanish, i.e.

Suppp(M) := {p € Spec(R) | M, # 0}

Let S be a subset of R. Recall the notation
V(S) = {p € Spec(R) | S C p}
which is a closed subset of Spec(R). We also recall the annihilator of M.
Annp(M) ={reR|r-M =0}

If M is finitely generated and I is an ideal of R, then a classic result from commutative algebra
says that Suppr(M/IM) = V(I + Anng(M)), which makes Suppp(M) closed in Spec(R). If M
is not finitely generated, then Suppp (M) may not be closed; however, if R is Noetherian then we
can at least say that Suppg(M) is specialization closed. Furthermore, the classic support relates
algebraic operations to topological operations.

Proposition 3.2. For R-modules M, N, and L we have the following:
(a) Suppr(R) = Spec(R).
(b) Suppr(M) =0 if and only if M =0
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(¢) Suppgr(M & N) = Suppg(M) U Suppr(N)
(d) If0 = L - M — N — 0 is exact, then Suppr(M) C Suppr(N) U Suppr(M).
(¢) Suppr(M ® N) C Suppr(M) N Suppg(N)

If M and N are finitely generated, then (e) above is equality.

This looks an awful lot like the properties of supps(a) as seen in proposition 2.15 where T is
a tt-category and a € Obj(7). In fact, the definitions are analogous, as supps(a) is defined to
be the points P € Spc(7) at which a is not sent to zero under Verdier localization at P. The
main difference here is that (e) of proposition 3.2 is not always equality, whereas the corresponding
property is equality in the tensor triangulated case. Property (e) is important enough to have a
name. It is called the tensor formula in the context of a monoidal category equipped with a notion
of support. Keep this in mind as we will return to it in a moment.

Example 3.3. Here is an example of the tensor formula failing for infinitely generated modules.
Consider Q as a Z-module. Then Q7 is non-trivial for any prime p € Z, so Suppz(Q) = Spec(Z).
But then note that Q ®z Z/pZ = 0 for any prime number p € Z, so

Suppz(Q ®z Z/pZ) = 0 # {pZ} = Suppz(Q) N Suppz(Z/pZ)

To further explore the connection between the tensor triangulated support and the classical
support of modules, we need to extend the classical support from R-modules to complexes of
R-modules.

Definition 3.4. Let Co € D(R). The classical support of C, is defined as

Suppr(Ce) = {p € Spec(R) | (C,), is not acyclic}

Proposition 3.5. If Cs € D(R) then

Suppg(Ce) = {p € Spec(R) | H*((Cy)s) # 0}
= {p € Spec(R) | H*(C,), # 0}

— | Suppp(H(C4))

1EL

Immediately, we can see that definition 3.4 extends the classical support for R-modules by re-
garding an R-module M as a complex concentrated in degree 0. Furthermore, one can show that
the classical support for complexes satisfies the properties in proposition 3.2. We are starting to
see how we might be able to glean information about the Balmer spectrum of the derived category
of R from Spec(R), for we now have two notions of support with similar properties associated to
complexes of R-modules.

Except, this is not quite true.

There are multiple problems with the statement above. First, the Balmer spectrum can only
be defined for essentially small tensor triangulated categories, and D(R) is not essentially small,
meaning that we actually do not yet have a notion of tensor triangulated support for arbitrary
complexes, though we will return to this in section 6. Another issue is that, as we will see in
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subsection 3.2, we want a support theory to assign objects to closed subsets and to satisfy the tensor
formula, and neither of these properties hold for Suppp on arbitrary complexes. For example, from
example 3.3 and proposition 3.5 we can see that if a complex Cy has infinitely generated cohomology,
then the tensor formula may not hold.

It turns out that there is a more natural notion of support in the derived setting. This was
first defined by Foxby in [Fox79], and he called it small support, but we will call it the homological
support in the context of complexes.

Definition 3.6. Let R be a commutative ring and p € Spec(R) a prime ideal. We denote the
residue field of Ry to be k(p) = Ry/pp = (R/p)p.

Definition 3.7. We define the homological support of a complex C, of R-modules to be

supp”(Ca) = {p € Spec(R) | Co @F #(p) # 0}

Remark 3.8. The classical support is often referred to as the big support, for reasons that will
become clear imminently.

Proposition 3.9. For any complex Co of R-modules,
supp™(Ce) C Suppp(Ce)
with equality if H;(Cs) is finitely generated for all i € Z.
Proof. Here is a proof in the case that C, is just an R-module M, i.e. a complex concentrated in

degree zero. The proof for arbitrary complexes is similar; see chapter 15.1 of [CFH24] for details.

Recall that M, = M ®g Ry. There is an isomorphism
M ®p k(p) = M @p Ry/pp = My /pp M,

If p & Suppr(M), i.e. if My =0, then clearly M ®@g x(p) = 0 by the isomorphism above, so in this
case p ¢ supp”(M). This proves the inclusion.

To see equality in the finitely generated case, suppose that M is finitely generated and that
M, # 0. Then, M, is a non-trivial finitely generated R, module, and as R, is a local ring, it
follows from Nakayama’s lemma that p,M, # M,. Therefore, M ®g k(p) = M,/p,M, # 0, so
p € supp"(M). O
Proposition 3.10. For compleres Ae, Be, and Cs we have the following:

(a) supp™(Cs) = 0 if and only if Cs is acyclic.

(b) supp™(C[1]s) = supp™(Cs)

(¢) supp™(Ba ® Ca) = supp"(Ba) Usupp"(Ce)

(d) If Ay — Be — Cy is an exact triangle, then supp"(B,) C supp”(4,) Usupp"(Cs).

(¢) supp™(Be ®% Cs) = supp®(Ba) N supp" (Ce)

Proof. See chapter 15.1 of [CFH24] for proofs of these facts. O
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Proposition 3.11. For perfect complexes, homological support and classical support coincide, i.e.
supp®(Cs) = Suppy(Cs) VCo € DY(R)
Proof. See lemma 3.3 of [Tho97]. O

Proposition 3.10 shows that homological support satisfies the properties that we would like out
of a support theory, and proposition 3.11 shows us that homological support and classical support
are actually the same for DP{(R). Since perfect complexes are bounded and have finitely generated
homology, it follows from proposition 3.5 that supp”(C,) is a finite union of closed subsets of
Spec(R) for any C, € DPf(R), making supp®(C,) closed in Spec(R). This will be important what
follows in subsection 3.2.

3.2 Support data

As stated in 3.1, we now have two notions of support for Dpf(R) obeying similar properties: one
coming from the tt-structure on DPf(R) (see definition 2.5), and one coming from the tensor tri-
angulated structure of Spc(DPf(R)). This begs the question: can we relate these two notions of
support?

Definition 3.12. A support datum on a tt-category 7 is a pair (X, o) where X is a topological
space and o is an assignment which associates to any object a € T a closed subset o(a) C X such
that:

) 0(0) =0 and o(1) = X,

) and o(a @ b) = o(a) U a(b).
SD3) o(Xa) = o(a),

) o(b) C o(a) Uo(c) whenever a — b — ¢ — Xa is exact
SD5) o(a®b) = o(a) No(b),

A morphism f : (X,0) — (Y, 7) of support data on 7 is a continuous map f : X — Y such that
o(a) = f~(r(a)) for all objects a € T. A morphisms of support data is an isomorphism if and
only if f is a homeomorphism.

Example 3.13. Let R be a commutative ring. From proposition 3.10, the pair (Spec(R), supp®)
is a support datum for Dpf(R).

Lemma 3.14. Let (X, 0) be a support datum for T. For any choice of Y C X, the full subcategory
of T consisting of objects {a € T : o(a) C Y} is a thick ®-ideal in T .

Proof. Denote C as the full subcategory generated by the objects {a € T : 0(a) C Y'} for some fixed
Y CX. Ifa— b— ¢c— Xais an exact triangle in 7 with any two of a, b, or ¢ in C then the third
must be in C via application of (SD 3),(SD 4), and rotation of the triangle, so C is triangulated. If
x Ca®dband z € C then a,b € C via (SD 2). Finally, if a € C and b € T then a® b € C by (SD
5). O

Lemma 3.15. Let X be a set and let f1, fa : X — Spc(T) be two maps such that f;*(Supp(a)) =
fy 1 (Supp(a)) for alla € T. Then f1 = fa.
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Proof. Let x € X. For any a € T our assumption on f; and fo means fi(z) € Supp(a) <=
fa(x) € Supp(a). It follows that

(1  Swpl@)= (]  Supp(a)
J1(x)€Supp(a) f2(z)€Supp(a)

which is a closed set. But then the set above is equal to {fi(x)} by corollary 2.17. But then
{fi(x)} = {f2(x)}, and since Spc(T) is a sober space, it must be that fi(x) = fa(x). O

Theorem 3.16. Let T be a tt-category. The support datum (Spc(T),Supp) is the final support
datum on T, meaning that (Spc(T),Supp) is a support datum on T and for any support datum
(X,0) on T there exists a unique support map f: (X,o0) — (Spc(T), Supp) where for x € X

f@)y={aeT :zdo(a)}

Proof. From proposition 2.15 it follows that (Spc(7T),supp) is a support datum for 7 as supp(a) =
Spc(T)\U(a). Let (X, 0) be a support datum on 7 and let f be the map in the theorem statement.
We must check that f is a support data morphism. Since f(z) = {a € T : 0(a) C X \ {z}} it
follows from lemma 3.14 that f(z) is indeed a thick ®-ideal. To see that it is prime, let a®b € f(x).
Then z € 0(a®b) = o(a)No(b) and so x & o(a) or z & o(b), so a € f(x) or b € f(x). Hence, f(x)
is prime.

It remains to show that f is continuous and that it is a morphism of support data. To see that
it is a morphism of support data, we need to check that f~!(supp(a)) = o(a) for any a € Obj(T).

f~ (supp(a)) :={z € X | f(x) € supp(a)}
={zeX:ad f(x)}
={reX:ag{beT |xgo()}}
={zeX:zxe€o0(a)}

=o(a)

Since sets of the form supp(a) form a closed basis for Spc(7), and o(a) is closed in X, we can
also see from the expression above that the inverse image of a closed basis set is closed, making f
continuous. O

Remark 3.17. Notice that in the proof of theorem 3.16 we absolutely needed support data to satisfy
the tensor formula o(a ® b) = o(a) N o(b), for if this were not the case we would not be able to
conclude that f(z) is a prime ideal.

Now we want to show that the universal support datum is functorial. Going forward, if we wish to
distinguish between different tt-categories we will differentiate supports by the notations supps(a)
for the tt-category 7.

Proposition 3.18. The spectrum is functorial, meaning that given a ®-exact F : T — IC, the map
Spc F' : Spe(K) — Spe(T)
given by Q v+ F~1(Q) is well-defined and continuous. Furthermore, for all objects a € T,

(Spc F)~! (supps(a)) = suppy(F(a))
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This assignment defines a contravariant functor Spc(—) from essentially small tensor triangulated
categories to the category of topological spaces.

Proof. Immediate from the construction. O

Corollary 3.19. If two ®-exact functors F1, Fs : T — K have the property that (Fi(a)) = (Fa(a))
in L for any object a € T, then Spc F1 = Spc Fy. In particular, agreement of F1 and Fy on objects
implies that they have the same map on spectra.

Proof. If Q € Spce(K) and a € Spe(T) then
a€F Q) « (Fi(a)) CQ
Therefore, (F1(a)) = (Fy(a)) implies that F;1(Q) = F, '(Q) making Spc(F1) = Spc(Fy). O

Corollary 3.20. Suppose that a ®-exact functor F : T — K is essentially surjective. Then Spc(F)
1s a homeomorphism onto its image.

Proof. Any thick ®-ideal is replete, i.e. closed under isomorphism, so (F(F~1(Q))) = Q as F
is essentially surjective. Therefore if F~1(Q;) = F~1(Q2) then Q1 = Qy, so Spc(F) is injective.
The rest of the proof proceeds similarly to the proof of the analogous statement for commutative
rings. O

Theorem 3.21. If7 is a thick ®@-ideal of T and 7 : T — T /I is the canonical localization functor,
then
Spem : Spe(T /I) — Spe(T)

is a homeomorphism on its image, {P € Spc(T) | Z C P}.

Proof. The functor 7 is essentially surjective by construction so the map Spc(w) is a home-
omorphism onto its image by corollary 3.20. It remains to see that the image of Spc(w) is
V = {P € Spe(T) | T C P}, the proof of which proceeds exactly as in the case of a commu-
tative ring. O

Example 3.22. Lets try our hand at calculating the spectrum of DPf(Z) from scratch. Recall that
Dpf(Z) is the category of chain complexes over Z that are quasi-isomorphic to bounded complexes of
finitely generated projective modules. In order to figure out what the spectrum of this tt-category
is, we should examine the prime ®-ideals and try to make a guess at what a classifying support
datum might be, and if we’re lucky we’ll get it in one try.

From example 3.13 we know that (Spec(Z),supp") is a support datum for DP!(Z), and theo-
rem 3.16 tells us that there is a unique morphism of support data

x+—{a€DPH(Z) | z¢supp”(a)}

£+ (Spec(Z), supp") (Spe DP(Z), supp)

Maybe if we can understand this map, then we can extract an explicit picture of Spc(DP!(Z)).
As a first observation, recall that Z is a hereditary ring, meaning that all submodules of projective
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modules over Z are also projective. Take C4 € Dpf(Z), which is quasi-isomorphic to a bounded
complex of finitely generated projective modules.

d dnfl d d
.m0 P, P ... 3PS5 P—>0—...

Since Z is hereditary, im(d;) C P;_; is itself projective. We then have that P; = im(d;) & ker(d;)
for each 7. It follows that C, is isomorphic to

... = 0 — ker(d,,)®im(dy) — ker(d,—1)@im(dyp—1) — ... — ker(dy)®im(dy) — ker(dp) -0 — ...

We then have a quasi-isomorphism coming from the quotient map ker(d;) — ker(d;)/im(d;y+1) =
H;(C,) with zero differentials. Therefore, in the derived category DP¥(Z), C, is isomorphic to

P (3)
iE€EZ

Since o(a @ b) = o(a) U a(b) and o(Xa) = o(a) for a support datum (X, o) of a tt-category with
objects a and b, it follows that if this is a support datum for DPf(Z) then o(C,) is just the union

| o(Hi(Cu))
€L

where H;(C,) is taken to be a chain complex that is everywhere 0 except for a single term H;(C,).
Since H;(C,) is finitely generated in this case, we may reduce to the case of determining o on M
a finitely generated module taken to be a complex concentrated in degree zero. Because of the
classification of finitely generated Z-modules, it follows that

oo =Ye (72)

where {g;};er is a finite set of prime numbers coming from the canonical decomposition of M

indexed by some set I. Hence, we may further reduce to determining o on q% with ¢ a prime.

Recall that for integers m,n the expression below holds
VA Z _ Z
mz QL wg = ged(m,n)Z (4)

Now we turn back the specific case of supp® and the map f : Spec(Z) — Spc(DPY(Z)) from earlier.
Since supp®(Cs) = {qZ € Spec(Z) | Co @% (%Z # 0} then have by the discussion above that for
pZ € Spec(Z)
f(0Z) = {Cs € DP(Z) | Cs ¢ supp" (pZ)}
= {C.eD¥(2) | Cu sl £ = 0)

By equation (4) and the decomposition in equation (3), it follows that C, is in the collection above
if and only if C, € thick(Z/qZ | q # p), so we have

f(pZ) = thick(Z/qZ | q # p)

Note that by theorem 3.16 it must be that thick(Z/qZ | ¢ # p) must be a prime ®-ideal. This also
immediately guarantees injectivity of f. At this point, we should be suspicious that (Spec(Z), supp")
is actually isomorphic as a support datum to (Spc(DPf(Z)), Supp), but we don’t yet have surjectivity.
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Let P be a prime ®-ideal of DPf(Z). Since 0 € P we can see from equation (3) that if we set
m = p and n = ¢ for primes g and p then at most one Z/pZ is not contained in P. Of course this is
the case for f(pZ) as we saw just a moment ago, but now we want to show that all prime ®-ideals
P are of this form. Let Z be a thick ®-ideal in DP(Z) and let Z/pZ € Z. Then note that

m—p"Im
cone(Z/pZ 22 7,97 = 7/ pZ.

and therefore Z/p"Z € T since Z is closed under cones. It can be similarly shown that if Z/p"Z € T
for some n, then Z/pZ € Z. Hence, if Z contains any Z/p"Z for some n then it contains Z/p"Z
for all n. Using these two observations, the decomposition of objects in Dpf(Z) shown above,
classification of finitely generated Z-algebras, and proposition 1.14, it’s straightforward to check
that if P € Spc(T) does not contain Z/pZ then thick(Z/qZ | q # p) = P. This then means that
there f is a continuous bijection, and it’s straightforward to see that f must also be a closed map.
Therefore, f is a homeomorphism between Spec(Z) and Spc(DP!(Z)).

Remark 3.23. Let’s reflect on the previous example. As foreshadowed in section 2, the closed
points of Spc(DPf(Z)) are the minimal primes of DPf(Z) and the generic points are the maximal
primes, and we saw that the universal morphism f is a homeomorphism that associates a prime
pZ € Spec(Z) to the prime ®-ideal thick(Z/qZ | q¢ # p). Since f is a homeomorphism of spectral
spaces, it is an isomorphism between the specialization orders of the two spaces. The interesting
thing here is that f reverses the containment order. It is worth figuring out why this happens.
This is not unique to this example, so going forward let us instead speak of a more general ring R
instead of Z.

In algebraic contexts it is highly common to think of the prime ideals ordered with respect to
containment, which coincides with the specialization order on Spec(R) under the usual Zariski
topology. In the geometry of Spec(R), the specialization of a point z to a point y corresponds
to the geometry of x containing the geometry of y, while algebraically the ideal corresponding to
y contains the ideal corresponding to x. By examining the definition of the universal morphism
f : Spec(R) — Spc(DPf(R)), we see that a prime ideal p € Spec(R) is send to the prime ®-ideal
{C*| C* ®R k(p) =0}, i.e. a point in Spec(R) is sent to the collection of perfect complexes which
vanish at p.

When thinking classically this is perfectly sensible since the containment of ideals corresponds
to the reverse containment of subvarieties through the Nullstellensatz, so really, the specialization
order

Let’s reflect on the previous example. As foreshadowed in section 2, the closed points of
Spc(DPY(Z)) are the minimal primes of DPf(Z) and the generic points are the maximal primes.
We also see a sort of containment order reversing phenomenon in the universal map f : Spec(Z) —
Spc(DPY(Z)). This universal morphism happened to be an isomorphism in this case, and in fact it
was a homeomorphism of spectral spaces. In particular, f is an isomorphism between the special-
ization orders of the two spaces. In algebraic contexts it is common to think of the containment
order on prime ideals, hence the terminology of maximal and minimal primes. The containment
order of prime ideals coincides with the specialization order on prime ideals when they are inter-
preted as points in the geometric object Spec(R). But under the image of f, the containment order
is reversed while the specialization order is preserved. This is because f sends a point p to the
collection of complexes vanishing at that point p.

It is worth examining why this happens. Fundamentally, it goes back to order reversing phe-
nomena found in nearly all algebro-geometric correspondences, such as Hilbert’s Nullstellensatz.
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Concretely, on the left hand side we have a point p which is associated to the ideal of functions
vanishing at that point. The map f sends this to f(p) = {Cs € DPY(Z) | Cs & supp®(p)}, i.e. the
complexes that vanish

3.3 The Main Classification Theorem

Now we want to classify thick ®-ideals using topological data. In classical algebraic geometry we
have Hilbert’s Nullstellensatz which gives a correspondence between radical ideals of a coordinate
ring and the subvarieties of the variety associated to that ring. The main classification theorem
can be viewed in a similar light, but first we need some definitions.

Definition 3.24. Given a topological space X, asubset Y C X is a Thomason subset if Y = | J,.; Y;
such that X \ Y; is open and quasi-compact for any ¢ € I.

Proposition 3.25. If X is a spectral space, then the Thomason subsets of X are precisely the open
sets of the Hochster dual Xipny.

Remark 3.26. Since supp S = |J,cgsupp(a) for any subset of objects S C T and U(a) = Spc(T) \
supp(a) is open and quasi-compact for any a € 7 (proposition 2.26), it follows that supp S is a
Thomason subset for any collection of objects S.

Remark 3.27. If X is a Noetherian topological space, then a Thomason subset is precisely one that
is specialization closed (definition 2.43) as all open subsets of a Noetherian topological space are
compact.

Definition 3.28. Given Y C Spc(T), we define the objects supported at Y to be the set

Cy ={a €T | supp(a) CY}

The main classification theorem is as follows:

Theorem 3.29 ([Bal05]). There exists a 1-to-1 order reversing correspondence
O : {radical ® -ideals in T} — { Thomason subsets of Spc(T)}
where ® is given by ®(Z) := suppZ and its inverse ¥ is given by ¥(Y) := Cy.

To prove this we first need some lemmas. Those familiar with commutative algebra have probably
anticipated the one below.

Lemma 3.30. For a thick ®-ideal I, we have that
Vi= () P

Icp
PeSpe(T)

Proof. 1t is a standard fact in commutative algebra that for any ideal I of a commutative ring R

once has
VI = ﬂ p
ICp

PeSpec(R)

A proof of this fact may be found in nearly any textbook on basic commutative algebra. The proof
of lemma 3.30 follows, mutatis mutandis, in the same manner as in the ring theoretic case. See
corollary 2.12 of [Eis95]. O
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Lemma 3.31. For a thick ®-ideal I, we have
suppZ ={P |Z £ P}
Proof. Let Z be a thick ®-ideal. Then,

suppZ = | J supp(a)
a€l

= | J{P € Spe(T) | a & P}

acl
={P e€Spc(T)|agP for some a € T}

={P eSpe(T) | T ¢ P}

Lemma 3.32. Given Y C Spc(T), we have

Cy=(]P

PEY

which is radical.

Proof. Suppose that a € Cy. Then P ¢ Y means that a € P by definition of Cy, so a € Npgy P.
On the other hand, if a € Npgy then U(a) C Spc(T)\ Y, so supp(a) C Y and therefore a € Cy, so
we have equality. Note that Cy is a thick ®-ideal by lemma 3.14. O

Proof of theorem 3.29.

The maps ® and ¥ in the statement of theorem 3.29 are well defined by lemma 3.32 and
remark 3.26. Let Z be a radical ®-ideal. Then we know that

Vod(I)=Cappzr= [ P
PeSuppZ

The condition P € suppZ is equivalent to P ¢ supp(a) for any a € Z, which is in turn equivalent
toa € P foralla € Z,ie I CP. AsT is radical, it follows that

Coppr= [P =1
ICP

Now consider a Thomason subset Y. We have
Do U(Y) =supp(Cy) ={P € Spc(T) | Cy ¢ P}

Now Cy not being contained in P means precisely that there exists a € Cy not contained in P.
Since a ¢ P means by definition that P € supp(a) and a € Cy if and only if supp(a) C Y, it follows
that P ¢ Cy if and only if P € supp(a) C Y. Hence, supp(Cy) =Y. O
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3.4 Rigidity and Radicality

Here we are going to take a brief detour to discuss rigidity and radicality and how these two
properties interact with each other and with Spe(7T).

There are many important examples of tt-categories in which all thick ®-ideals are radical, and
it turns out that this is a very desirable property for a tt-category to have. This makes the utility
of the following proposition evident.

Proposition 3.33 (Radicality). The following are equivalent:
1. Any thick ®-ideal of T is radical.
2. For all objects a € T, a € (a® a).

Proof. Clearly, if all thick ®-ideals of 7 are radical, then (a ® a) is radical and so a € (a ® a).

On the other hand, suppose that a®" € T for some n, where 7 is a thick ®-ideal. We wish to
show that a € Z. The n = 2 case holds by assumption, so assume that cases n and below hold. If
a®"t1 € T and n = 2k for some k € N then n+2 = 2k +2, so a®**! € (a®?+2) C 7. If n = 2k +1,
then n+ 1 = 2k + 2, so similarly a®**!1 € Z. As k+1 C n, it follows from the inductive hypothesis
that a € 7. O

Example 3.34. proposition 3.33 may be applied to stmod(kG). To see this, take M in kG-mod.
There is a split embedding
M — M ® Endk(M)

given my m — m ® idys. Its retraction is the evaluation map m ® ¢ — @(m), so M is a direct
summand of M ®j Endg(M). If M is finite dimensional then it is a standard linear algebra
fact that Endg(M) =2 MY ®x M where MY = Homy (M, k). Then M is a direct summand of
M @y Endg (M) = M @ MY @k M, but then M € (M ® M). It follows that all thick tensor ideals
of stmod(kG) are radical.

The example above may be generalized to any rigid tt-category as shown in the proposition below.

Proposition 3.35. Let T be rigid. Then x is a direct summand of x @ ¥ @ x for all objects x of
T. Consequently, all ®-ideals C of T are self-dual, i.e. T =1V :={a" | a € I}. Additionally, all
thick ®-ideals are radical.

Proof. By remark 1.25, we have that hom(z,z) = x ® z" for any z € T. Additionally, by the
unit-counit equations of hom-tensor adjunction, the composition below is equal to the identity on

xT.

m%]l®xw>hom(x,]l®x)®:vm>]l®x%x

which is isomorphic to the composition
r—hom(z,r)Rr2rr’ @r —

Therefore, z is a direct summand of z ® ¥ @ € (z ® z) and therefore z € (x ® z) as this is a
thick ®-ideal. By proposition 3.33 all thick ®-ideals of T are radical.

Let x € Z. By applying the functor (—)V, argument above also yields that 2 is a direct summand
of 2V @z @r' 2=12"®r®zY,sox €T making Z self dual. O
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Proposition 3.36. Let a and b be objects in a rigid tt-category T. Then,

e supp(a’) = supp(a), and

e supp(hom(a, b)) = supp(a) N supp(b)
Proof. From proposition 3.35 we have that (a) = (a“). Therefore, given P € Spc(T), a € P if
and only if ¥ € P. From the definition of support, supp(a) = supp(a"). For (b), recall that
hom(a,b) = a” @ b for all objects a and b in T when T is rigid. Therefore,

supp(hom(a, b)) = supp(a” ® b) = supp(a"*) N supp(b) = supp(a) N supp(b)
O

Corollary 3.37. Let T be a rigid tt-category. If a and b are objects of T with disjoint supports,
then Homy(a,b) = 0.

Proof. 1f supp(a) N supp(b) = (@ then supp(hom(a,d)) = O by proposition 3.36. This then forces
hom(a, b) = 0, which in turn implies that Homy(a,b) = 0 by fact 1.26. O

Remark 3.38. It should be noted that, in the context of a general tt-category, if we are given a
morphism f : a — b with supp(a) Nsupp(b) = ), we have that f is zero locally, i.e. f is sent to zero
in 7 /P for any P € Spc(T); however, when f is zero locally we can only conclude that f®" = 0
for some n € N (see proposition 2.33). This is one reason why being rigid is desirable, as it allows
much finer control of 7 from the perspective of the Balmer spectrum.

3.5 Classifying Support Data

Here we loosely follow section 5 of [Bal05], which is where classifying support data are first defined,
but the results given here are the stronger versions proved in [BIKXS07]. See remark 3.43.

Definition 3.39. A support datum (X, ) for a tt-category T is a classifying support datum if the
following two conditions hold:

(a) The topological space X is spectral.
(b) We have a bijection

0:{Y C X |Y is a Thomason subset} — {J C T | J radical thick ® -ideal}

defined by Y = {a € T | o(a) C Y}, with inverse J = o(J) = Uye s 0(a).

Remark 3.40. In this light, theorem 3.29 is just saying that (Spc(7), supp) is a classifying support
datum.

Theorem 3.41. Let f: (X,0) = (X', 0') be a morphism of support datum for T . If both support
data are classifying, then the map f: X — X' is a homeomorphism.

Proof. Let (X,0) and (X’,0’) be as in the statement of theorem and let Y C X and Y’ C X’ be
Thomason subsets such that

beT |ob)CY}=Z={beT |db)CY'}
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where 7 is a radical thick ®-ideal by assumption. Since X and X’ are classifying,

Y=Jo®) and Y =[] ()

beZ bel

Therefore,
e =Urem) = e =y
beT bez

Therefore, the assignment Y’ — f~1(Y”) is a bijection between Thomason subsets of X and X’. In
particular, it an order preserving bijection since f is a morphism of support data. Since Thomason
subsets are precisely the open subsets of the inverse topology, it follows that f : Xin, — X/ is an
order preserving continuous map. Since sobriety is exactly the property allows the lattice of open
sets of a spaces to determine it up to homeomorphism, it follows that f is a homeomorphism on
the dual topologies. It follows from theorem B.13 that f is an order isomorphism on the original
topologies and is therefore a homeomorphism on the original topologies. O

Corollary 3.42. A support datum (X, o) on T is classifying if and only if the canonical morphism
(X,0) = (SpcT,supp) is an isomorphism.

Remark 3.43. Corollary 3.42 was originally proved by Balmer in [Bal05] under the assumption
that X was Noetherian. Under his original definition, a classifying space had to be Noetherian.
The more general version given above is due to Buan-Krause-Solberg (Cor. 6.2 of [BKS07]) who
generalized support datum to the context of lattices and frames.

The main classification was first established in stable homotopy theory by Devinatz-Hopkins-
Smith in [DHS88], and Hopkins realized that the result could be carried over into the realm of
algebra where 7 = DPf(R) for a commutative ring R; see [[Top87]. His result was a correspondence
between ®-ideals and specialization closed subsets, but his proof necessitated that R be Noetherian
— a hypothesis that he forgot to include. Neeman pointed out in [Nee92] that the proof was
incorrect without the assumption that R be noetherian, and rescued the proof in this case. It
was Thomason [Tho97] who proved the more general correspondence between subsets of the kind
found in definition 3.24 (i.e. open subsets of the Hochster dual) and the ®-ideals of DPf(X) for X
a quasi-separated and quasi-compact scheme.

Theorem 3.44 (Thomason, Balmer). Let X be a quasi-compact and quasi-separated scheme. Then
the pair (X, supp") is a classifying support datum, and there is a homeomorphism X = Spc(DP/(X))
given by the canonical morphism of support data (X,supp?) — (Spc(Dpf(X)),supprf(X)).

It didn’t stop there though, as soon Benson-Carlson-Rickard [BCR97] carried out the classification
in modular representation theory of finite groups, and later Friedlander-Pevtsova [F'P07] generalized
this to finite group schemes. We will look at this in closer detail in subsection 4.2.
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4 Central Rings and the Structure Sheaf of Spc(7)

In the previous chapter, we looked at support data as a way to get a handle on the structure of a
tt-category T. This is a good start, but one downside with this approach is that if you are looking
at some particular 7 it can be difficult to figure out what a classifying support data might be if
you don’t already have a good guess based on prior knowledge of 7. In light of this, we need other
methods of analyzing Spe(T).

We know that Spc(7T) is a spectral space, and that all spectral spaces arise as the Zariski spec-
trum of some commutative ring. We might then ask if there is a ring naturally associated to T
whose Zariski spectrum may be related to Spc(7). The most obvious choice for such a ring is
the endomorphism ring of the monoidal unit, which we will denote Ry := Ends(1). This makes
Homy(a,b) into an Ry-module for all a,b € Obj(T). We will see that given an f € Ry, the thick
®-ideal (cone(f)) coincides with the subcategory of objects that are nilpotent with respect to f.
We will then be able to construct localizations S~ T of T with respect to a multiplicatively closed
subset S of Ry. Additionally, we will equip Spc(7) with a sheaf of rings.

Much of the content of this chapter of comes from [Ball(], with the exception of subsection 4.1
which comes from [BSO1]. To maintain focus, we have not stated everything in the full generality
of Balmer’s original results in this presentation of the material.

4.1 Idempotent Completion
The content of this section is mostly taken from [BS01].

Definition 4.1. Let e : @ — a be a morphism in a category C for which e? = e. Such a morphism
is called idempotent. An idempotent splits if there exists an object b and morphisms f : a — b and
g:b— asuch that go f = e and fog = id,. If C is additive then it follows that b is a direct
summand of a. If all idempotents of C split then we say that C is idempotent complete.

For geometric reasons, we would like localization to preserve idempotent completeness, but un-
fortunately this does not always happen. Counter examples are rather involved to describe, so we
will omit them. However, we can always pass to the idempotent completion.

Definition 4.2. Given an additive category K, an idempotent completion K¢ (sometimes also
referred to as its Karoubian envelope), is an idempotent complete category with a fully faithful
additive functor e : £ — K¢ such that every object of K¢ is a retract of an object in /.

It turns out that /C is unique up to equivalence, which is why we call it the idempotent completion;
see 5.1.4.9 of [Lur09]. We can construct it by letting K¢ have objects (a,e) where a is an object of
K and e : a — a is an idempotent in K, and morphisms f : (a,e) — (a’,€’) where f is a morphism
in JC such that the diagram below commutes:

The identity on (a,e) is e, while the functor ¢ : K — K¢ sends a — (a,id,). Clearly K is a
full subcategory of K¢, and it is relatively straightforward to check that this category is in fact
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idempotent complete, since if (a,e) = (a,e) is an idempotent, it follows that coe =e¢ =€ =coe

within I, so (a, e) splits via
(a,e) = (a,€) = (a,e)

Remark 4.3. Another equivalent way to define the idempotent completion of a category C is to
define C°¢ as the full subcategory of C consisting of retracts of representable functors.

Exercise 4.4. Given a ring R, Show that the idempotent completion of the category of free R-
modules is equivalent to the category of projective R-modules.

The following theorem is due to Balmer and Schlichting in [BSO1]. We will not prove this, as
it will take us too far afield for the moment. However, we will take a moment to describe the
triangulated structure of K¢ in construction 4.6.

Theorem 4.5. If K is a triangulated category, then K¢ inherits its (tensor-)triangulated structure
and i : K — K is exact.

Construction 4.6. Let (K, X, A) be a triangulated category, and K¢ its idempotent completion.
We take the suspension functor to be ¥ : K¢ — K¢ where S(a,e) = (Xa,Xe), so clearly the
embedding ¢ : K — K€ has the property i o X = ¥ o4i. We define the exact triangles A’ of K¢ to be
those that are a direct factor of an exact triangle of K, that is, a triangle A; in K¢ is exact when
there exists a triangle As in K such that A; & A, is isomorphic to an exact triangle in cK.

Remark 4.7. A consequence of the construction above is that a triangle is exact in IC if and only if
it is exact in K°.

Similarly, it is not difficult (but somewhat tedious) to show that the idempotent completion of a
symmetric monoidal category is also a symmetric monoidal category such that the map K — K€ is
a monoidal functor, so combining all these results one can see that the embedding of a tt-category
T into its monoidal completion is a ®-exact functor.

Exercise 4.8. Verify the above claim using theorem 4.5

Fortunately, it follows from [Bal05] that Spc does not see the difference between a triangulated
category T and its completion 7°.

Theorem 4.9. Let T be a tt-category and let T C K be a full tensor-triangulated subcategory with
the same unit and which is cofinal, i.e. for any object a € K there exists a’ € K such that a®a’ € T.
Then the map Q — Q N'T defines a homeomorphism Spc(K) — Spe(T).

In particular, the embedding i : T — T¢ induces a homeomorphism

Spc(i) : Spe(T¢) — Spe(T)

Proof. We will identify T with its essential image. The map Spc(K) — Spc(T) is simply Spec(7)
where ¢ : T — K is the inclusion functor. We first need to prove that for all ¢ € K we have
a® Ya € T. By assumption, there is an a’ € K such that a @ a’ € T. We then take the direct sum
of the exact triangles ' — 0 — X(a') — X(d’), a - a — 0 — Xa, and 0 — Xa — Xa — 0 to obtain

(a®d)—=adYa— X(a®d)— S(add)

Since direct sums of exact triangles are exact, it follows that the triangle above is exact, and since
two entries are in 7T, so is the third, i.e. a @ X(a) € T. This then shows that if P € Spc(7) then

{aeK |adS(a)ePl={aeck |3 ek st. ada e Pt =P
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We want to show that P € Spc(K). It is straightforward to check that P is as thick ®-ideal, so
we leave it as an exercise. it remains to check that it is prime. Suppose that a @ b € P and that
a & P. Definex =a®Xa. Thena e T\Pand 2 @b (a®b) ®X(a®b) € P. This then implies
that (z®b) © (z @ ¥b) 2 r® (b® Xb) € P so b® ¥b € P since P is prime and cannot contain
x. Therefore, b € P, so P is in fact prime. Additionally, since P is thick we have PNT =P and
therefore we have a right inverse to Spc(i).

On the other hand, if @ € Spc(K) then its straightforward to check that Q = P where P = QNT.
Suppose a € Q. Then a® ¥a € T, but then a ® ¥a € QNT, soa € P, soa € P. On the other
hand, if a € P then a ® Xa € P by definition, and since P = QN T, it follows that a ® Ya € 9, so
a € Q by thickness of Q.

We conclude that Spc(i) is a continuous bijection with inverse P P. The above argument
showed that for a € K we have

a€Q <= abPXacQ < adPXac?P

where P = QN 7T and Q = P. Therefore,

Spc(i)(suppg(a)) = suppg(a & Ya)

which is closed, so Spc(i) is a closed map and is therefore a homeomorphism. ]

There are several reasons to want a tt-category to be idempotent complete. One such reason is
corollary 4.11 of the theorem below.

Theorem 4.10. Let T be a rigid idempotent complete tt-category. Then if Y1 and Yo are disjoint
thomason subsets of Spc(T), then Cy,uy, coincides with the full subcategory

Cy, ® Cy, :={a € Obj(T) |a = a1 ® ai,a; € Cy,}

Proof. Let Y7 and Y3 be disjoint Thomason subsets of Spc(7). Clearly, Cy, ® Cy, C Cy,uy,. If we
can prove that Cy, @ Cy, is a thick ®-ideal (and therefore a radical thick ®-ideal as T is rigid), it
then follows from the main classification theorem of thick ®-ideals that there is a Thomason subset
Y such that Cy = Cy, @ Cy,. Since Cy is the smallest thick ®-ideal containing both Cy, and Cy,,
it follows from the classification that Y is the smallest Thomason subset containing Y7 and Y53, i.e.
Y =Y; UY5. The claim follows.

It remains to show that Cy, @ Cy, is as thick ®-ideal. It’s easy to see that Cy, @ Cy, is a
®-ideal. We now want to see that it is triangulated. Let the composition of morphisms below be
distinguished,

a1 D as —f—>b1€Bb2 —g—>c£>§](a1€9a2)
where supp(a;),supp(b;) C Y; for ¢ = 1,2. Since supp(a;) Nsupp(b;) € ¥;NY; = 0 when ¢ # j,
it follows from proposition 3.36 that Homy(a;, b;) = @ when ¢ # j. Therefore, f = (J;l 192) where
fi1 € Homt(a1,b1) and fo € Homy(ag,b2). It follows that ¢ = cone( f1) @ cone(f2), so ¢ € Cy, & Cy,.

Additionally, ¥ commutes with direct sums, so Cy, @ CY, is a triangulated subcategory.

Now we must show that Cy, & Cy, is closed under direct summands. Suppose that = & y is an
object of some full subcategory C, and observe that x = im(e) where e is the idempotent obtained
from the composition = @y = = — = @y where 7 is the projection onto  and ¢ is the inclusion of
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z into x & y. Therefore, if we wish to show that C is closed under direct summands, it suffices to
show that all images of idempotents in C are contained in C.

Let a = a3 @ ag € Cy, ® Cy, where a; € Cy, and ag € Cy,, and let e € Endy(a) be an
idempotent. Since supp(a;) Nsupp(az) = 0, we have Homy (a1, a2) = Homy(az, a;) = 0. It follows
that e = (601 602 ) where e; and eo are idempotents for a; and as respectively. Since T is idempotent
complete, it follows that a; = im(e;) @ ker(e;) for i = 1,2. In particular, this means that

supp(a;) = supp(im(e;)) Usupp(ker(e;)) =  supp(im(e;)) C supp(a;) CY;

Therefore, im(e;) € Cy;, so im(e) = im(e;) @ im(ez) € Cy, & Cy,. Therefore, Cy, & Cy, contains
the images of idempotents within itself and is therefore closed under direct summands, making it
thick. O

Corollary 4.11. Let T be a rigid idempotent complete tt-category. If the support of an object
can be decomposed as supp(a) = Y1 U Ys where Y1 and Ys are disjoint and quasi-compact open in
Spe(T )iny, then a = ay @ ag with supp(a1) = Y1 and supp(ag) = Ya.

4.2 The Structure Sheaf of Spc(7)

For the remainder of the chapter, assume that 7T is essentially small.

Let 7 be a tt-category and let U be a quasi-compact subset U C Spc(7) and Zy :== Spe(T) \ U.
Recall that the subcategory C7, of objects supported on Z is a thick ®-ideal by lemma 3.14,
so we may take the Verdier localization 7 /Cy, which we informally think of as the category of
objects supported away from U. We define 7 (U) to be the idempotent completion of the objects
supported away from U, i.e. T(U) := (T /Cz,)¢, and denote the composition T — T /Cz, — T(U)
as resy. The functor resy sends 1 to 17y which we will just denote 1. Note that resy is also
the localization S~ 7 where

S ={s:a—b| supp(cone(s)) C Zy}

Proposition 4.12. Given T and U as above, the functor resy is an exact ®-functor.

Proof. The functor resy is the composition of idempotent completion and Verdier localization at a
thick ®-ideal, both of which are ®-exact functors. O

Definition 4.13. Define a presheaf of commutative rings on the poset category of quasi-compact
opens U C Spc(T) by
F(U) = Endy(1y)

Now set OF to be the sheafification of F and call it the structure sheaf of C. We write Spec(7) =
(Spe(T), O7) when we wish to refer to the Balmer spectrum as a ringed space.

We will soon show that Of is a sheaf of commutative rings (definition 4.19). Now observe that
if P € Spec(T) then there is an isomorphism

O7p = End7/p(17/p)

This follows from the lemma below:
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Lemma 4.14. Let T be a tt-category and P € Spec(T). Then, there is an isomorphism

lim Homy (g (2,y) = Homyp(2,y) Vz,yeT
Pelr

where U wvaries through open subsets of Spc(T) containing P.

Proof. Note that since quasi-compact opens form a basis for Spc(7), is suffices to let U vary over
quasi-compact opens. Let a,b € T, P € Spc(T), and U be a quasi-compact open set containing
P. Since idempotent completion is fully faithful, we have that Hom ) (a,b) = Hom /Cryy (a,b).

Recall that morphisms in the localization 7 /Cyz, are equivalence classes of fractions a Ex—b
where cone(s) € Cy,, i.e. supp(cone(s)) C Zy. But this is equivalent to supp(cone(s)) NU = .
Since P € U, this means P ¢ supp(cone(s)), i.e., cone(s) € P. The collection of fractions a <= = — b
where cone(s) € P is exactly Homy/p(a,b), so the claim follows. O

As previously stated, we will show in section 5.3 that Spec(7) is a locally ringed space, and by
lemma 4.14 we just need to show that Endy p(l7/p) is a local ring.

Before going on, let’s examine some of our running examples.

Algebraic Geometry

Let X be a quasi-separated and quasi-compact scheme. The universal homeomorphism of theo-
rem 3.44
X — Spec(DP{(X))

may be enhanced to an isomorphism of locally ringed spaces. Note that this immediately shows
that Spec(DPf(X)) is a scheme. This is known as Balmer’s reconstruction theorem since this shows
that X may be recovered from the derived category of perfect complexes on X, not just as a
topological space, but as a scheme; see [Ball0]. This may seem surprising at first since there
are non-isomorphic varieties with equivalent derived categories (notable examples can be found in
Fourier-Mukai pairs coming from mirror symmetry). The fundamental difference here is that these
categories are equivalent merely on a triangulated level, but not on the tensor triangulated level.
Informally, this is like having rings which are isomorphic as additive groups, but not as rings.

Modular Representation Theory
The following content summarizes material from [BIK11].

Let G be a finite group and k a field of positive characteristic dividing the order of G. We
define the group cohomology of G to be H*(G, k) = Extj,(k,k). It turns out that H*(G, k) is a
finitely generated graded-commutative k-algebra. Since kG-mod is highly non-commutative and
sometimes hard to understand, it would be nice if we could cook up a good functor from kG-mod
to H*(G, k)-mod, the latter of which is graded-commutative and therefore easier to understand.
To this end, let M € kG-mod. We can then realize Ext}, (M, M) as an H*(G, k)-algebra via a
graded-ring map fu : Extj(k, k) — Ext;o (M, M). Explicitly, take 7, an n-extension of k by k,
and send it to n ®; M € Ext} (M, M). We then define the cohomological support variety of M to
be

V(M) = {p € Spec®(H* (G, k) | ker(far) C p}

where Spec”(R) denotes the homogeneous prime spectrum of a ring R. We then have the following
facts. See chapter 5 of [Ben98].
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Fact 4.15. Let M and N be kG-modules.
(a) Va(M) =0 if and only if M is projective.
(b) Va(®acrMa) = Uyer Va(M,) for a finite indexing set 1.
(c) Va(M @, N) =Va(M)NVa(N)

This suggests a support theory for kG-mod, but we’d like to get a support theory of a more
homotopic flavor. First notice that Vg (M) = ) for projective M and recall that earlier we defined
stmod(kG) as the category obtained by quotienting out morphisms that factor through a projective.
Rickard showed that there is another way to construct the stable module category in [Ric89], seen
below.

Theorem 4.16. Let A be a self injective k-algebra, that is, let A be injective as a module over
itself. The essential image of the embedding

KP(proj- A)) < DP(A)

of the homotopy category of bounded complexes over the category of projective A-modules into
the derived category of bounded complexes over A is a thick subcategory. There is then a tensor
triangulated equivalence of categories

stmod(A) — DP(A)/KP(proj —A)
Proof. See proposition 4.4.18 of [[Kra21] for a concise proof. O

This leads to a support theory both for DP(kG) and for stmod(kG).

Theorem 4.17. Let k be a field of positive characteristic and G a finite group (scheme over k).
Consider the graded-commutative cohomology ring H*(G,k). Then, for T = DP(kG-mod), the
comparison map p of definition 5.9 induces

Spec(DP(kG-mod)) = Spec™(H* (G, k))

Using theorem 4.16, this restricts to an isomorphism Spec(stmod(kG)) = Proj(H*(G, k)) where the
latter is the support variety Vg (k).

We will revisit the theorem above in example 5.37.

The Stable Homotopy Category

The Balmer spectrum for the stable homotopy category is a locally ringed space, but not a scheme.
See the section on the stable homotopy category in [Ball()].

Remark 4.18. In algebraic geometry, fields are essential as they play the role of points for schemes,
so it is natural to want to develop a notion of “tensor triangulated fields” or tt-fields. One reason for
this comes from the desire for a purely tensor triangulated analog of homological support. Recall
that the homological support of a complex Cq of R-modules is

supp”(Cs) = {p € Spec(R) | Cs @ r(p) # 0}

Homological support communicates directly with the monoidal structure of DPf(R), and this makes
it easier to work with than classical support. Finding and axiomatizing the correct notion of a tt-
field is still an open problem in tensor triangulated geometry. Morally, the class of tt-fields should
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include DPf(Spec(k)) for all fields k, and they should satisfy various intuitive notions; for instance,
Spc(T) should be a singleton. But it turns out to be a more complicated situation that it seems
to be from the outset, and one needs to ask for additional restrictions to get anything approaching
an appropriate notion. This direction of inquiry is explored in [BKS19].

4.3 The Central Ring

The goal of this section is lay the foundations for relating the spectrum of Endy (1) to Spec(T).
To this end, we define an action of Endy (1) on the morphisms of 7 and then try to figure out
how this action affects objects. The most obvious objects to investigate are the cones of certain
well behaved morphisms. The most important results in this direction are proposition 4.33 and
proposition 4.34 at the end of the section, where it is shown that if f : x — y is a morphism between
invertible objects, then (cone(f)) = {a € Obj(T) | f¥" ®id, = 0 for some n > 1}. This allows us
to construct localizations of 7 by multiplicatively closed subsets of Ends (1), which will be crucial
in our effort to mine information about Spec(7) from the spectrum of End(1).

We follow [Ball0] for this section.
Definition 4.19. Let 7 be a tt-category. The central ring of T is defined to be

Ry = Endr(1)

It is not immediately obvious, but this ring is actually commutative due to the symmetric
monoidal structure of 7. This fact can be seen as a corollary to the following proposition.

Proposition 4.20. For all a,b € T, the group Homy(a,b) is a left Ry-module via (f,g) — f® g
for f € Ry and g € Homy(a,b) where we are identifying 1 ® a with a and 1 ® b with b. This left
action coincides with the right action (g, f) — g ® f defined analogously. We simply denote this
action f - g. Given this structure, composition Homy(b,c) x Homy(a,b) — Homy(a,b) becomes
Ry -bilinear.

Proof. First we want to check that the left and right actions coincide, i.e. f® g =g ® f. Consider
the commutative diagram below:

loa 2% 100

AT

where B, , is the monoidal braiding of 7. The diagram commutes directly due to the axioms of a
symmetric monoidal category. The rest of the proof is straightforward. O

Definition 4.21. If u is an object of 7 such that there exists v € T such that u ® v = 1 then we
say that u is invertible.

Remark 4.22. If u € T is invertible, then so is ¥%(u) for all i € Z. Additionally, note that if
u®v=Tin 7 and T is rigid, then v = u" necessarily.
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Remark 4.23. Let u be an invertible object of 7. Then for any a,b € T there is an isomorphism
Hom7(a,b) = Hom7y(a ® u,b®@u) where f+— f®idy

induced by the functor (—) ® u. This is because u is invertible if and only if (—) ® u is an auto-
equivalence. If we set a and b to be 1 and the invertible object to be u ® u for u invertible, then
we get an isomorphism

Ry = Hom7(1,1) = Hom7y(u ® u,u ® u)

€ — € - idygy

In particular, this means that there is an € € Ry such that € -id,gy = By. In other words, the
braiding B, , on u ® u is encoded in the R7-module structure of Hom7(u ® u, u ® u).

Definition 4.24. An object x € T is said to have central switch if there exists a unit € € Ry such
that €-idygs = Bg. In other words, x has central switch if there is an element of the central ring
that induces the braiding morphism on z ® z.

Remark 4.25. As we saw in remark 4.23, units of 7 have central switch. Additionally, if = has
central switch, then so does z®" for all n € N. This property is desirable since it allows us to
more freely manipulate compositions of morphisms, especially when we want to show that certain
morphisms compose to zero.

Proposition 4.26. Let © be an object with central switch and let f :a — x and g : b — x be
morphisms. Then there is an isomorphism 7 : b® a — a ® b such that g® f = (f ® g) o T.
Similarly, for f':x — a' and g’ : x — b there ewists an isomorphism 7" : a' @b — V' @ a’ such that
gof=ro(ffed)

Proof. From the remark above we can find € € Ry such that B, , = €-id;g,. Then the diagram

below commutes

b®aﬂ>:ﬂ®a}

le,a iBz,z:E'idw(gx

a®b&>w®x

Since € - € = idg we can multiply the two vertical maps by € and set 7 = € - B, , to get the result.
The second half of the claim is symmetric. O
Lemma 4.27. Let f : x — y be a morphism in T and let the triangle below be exact:

PRI SELENPALLNG 38
Suppose that the diagram below commutes:

id, @k id; ®1 ide
x®a$x®b%x®c%2(z®@

b T

Then the morphism f® f®idp : 2R xR b — y @y b is zero.
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Proof. Note that since (f ®id,)o(id,; ®k) = 0 by commutativity of the diagram, there is a morphism
h:x®c—y®band a factorization f ® idy = h o (id; ®!) by lemma A.10. Hence,

fofeid, = f® (ho(id; ®!)) = (idy ®h) o (f @ id, ®1)
But then note that f ®1 = (id, ®!) ® (f ® idy) = 0. Then this means that 0 = id, ® f ® [, but then
f®ids ® = (Byy ®@ide) o (idy ®f @ 1) 0 (Byp ®idp) = (Byy ®@ide) 000 (B ®idp) =0
Putting the two equations above together, f ® f ® idy = 0. O

Proposition 4.28. Let f : x — y be a morphism. Then the objects a € T for which there exists
n > 1 with f*" ®id, = 0 form a thick ®-ideal of T.

Proof. Define J = {a € Obj(T) | In > 1 s.t. f" ®id, = 0}. Now let a,b € J, so there exists
n > 1 such that f®" ®id, = f®" ®idy, = 0. Let g : @ — b be a morphism. Then apply lemma 4.27
to the morphism f®" : x®" — y®" and the exact triangle below (under the appropriate rotation)

a2 b2 cone(g) L Ta

We then have f&"+! ideone(g) = 0, so cone(g) € J. The fact that J is closed under % follows
easily since X is an auto-equivalence, so J is a triangulated subcategory of 7. That J is thick and
a ®-ideal follows almost immediately from the definition of 7. OJ

Remark 4.29. Recall that x ® cone(f) = cone(f ® id;) from proposition 1.9.

Lemma 4.30. Let f : * — y be a morphism where x and y both have central switch. Then
fere® idcone(f) =0.

Proof. Let f be as in the statement above, so we have an exact triangle

x —f—>y—f1—>cone(f) LN 3

This exact triangle fits into the diagram below. Note that the top and bottom rows of the diagram
are just the triangle above after being tensored with z and y respectively. It is straightforward to
check that the diagram commutes, so this is a morphism of triangles.

x®me®yidxﬂ§x®cone(f Y(x®x)

f®1dzl f®1dyl f®1dcone(f)l E(f®1dz )J’

y®x 0, 0f y®ym> y ® cone(f) YA Yy @)

) idac ®f2

Since y has central switch, we may apply proposition 4.26 to f ® id, and find an isomorphism
T:y®x — 2z ®y such that (f ®idy) o7 =id, ®f. Then,

(idy ®f1) o (f®@idy) o1 = (idy ®f1) o (idy ®f) =0
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and since 7 is an isomorphism, it follows that the middle diagonal morphism is zero. The third
square’s diagonal is also zero for similar reasons, this time using the second statement of proposi-
tion 4.26 and the fact that x has central switch. It follows that the diagram below is commutative:

r@z L& O p ®y =01t ® cone(f) ds & Y(r® )

Ol O\L f®idcone(f)l Ol

VOT e VO dar VO conel)) gag, M @)

By rotating the diagram it follows from lemma 4.27 that f ® f ® id¢one(s) = 0. O

Remark 4.31. The case that we most care about applying lemma 4.30 to is when 2 = 1 and y = 41
as we shall soon see. We are proving things in slightly more generality than we need since it comes
at no extra cost and these more general results are useful for studying other rings associated to T;
and indeed there is merit to studying these other rings. See remark 4.45.

Lemma 4.32. Let £ be a collection of objects in T.
(a) If a € (£) and b € Obj(T), then a®b € (€ @ b).
(b) If () =T, then for every n > 1 we have ({z®" |z € £}) =T as well.

Proof.

(a) Let a € £. Similar to the middle paragraph of proposition 1.14, we have that {x € Obj(T) | z®
be (E®b)} is a thick ®-ideal. This thick tensor-ideal contains £, and so it contains (£), and
therefore it contain a. Hence, a @ b € (€ ® b).

(b) Suppose that (£) = T, it follows that 1 € (z1,...,z,,) for some z1,...,z, € &, so we may
assume that € is finite. Denote £%" = {y1 @ y, | Y1, ..., yr € E}. From (a) we have that, for
each x;,

;2 1Rz € (E®a;) C (£%%)

But then 1 € (£®") for each r > 1. Since & is finite, for any n € N there exists r large enough
such that €9 C ({z®" | z € £}). But then 1 € (2®" | x € £). Therefore, T = ({z®" | x € £})
for all n > 1.

O

Proposition 4.33. Let f : © — y be a morphism in T such that (x,y) = T. If a € Obj(T) such
that f ® idg = 0 then a € (cone(f)).

Proof. Let the morphism f : © — y and the object a € Obj(7) be as in the proposition statement.

Take the exact triangle x i> Y i) cone(f) f—2> Yz and tensor it with a to get the exact triangle

below:

rT®a ———)f(gii;ia yRa —)fl@ida cone(f)®a —>f2®ida Yr®a

Since the first map is 0, it follows that a ® cone(f) = (y®a) ® (¥x ®a), so r ® a and y ® a lie in
(cone(f)) as the latter is a thick ®-ideal. Additionally, since 1 € (z,y), it follows from part (a) of
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lemma 4.32 that a = a € (x ® a,y ® a). Therefore,
a€ (x®a,y®a)C (cone(f))
O

Proposition 4.34. Let f : x — y be a morphism of T such that (x,y) =T, and x and y both have
central switch, e.g. x andy are invertible. Then (cone(f)) coincides with the subcategory of objects
of a € T for which f¢" ®id, = 0 for some n > 1.

Proof. Let J = {a € T | 3In > 1 such that f®" ® id, = 0} as in proposition 4.28. We need to
show that J = (cone(f)). Note that by proposition 4.28 J is a thick triangulated ®-ideal, and by
lemma 4.30 we have (cone(f)) C J. It remains to show that J C (cone(f)).

Let a € J, so f®" ®id, = 0 for some n. Since (z,y) = T it follows from (b) of lemma 4.32 that
(x®" y®") = T. Then we have that a € (cone(f®")) by taking f®" to be the f in the statement
of proposition 4.33. If we show that (cone(f®")) C (cone(f)) then the result holds.

We will proceed via induction on n. The base case is a tautology, so suppose that the result holds
up to n > 1, i.e. that cone(f®") € (cone(f)). Now decompose f&") = (f ®id en) o (id, ® f&")
and apply TRA4 to this composition to yield that cone(f®"+1) € (cone(f®id,en), cone(id, @ fE™))).

~

By proposition 1.9 there are isomorphisms cone(f ®id,en) = y®" ® cone(f) and cone(id, ® ")) ==
x ® cone( f®™). Then, we apply the inductive hypothesis and obtain

cone(f®" )y € (cone(f ® id,en), cone(id, @fE™))) = (y*" @ cone(f), = @ cone(f*™)) C (cone(f))

thereby finishing the proof. O

Proposition 4.35. Let f : x — y be a morphism, and assume the same hypotheses as proposi-
tion 4.34. Then
(cone(f)®™) = (cone(f®™)) = (cone(f)) Vn €N

Proof. Tt follows directly from proposition 4.34 that (cone(f)) = (cone(f®")), and clearly cone(f)®" €
(cone(f)), so the claim will be proved if cone(f) € (cone(f)®").

We will induct on n. If we apply TR4 to the composition below,

on [fRid®id ( n 1d®f®id

(z ® x) ® cone(f) y ® z) ® cone(f)® (y ® y) ® cone(f)®"

Since cone(f) ® z ® cone(f)®™ and y ® cone(f) ® cone(f)®" are both contained in (cone( f)®"+1)),
it must be that
cone(f b2y f & idcone(f)@’“) € <C0ne(f)®(n+1)>

But f ® f ® ideope(fyen = 0 by lemma 4.30. Since the cone of the zero morphism a 9% b for any
objects a b is the direct sum (a) @ b, we then have

cone(f @ f ® idgone(yen) = B @ cone(f)™") & (42 @ cone(f)°")
Since thick ®-ideals are closed under summands,
(2% @ cone(f)®", y®* @ cone(f)®") € (come(f)**+)
It then follows from parts (a) and (b) of lemma 4.32 that

cone(f)®" € (cone(f)¥" )
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4.4 Localization and the Graded Central Ring

The central ring Ry can capture a lot of information about 7 in certain cases, but in many cases
it is more useful to look at the graded central ring, of which the central ring is just the degree 0
part.

Definition 4.36. Let T be a tt-category. Given any two objects a,b € T we use the notation
below:
Hom’(a, b) := Hom7(a, X"b)

We then define the abelian group of Z-graded homomorphisms
Hom?(a,b) := EB Hom7 (a, X"b)
neZ
There is an obvious composition
Hom%—(b, ¢) x Hom%-(a, b) — Hom?fj(a, c)
where

(9. 1) go f =0 =0 st

which of course is just the usual composition when ¢ = j = 0.

Definition 4.37. The graded central ring is
R := HomZ(1,1)
When there is no confusion about what category we are in, we will just write R or R*.
Note that R = R, and similar to R, there is a graded left action of R* on Hom’-(a,b) given by
R" x Hom%(a,b) — Hom’" "™ (a, b)

rHe=r-f=rof:a21®a— Y"1 @ X™h = "M

There is also a graded right action defined analogously. This action agrees with the left action up
to a sign, making R* into a graded-commutative algebra and every Hom?-(a, b) into a left and right
graded R*-module via the tensor product. Composition

Hoij(b, ¢) x Hom’(a,b) — Homf;rj(a, c)
is R*-bilinear up to a sign, i.e. for r € R* and f € Hoij(a, b)
P = ()
The graded-commutative nature of R* comes from the Koszul sign rule of definition 1.4.

Construction 4.38. Let 7 be a tt-category. Let S be a homogeneous multiplicatively closed
(abbreviated to m.c.) central subset of R*. Then we can localize R* to acquire the graded-
commutative algebra S™'R*. Since Hom’-(a, b) is an R*-module, we also get S~ Hom’-(a, b) as an
S~1R*-module. Denote (S~! Homy(a,b))? as the degree 0 component. There are then well defined
S~ R*-homomorphisms

(S~ Hom?-(b, ¢))" x (S~ Hom’(a, b))’ — (S~! Hom¥(a, c))"
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We can then generate a new category S~!7 which has the same objects as 7 and has morphisms
Homg-17(a,b) = (S~! Hom*(a, b))’
The canonical morphism of R*-modules Hom7(a,b) — (S~! Hom*(a,b))? yields a functor

gs: T — S7'T

We want to show that gg in construction 4.38 is actually a Verdier localization, so to that end
we prove two preliminary results.

Lemma 4.39. With notation as in construction 4.38, define J := (cone(s) | s € S). Then,
J ={ceT |3s€S such that s-id, = 0}
Proof. This follows immediately from proposition 4.34. O

Lemma 4.40. With notation as in construction 4.38 and lemma 4.39, a morphism k : b — x in T
has its cone in J if and only if there exists s € S of degree d for somed € Z andl,m € Homflr(x, b)
such that l o k = s - id, € Hom%(b,b) and kom = s - id, € Hom%(z, z).

Proof. To set this up, consider the commutative diagram below. The top row is the exact triangle
coming from k : b — x and the bottom row is just the d-th shift of the top triangle. The diagram
commutes because the column maps are just the action of s € RdT on the identities.

k k1 ko

> cone(k) —————— ¥b

b x
e
s'idbl /,//:, ;’)’/L/ J'Sldz \Ls'idconc(k) lzs'idb

2 » Ny »? cone(k) ——— LH1p
sk Dk Dk

Suppose that cone(k) € J. By lemma 4.39, we may pick s € S such that s - deone(r) = 0. Then
the diagonals of the middle and right square vanish by commutativity. By rotation of the triangle
and application of lemma A.10, [ and m exist as in the diagram such that [ o k = s -id; and
Y4(k)om = s -id,.

Now suppose that [ and m satisfying our conditions exist. Then,
(s - ideone()) © k1 = 2%(k1) o (s -idy) = S (k1) 0 X% (k) om = X% (k1o k) om =0

Analogously, 2%(ks) o (s - idcone(k)) = 0. By lemma 4.27, (s?) “ideone(f) = 0, and since S is m.c., we
have that s?> € S so cone(k) € J by lemma 4.39 O

Theorem 4.41. Keep the notation as above and let q : T — T /T be the canonical Verdier
localization. There is an equivalence o : ST = T /J such that oo qs = q. This endows S~ T
with the structure of a tt-category such that qs : T — S~ T is a morphism of tt-categories, i.e. a
®-exact functor.

Readers who are not yet comfortable with Verdier localization may want to just skim the next
proof.

56



Proof. Define o : S™1T — T /J to be the identity on objects, which we can do since S~! 7 and
T /J share the same collection of objects as T by definition. Let a,b be objects of 7. Note that
cone(s -idp) = b® cone(s) € J. This forces ¢(s - idp) to be an isomorphism in 7 /7, as the cone of
a morphism is in the kernel of a Verdier localization if and only if the image of the morphism is an
isomorphism. We now define a natural morphism

aqp i (ST Hom?(a, b)) — Homy /7 (a,b)

g — q(S . idb)il of

The goal is to show that «, j is an isomorphism. Take a morphism k~lgin Homy / 7(a, b) represented

by a % x & b where cone(k) € J. Then lemma 4.40 yields a morphism [ € Homﬁlr(x, b) such that
lok =s-idy for some s € S. Then, k~1g = aqp(lg/s) as shown in the diagram below:

g
a > b

Hence, a,p is surjective. For injectivity, suppose that g(s - idy)~' o f = 0. Then since ¢(s - id) is
an isomorphism, it must be that f is the zero map. O

Corollary 4.42. If p* € Spech(R3'> then the localization T+ = S)ﬂ_*lT where Sp» = {s €
RS | s € p*} has graded central ring Endi}p* (1) = (Ry)p--

Remark 4.43. So far we have been localizing in a graded manner, but that doesn’t have to be the
case. This is because if R* is a graded ring and M* a graded R*-module and S C R° an m.c.
subset, then (S~1M*)0 = =1 (MY).

Corollary 4.44. Let S C Rt be a m.c. subset. Then the Verdier localization S™' T is equivalent
to T /J where J = (cone(s) | s € S). In particular, if p € Spec(Ry) then T, = Sp_lT where
Sp == Ry \ p has central ring isomorphic to (RT),.

Remark 4.45. The presentation of the material in sections 4.4 and 4.3 are not as general as was
originally stated in [Ball0]. Balmer constructs the central graded ring R%, with respect to an
invertible object u € T as below:

Ry, = @Hom%(]l, u®)
1€EZ
This can be useful, but for readability and brevity I decided to stick to the case u = 3(1) since we
will only need the case when u = 1.

Example 4.46. Consider 7 = DP!{(R) for a commutative ring R. Since the monoidal unit of DP'(R)
Is a complex with R concentrated in degree 0, it is clear that Rppr(py = R. The action of f € Rppe(p)
on Hompye(g)(Ce, Ds) is simply to multiply the chain maps by r. Since Homppt(g) (R, Rli]) = 0 for
non-zero ¢ € Z, we can see that R]*DPf(R) = Rppi(g)-

The previous example is a case where the central ring and the central graded ring coincide since
the higher and lower degree components vanish. In the next section we will explore a case where
the central graded ring is very rich in structure, as it recovers the notion of Tate cohomology.
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4.5 Tate cohomology
We will use [Kra2l1] as a reference for this section.

Let A be a finite dimensional Hopf algebra over a field k. Readers unfamiliar with Hopf algebras
should just think of A as a group ring kG of a finite group G. Let N be a representation of A.
Since injectives and projectives coincide in this context, the only difference between injective and
projective resolutions is whether or not they are indexed homologically or cohomologically. Let P,
be a projective resolution of N and I*® an injective resolution of N. In 1.3.2 we defined the syzygies
Q"N as seen in the diagrams below.

1 It y I2
QO IN 02

N

0 N

02N QN
> P2 > Pl PO

We can then splice the resolutions together to get a complex

~
=
o

02N OlN

/ \ P / \ PO/N\> 10 /QIN\ It /QQN\‘

Definition 4.47. The complex constructed above is called the Tate resolution (or sometimes
complete resolution) of N. We will denote it tN

Remark 4.48. In definition 4.47 we use the definite article “the” even though the construction is
not unique; rather, it is unique up to homotopy. Another way to look at tIN is to take projective

and injective resolutions p/N and ‘N and to use the quasi-isomorphisms pN 2y N and N 5 iN to
construct the exact triangle below:

PN L iN S IN = SpN

So tN is the cone of the composition 7j in the homotopy category of chain complexes in Rep 4.

Definition 4.49. Let M, N € Rep,. First, reindex the projective part of the Tate resolution
cohomologically. We then define the n-th Tate extension as below

Ext (M, N) = H"(Hom(M,tN))

and Tate Cohomology o .
H (A, M) :=Ext,(k, M)
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If we look at the Tate resolution we can see that it’s not clear where we s@%d put our zero
index. However, because of the definition of tN we can immediately see that Ext (M, N) should
agree with good old fashioned Ext’}(M, N) for n > 0. Therefore, we stipulate that I occupies
the zeroth index of tN in the resolution constructed above. We saw in 1.3.2 that Ext} (M, N) =
Hom 4(M,Q~'N). This turns out to be the n = 1 case of a more general relationship. Let n > 0
and let 0 — Q"IN — I — Q"N — 0 be a short exact sequence from which arise the exact
sequences

Hom (M, I) — Homa (M, Q") — Ext!y (M, Q" "IN) — Extl (M, )
and
Ext’y {(M,T) — Ext'y '(M,Q7", N) — Ext’ (M, Q"' N) — Ext’ (M, I)

~

for all @ > 0. When we pass to the stable module category, we have that Hom ,(M,I) =
Extl(M,I) =0 as I is both injective and projective, so

Hom , (M, Q"N) = Exty (M, Q" 'N) and Ext’;'(M,Q"N) = Ext’y(M, Q"' N)
for all i« > 0. Hence, for n > 0 there are isomorphisms,
Hom 4(M,Q " N) = Ext! (M, Q"I N) = Extd (M, Q ""2N) = ... =2 Ext" (M, N)

We generalize this in the following proposition.
Proposition 4.50. For M, N € Rep,4 there are isomorphisms
Ext (M, N) = Hom 4 (M, Q" N)
and Ext (M, N) = Ext™ (M, N) for n > 0.
Proof. We already proved the claim for n > 0, so it remains to check n < —1. To avoid confusion,
I want to clarify that for the remainder of the proof we will be in negative cohomological indices

n < —1 which correspond to the homologically indexed part of tIN, so really just looking at the
projective resolution pN. Set t = —n. Let f € Homa(M,Q!N). We then have the diagram below:

M
|
0

tEN
N
dt+1 P dt dtfl
t

y P —— ...

The map 7 induces i, : Hom (M, Q7 *N) — Homa(M, P,_1), and since imd; = kerd~! = Q' N, we
see that di‘l o1, = 0 and therefore we have a composition below:

ker dt —
a : Homa (M, Q'N) — kerd’ — _erle = H" Homu (M, tN) = Ext s (M, tN)
imd;

where d is the map induced on Homa (M, ;). If « is surjective and ker(a) = PHoma (M, Q!N)
then the claim will have been proved.

59



Let g € Hom4 (M, P,_1) such that d®~1 o g = 0. Then im(g) C im(d*) = Q!N, so we can factor g
through Q'N. This proves the surjectivity of a. Now suppose that a(f) = 0, i.e. io f € im(d%).

By definition, this means that i o f factors through a morphism M LN P,. By commutativity of the
diagram,

iof=d'oh=i0joh
Since i is injective it follows that f = joh, and since P, is projective we have f € PHom4 (M, Q!'N).
On the other hand, suppose that f € PHom (M, Q). Then f factors through a map P’ 2 QN

where P’ is projective, but then j : P, — Q!N is a surjection, so ¢ factors through 5, which forces
f to also factor through j. Then f € ker(«). Hence, « is an isomorphism. O

Corollary 4.51. For a finite dimensional Hopf algebra A over a field k we have

HomgtMod(A)(Mv N) = @@A(M, Q7"N) = E\xtj;(M, N)
nez

In the previous two sections we were exploring the action of R on Hom7(A, B) in a tt-category
7. In Rep, the monoidal unit is the one dimensional representation k, and so in 7 = stmod(A)
we have

R:tmod(A) = End%(1) = Ext,(k,k) =H (A,k)
In the previous two sections we saw an action of R on Hom-(M, N):
Rir x Hom’ (M, N) — Hom4” (M, N)
and using the isomorphisms constructed above we can see this action explicitly within stmod(A):
H"(A, k) x Exty (M, N) = Hom 4(k, 2 "k) x Hom 4(M, Q2 "N) — Hom 4 (M, Q™ (") N)

If we take M € Repy, the Tate resolution tM is of course a chain complex, so it lies in Ch(A),
but more specifically it lies in Ch(Inj-A), the category of injective chain complexes. As remarked
earlier, the assignment M — tM is not functorial in Ch(Inj-A), but it is functorial when we pass to
K(Inj-A) since injective resolutions are equivalent up to homotopy. Therefore we can regard ¢(—)
as a functor StMod(A) — K(Inj-A), and since tM is acyclic it actually factors as below:

StMod(A) K(Inj-A)

t(—) /

Kgc(Inj-A)

But we can always recover M from tM by taking the zero-th syzygy. This induces an equivalence
of tt-categories between StMod(A) and K .(Inj-A). See 4.4.18 of [Kra2l].
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5 Local tt-categories and the comparison map

In this chapter we will continue to follow [Ball0] for sections 5.1, 5.2, 5.3, and 5.4. We will assume
that 7T is essentially small for the entire chapter.

The previous chapter we realized Spec(7) = (Spc(7), O7) as a ringed space and built up some
machinery around the central ring Ry and the graded central ring R%-. In this chapter we will show
that Spec(7) is not just ringed, but locally ringed. This is done by defining the notion of a local
tt-category topologically, and then showing that the central rings of local tt-categories are in fact
local rings. We will then employ the machinery developed in section 4.4 to develop the comparison
map Spc(7T) — Spec(R7), which is a morphism of spectral spaces relating Balmer spectra to Zariski
spectra.

5.1 Local tt-categories

Definition 5.1. A tt-category is called local if Spc(T) is a local topological space, that is, if
SpPe(T) = Uaeq Ua is an open cover of Spc(7) then U, = Spe(7T) for some o € €.

Proposition 5.2. The following are equivalent:

(a) T is local as defined in definition 5.1.

(b) The space Spc(T) has a unique closed point.

(¢) The category T has a unique minimal prime.

(d) The ideal /O C T of @-nilpotent objects is the minimal prime of T .

(e) For any objects a,b € T, if a® b =0 then a or b is ®-nilpotent.
Moreover, if T is rigid, then the above is further equivalent to:

(f) ifa®@b=0 thena=0 orb=0.

(9) (0) is the unique closed point.

Proof.

(a) = (b). Argue by the contrapositive. If P and Q were distinct closed points then the cover
Spe(T) = (Spe(T) \ P) U (Spe(T) \ Q) is an open cover of Spe(7) that cannot be reduced to a

single constituent open set as in definition 5.1, so 7 is not local.

(b) = (a). Any closed set of Spc(7T) contains a closed point by remark 2.24. If there is only one
closed point M of Spc(T), then any open subset of U C Spc(7) containing M must have empty
complement, i.e. U = Spc(T)

(b) <= (c). By proposition 2.20, the closure of P € Spc(T) is {P} = {Q € Spc(T) | Q C P}, so
the closed points of Spc(7T) are exactly the minimal primes of 7.

(¢) <= (d). This follows immediately from corollary 2.13, which is exactly the statement that

(1 P=Vv0

PeSpe(T)

d) <= (e). This is immediate from the fact that a € v/0 if and only if a®" = 0 for some n.
( y
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If 7 is rigid then all ®-ideals are radical by proposition 3.35. Consequently, v/0 = (0). ]

Remark 5.3. Observe that proposition 5.2 tells us that 7 /P is indeed a local tt-category since the
nilradical becomes prime and is therefore the unique closed point of Spc(7T /P).

Proposition 5.2 may seem backwards since in algebra we usually associate the term ’local’ with
the property of having a unique maximal ideal, but here it corresponds to having a unique minimal
prime ®-ideal. According to intuition from traditional ring theory, this looks more like being an
integral domain. This phenomenon is once again related to the fact that the Balmer’s spectrum
is topologically the Hochster dual of the topology coming from the distributive lattice of thick
®-ideals of 7. The following example should dispel any doubt that definition 5.1 is the correct
definition.

Example 5.4. If R is a commutative ring then DP{(R) is a local tt-category if and only if R is
a local ring. To see this, recall the universal morphism of support data from theorem 3.44, which
yields the homeomorphism below:

Spec(R) — Spc(DPi(R))
p — P(p) = {M, € D*(a) | (Ma)y = 0}

The critical observation is that the map above is inclusion reversing, so p C q < P(p) D P(q).
Hence, the maximal primes of R correspond to minimal prime ®-ideals of Dpf(R). Therefore, R is
local if and only if Spc(DP{(R)) has a unique closed point, which is the case if and only if DP{(R)
has a unique minimal prime ®-ideal.

In fact, the example above is indicative of the more general result below:
Theorem 5.5. Let T be a local tt-category. Then,
1. R% s a local graded ring, and

2. Ry is a local ring.

Proof. Define an ideal
m = (homogeneous non-invertible elements of R7)

We must prove that this ideal is maximal, so let f,g € RdT. Note that if f or g are both non-
invertible, i.e. non-isomorphisms, then f-g¢ must be non-invertible. To show that m is closed under
addition, is suffices to show that if f 4 ¢ is invertible then either f or g is invertible, so assume that
f + g is invertible. Define

¢ = (f + g) ’ (idcone(f) ® idcone(g)) € Endé—(cone(f) ® Cone(g))

Since f+ g is an isomorphism, ¢ is clearly invertible. Note that since f and g have invertible objects
(1 and Ly | respectively) as their source and target it follows from lemma 4.30 that f® f ®ideone(f) =
gR®GRideone(g) = 0. Then, by expanding out (f+g)? we can see that (f+g)3-(idcone(f) ® idcone(q)) =
0, so in fact ¢® = 0. Since ¢ is both invertible and nilpotent in the ring End’-(cone(f) ® cone(g))
it follows that this ring is the 0 ring, so cone(f) ® cone(g) = 0. From proposition 5.2 it follows
that either cone(f) or cone(g) is ®-nilpotent. Assume that this is the case for f without loss of
generality. By proposition 4.35

(0) = (cone(f)*") = (cone(f))
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Hence cone(f) = 0 and therefore f is an isomorphism, i.e. invertible. O
Proposition 5.6. For P € Spc(T), the stalks of Fr and Ot are naturally isomorphic to Ry p.
Proof. The result follows immediately from lemma 4.14 by setting x =y = 1. O
Corollary 5.7. If T is a tt-category then Spec(T) is a locally ringed space.

Proof. Note that for any P € Spc(T) the tt-category 7 /P is local by remark 5.3. The result then
follows from proposition 5.6 and theorem 5.5. O

Example 5.8. The converse to theorem 5.5 is not true. For example, set 7 = DP{(X) where
X = P? with k a field. Then Ry = I'(X,Ox) = k which is obviously local, while DP!(X) is not
local as a tt-category since Spc(DPf(X)) = X.

5.2 The comparison map

In 3.2 we learned about methods for understanding Spc(7) by mapping continuously into Spe(7)
using support data. Now we will look at a way to study Spc(7) through continuous maps out of

Spe(T).

Definition 5.9. Given a tt-category 7 we define a map p* from Spc(7) to the homogeneous prime
spectrum of R, denoted Spec"(R%-), where

p7(P) := (f homogeneous € RF | cone(f) & P)
We call p% the comparison map.

For each P € Spc(T) there is a Verdier localization 7 — 7T /P which induces a homomorphism
Ry — Ry /p on their central graded endomorphism rings. We now want to investigate the com-
parison map p* and how it relates to localizations of tt-categories.

Theorem 5.10. Let T be a tt-category and let p* : Spe(T) — Spec™(T) be the map in definition 5.9.
Given P € Spc(T), let ¢ : T — T /P be the associated localization functor and g, : Ry — Rfr/P the
associated ring map.

(a) p*(P) is a homogeneous prime ideal in R
(b) If m is the unique homogeneous mazimal ideal in Ry, then p*(P) = gy ' (m).

(¢) The map p* is continuous. That is, for s € R}, the preimage of the principal open D(s) C
Specl'(R%-) is the open set U(cone(s)) C Spe(T).

(d) p* defines a natural transformation between the contravariant functors Spc(—) — Spec(R*).

Proof. The statement of (b) implies (a), so it suffices to prove (a). Since the functor ¢ : 7 — T /P
is a ®-exact functor, it must be that g(cone(f)) = cone(qf) for any f € R%- /p- Then,

cone(f) € P <= q(cone(f)) =0
<= cone(q.f) =0
<= g, f invertible
= q@.fgm

63



Therefore,
¢;'(m) ={f € By | ¢.f € m} = (f € RP"™ | cone(f) & P) = p"(P)
which is the statement of (b).

Let s € Rho™ and D(s) be the principle open set of s, i.e. D(s) := {p € Spec(Ry+) | s & p}.
Then,

(p*)"H(D(s)) = {P € Spe(T) | s & p*(P)}
={P €Spc(T) | s & (f | cone(f) ¢ P)}
= {P € Spc(T) | cone(s) € P}
= U(cone(s))

which is the claim of (c).

For (d), let F : T — T’ be a ®-exact functor between tt-categories. There is an induced
ring homomorphism R3 — R7, induced by F' where f — F(f), so we will also call this ring
homomorphism F'. Denote p7 and pZ, to be the comparison maps for T and T respectively. The
claim comes down to showing that the diagram below commutes:

Spe(T) _Spef Spe(T)

p*T,l lp*T

Spech(Ri},) Speh b Spech(R%-)

Recall from proposition 3.18 that (Spc F)(Q') = F~1(Q') for @' € Spe(T’). Then,

f € pr(Spc F(Q')) <= cone(f) & (Spc F)(Q) = F~1(Q)
<= F(cone(f)) = cone(F(f)) & &
= F(f) € p1(Q)
= feF (pr(Q)) = (Spec F)(p7(Q))

Hence, commutativity of the diagram holds. O

Remark 5.11. Part (c) and (d) of theorem 5.10 tell us that p% is a morphism of spectral spaces,
so p7 is actually a natural transformation between functors into the category of spectral spaces.
In light of Stone duality, the comparison map is equivalent to a morphism from the lattice of
homogeneous prime ideals of R% to the lattice of prime ®-ideals of 7.

The following theorem shows that localization in the central endomorphism ring communicates
with localization of the larger tt-category.

Theorem 5.12. Let S C R%l-om be a central multiplicatively closed subset and let ¢ : T — S~ T be
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the corresponding localization functor. Then the diagram

Spe(S—1T) « Sped Spe T

lpgf 17 lﬂ;

Spec™(ST'R%) = Spec™(R}_ 1) —— Spech(R%-)

commutes and is cartesian, that is, Spc(S™1T) = {P € Spc(T) | SN pi(P) = 0}

Proof. The diagram commutes due to the naturality of p*. From theorem 4.41, we know that
S~'T = T /J where J = (cone(s) | s € S). By corollary 3.20, Spc(q) is a homeomorphism
onto its image, i.e. Spc(ST!T) = {P € Spce(T) | J C P}. By definition, J C P if and only if
cone(s) € P for all s € S, so s € p5-(P) for all s € S by the definition of p-. O

Remark 5.13. Let p* € Spec?(R%) and set S = R% \ p*. If m is the maximal ideal of S™'R% then
theorem 5.12 shows that if m € im(pg_, ;) then p* € im(p7).

We have been focusing on the graded central ring R% for a little while now, but now we can
return to Ry, which is just the 0-th graded component of RZ-.

Remark 5.14. There is a natural transformation (—)° : Spec"(—) — Spec(—") where Spec(—?)
takes the spectrum of the 0-th component of a graded ring. In other words, given a graded ring A*
there is a continuous map Spec(A*) — Spec(A°), where p* — p = p* N RY, that is natural with
respect to graded ring homomorphisms. This continuous map is surjective. To see this, first assume
that AY is local with maximal ideal m. Then if q* is a homogeneous prime containing m - A* then
m = q* N A? by maximality of m. In the non-local case, take p € Spec(A°) and set S = A"\ p. Note
that S is a homogeneous multiplicatively closed subset of A*, so we can localize to S™1A? = AO
and ST'A*. By the universal property of localization there is a map AO — S71A* and in fact
Ag = (S71A4%)%, so we reduce to the local case from earlier.

Definition 5.15. Let 7 be a tt-category and P € Spc(7). Then define py : Spc(T) — Spec(R7)
as

p1(P) = {P € Spc(T) | cone(s) ¢ P}

Corollary 5.16. Let T be a tt-category. Then,
(a) p7(P) is well defined, i.e. p(P) is a prime ideal of R

(b) pr is continuous and natural in T. Additionally, the diagram below commutes.

Spc(T) *> Spech (R

o o

Spec(RT)
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(¢c) Let S C Ry be a m.c. set and q: T — S™1T the corresponding localization. Then the
diagram below commutes and Spc(S™1T) 2 {P € Spe(T) | SN pr(p) = 0}

Spe(S7IT) « Spea » SpeT

lpsfl T iﬂT

Spec(S™'Ry) = Spec(Rg-17) — Spec(R7)

Proof. Follows from discussion in remark 5.14, as well as theorem 5.12 and theorem 5.10. 0

Now that we know that p* can help get a handle on Spc(7), there are some natural questions to
ask:

1. Is p* a morphism of locally ringed spaces?

2. When is p* surjective?

3. When is p* injective?

4. What does p* do to the support of an object?

Three out of four of these questions will be explored in the following subsections. Interestingly,
most results about p being injective are actually cases when p is bijective as it turns out that it
is much harder to determine when p is simply just injective. This should not be too surprising
since Spech(R}) is really just capturing a small piece of information internal to the generally much
larger structure of 7.

5.3 The comparison map as a locally ringed morphism

For the duration of 5.3 we will require that all our tt-categories be rigid. We require this to ensure
that all thick ®-ideals are radical.

Let’s return to the structure sheaf of Spc(7). Recall that in definition 4.13 we assigned to each
quasi-compact open set U C Spc(7) a new tt-category 7 (U) which was defined as below:

TW) = (T /Cz,)°

where Zyy = Spe(T) \ U, Cyz, is the thick ®-ideal {a € T | supp(a) C T}, and (—)¢ denotes the
idempotent completion. Although the notation R7 had not yet been introduced in this text, we
defined the presheaf of rings below:

F(U) = Ry

Note that since Spc(7T) is a spectral space, it has a basis of quasi-compact open sets, so it suffices
to define the presheaf on quasi-compact open sets. The restriction maps come from the fact that
any morphism 7 — K of tt-categories induces a ring morphism Ry — Ry. This presheaf is in
terms of the central endomorphism rings, but there is no reason that we couldn’t have done the
same construction for the central graded endomorphism ring. In this vein we define the presheaf

If we wish to keep track of the specific tt-category that we are talking about, we will write F7 or

F.
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Definition 5.17. Given a tt-category 7 define O to be the sheafification of F7. Further define
the ringed space Spec*(T) := (Spc(T), O%).

Theorem 5.18. For P < Spc(T), the stalks of Fi and OF are naturally isomorphic to R
Furthermore, Spec*(T) is a locally ringed space.

Proof. The proof is the same as the one leading up to corollary 5.7 except we just change our sheaf
to OF and we set x =1 and y = Y91 for all d € Z when applying lemma 4.14. O

Our goal now is to show that the continuous comparison maps p7 and p3 may be enhanced
into maps of locally ringed spaces. Recall that a morphism of ringed spaces f : (X,0x) —
(Y, Oy) consists of a continuous map f : X — Y along with ring homomorphisms f# : Oy (U) —
Ox(f~1(U)) for all open U C Y that is compatible with the restriction ring morphisms.

Going forward, we will only talk about the graded case, but all of the analogous results hold in
the ungraded case.

Lemma 5.19. Let T be rigid and denote X = Spech(R?). For every even degree s € Réb—om
there is a natural isomorphism between the sections of the sheaf O% over the principal open set
D(s) C Spec(R%) and the sections of Fi over (p%)~1(D(s)) = U(cone(s)). In particular, they
are isomorphic to R3[1/s].

Proof. Denote U(s) := U(cone(s)) C Spc(7T) to condense notation. By definition, O%(R}) =
R%[1/s]. Recall from theorem 5.10 that (p%)~'(D(s)) = U(s). By definition F3(U(s)) is the
central graded ring of 7 /C' Ziy(sy» SO 1t is this ring that we want to analyze.

By definition, Zy(5) = supp(s). Since T is rigid, all thick ®-ideals are radical, so from the main
classification theorem we have Cyypp(cone(s)) = (cone(s)). If we then set S = {s" | i > 0} then we
get the expression below from theorem 4.41:

FrU(s)) = BT jcone(s)
=Ry
= SRy
= R7[1/s]

O

Construction 5.20. We now want to use the previous lemma to construct a morphism of locally
ringed spaces. For every even degree s € R}, let U(s) := U(cone(s)) which we know is equal to
p3(D(s)) C Spe(T). Furthermore, let (X, O%) be the affine scheme Spec”(R%-). Then define,

Tp(s) : Ox(D(s)) = OF(U(s))

as the composition O% (D(s)) = Fi(U(s)) — O3-(U(s)) where the first map is the isomorphism of
the previous lemma and the second is the canonical sheafification morphism. It is straightforward
to check that this map is compatible with the restriction morphisms. By lemma 5.19, this defines
a morphism of ringed spaces

(pF,7) = Spec*(T) — Spech(Rfr)
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It remains to check that this is a morphism of locally ringed spaces.

Theorem 5.21. Let T be rigid. Then, the comparison map (p5,r) : Spec(T) — Spech(Rfr) s a
morphism of locally ringed spaces with the following properties:

(a) For a prime P € Spc(T) let p = p7(P) € Spec(Ry) and p* = p(P) € Spec"(R}). Then the
induced homeomorphisms on stalks are the natural ones, (R1)y — Ry p and (R )p — Ry p-

(b) If pT or pX is a homeomorphism on the underlying spaces, it is automatically an isomorphism
of ringed spaces.

Proof. For readability we will write p instead of p% and X instead of Spec(R%-).

Part (b) follows from (a) and lemma 5.19 since p being a homeomorphism implies that F7 and
O% are the same on principal open sets, so the sheafification OF must then agree with O% since
the latter was a sheaf to begin with.

We continue on to part (a). Let P € Spc(7) and recall from theorem 5.10 that under the ring map
Ry — R P induced by the functor 7 — 7 /P the preimage of the maximal homogeneous ideal of
Ry p is p(P). Denote this homogeneous prime ideal p. Hence, the morphism ¢ : (R%), — R} P
is a local ring map. Now we want to show that ¢ is actually the map on induced on stalks by
p : Spec*(T) — X. This follows from lemma 4.14 in a straightforward manner once we trace
through the definitions of the rings involved. O

5.4 Surjectivity criteria
Lets examine two criteria for R which ensure that the comparison map is surjective.

Definition 5.22. A ring R is called coherent if every finitely generated ideal is finitely presented,
and a graded ring is coherent if every finitely generated homogeneous ideal is finitely presented. An
R-module is called coherent if it is finitely presented and if its submodules are finitely presented.

Fact 5.23. All Noetherian modules and rings are coherent.

Notation 5.24. Let a € Obj(7T) and f € R%. To make our notation more compact for the

remainder of the section, we will use a// f to denote the cone of the morphism a i) Y%q. Here we

. . - . idq
are abusing notation as this is really the cone of the composition a 2 a ® 1 Do/, , ® L9 =2 2,

Given f1,..., fn € R we write

1) {f1,- fr) = ) f1) @ ... A)) fr,) = cone(f1) @ ... ® cone( fy)

Lemma 5.25. Let T be a tensor triangulated category for which R is a local ring, and let m be
the unique maximal ideal of R3-. Then the following are equivalent:

(a) m is in the image of the comparison map, i.e. there is some P € Spc(T) such that p5-(P) = m.
(b) For all homogeneous f1, ..., fn, € m, one has L)/(fi1,..., fn) # 0.

Proof. Suppose that m = p3(P) for some P € Spc(T). For the sake of contradiction, further
suppose that we may find homogeneous fi, ..., f, € m such that 1/(f1,..., fn) =0. Then 1)/ f; € P
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for some f; since P is prime. By definition of the comparison map, f; € p5-(P) = m. Therefore, we
have a contradiction.

For the other direction, let S = {1/(f1,..., fn) | fi € m homogeneous} U {1} and suppose that S
does not contain zero. This set is a multiplicative set, so by proposition 2.9 there exists P € Spc(T)
such that P NS = ). For all homogeneous f € m we have 1/ f ¢ P and therefore f € p%(P), hence
m C p4(P), and by maximality we have equality. O

Remark 5.26. The analogous theorem for the ungraded case of lemma 5.25 holds, i.e. for a local tt-
category 7 with central ring (R, m), it is the case that m € im(p7) if and only if 1/{f1,..., fn) #0
for all fi,..., fn, € m.

Proposition 5.27. Assume that (R, m) is a graded local coherent (resp. Noetherian) ring. Let
f € m be homogeneous and a,x € T be objects. If Hom*(x,a) is non-zero and coherent as a graded
(left) module over R then HomX-(x,a/ f) is non-zero and coherent (resp. Noetherian,).

Proof. Suppose f is of degree d. Then the triangle below is exact
1L sa sy 2o

so by applying the functor — ® a the triangle below is exact.

a%Edaf—U]I//fG@ida&Z]a

There is then a long exact sequence coming from the homological functor Homy(x,a) which may
be wound into the periodic exact sequence below:

HomX(z, a) » Hom*-(z, a)

T

HomX(x,a/ f)

where labels (d) and (1) denote the degrees of the morphisms. Suppose that the lower term in the
triangle above is zero then f must act surjectively. Since Hom%-(z,a) is coherent as a Rj-module, it
is finitely generated. Then by the graded version of NAK it would then follow that Hom*-(z,a) = 0,
but this is a contradiction, and therefore the bottom term cannot be 0. From the triangle above
we can extract the short exact sequence below:

0 — ker(-f) = Hom*(z,a) — coker(-f) — 0

Note that the left and right modules in the short exact sequence are coherent, so it follows that
Hom?-(z, a) is coherent. O

Theorem 5.28. If R is coherent, then the comparison map p3 : Spe(T) — Spech(Ré-) is surjec-
tive.

Proof. Let p® € Spech(R*T) and denote Sp+ = R \ p*. From corollary 4.42 we have that the
central graded ring of Sp_*l T is a local ring. Write m for the maximal ideal of Rg-1.,. Recall
p*
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from remark 5.13 that p* being in the image of p7 follows from m being in the image of pg‘l’f'
p*

Therefore, we reduce to the case in which R is a local ring. By lemma 5.25, it suffices to show
that 1/(f1,..., fn) # 0 for all homogeneous fi, ..., f, € m.

By setting « = 1, proposition 5.27 tells us Hom(1,1/(f1,..., fn)) # 0 for all homogeneous
fi, .-, fn € m by induction on n. O

Definition 5.29. A tt-category 7 is called connective if Hom7 (1, X%1) = 0 for all d > 0.
Lemma 5.30. Let T be connective and fi, ..., fn € Ry. Let ¢ =1)/{f1,..., fn). Then,
(a) Hom7(1,%%(c)) =0 for all i > 0.

(b) There is a natural isomorphism Ry /{f1, ..., fn) — Homy(1,c)

Proof. Predictably, we proceed by induction. For n = 0 we have ¢ = 1/(0) = 1. In this case, (a)
is just the property of connectivity and (b) is trivial. Now we proceed with induction, so let n > 1
and set d =1//(f1,..., fn—1). Consider the exact triangle below:

LN BN 3

which is just the exact triangle obtained by tensoring d with the exact triangle coming from the
cone of f,,. We then apply the cohomological functor Homy (1, ¥'d) to get the long exact sequence

... — Homy(1, 2'd) % Homs(1, Xid) — Homs (1, X'c) — Homy (1, itld) — ...

If we apply the inductive hypothesis at i > 0, then Hom+ (1, ¥?d) vanishes, which forces Hom7 (1, ¥ic) =
0, so (a) must be true. Application of the inductive hypothesis at i = 0 yields (b). O

Corollary 5.31. If T is a connective tt-category and I C Ry is a proper ideal, then for all
fiyeey fn € I the product 1)/{f1,... fn) is nonzero.

Proof. Let fi,..., fn € I. By lemma 5.30 we have the surjective composition of maps

HomT(]l,ﬂ//<f1, 7fn>) = RT/<f1: 7fn> - RT/I

Since I is a proper ideal, R/I is nonzero. O

Corollary 5.32. Let T be a connective tt-category such that (R7,m) is a local ring. Then there
exists P € Spc(T) such that pr(P) = m.

Proof. Condition (b) of remark 5.26 is satisfied by corollary 5.31 when we take m to be I. O
Theorem 5.33. Let T be a connective tt-category. Then py : Spc(T) — Spec(Ry) is surjective.
Proof. If we can show that 7, is connective for any p € Spec(R7) then the result follows from

corollary 5.32 and remark 5.13. But this is almost immediate from corollary 4.42 since we are
localizing at the multiplicatively closed set Ry \ p which lives only in degree 0.

Ry, = (Ry)y = (Rr)y
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Example 5.34. The stable homotopy category of finite spectra is connective.

Example 5.35. Let R be a commutative ring. In example 4.46 we saw that DPf(R) is connective,
so we know that the comparison map is surjective. This should not be surprising since we already
knew that Spec(R) = Spc(DPf(R)) due to the universal morphism of support data of theorem 3.44,

u : Spec(R) — Spc(DPY(R))

Explicitly, it sends

p— {Ce | Cpo =0}
Recall that the central ring of DPf(R) is isomorphic, essentially by definition, to R. Given this, we
might hope that the comparison map p : Spc(DPf(R)) — Spec(R) is an inverse to u, and indeed
this is the case. Recall that p acts via

Pr—A{feR|1/f &P}
Since the monoidal unit of DPf(R) is a complex consisting of R concentrated in degree zero, the

cone of 1 i> 1 is simply the complex

...—>0—>Ri>R—>O—>...

b
If we localize this complex at p € Spec(R) the resulting complex is acyclic if and only if R, 1, Ry
is an isomorphism, i.e. f & p. Hence,

plu(p)) ={f € RI1)f Eulp)} ={f € A[A)f)y 0} =p

Since u is surjective, we also know that u(p(P)) = P, so u and p are mutually inverse.

The comparison map may not be surjective for DP!(X) where X is not affine. This happens
because there aren’t enough global sections. This happens for example when X = P} for a field k.
See remark 8.2 of [Ball0)].

Example 5.36. Here is another example where the comparison map may not be surjective. Let
(A, m) be a regular local ring and let U = Spec(A)\{m} be its punctured spectrum. Set 7 = DP!(U).
It follows from Hartog’s lemma that H°(U, Oy) = H(Spec(R), Ospec(r)) = A when dim(R) > 2. In
this case, Rt = A so Spec(R7) = Spec(A) while Spec(7) = U. Therefore py cannot be surjective
as Spec(A) is strictly larger than U.

Example 5.37. Let G be a finite group over a field k. More generally we could instead consider
G a finite group scheme, or equivalently, a finite dimensional cocommutative Hopf algebra A. Let
T = DP(kG-mod) = K(Inj-kG)¢. Here the superscript (—)¢ denotes the compact objects of the
associated category. This will be defined in the next section. We have in this case,

Ry =H*(G,k) = PHY(G, k)
d>0

It is a theorem of Golod, Venkov, and Evens that the group cohomology H*(G, k) is a Noetherian
ring when G is a finite group. Friedlander and Suslin proved this in the case of G a finite group
scheme in [FS97]. It is an open question whether this is true of Hopf algebra cohomology in the
non-cocommutative case. Since the group cohomology is noetherian, it follows from theorem 5.28
that the comparison map is an epimorphism Spec(DP(kG-mod)) = Spec?(H*(G, k)). In fact, this
map is an isomorphism, as shown in proposition 8.5 of [Ball0]. Using theorem 4.16, this restricts
to an isomorphism Spec(stmod(kG)) = Proj(H*(G, k)). Recall that the latter is just the support
variety Vg (k) detailed in section 4.2. For details, see [BCRI7], [FP07], and [Ball0].
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5.5 Cohomological Support
This section is loosely based on ideas that can be found in section 2 of [Lau22].

Let 7 be an essentially small tensor triangulated category and let a € Obj(T). For legibility
we often denote RF as R for the rest of this section unless otherwise stated. At the end of
subsection 5.2 we asked what the comparison map p = p%- : Spc(7T) — Spec?(R) does to the closed
sets Suppy(a) C Spc(T). In general, this question is difficult to answer. If we are lucky

Proposition 5.38. 7?7 If p: Spc(T) — Spech(R$—) induces a bijection on Thomason subsets, then
p is a homeomorphism.

Definition 5.39. If a comparison map p induces a bijection on Thomason subsets as in 77, then
we say that p classifies Thomason subsets.
Proof. This proof is very similar to what happens in theorem 3.41.

As p is a spectral map of spectral spaces, and the Thomason subsets are precisely the open sets
of the inverse topology, it follows that p induces an isomorphism on the lattice of open sets for
the inverse topologies. When a continuous map induces an isomorphism on the lattice of open
sets between two sober spaces, it must be that the map was a homeomorphism. Therefore, p
is a homeomorphism on the inverse topologies of Spc(7) and Spec’(R). It follows that p is a
homeomorphism on the original topologies. O

The situation above is a best case scenario, and we would like to have some more general results.
One might hope that Spec™(R) can be realized as a support datum of some kind with p7 acting as
a morphism of support data. From this angle, the obvious thing to do is to try to relate supp(a)
to Suppr(M) where M is some kind of R-module depending on a. Luckily, there is a natural way
to do this.

Notation 5.40. Given an object z € T we will write
M, = End%¥(a)
to denote the graded endomorphism ring of a.

We saw in subsection 4.4 that M, is an R-module, and indeed M, is an R-algebra through a ring
map
R—— M,

[ (a £ 5da)

where f is a homogeneous element of degree d. Recall the definition of the support of an R-module:

Suppg(M) = {p € Spec(R) | M, # 0}

Let p € Spect(R) and let g, : T — T, be the canonical localization functor. Recall from theo-
rem 4.41 and corollary 4.42 that for any objects a,b € T we have

Homr, (ay,by) = (Hom?¥-(a, b))’ = Hom, 7(a,b)
where J = (1/s | s € p). Tracing through the definition we have that
p € Suppr(M,) <= (Ma)p #0 <= ap #0 (%)

This then leads us to the following proposition.
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Proposition 5.41. If f € R"™ then

V(f) = Suppg(Ma )

Proof. Let p € V(f). Let gy : T — T, be the localization functor. Then,

pe SUPPR(MH//f) = q)f)#0
<= qp(f) is not invertible in T,
< fisanot unit in Ry = (Rf)y
— fé€ep
= peV(/f)

O

With this result in mind, and because the notations Supp+(—) and Suppp(—) are easy to confuse
at a glance, we will introduce the following notation/definition.

Definition 5.42. Given a tt-category T, we define the cohomological support of T

V(a) = Suppg(Ma)

We now want to examine the following questions:
1. Is (Spec™(R),V(—)) a support datum for 77
2. Is it the case that p(supps(a)) = Suppr(M,)?

Properties (SD1) through (SD4) of definition 3.12 are satisfied more or less immediately due
to properties of the ring theoretic support of a module and equation (x) above. Unfortunately,
this is as far as we can get without additional assumptions. Let S be a commutative ring and let
M, N be S-modules. Recall from subsection 3.1 that if M and N are finitely generated then it the
case that suppg(M) = V(Anng(M)) (so suppg(M) is closed in Spec(S)) and suppg(M ®g N) =
Suppg(M)NSuppg(N). However, neither of these relations necessarily hold when M and N are not
finitely generated, so we cannot expect V to give us a support datum in general. We can summarize
this as follows:

Proposition 5.43. (Spec™(R),V) forms a support datum for T if and only if V(a) is closed in
Spect(R) and V(a ® b) = V(a) N V(b) for all objects a,b € T.

Now the question is, what conditions are sufficient to enforce that (Spec?(R),V) is a support
datum? Recall from commutative algebra that for a Noetherian commutative ring S, an S-module
M is Noetherian if and only if M is finitely generated. It follows that M, is Noetherian for all
a € T if and only if R is Noetherian and M, is finitely generated as an R-module for all objects a
of 7. If this holds, it follows that V(a) = suppr(M,) is a closed subset for all a € 7. This leads us
to the following definition:

Definition 5.44. If M, is noetherian for all objects a € T, we say that T is end-finite.

Remark 5.45. The terminology of definition 5.44 comes from [Lau22].
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For the next lemma, recall notation 5.24, where for an object a and morphisms fi,..., f, € R}
we write

a//(fi,-., fn) = a ® cone(f1) ® ... ® cone( fy,)
Lemma 5.46. Given an object a € T,
p(suppy(a)) C V(a)
Equality holds if for all homogeneous fi, ..., fn € p one has aj/{f1,..., fn) # 0.

Proof. Let P € suppy(a), so a ¢ P. Denote p == p(P), so p = (f € Rh™ | 1/ f € P). Recall that
Te=T/J where 7 = (1)) f | f & p). Unraveling definitions, we see that

J={)f|feR"1)fcP)CP
Therefore, the Verdier quotient g : 7 — 7 /P factors through the map ¢, : 7 — T. It follows that
if g(a) # 0 then gp(a) # 0, so by (x) we have p(P) =p € V(a). Hence, p(supps(a)) € V(a).

To show equality, for all p € V(a) = suppr(M,) we must find P € supps(a) such that p(P) = p.
By corollary 5.16 it suffices to show that this holds for 7, so we replace 7 = 7, and R with the
graded local ring R, with maximal ideal p. We will use lemma 5.25 as inspiration. Set

S = {a®™J/{f1, ..., f») | fi € p homogeneous, m,n € N} U {1}

This is a ®-multiplicative subset of T, so if we can show that 0 is not contained in § it will follow
from proposition 2.9 that there exists P € Spc(T) such that S NP = (). If this is the case, we
would then have a ¢ P and therefore 1)/ f ¢ P for any homogeneous f € p; hence, P € Supps(a)
and p C p(P), but then p = p(P) by maximality of p. O

Corollary 5.47. Equality holds for all objects a € T in lemma 5.46 if (Spec®(R),V) is a support
datum or if T is rigid and end-finite.

Proof. Let p € V(a). As in the proof of lemma 5.46 we reduce to the case that 7 = T,. Let S also
be as in the proof of lemma 5.46. The claim follows from lemma 5.46 if we can show that 0 € S.

Suppose that (Spec’(R),V) is a support datum. Then (SD5) holds for V and therefore

V(af(f1, s fn)) = V(@) NV () 0.0V (fn)

for any homogeneous f1, ..., f, € p. In particular, p € V(s) for any s € S. Since V(0) = () and V(s)
is non-empty for all s € S, it follows that 0 € S.

Suppose that M, is Noetherian for all objects a € 7 and T is rigid. In particular, this means
that a®" = 0 for positive n if and only if @ = 0 to begin with. Since p € V(a), we know that
V(a) # 0. Therefore, it suffices to show that a// f # 0 for any homogeneous f € p, but this follows
from proposition 5.27 by setting x = a. O

Corollary 5.48. Suppose that (Spec®(R),V) is a support datum, or that T is rigid and end-finite.
Then p is bijective if and only if p is a homeomorphism

Proof. Recall that {suppr(a)}acobj(7) is a closed basis for Spc(7). In either of the assumptions of
the corollary statement, p is a closed map. The claim follows. O
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Proposition 5.49. If T is rigid and p is a homeomorphism, then p(supp(a)) = V(a) for a €
Obj(T).

Proof. Let P € Spc(T) and p = p(P). Consider the natural functor F' : T, — T /P, which we know
exists from the proof of lemma 5.46. We want to show that F' is an equivalence. From theorem 5.12,
there is the cartesian square below,

Spc(Ty) Spela) SpeT

|7 Jor

Spec?(R,) — Spec®(R)

where ¢ : T — T, is the canonical localization. Since p7 is a homeomorphism by assumption, it
must be that pr, is a homeomorphism as well. We know that Spech(Rp) has a unique closed point
as Ry is a local ring, and we know that this point is mapped to p € Spect(R). Therefore, Spc(Ty)
has a unique closed point Q which is sent to P in Spc(7). As T is rigid, Q must be the zero ideal
of T} by proposition 5.2. Hence, P = ¢~1(0), so ¢(P) = 0. Therefore, ¢ must induce a functor
T /P — T, which is an inverse of F. The claim then follows.

O]
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6 Big Categories

So far almost everything we have covered has been under the stipulation that our tt-category T
be essentially small. There are a number of reasons for doing this, but main one is that in order
to define the Balmer spectrum we need our collection of prime ®-ideals to actually be a set. The
requirement that 7 be essentially small is somewhat restrictive as it leaves out some categories
that we would very much like to understand, such as the unbounded derived category D(R), the
big stable module category StMod(A), and the stable homotopy category SHC. In this section,
we develop some machinery for extending the support theory of the Balmer spectrum to larger
categories. Much of the content of this section comes from [HPS97] and [Delll], but the author
also consulted the following sources: [[Kra04], [Kra21], [NecO1], and [NP23]. The author would also
like to thank John Palmieri for his helpful comments and discussions.

Definition 6.1. Let C be a locally small category. An object ¢ € T is called compact if there is
an isomorphism

Hom7 (e, EB s) = @ Homy(c, s)

seS seS
for every set of objects S € Obj(7) such that the coproduct @, s s exists.

Definition 6.2. A triangulated category T is compactly generated if
1. 7 is closed under small coproducts

2. There exists a small full subcategory C C 7 such that all ¢ € C are compact and for any
be T, if Homy(c,b) =0 for all ¢ € C, then b = 0.

We denote by T the full subcategory of compact objects in 7 and note that it is a thick subcategory.

Example 6.3. The category Vecy for a field k is compactly generated with finite dimensional spaces
as compact objects. If A is a Hopf algebra over k then Rep, has finite dimensional A-modules as
compact objects and is also compactly generated. This comes from the fact that any representation
M of A is a directed union of finitely generated submodules.

The following theorem is a consequence of Brown Representability; see theorem 1.17 of [NeeO1].

Theorem 6.4 (Neeman). Let T be a compactly generated category triangulated category and T’
any triangulated category. Let F be a covariant exact functor that commutes with set indezed
coproducts. Then F has a right adjoint G.

Proof. See theorem 1.17 and proposition 1.21 of [NeeO1]. O

Definition 6.5. A compactly generated tensor triangulated category is a triangulated 7 which is
compactly generated equipped with a symmetric monoidal structure (®,1) where ® is a coproduct
preserving exact functor in both variables and the compact objects 7°¢ form a ®-subcategory. Note
that this means that 1 € T¢.

Corollary 6.6. If T be a compactly generated tt-category where ® commutes with coproducts, then
T is monoidally closed and has an internal hom structure. In particular, a compactly generated
tt-category is closed as a monoidal category.

Proof. Under these hypotheses the functor — ® x : 7 — 7T satisfies the conditions of theorem 6.4,
so 0 ® = has a right adjoint. By definition 1.21, T is closed. O
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Definition 6.7. A tt-category T is rigidly compactly generated if
1. T is a compactly generated tt-category, and,
2. An object of T is compact if and only if it is rigid.

Example 6.8. Let 7 = D(Veci). Then 7¢ = Db(k), which is the category of complexes quasi-
isomorphic to bounded complexes of finite dimensional vector spaces.

Example 6.9.
e The unbounded derived category D(R) is rigidly compactly generated by DP(R).

e If G is a finite group and k is a field, then StMod(kG) is rigidly compactly generated with
stmod(kG) C StMod(kG) embedding as the full subcategory of compact rigid objects.

e The stable homotopy category SHC is rigidly compactly generated by S°, the sphere spectrum.

6.1 Localizing Subcategories

For this section, assume that 7T is a rigidly compactly generated tt-category with 7°¢ as the tt-
subcategory of compact objects.

Definition 6.10. Let 7 be a (tensor)-triangulated category admitting set indexed coproducts. A
subcategory C C T is

1. localizing if it is a full triangulated subcategory which is closed under set indexed coproducts.
2. a localizing ideal if it is localizing, such that for each a € C, b € T we have a ® b € C.

If S is some collection of objects in 7 then we write loc(S) to denote the smallest localizing sub-
category containing the full subcategory of S, and we write (S);,. to denote the smallest localizing
ideal containing S.

Proposition 6.11. Let Z be a ®-ideal in T¢. Then (Z)oc N T =T1.
Proof. See appendix D of [NeeOl]. O

Proposition 6.12 (Neeman). Let T be a triangulated category admitting set indexed coproducts.
A localizing subcategory is thick.

Proof. Let a ® b € C, a localizing subcategory of 7. We want to show that a € C. Define

x:=(adb)®(adb)d ...
=b®a)®(b®a)® ...

Note that x =2 a ® x. Since C localizes, © € C. Then we have an exact triangle
T—xT—a—Xx

Since C is a triangulated subcategory, a € C. O

Definition 6.13. A Bousfield localization functor is a pair (L,n) where L : T — T is a functor
and 7 : idy — L is a natural transformation satisfying:

(a) L is exact.
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(b) Ln: L = L?is an isomorphism and Ln = nL, that is to say, np, = L, for all objects a € T.
(¢) L commutes with all coproducts.

We define
ker(L)={a €T | La=0} and im(L)={a €T |n,:La— a an isomorphism}

We say that a is L-acyclic if a € ker L and that a is L-local if a € im L.

Remark 6.14. In subsection 1.2 we spoke of Verdier localization, which is different but very related
to the Bousfield localization functors defined above. This will be expounded upon in the next
section, but for the remainder of this section we will refer to the functors of definition 6.13 simply
as localization functors in order to follow [HPS97] more closely.

Definition 6.15. For a triangulated subcategory S C T we define two full subcategories:
St ={aeT | Homy(s,a) =0¥s e S}

1S :={a e T | Homy(a,s) =0Vs e S}

These are called the orthogonal subcategories with respect to S. We write Z | J if 7 and J are
subcategories where Homy(a,b) = 0 for all @ € Z and all b € 7, and in this case we say that Z and
J are orthogonal.

Remark 6.16 (Warning). The notation of definition 6.15 varies in meaning across the literature.
Beware that the notation of [NecO1] is the opposite of our notation. In this text, we follow [[Kra21].
This is because it is easier for me to remember that S being on the left of the notation S means
that s € S appears on the left side of the hom functor in the definition.

Lemma 6.17. Let L be a localization functor of T. Then (ker L)* = im L and +(im L) = ker L.
The latter of these is a localizing ideal, and the former is what is called a colocalizing ideal, that is,
(im L)°P is a localizing ideal of T°P.

Proof. We will just prove the left-hand claim as the right-hand claim follows from more or less the
same tricks. The fact that these are localizing ideals follows from the fact that L commutes with
coproducts and that L is exact.

First suppose that a is L-local, so @ € im L. Let f : x — a be a morphism where s € ker L. Then
we apply 7 to get a commutative diagram:

The right hand vertical map is an isomorphism, so it follows that f = 0, i.e. Homy(s,a) = 0, so
a € (ker L)*.

Now let a € (ker(L))*, so Homy(s,a) = 0 for all s € ker(L). We can fit 1, : a — La into an

exact triangle below:

x@an—a>La—>2x
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We then apply 7 to this triangle to get the diagram below. Note that the bottom row is the image
of the triangle above under L and since L is exact the bottom row is exact. Hence, the diagram
below is a morphism of triangles.

f n
x y a * 5 La y Yo

an lna \L"?Lu =Lnq lﬁEz

L pa 2y 120 — s NI

Since L is a localizing functor, it follows that L7, is an isomorphism, and therefore Lz =2 0. But
then x € ker(L) and therefore f = 0 since a € (ker(L))*. It follows that 7, is an isomorphism, so
a €im(L). O

Proposition 6.18. Let L be a localization functor for a tt-category T. There is a functor T : T — T
and a natural transformation v : ' — idy such that all a € T fit into an exact triangle

I(a) 2 o 2% L(a) = XT(a)

Furthermore, the pair (I',7v) is a colocalizing functor, which is to say that it satisfies the same
axioms as L but with the arrows reversed.

Sketch. Let (L,n) be a localization functor. Then we can find an exact triangle

— d a a
Y 1La S Ta X a™ La

We saw in the last proof that application of L to an exact triangle of the form above results in
LTa = 0, so I'a € ker(L). Then let x € ker(L). From lemma 6.17 we have that Hom(z, La) = 0
and so by applying the cohomological functor Homy(x, —) to the exact triangle above we see that
Homy(z,Ta) =2 Homy(x,a) and therefore I'a is terminal among L-acyclic objects over a. Now
consider a morphism f :a — bin 7. We fit it into a morphism of exact triangles below:

Y 1La —4Ta—"25a—"3ILa

A

YIh—4 s b T Ip

Vv

The map g comes from (TR3), but it is not a priori unique among maps making this diagram
commute. However, due to the universal property of 7, g must be unique, and therefore we can
say that I'f == g. This makes I into a functor and ~ : I' — idy into a natural transformation.

Since L is an exact functor, we have XL = L3, and since 7 is a morphism of exact functors, it
follows that n3¥ = Xn. We can then construct a morphism of exact triangles below. Basically the
same argument to the one used in the previous paragraph shows that 'S = YT,

Xn

w1y 2R py, O LYa

Ya
~ H ~
I\L NN E\ILa i Ya > E\[L/a
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To see that I' is exact, let a Iy b % ¢ ™S4 be exact. Let & be the cone of I'f. We can then
construct a morphism of exact triangles

AP A AN ) L
ln i" lk lE’v
a—L b4 e v

Note that x is L-acyclic since L is exact and LI' = 0. If we apply the homological functor
Homy(z, —)to the morphism of triangles above we see that k. : Homy(z,2) — Homy(z,c¢) is
an isomorphism for all L-acyclic z. Therefore, x is terminal among L-acyclic objects over ¢, so by
our definition of I' we have « = I'c and can identify k with +. Similarly, a and S are I'g and I'h
respectively. It remains to show that v : I' — ids satisfies I'y : I'? =5 T" and I'y = AT, and that T
commutes with all products. To see this first claim, we consider the exact triangle below:

T 2% ra 255 LT —s SITa

Note that LT'a =0, so I'T'a s Tais an isomorphism. For the last claim, note that the image of I
is closed under products, so the last claim follows from the universal property of ~. O

Corollary 6.19. With L and T" as above, imT" = ker L and ker ' = im L. Additionally, ker L is a
localizing ideal and ker I is a colocalizing ideal.

Remark 6.20. We have now seen that given a localization functor L : T — T, there is a functorial
triangle T'a 2 a % La — YTa. In the literature, this is often called the gluing triangle. Triangles
of this form are somewhat special, in that the formation of a cone from a morphism is not usually
functorial. By this we mean that axiomatically, given a morphism f : a — b there is always a some

exact triangle a i) b — ¢ — Xa into which f fits, but there are potentially many choices of ¢, all
of which are isomorphic but not functorially so.

Proposition 6.21. Let (T', L) and (I, L") be pairs of corresponding colocalization/localization func-
tors such that ker(L) C ker(L') (equivalently, ker(T') D ker(I'")). Then L' 2 L'L and TT' =T

Proof. We will only prove L' = L'L since I'T” 2 T follows from duality. Let a be an object. Then

we have the gluing triangle below
FaXsa— La $Ta

Apply L’ to get the exact triangle below:
/ L'y 1 L'n o /
L'Ta— L'a— L'La — L'¥Ta

Since I'a € ker(L) C ker(L') it follows that L'a L ['Lais an isomorphism, and it is straightfor-
ward to check that it is a natural isomorphism. O

Proof. Follows from lemma 6.17 and proposition 6.18. 0

Theorem 6.22. Let L and C be localizing and colocalizing subcategories, respectively, of T. Suppose
that they satisfy the following condition:
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e L L C and for every a € Obj(T) there is an exact triangle ' — a — o’ — Xa with o’ € C
and a” € L.

Then there exists a localization functor L : T — T and associated colocalization functor T : T — T
such that ker L =imI'= L and kerI' =im L =C.

Proof. Since localizing and colocalizing subcategories are thick, the theorem follows from 9.1.13 of
[NeeO1]. O

6.2 Six functor formalism

In the last section we explored localizing subcategories and localization functors, and it was re-
marked that these are related to the Verdier localization functors from earlier. We will now explore
this relationship with an example taken from [Kra04].

Let A be a finite dimensional Hopf algebra over a field k, e.g. A = kG for a finite group G.
Let 7 = K(Inj-A) be the homotopy category of complexes of injective A-modules and K,.(Inj-A)
the subcategory of acyclic complexes. We saw in subsection 4.5 that there is an equivalence of
tt-categories StMod(A4) = K. (Inj-A) by taking the Tate resolution M — tM. There is a Verdier
quotient sequence,

D(A) «% K(Inj-A4) <& K,o(Inj-A)

It can be shown that @ and I possess both left and right adjoints. This is an example of recollement,
or the siz functor formalism, and it is traditionally rendered in a diagram of the form below:

Qp Ip
D(A) . @ K(Inj-A) « L Kuo(Inj-A)
B NN D

We can then take compact objects to get a Verdier quotient in the other direction. This is Rickard’s
localization sequence.

DPE(A) 2 DP(A) 25 stmod(A)

The same procedure can be done to sheaves on a Noetherian scheme X:
— . — .
D(X)+—— K(Inj-X )+—— K (Inj-X)
— e

Here K,.(X) is taken as definition for ’big stable category’ of quasi-coherent sheaves S(Qcoh(X)),
and if we take compact objects we get another Verdier quotient.

DP(X) 2 DP(X) 25 Sing(X)
where Sing(X) is the singularity category of our scheme X.

To relate this back to Bousfield localizations, if we have a Verdier quotient 7 /S & 7L S such
that @) and I both have right adjoints Q,,, and left adjoints @, ) then we have that QI = 0
and therefore

I)\Q/\ =0= Ipr

There are also functorial distinguished triangles within 7

Il,a — a — Q,Qa — XIl,a
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Qr\Qa — a — Iha — YQxQa

These structures arise naturally in a number of contexts, as seen in the examples above. The
Bousfield localizations of the last section are an axiomatization of this scenario, and was first
developed in the form that we presented in [[HPS97]. For more information on the six functor
formalism and localizations see chapter 9 of [Nee(l], chapter 4 of [[Kra21].

6.3 Lavish Support

The Balmer spectrum Spec(7) was defined in the context that 7 was an essentially small category,
that is, when 7 is equivalent to a category whose objects and morphisms actually form sets as op-
posed to proper classes. This situation is somewhat limiting, as it does not include many categories
that we care about, such as the unbounded derived category of a scheme or ring, the big stable
module category, or the stable homotopy category. We would like to be able to say something
about these big categories using the language tensor triangulated geometry. The idea is to look
at the compact objects 7¢ within the larger tt-category T and create an extension of the support
data (Spc(7°),supp) to all of 7.

Theorem 6.23. Let T be rigidly compactly generated tt-category. Let X be a spectral topological
space and let o : Obj(T) — P(X) be a function assigning every object of T a subset of X. Assume
that the pair (X, o) satisfies the following axioms:

(LS0) o(a) =0 if and only if a = 0.
(LS1) o(1) =X
(LS2) o(B,crai) = Uiero(ai) for any small family of objects {a;}ier €T .
(LS3) o(Xa) = o(a)

(b) C o(a)Uoa(c) for every exact triangle a — b — ¢ — Xa

(a®b) =0(a)Na(b) for allb e T and arbitrary a € T°.
(LS6) o(a) is closed in X with quasi-compact complement X \ o(a) for all a € T€

(LS7) For every closed subset Z C X with quasi-compact open complement, there exists a compact
object a € T¢ with o(a) = Z.

Then (X,o|7e) is a classifying support datum for T¢, and so the induced map X — Spc(T€) is a
homeomorphism.

Definition 6.24. If (X, 0) is a pair satisfying the properties of theorem 6.23 then we call (X, 0) a
lavish support datum of T.

Remark 6.25. Theorem 6.23 was published in [Delll]. The same result was independently an-
nounced by Julia Pevtsova and Paul Smith. The term lavish support comes from [NP23].

Definition 6.26. Let (X, o) be a lavish support datum and let Y C X. Analogous to definition 3.28
we introduce the following notation:

Cy ={aeT|o(a)CY}CTC
Ty = <CY>10<: cT

Lemma 6.27.
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(a) The subcategory Cy C T¢ is a radical thick ®-ideal and Cy = (Ty)°
(b) Ifa € Ty, then o(a) C Y.

Proof. The claim that Cy is a thick ®-ideal is just lemma 3.14 since we are staying within 7°¢. To
see that it is radical, let a € T¢ with a®” € Cy for some n. Then £(a®") C Y, but then o(a) C Y
by (LS5), so a € Cy. It remains to show that Cy = (7)¢, but this follows from proposition 6.11.

For (b), the axioms (LS0) through (LS6) tell us that {a € T | o(a) C T} is a localizing
subcategory of 7. This subcategory obviously contains ), so it must contain 7Ty = (Cy )1oc. O

Lemma 6.28. Let S C T° be a self-dual collection compact objects, meaning that
S=8":={a"|aecS}

Let 0(S) = U,eso(a). Then the thick ®-ideal in T generated by S consists of the compact objects
supported on a(S), i.e.

Proof. For brevity we denote Y = ¢(S). By theorem 6.22, there exist (co-)localization functors
(Lsy, Lisy) and (Tey, Ley ) such that imI'sy = imTe,, = ker Lisy = (S)ioc and ker Ley, = Ty
From proposition 6.11, we can recover our original thick ®-ideals:

(§) = (imT'5)° and Cy = (iml¢, )°

A natural isomorphism between I' sy and I'c,, will therefore imply (S) = Cy.

Note that (S) C Cy by construction, so (S)i,c C Ty. By proposition 6.21, it follows that
I'syl'cy, = T'isy. Now let a be an object of 7 and apply I'(s) to the gluing triangle coming from
I'c,.. We then have an exact triangle,

F<3>Fcya = F<S>a — FCYCL — L<3>Fcya — EF<3>CL

Therefore we have the desired isomorphism if we can show that L5 I'c,.a = 0. For brevity, we
write b == L(syI'cy a. By (LS0) it suffices to show that o(B) = 0.

Since Ty is a triangulated category and two of the objects in the triangle above are in Ty, it
must be that b € Ty, so o(b) CY by lemma 6.27. Let s € S and let ¢ be a compact object. Since
T°¢ is rigid and s € T¢, so by remark 1.25 the functor sV ® — is both a left and right adjoint to
s ® —. Hence,

Hom7(c,s¥ ® b) = Hom7(c ® s,b) =0

The right isomorphism comes from the fact that ¢ ® s € (S)ioc and b € im L(g, = (ker L<5>)l

(S)iL.. But then since c is an arbitrary compact object, it follows that sy ® b = 0, so o(s¥ @ b) = 0.

Finally, we employ the fact that S is self-dual to get
o(b) CY =0(S) =a(SY)
which allows

ob) =0o(8V)Nna®)=Ja(s") o) = Jo(s" @b) =0

seS seS

where the third equality above comes from (LS5). O
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Proof of theorem 6.23. 1t follows immediately from the axioms of a lavish support datum that the
pair (X, o|7<) is a support datum for 7¢, so we only need to show that (X, o|r<) is classifying. Since
X is spectral, we only need to show that there is a mutually inverse bijection between Thomason
subsets of X and thick ®-ideals of T¢:
—
oZ) «— I
Recall that Cy = {a € T° | o(a) C Y} and 0(Z) = |,z 0(a). These maps are well defined as Cy
is a thick ®-ideal by lemma 6.27, and o(Z) is Thomason due to axiom (LS6) for any subcategory
ICcT"
Let 7 be a thick ®-ideal in 7°. By lemma 6.28 and proposition 3.35, Z = Cy(z) where we take S
to be 7.

On the other hand, let Y be a Thomason subset, so Y = [, Y; where each Y; is as closed subset
with quasi-compact complement X \ Y; (equivalently, Y is open in the Hochster dual of X). Then

oCy)=|J o= |J cla)cY

a€Cy o(a)CY

For the other containment, axiom (LS7) yields an object z; € T¢ such that o(z;) = Y; for all 7.
This means z; € Cy, C Cy, and therefore Y = J, o(x;) C 0(Cy), so o(Cy) =Y. O

Example 6.29. Let G be a finite group and k£ a field. Recall that the stable module category
stmod(kG) forms the full tt-subcategory of rigid compact objects within StMod(kG). It turns out
that the support varieties of section 4.2 form a lavish support datum. See [BCR95] and [BCR96].
All the axioms except (LS5) and the backwards direction of (LS9), are straightforward to prove.
The former requires theorem 10.8 of [BCR96] and the latter by Chouinard’s theorem.

84



A Triangulated Categories

A.1 The Octohedral Axiom

Here is an undiagrammatic presentation of TR4. Given a composition X v % 7 and exact
triangles (X, Y, Z'; f1,p1,d1), (X, Z,Y';g0 f,p2,d2), and (Y, Z, X'; g, p3, d3), there exist morphisms
7' %Y’ and Y' % X' such that

(a) (Z',Y', X";a,b,3p; od3) is exact,

(b) the triple (idx,g,a) is a morphism of triangles (X,Y, Z’; f,p1,d1) = (X, Z,Y';g 0 f,p2,d2),
and

(¢) the triple (f,idz,b) is a morphism of triangles (X, Z,Y';go f,p2,d2) — (Y, Z, X'; g, p3,d3).
Here one should think of Z’ = cone(f), Y’ = cone(gf) and X' = cone(g).

Here is yet another presentation, utilizing a different diagram.

Y
f\/
/\

N

(Epl )Od3

X

This view emphasizes some of the intuition of the octohedral axiom a little more clearly. Since
exact triangles are supposed to be thought of as playing the role of exact sequences, we might want
to think of our cones as quotients, i.e. Z' =Y/X,Y’' = Z/X. For X’ we have X' = Z/Y from the
triangle Y - Z — X’ — ... and X' =Y’/Z’ from the triangle Z’ — Y’ — X' — .... Then,

(2/X))(Y/X) = (Y)(2) = X' = 2/Y

This looks a lot like the third isomorphism theorem, and so one way to view the octohedral axiom
is as a coherence condition enforcing the kind of quotient isomorphisms that we expect to see in
algebraic settings.
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A.2 Definitions and Elementary Results
Much of the exposition here is adapted from [Stacks, Section 05QN].

Definition A.1. Let 7 be a triangulated category and A an abelian category. An additive functor
H :T — Ais called homological if for every exact triangle (X,Y, Z; f, g, h) the sequence given by

the image
H(X)—> H(Y)— H(Z)

is exact in A. An additive functor H : T°® — A is called cohomological if the corresponding

opposite functor 7 — A°P is homological.

If H:7T — A is homological then we’ll write H,(X) := H(X"X) and Hy(X) := H(X). Then,
this means that for every exact triangle (X,Y, Z; f, g, h) we get a long exact sequence

The long exact sequence associated to (X,Y,Z; f,g,h) by H is called the long exact sequence
associated to the triangle by H.
Definition A.2. Let T be a triangulated category and A an abelian category. A §-functor between
A and T is functor G : A — T and functorial assignment from short exact sequences 0 — A EN
B Y C = 0in A to exact triangles in 7. Explicitly, for any 0 — A i> B % C = 0 there is a
morphism é¢ 4 : G(C) — XG(A) such that

i. (G(A),G(B),G(C);G(f),G(g),054) is an exact triangle, and

ii. For any morphism of short exact sequences ¢ : (A ENIEN C) — (A I Lo ) the

diagram

The two definitions above are of critical importance as they axiomatize the relationship between
short exact sequences and their derived long exact counterparts. As one should expect, for any
A € T the functor Homy (A, —) is homological and Homy(—, A) is cohomological.

Lemma A.3. IfT is a triangulated category and (X,Y, Z; f,g,h) is an exact triangle then go f, ho
g,%f oh are all the zero map.

Proof. From TR1 we know that (X, X, 0;idx,0,0) is exact. Then by TR3 we know that the dashed
map below exists making the diagram commute
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but the dashed map must be the zero map, and so by commutativity g o f = 0. The other
compositions follow from rotation of the triangle. O

Proposition A.4. For any object A € T the functor Homy(A, —) is homological and Homy(—, A)
18 cohomological.

Proof. Since T is an additive category Homy(—, A) is an additive functor. By the lemma previous
Homy(—, A) takes exact triangles to chain complexes of abelian groups, so it remains to show
exactness. Let (X,Y,Z; f,g,h) be an exact triangle. Then using T3 and rotation, given ¢ €
Homy (A, Z) we can find 1 such that the diagram below commutes:

Therefore, g o p = ¢. We can do the same for each position in the triangle, and therefore we
have exactness of the long exact sequence induced by Hom7 (A, —). The proof for Homy(—, A) is
analogous. O

Proposition A.5. If (o, 3,7) : (X,Y,Z; f,9,h) — (XY, Z'; f'.¢', ') is a morphisms of exact
triangles such that any two of a, 5,7y are isomorphisms, then the third is also an isomorphism.

Proof. Without loss of generality assume that « and 7 are isomorphisms. Then let A € Obj(T).
Abbreviate Homy (A, —) as H4. Then all the maps in the diagram below are isomorphisms, save
for the middle one:

HA(EZ) —_— HA(X) E— HA(Y) E— HA(Z) E— HA(ZX)

| | |

HA(Z/) —_— HA(X/) E— HA(Y/) E— HA(Z/) E— HA(EXI)

Then, by the 5-lemma, the middle map is an isomorphism, so Homy(A,Y) = Homy(A,Y’) via
Homy (5, A) for any arbitrary A. By Yoneda’s lemma it follows that Y B yrisan isomorphism. [

Remark A.6. This proof actually give us a little more than advertised. It says that if we have
a morphism of (not necessarily exact) triangles («, 8,7) : (X,Y,Z; f,g,h) = (X", Y. Z'; f', ¢, 1)
such that the long exact sequences coming from Homy (W, —) on the triangles are exact for all
W € Obj(T), then any two of a, 8,7 being isomorphisms implies that the third is an isomorphism.
We will call such triangles special triangles It’s worth pointing this out since this conclusion is
slightly stronger as there are triangles for which this condition holds that are not exact.

Corollary A.7. Given triangles (X,Y, Z; f,g,h) and (X', Y', Z"; f', ¢, 1), the triangle
XeX . YooY .ZoZ f+f.g+d . h+H)

is exact if and only if both (X,Y,Z; f,g,h) and (X", Y', Z'; f', ¢, h') are exact.
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Proof. Assume that the two individual triangles are exact. By T2 there exists @ such that (X @
X YaY . Q;f+ f,9" 1) is exact. By TR3 there are morphisms from (X,Y, Z; f,g,h) and
(XY, Z'5 g 1)) into (XX, Y®Y', Q; f+[f,g¢" 1) induced by the inclusion maps from the
components of the triangles into their direct sums. This in turn induces a map

(id,id, @)
—

XeX YooY .ZaoZif+f.g+d . h+1) XeX YooY, Q;f+/f,¢".h")

By proposition A.5, « is an isomorphism and therefore the direct sum of triangles is exact.

Now suppose that the direct sum is exact. We will show that (X,Y, Z; f, g, h) is exact, and by
symmetry the result will follow. Using TR2 and TR3 there is an exact triangle (X,Y, Q; f,¢”, h")
and a morphism of exact triangles (7x,Ily,p): (X & X YooY . ZoZf+ f,9+4¢ ,h+ 1) —
(X,Y,Q; f,¢",h"). We can then get a morphism of triangles (X,Y, Z; f,g,h) — (X,Y,Q; f,¢", h")
by precomposing with the inclusion maps coming from X,Y,Z. The long exact sequence on
XeX YooY ZaoZ;f+ f,9g+ ¢ ,h+ 1) coming from Homs (W, —) will split into the di-
rect sum of exact complexes coming from (X,Y,Z; f,g,h) and (X', Y, Z'; f', ¢’, ') and therefore
(X,Y, Z; f, g, h) satisfies the condition in remark A.6. Therefore, the morphism (X,Y, Z; f, g, h) —
(X,Y,Q; f,g",h") of triangles is a morphism on the third component since the other two compo-
nents are the identity map. Hence, (X,Y, Z; f,g,h) is isomorphism to an exact triangle and is
therefore itself exact. ]

Corollary A.8. For any two objects A and B of T, the triangle (A, A® B, B;(id4,0), (0,idg),0)
1S exact.

Proof. Apply corollary A.7 to the exact triangles (A, A, 0;id4,0,0) and (0, B, B;0,idp,0). O
Corollary A.9. If T’ is a triangulated subcategory of T and a,b are objects in T, then a®b € T'.
Proof. As a,bin T it follows from corollary A.8 and remark 1.7 that a b € 7. O

Lemma A.10. Let the diagram below is a morphism of exact triangles.

Iy -l va

a b

la lﬁ /8// Y lEa
g

x Yy

Yx

N
~

Suppose that fo f =0. Then 3s : ¢ — y such that so g = f.

Proof. Abbreviate the functor Hom(—,y) as H,(—). Note that 5*(id,) = 5 and that f*o* =0 as
Bof =0,i.e. B € ker(f*). Since the top row of the diagram is exact, it follows that ker(f*) = im(g*)
so ds € Hy(c) such that g*(s) = 3, so s o g = 3 are we are done. O
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B Spectral Spaces

Here we will develop a little more machinery to do with spectral spaces. Specifically, we want just
enough to prove the theorem below:

Theorem B.1. If f : X — Y is a spectral map of spectral spaces and an isomorphism on the
specialization orders of X and Y, then f is a homeomorphism.

The content presented here follows [DST'19], which is the most comprehensive reference on spec-
tral spaces that the author knows of.

B.1 The Constructible Topology

The specialization order carries a lot of data about a spectral space, but not all of it, meaning that
the partial order coming from a spectral space is not enough to reconstruct the space. One needs
slightly more information, and luckily there is another natural topology that may be associated to
a spectral space X.

Definition B.2. Given a topological space X we define K(X) :={Y Cc X | X\ Y € K°(X)}, i.e.
the collection of complements of quasi-compact opens.

Remark B.3. With this notation, X°(X) = K(Xin) and K(X) = K°(Xiny).

Definition B.4. Let X be a spectral space. We define the constructible topology Xcon to be the
topology obtained by taking K°(X)UK(X) as an open subbase. Equivalently, X0y, is the smallest
topology refining both X and Xj,y.

An element of K°(Xcon) is called constructible, and we will denote (X)) := K°(Xcon).

Fact B.5. Sets of the form V NU where V € K(X) and U € K°(X) are closed and open in Xeop
and form a basis of open subsets.

Remark B.6. The constructible topology alone does not carry enough information to determine
the two spectral spaces from which it arose, but it has the advantage of being easier to work with.
In particular, X.o, is Hausdorff since open sets in X.on separate points essentially by definition.
Additionally, we will use the finite intersection property to determine that X, is compact.

Definition B.7. Let X be aset. A collection of sets i/ C P(X) is said to have the finite intersection
property if the intersection of any finite subcollection of sets in U is non-empty.

Proposition B.8. A topological space X is quasi-compact if and only if every collection of closed

subsets satisfying the finite intersection property has non-empty total intersection.

Proof. Let X be a topological space. Suppose that X is quasi-compact. Suppose for the sake
of contradiction that we may find a collection of closed sets C = {C;}ics satisfying the finite
intersection property such that N;c;C; = (0. Then, let U; :== X \ C;, so we have

X=Xx\[C

il

:UUZ‘

icl
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so the U; form an open cover of X. By quasi-compactness, we may find a finite subcover Uy, ..., U,
of X. But then by Demorgans law,

n n
(Ci=X\JUi=X\X=0
i=1 i=1
which contradicts the finite intersection property.
The reverse direction more or less follows the above argument in reverse. O

Theorem B.9. Let X be a spectral space. The constructible topology Xcon is Hausdorff, totally
disconnected, and compact.

Proof. Let x and y be distinct points in X. Since X is sober, it follows that there exists an open
set U containing x but not y. We may replace U with a quasi-compact open set since these kinds
of sets form a basis for X. Then by definition of X ., we have that U and U¢ := X \ U are both
closed and open. Then y € U€ is an open set, so X is Hausdorff but since U* is also open and
closed we have that x and y are in different connected components, so X is totally disconnected.

From fact B.5 we know that the collection below forms a closed basis for Xcqp.
B={UUV|U€eK°(X)andV € K(X)}

Therefore, to prove that Xo, is compact it suffices to show that every subset & C B that satisfies
the finite intersection property has nonempty intersection. Here we really do mean compact as
opposed to quasi-compact, as X.oy is actually Hausdorft.

Using Zorn’s lemma we may assume that I/ is maximal among subsets of B which have the finite
intersection property. Define P to be the intersection of all elements of U/ having quasi-compact

complement, i.e.
1= ﬂ %4
VeuUnk(x)
Claim:
(a) If A,Be Bwith AUB €U then AcU or BeU.
(b) If U € K°(X) then U € U if and only if INU # 0.

Proof of claim. To show (a), assume that A, B € U.
By maximality of 4 we may find Ay, ..., An, B1, ..., Br € U such that
ANAiN.NA,=BNBN..NB,=10
But then this would imply
(AUB)NA1N..NA,NB1N..NB,=10
This forces AUB ¢ U.

Now for (b). Let U € K°(X). If U € U then the set {U} U {U NK(X)} is contained in U, and
therefore has the finite intersection property as well by maximality of U. Since U was assumed to
be quasi-compact we have that any collection of closed subsets in U satisfying the finite intersection
property has non-empty total intersection, so therefore UNI # (). On the other hand, if U € U then
X\U €U by (a) since X =UU(X\U) € U. Therefore, X \U e UNK(X). Hence I C X\U. O
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Now wwe want to show that I is an irreducible subset of X. Let Uy, Us € K°(X) where INU; #
) # INny. By (b) above we have that U; and Uy are in U. Spectral spaces by definition have
the property that the intersection of two quasi-compact sets is again quasi-compact, so therefore
Ui NU; € K°(X) C B. By maximality of U, we have that U; N Uy € U, so by using (b) again we
see that ITNU; NUs # (), so I is irreducible.

Now we know that I is closed and irreducible. If we set U = X in (b) we see that I # (). Since
X is sober, there is a unique point x € X such that m = 1. We want to show that r e UUV € U
for all choices of U € K°(X) and V € K(X). By (a) above we know that U € U or V € U. In the
second case, x € I C V since P is closed irreducible and V is closed. In the first case (b) yields
INU # 0, and since all non-empty open subsets of an irreducible space are dense, it follows that
x € U. Therefore, z € (U, and the claim is proved. O

Proposition B.10. A set map between spectral spaces f : X — Y is a spectral map if and only if
it 1is continuous in both the spectral topology and the constructible topology.

Proof. First, we need two preliminary facts:

Let U C X. Note that U € (X)), i.e. is compact and open in the constructible topology, if and
only if U is closed and open in X o,. This is immediate from the fact that X o, is compact and
Hausdorff.

Now we want to show that U C X is quasi-compact and open if and only if U is open and
constructible. Let U be quasi-compact and open. Then U is open in X.o, since X is coarser than
Xecon, but U must also be closed in the constructible topology since X \ U is open in Xj,, and Xcopn
refines Xj,,. By the paragraph above, U is constructible. For the converse it suffices to show that
constructible subsets of X are quasi-compact in X but this is immediate since constructible subsets
of X are compact in X, which is finer than X.

Now we are ready for the actual proof. Recall that a continuous map is called spectral if the pre-
image of quasi-compact sets are quasi-compact. Suppose that f is continuous for both topologies.
Then for every V € K°(Y), the set f~1(V) C X is open by continuity for the spectral topologies and
constructible by continuity of the constructible topologies, and is therefore open (by the paragraph
above). Conversely, assume that f is spectral. Since spectral spaces have their quasi-compact
opens as a basis, it follows that f is already continuous in the spectral topologies, so it remains to
show that f is continuous in the constructible topology. Since K°(Y) UK (Y) is a subbasis for the
constructible topology on Y, it suffices to show that f~'(U) and f~!(V) are constructibly open if
U € K°(Y) and V € K(V). This is immediate from the fact that f~1(U) C K°(X) C K°(Xcon) and
FHV) € K(Xcon)- O

Remark B.11. Since Xc¢on = (Xinv)con, proposition B.10 says that a map between spectral spaces is
spectral if and only if it is continuous in the original topology, the constructible topology, and the
inverse topology. In particular, f: X — Y it is spectral if and only finy : Xiny — Yinv 18 spectral.

Proposition B.12. If X is a spectral space, then a subset E C X is closed in X if and only if E
s constructible and stable under specialization.

Proof. The forwards direction is easy as closed sets are stable under specialization and Xqp, is finer
than X.
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Let x € E. Then let U := {U;} be the collection of quasi-compact neighborhoods of z. It is an
elementary fact that |J,U; = {y € X | z € {y}}, so if we can find some point y in ();(U; N E) then
x € {y}. Since z € E, we have that U; N E # {) for all i. Note that by the axioms of a spectral
space U; NU; € U for all 4,j and each such intersection is closed in the constructible topology.
Therefore, {E} UU has the finite intersection property, so by quasi-compactness of X.,, we have
that ((U; N E) # 0. Tt follows that there exists y € E such that = € {y}. If E is stable under
specialization, then x € E making F closed. O

Now we are ready for the main result of this section.

Theorem B.13. Let f : X — Y be a spectral map of between spectral spaces. Then f isomorphism
on the specialization orders of X and Y if and only if f is a homeomorphism.

Proof. The spectral map f being an order isomorphism means that it must be both continuous and
bijective. By proposition B.10 f is also continuous in the spectral topology, and since Xcon, and Yeon
are compact Hausdorff spaces, it follows that f is a homeomorphism on the constructible topologies.
Since continuous maps preserve specialization and f is a closed map in the constructible topology,
it follows from proposition B.12 that f is a closed map. Thus, f is a bijective closed continuous
map, and is therefore a homeomorphism. The converse is obvious. O
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