Math 591 - Real Algebraic Geometry and Convex Optimization

Lecture 9: The dual perspective: moments
Cynthia Vinzant, Spring 2019

The moment problem. A linear function $L: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{R}$ is specified by its values at the basis of monomials:

$$
L\left(x_{1}^{\alpha} \cdots x_{n}^{\alpha_{n}}\right)=y_{\alpha} \in \mathbb{R}
$$

Then $L\left(\sum_{\alpha} c_{\alpha} x_{1}^{\alpha} \cdots x_{n}^{\alpha_{n}}\right)=\sum_{\alpha} c_{\alpha} y_{\alpha}$. A classical question in functional analysis is: when does L come from integration against a measure? That is, for what values of $\left(y_{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ does L have the form

$$
L(f)=\int f d \mu
$$

for some positive Borel measure μ on \mathbb{R}^{n}. We might also ask when we can take μ to be supported on some semialgebraic set $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{s}(x) \geq 0\right\}$. That is, a measure for which $\mu(A)=\mu(A \cap S)$ for all measurable subsets $A \subseteq \mathbb{R}^{n}$.

Example. One important example of a linear function is evaluation at a point $p \in \mathbb{R}^{n}$

$$
\operatorname{ev}_{p}(f)=f(p)
$$

which we can think of as integration against a measure supported at a single point.
We could also integrate against a measure that is supported on all of \mathbb{R}.
Example. For $n=1$, we could take L to be a integration against a measure supported on all of \mathbb{R}. For example,

$$
L(f)=\int_{-\infty}^{\infty} f(x) e^{-x^{2}} d x
$$

One necessary condition for L to have a representing measure μ supported on S, is that $L(f)$ is nonnegative for all polynomials $f \in \mathcal{P}(S)$ that are nonnegative on S.

Theorem (Haviland, 1930's). $L: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{R}$ has the form $L(f)=\int f d \mu$ for some measure μ if and only if $L(f) \geq 0$ for all $f \in \mathcal{P}(S)$.

This is a characterization of the dual cone of $\mathcal{P}(S)$. Namely,

$$
\mathcal{P}(S)^{*}=\left\{L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{*}: L(f)=\int f d \mu \text { for some measure } \mu\right\} .
$$

The univariate case $(\mathbf{n}=\mathbf{1})$. Consider a linear function $L: \mathbb{R}[x] \rightarrow \mathbb{R}$ with

$$
y_{0}=L(1), \quad y_{1}=L(x), \quad y_{2}=L\left(x^{2}\right), \quad y_{3}=L\left(x^{3}\right), \ldots
$$

Recall that \mathcal{P}_{1} is the set of polynomials $f \in \mathbb{R}[x]$ that are nonnegative on \mathbb{R}. We saw in a previous class, that every nonnegative polynomial in $\mathbb{R}[x]$ is a sum of squares, i.e. $\mathcal{P}_{1}=\operatorname{SOS}_{1}$.

Haviland's Theorem says that

$$
\begin{aligned}
L(f)=\int f d \mu \text { for some measure } & \mu
\end{aligned} \text { on } \mathbb{R} \Leftrightarrow L(f) \geq 0 \text { for all } f \in \mathcal{P}_{1}=\mathrm{SOS}_{1} . ~\left(\sum_{i=1}^{k} h_{i}^{2}\right) \geq 0 \text { for all } h_{i} \in \mathbb{R}[x] .
$$

We can make this more concrete by restricting the degree. That is, considering linear functions $L: \mathbb{R}[x]_{\leq 2 d} \rightarrow \mathbb{R}$. Suppose $L\left(x^{k}\right)=y_{k} \in \mathbb{R}$ for $k=0, \ldots, 2 d$.

For what values of $\left(y_{0}, \ldots, y_{2 d}\right) \in \mathbb{R}^{2 d+1}$ does L belong to $\left(\mathcal{P}_{1, \leq 2 d}\right)^{*}$? Since nonnegative polynomials are sums of squares, this happens if and only if L is nonnegative on squares h^{2} for $h \in \mathbb{R}[x]_{\leq d}$. Note that any $h \in \mathbb{R}[x]_{\leq d}$ can be written as $v^{T} m_{d}$ where $m_{d}=\left(\begin{array}{lllll}1 & x & x^{2} & \ldots & x^{d}\end{array}\right)^{\bar{T}}$ and $v \in \mathbb{R}^{d+1}$.

$$
\begin{aligned}
L(f) \geq 0 \text { for all } f \in \mathcal{P}_{1, \leq 2 d} & \Leftrightarrow L\left(h^{2}\right) \geq 0 \text { for all } h \in \mathbb{R}[x]_{\leq d} \\
& \Leftrightarrow L\left(\left(v^{T} m_{d}\right)^{2}\right)=L\left(v^{T} m_{d} m_{d}^{T} v\right) \geq 0 \text { for all } v \in \mathbb{R}^{d+1} \\
& \Leftrightarrow v^{T} L\left(m_{d} m_{d}^{T}\right) v \geq 0 \text { for all } v \in \mathbb{R}^{d+1} \\
& \Leftrightarrow L\left(m_{d} m_{d}^{T}\right) \in \mathrm{PSD}_{d+1}
\end{aligned}
$$

Here, by $L\left(m_{d} m_{d}^{T}\right)$, we mean the $(d+1) \times(d+1)$ real matrix obtained by applying L to the entries of the polynomial matrix $m_{d} m_{d}^{T}$. Note that $m_{d} m_{d}^{T}$ is the matrix with (i, j) th entry x^{i+j-2}, so the (i, j) th entry of $L\left(m_{d} m_{d}^{T}\right)$ is y_{i+j-2}. Then $L \in\left(\mathcal{P}_{1, \leq 2 d}\right)^{*}$ if and only if the following matrix is positive semidefinite:

$$
L\left(m_{d} m_{d}^{T}\right)=L\left(\begin{array}{ccccc}
1 & x & x^{2} & \ldots & x^{d} \\
x & x^{2} & & \ddots & x^{d+1} \\
x^{2} & & & & \\
\vdots & \ddots & & & x^{2 d-1} \\
x^{d} & & & x^{2 d-1} & x^{2 d}
\end{array}\right)=\left(\begin{array}{ccccc}
y_{0} & y_{1} & y_{2} & \ldots & y_{d} \\
y_{1} & y_{2} & & \ddots & y_{d+1} \\
y_{2} & & & & \\
\vdots & \ddots & & & y_{2 d-1} \\
y_{d} & & & y_{2 d-1} & y_{2 d}
\end{array}\right)
$$

Example. $(d=1)$ A linear function $L: \mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}$ is nonnegative on nonnegative polynomials if and only if $L\left((a+b x)^{2}\right) \geq 0$ for all $(a, b) \mathbb{R}^{2}$. If $L(1)=y_{0}, L(x)=y_{1}$, and $L\left(x^{2}\right)=y_{2}$, then

$$
L\left((a+b x)^{2}\right)=L\left(\left(\begin{array}{ll}
a & b
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
x & x^{2}
\end{array}\right)\binom{a}{b}\right)=\left(\begin{array}{ll}
a & b
\end{array}\right)\left(\begin{array}{cc}
L(1) & L(x) \\
L(x) & L\left(x^{2}\right)
\end{array}\right)\binom{a}{b}
$$

So $L\left((a+b x)^{2}\right)$ is nonnegative for all $(a, b) \in \mathbb{R}^{2}$ if and only if the matrix

$$
\left(\begin{array}{cc}
L(1) & L(x) \\
L(x) & L\left(x^{2}\right)
\end{array}\right)=\left(\begin{array}{ll}
y_{0} & y_{1} \\
y_{1} & y_{2}
\end{array}\right)
$$

is positive semidefinite. We previously found that the dual cone of the set of nonnegative quadratic polynomials, $\mathcal{P}_{1, \leq 2}$, is

$$
\overline{\text { conicalHull }\left\{\operatorname{ev}_{p} \in \mathbb{R}[x]_{\leq 2}^{*}: p \in \mathbb{R}\right\}} \cong \overline{\text { conicalHull }\left\{\left(1, p, p^{2}\right): p \in \mathbb{R}\right\}}
$$

This equals the set of $\left(y_{0}, y_{1}, y_{2}\right)$ for which $\left(\begin{array}{ll}y_{0} & y_{1} \\ y_{1} & y_{2}\end{array}\right)$ is positive semidefinite.

We can also do this over semialgebraic sets. Let's first do this in an example. Last class, we saw that a polynomial $f \in \mathbb{R}[x]_{\leq 2 d}$ is nonnegative on the interval $[-1,1]$ if and only if $f=\sigma_{0}+\sigma_{1}\left(1-x^{2}\right)$ where $\sigma_{0} \in \operatorname{SOS}_{1, \leq 2 d}$ and $\sigma_{1} \in \operatorname{SOS}_{1, \leq 2 d-2}$. Then

$$
\begin{aligned}
& L(f) \geq 0 \text { for all } f \in \mathcal{P}([-1,1]) \\
& \Leftrightarrow L\left(\sigma_{0}+\sigma_{1}\left(1-x^{2}\right)\right) \geq 0 \text { for all } \sigma_{0} \in \operatorname{SOS}_{1, \leq 2 d}, \sigma_{1} \in \operatorname{SOS}_{1, \leq 2 d-2} \\
& \Leftrightarrow L\left(h^{2}\right) \geq 0 \text { for all } h \in \mathbb{R}[x]_{\leq d}, \text { and } \\
& L\left(\tilde{h}^{2}\left(1-x^{2}\right)\right) \geq 0 \text { for all } \tilde{h} \in \mathbb{R}[x]_{\leq d-1}
\end{aligned}
$$

As before, we can translate this to a PSD condition on matrices whose entries are linear in the values $L\left(x^{k}\right)=y_{k}$. Namely, L is nonnegative on $\mathcal{P}([-1,1])$, the two matrices

$$
L\left(m_{d} m_{d}^{T}\right)=\left(\begin{array}{ccccc}
y_{0} & y_{1} & y_{2} & \ldots & y_{d} \\
y_{1} & y_{2} & & \ddots & y_{d+1} \\
y_{2} & & & & \\
\vdots & \ddots & & & y_{2 d-1} \\
y_{d} & & & y_{2 d-1} & y_{2 d}
\end{array}\right)
$$

and

$$
L\left((1-x)^{2} \cdot m_{d-1} m_{d-1}^{T}\right)=\left(\begin{array}{ccccc}
y_{0}-y_{2} & y_{1}-y_{3} & y_{2} & \cdots & y_{d-1}-y_{d+1} \\
y_{1}-y_{3} & y_{2}-y_{4} & \ddots & y_{d}-y_{d+2} \\
y_{2}-y_{4} & & & & \\
\vdots & \ddots & & y_{2 d-3}-y_{2 d-1} \\
y_{d-1}-y_{d+1} & & y_{2 d-3}-y_{2 d-1} & y_{2 d-2}-y_{2 d}
\end{array}\right)
$$

are positive semidefinite.
Example. For $d=1$, consider the convex cone $K=\left\{(a, b, c): a+b x+c x^{2} \geq 0\right.$ on $\left.[-1,1]\right\}$. By the arguments above, the dual cone is

$$
K^{*}=\left\{\left(y_{0}, y_{1}, y_{2}\right) \in \mathbb{R}^{3}:\left(\begin{array}{ll}
y_{0} & y_{1} \\
y_{1} & y_{2}
\end{array}\right) \succeq 0 \text { and } y_{0}-y_{2} \geq 0\right\}
$$

Connections with point evaluations and duality. For a given semialgebraic set, $S=$ $\left\{p \in \mathbb{R}^{n}: g_{1}(p) \geq 0, \ldots, g_{s}(p) \geq 0\right\}$, consider the convex cone

$$
\mathcal{P}(S)_{\leq d}=\left\{f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}: f \geq 0 \text { on } S\right\}
$$

of polynomials of degree $\leq d$ that are nonnegative on S. Then, by definition, $\mathcal{P}(S)_{\leq d}$ is the dual cone of

$$
\mathcal{M}(S)_{\leq d}=\operatorname{conic} \operatorname{hull}\left(\left\{\operatorname{ev}_{p}: p \in S\right\}\right) \subset \mathbb{R}\left[x_{1} \ldots, x_{n}\right]_{\leq d}^{*}
$$

where $\operatorname{ev}_{p}(f)=f(p)$. Indeed, we can check that

$$
\begin{aligned}
f \in \mathcal{P}(S)_{\leq d} & \Leftrightarrow \operatorname{ev}_{p}(f) \geq 0 \text { for all } p \in S \\
& \Leftrightarrow \sum_{i=1}^{k} \lambda_{i} \operatorname{ev}_{p_{i}}(f) \geq 0 \text { for all } p_{1}, \ldots, p_{k} \in S \text { and } \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}_{\geq 0} \\
& \Leftrightarrow L(f) \geq 0 \text { for all } L \in \text { conic } \operatorname{hull}\left(\left\{\operatorname{ev}_{p}: p \in S\right\}\right)
\end{aligned}
$$

Since $\left(K^{*}\right)^{*}=\bar{K}$ for any convex cone in a finite dimensional vector space, we find that the dual cone of $\mathcal{P}(S)_{\leq d}$ is

$$
\mathcal{P}(S)_{\leq d}^{*}=\left(\mathcal{M}(S)_{\leq d}^{*}\right)^{*}=\overline{\operatorname{conic} \operatorname{hull}\left(\left\{\operatorname{ev}_{p}: p \in S\right\}\right)} .
$$

On the other hand, consider the set of polynomials

$$
\begin{aligned}
P\left(g_{1}, \ldots, g_{s}\right)_{\leq d} & =\left\{\sigma_{0}+\sigma_{1} g_{1}+\ldots+\sigma_{s} g_{s}: \sigma_{i} \in \operatorname{SOS}_{n} \text { and } \operatorname{deg}\left(\sigma_{i} g_{i}\right) \leq d\right\} \\
& =\operatorname{SOS}_{n, \leq d}+\operatorname{SOS}_{n, \leq d_{1}} g_{1}+\ldots+\operatorname{SOS}_{n, \leq d_{s}} g_{s}
\end{aligned}
$$

where $d_{i}=d-\operatorname{deg}\left(g_{i}\right)$ for each $i=1, \ldots, s$.
Recall that for two convex cones C, K, the dual cone of the sum is the intersection of the dual cones, $(C+K)^{*}=C^{*} \cap K^{*}$. Therefore, the dual cone of $P\left(g_{1}, \ldots, g_{s}\right)_{\leq d}$ is the intersection of the dual cones of $\mathrm{SOS}_{n, \leq d}$ and $\mathrm{SOS}_{n, \leq d_{i}} g_{i}$. This gives that the dual cone of $P\left(g_{1}, \ldots, g_{s}\right)_{\leq d}$ is

$$
\begin{aligned}
P\left(g_{1}, \ldots, g_{s}\right)_{\leq d}^{*}= & \left\{L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}: L\left(h^{2}\right) \geq 0 \text { for } h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d},\right. \text { and } \\
& \left.L\left(h^{2} g_{i}\right) \geq 0 \text { for } h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d_{i} / 2}\right\} \\
= & \left\{L \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}: L\left(m_{d / 2} m_{d / 2}^{T}\right) \succeq 0 \text { and } L\left(g_{i} m_{d_{i} / 2} m_{d_{i} / 2}^{T}\right) \succeq 0 \text { for all } i\right\}
\end{aligned}
$$

where m_{d} is the vector of monomials in x_{1}, \ldots, x_{n} of degree $\leq d$. This lets us write down $P\left(g_{1}, \ldots, g_{s}\right)_{\leq d}^{*}$ as a spectrahedron!

Note that since $P\left(g_{1}, \ldots, g_{s}\right)_{\leq d} \subseteq \mathcal{P}(S)_{\leq d}$, we immediately have $\mathcal{P}(S)_{\leq d}^{*} \subseteq P\left(g_{1}, \ldots, g_{s}\right)_{\leq d}^{*}$. If it so happens that $P\left(g_{1}, \ldots, g_{s}\right)_{\leq d}$ equals $\mathcal{P}(S)_{\leq d}$, then we have equality in their duals as well. In particular, this lets use write (the closure) of the conic hull of point evaluations as a spectrahedron.

Example. $(n=1, d=3)$ For $S=[0,1] \subset \mathbb{R}$, we saw that

$$
\mathcal{P}(S)_{\leq 3}=\left\{x \sigma_{0}+(1-x) \sigma_{1}: \sigma_{0}, \sigma_{1} \in \mathrm{SOS}_{1, \leq 2}\right\}
$$

This gives equalities in the dual cones as well.
conic hull $\left\{\left(1, t, t^{2}, t^{3}\right): t \in[0,1]\right\}$

$$
\begin{aligned}
& =\mathcal{P}(S)_{\leq 3}^{*} \\
& =\left(x \cdot \operatorname{SOS}_{1, \leq 2}+(1-x) \cdot \operatorname{SOS}_{1, \leq 2}\right)^{*} \\
& =\left\{L \in \mathbb{R}[x]_{\leq 3}^{*}: L\left(x h^{2}\right) \geq 0 \text { and } L\left((1-x) h^{2}\right) \geq 0 \text { for all } h \in \mathbb{R}[x]_{\leq 1}\right\} \\
& =\left\{L \in \mathbb{R}[x]_{\leq 3}^{*}:\left(\begin{array}{cc}
L(x) & L\left(x^{2}\right) \\
L\left(x^{2}\right) & L\left(x^{3}\right)
\end{array}\right) \succeq 0 \text { and }\left(\begin{array}{cc}
L(1)-L(x) & L(x)-L\left(x^{2}\right) \\
L(x)-L\left(x^{2}\right) & L\left(x^{2}\right)-L\left(x^{3}\right)
\end{array}\right) \succeq 0\right\}
\end{aligned}
$$

Restricting to the plane $L(1)=1$, this gives that

$$
\operatorname{conv}\left(\left\{\left(t, t^{2}, t^{3}\right): t \in[0,1]\right\}\right)=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}:\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{2} & y_{3}
\end{array}\right) \succeq 0 \text { and }\left(\begin{array}{cc}
1-y_{1} & y_{1}-y_{2} \\
y_{1}-y_{2} & y_{2}-y_{3}
\end{array}\right) \succeq 0\right\}
$$

