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The moment problem. A linear function L : R[zy,...,x,] — R is specified by its values
at the basis of monomials:

Lzt --aym) = ya € R

n

Then L(} ., caxf - 22") = > CalYa- A classical question in functional analysis is: when

does L come from integration against a measure? That is, for what values of (y,)aene does
L have the form

L) = [ fdu

for some positive Borel measure p on R". We might also ask when we can take p to be
supported on some semialgebraic set S = {z € R" : g;(x) > 0,...,gs(x) > 0}. That is, a
measure for which p(A) = pu(ANS) for all measurable subsets A C R™.

Example. One important example of a linear function is evaluation at a point p € R”
evo(f) = F(),
which we can think of as integration against a measure supported at a single point.
We could also integrate against a measure that is supported on all of R.

Example. For n = 1, we could take L to be a integration against a measure supported on
all of R. For example,

L) = |t

One necessary condition for L to have a representing measure p supported on S, is that
L(f) is nonnegative for all polynomials f € P(S) that are nonnegative on S.

Theorem (Haviland, 1930’s). L : Rlz1,...,2,] — R has the form L(f) = [ f du for some
measure p if and only if L(f) > 0 for all f € P(S).

This is a characterization of the dual cone of P(S). Namely,
P(S) = {L € Rlzy, ...,z " L(f) = /f dp for some measure u} :

The univariate case (n=1). Consider a linear function L : R[z] — R with
Yo = L(1)7 h = L(iL’), Y2 = L(]?Z), Ys = L(zs)a s

Recall that Py is the set of polynomials f € R[z]| that are nonnegative on R. We saw in a
previous class, that every nonnegative polynomial in R|[z] is a sum of squares, i.e. P; = SOS;.



Haviland’s Theorem says that

= /f dp for some measure pon R < L(f) >0 for all f € P; =S0OS,

k
& L (Z hf) > 0 for all h; € Rlz]

i=1
& L(h*) >0 for all h € R[z]
& the quadratic form h +— L (h*) > 0 is PSD on Rlz].

We can make this more concrete by restricting the degree. That is, considering linear func-
tions L : R[x]<yg — R. Suppose L(z*) =yp € R for k =0,...,2d.

For what values of (yo,...,%24) € R?**1 does L belong to (P;<24)*? Since nonnega-
tive polynomials are sums of squares, this happens if and only if L is nonnegative on
squares h? for h € R[z]<4. Note that any h € R[z]<4 can be written as v'my where

mg=(1 z x* ... :L‘d)T and v € R4
L(f) >0 forall f € Pycog & L(h*) >0 for all h € Rz]<4
& L((v"mg)?) = L(v"mgm’v) > 0 for all v € R
& vl L(mgmk)v > 0 for all v € R*!
& L(mgml) € PSDyy4

Here, by L(mgmQ), we mean the (d + 1) x (d + 1) real matrix obtained by applying L
to the entries of the polynomial matrix mgmQ. Note that mgm? is the matrix with (4, j)th

entry 2772 so the (i,7)th entry of L(mgmD) is y;1j—2. Then L € (Py<oq)* if and only if
the following matrix is positive semidefinite:
1 x 22 ... x? Yo Y1 Y2 o ... Yd
S ztt! Y1 Y2 e Y
L(mgm}) = L | 2* = |
: . p2d-1 S Y2d—1
z? A Ya Y2da-1  Y2d

Example. (d = 1) A linear function L : R[z]<s — R is nonnegative on nonnegative polyno-
mials if and only if L((a+bx)?) > 0 for all (a,b)R?. If L(1) = yo, L(z) = y1, and L(z?*) = ys,

e b( ) - (kY 19)()

So L((a + bx)?) is nonnegative for all (a,b) € R? if and only if the matrix

f Yo Y1
Y1 Y2
is positive semidefinite. We prev10usly found that the dual cone of the set of nonnegative

quadratic polynomials, P; <9, is

conicalHull{ev,, € R[z]%, : p € R} = conicalHull{(1,p,p?) : p € R}.

This equals the set of (yo, y1,y2) for which (ZO zl) is positive semidefinite.
1 Y2



We can also do this over semialgebraic sets. Let’s first do this in an example. Last class,
we saw that a polynomial f € R[z]<aq is nonnegative on the interval [—1, 1] if and only if
f =00+ 01(1 —z?) where oy € SOS; <24 and o7 € SOS; <94_5. Then

L(f) >0 for all f e P([—1,1])
& L(og+01(1 — %)) > 0 for all oy € SOS; <o4,01 € SOS; <04 2
& L(h*) >0 for all h € R[z]<,4, and
L(h*(1 — %) >0 for all h € R[z]<q_1

As before, we can translate this to a PSD condition on matrices whose entries are linear
in the values L(z*) = y;. Namely, L is nonnegative on P([—1,1]), the two matrices

Yo Y1 Y2 ... Ya
Y1 Yo o Y
L(mam)) = | v
: : Y2d—1
Ya Y2d—1  Yad
and
Yo — Y2 Y1 —Ys Y2 cen Yd—1 — Yd+1
Y1 — Y3 Yo — Y4 Yd — Ydt2
L((1 —=2)* - mgym} ) = Y2 — Ya
' Y2d—3 — Y2d—1
Yd—1 — Yd+1 Y2d—3 — Y2d—1  Y2d—2 — Y24

are positive semidefinite.

Example. For d = 1, consider the convex cone K = {(a,b,¢) : a+ bz +cx* >0 on [-1,1]}.
By the arguments above, the dual cone is

K = {(?/anhyg)GRg : (?/0 ?/1) =0 andyo—ygz()}'
Y1 Y2

Connections with point evaluations and duality. For a given semialgebraic set, S =
{peR":¢gi(p) >0,...,9s(p) > 0}, consider the convex cone

P(S)<a ={f €R[x1,...,2p]<q: f>0o0n S}

of polynomials of degree < d that are nonnegative on S. Then, by definition, P(S)<4 is the
dual cone of

M(S)<q = conic hull({ev, : p € S}) C Rz1 ..., z,]%,
where ev,(f) = f(p). Indeed, we can check that

f€P(S)<a & evy(f)>0forallpe S
k
& Y Nevy, (f) >0forallpy,...,pp €S and Ar,..., A € Ryg
=1

& L(f) >0 for all L € conic hull({ev, : p € S}).



Since (K*)* = K for any convex cone in a finite dimensional vector space, we find that the

dual cone of P(S5)<q is
P(S)ey = (M(S)Zy)" = conic hull({ev, : p € S}).
On the other hand, consider the set of polynomials
P(g1,...,9s)<a = {00+ 0191 + ... + 0595 : 0; € SOS,, and deg(o;¢9;) < d}
= SOS,, <4 + S0S,, <4, 91 + ... + SOS,, <4, 95

where d; = d — deg(g;) foreach i =1,...,s.

Recall that for two convex cones C, K, the dual cone of the sum is the intersection of
the dual cones, (C' + K)* = C* N K*. Therefore, the dual cone of P(gi,...,gs)<q is the
intersection of the dual cones of SOS,, <4 and SOS,, <4,9;. This gives that the dual cone of

P(g1,---,9s)<a is
P(gi,...,95)%q = {L€R[ay,...,x)<qa: L(h*) >0 for h € Rzy, ..., 2y]<q, and
L(h*g;) > 0 for h € Rlzy, ..., %n)<q, 2}
= {LeRz,...,Tp)<q: L(md/deT/Q) = 0 and L(gimdi/gmgi/z) > 0 for all i}

where my is the vector of monomials in zy,...,z, of degree < d. This lets us write down
P(g1,...,9s)%, as a spectrahedron!

Note that since P(gi, . .., gs)<a € P(S)<q, we immediately have P(S)%, C P(gy,. .., gs)%y-
If it so happens that P(gy, ..., gs)<q equals P(S)<q4, then we have equality in their duals as
well. In particular, this lets use write (the closure) of the conic hull of point evaluations as
a spectrahedron.

Example. (n =1,d =3) For S =[0,1] C R, we saw that
P(S)<s = {xog+ (1 —x)oy : 09,01 € SOS; <2}
This gives equalities in the dual cones as well.
conic hull{(1,¢,*,¢*) : t € [0,1]}
=P(5)s
= (x-S0S; <2+ (1 —z) - SOS; <2)*
={L € Rlz]iy: L(zh?) > 0 and L((1 — z)h*) > 0 for all h € R[z]<}

_ {L € Ria]%s ( zj?(%)) §§§§§) > 0 and ( LL(%)—_ féj“’)) I?((:ZCQ))__Iz((:Z:Q?’))) : O}

Restricting to the plane L(1) = 1, this gives that

conv({(t, 12,13 : t € [0,1]}) = {(yl,yQ,yg) ER3: (yl yQ) >~ 0 and (1 BEAEEA yQ) - 0} .

Y2 Y3 Y — Y2 Y2 — Y3
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