Math 591 – Real Algebraic Geometry and Convex Optimization

Lecture 9: The dual perspective: moments Cynthia Vinzant, Spring 2019

The moment problem. A linear function $L : \mathbb{R}[x_1, \ldots, x_n] \to \mathbb{R}$ is specified by its values at the basis of monomials:

$$L(x_1^{\alpha}\cdots x_n^{\alpha_n}) = y_{\alpha} \in \mathbb{R}.$$

Then $L(\sum_{\alpha} c_{\alpha} x_1^{\alpha} \cdots x_n^{\alpha_n}) = \sum_{\alpha} c_{\alpha} y_{\alpha}$. A classical question in functional analysis is: when does L come from integration against a measure? That is, for what values of $(y_{\alpha})_{\alpha \in \mathbb{N}^n}$ does L have the form

$$L(f) = \int f \, d\mu$$

for some positive Borel measure μ on \mathbb{R}^n . We might also ask when we can take μ to be supported on some semialgebraic set $S = \{x \in \mathbb{R}^n : g_1(x) \ge 0, \dots, g_s(x) \ge 0\}$. That is, a measure for which $\mu(A) = \mu(A \cap S)$ for all measurable subsets $A \subseteq \mathbb{R}^n$.

Example. One important example of a linear function is evaluation at a point $p \in \mathbb{R}^n$

$$\operatorname{ev}_p(f) = f(p),$$

which we can think of as integration against a measure supported at a single point.

We could also integrate against a measure that is supported on all of \mathbb{R} .

Example. For n = 1, we could take L to be a integration against a measure supported on all of \mathbb{R} . For example,

$$L(f) = \int_{-\infty}^{\infty} f(x)e^{-x^2}dx.$$

One necessary condition for L to have a representing measure μ supported on S, is that L(f) is nonnegative for all polynomials $f \in \mathcal{P}(S)$ that are nonnegative on S.

Theorem (Haviland, 1930's). $L : \mathbb{R}[x_1, \ldots, x_n] \to \mathbb{R}$ has the form $L(f) = \int f d\mu$ for some measure μ if and only if $L(f) \ge 0$ for all $f \in \mathcal{P}(S)$.

This is a characterization of the *dual cone* of $\mathcal{P}(S)$. Namely,

$$\mathcal{P}(S)^* = \left\{ L \in \mathbb{R}[x_1, \dots, x_n]^* : L(f) = \int f \, d\mu \text{ for some measure } \mu \right\}.$$

The univariate case (n=1). Consider a linear function $L : \mathbb{R}[x] \to \mathbb{R}$ with

$$y_0 = L(1), \quad y_1 = L(x), \quad y_2 = L(x^2), \quad y_3 = L(x^3), \dots$$

Recall that \mathcal{P}_1 is the set of polynomials $f \in \mathbb{R}[x]$ that are nonnegative on \mathbb{R} . We saw in a previous class, that every nonnegative polynomial in $\mathbb{R}[x]$ is a sum of squares, i.e. $\mathcal{P}_1 = SOS_1$.

Haviland's Theorem says that

 $L(f) = \int f \ d\mu \text{ for some measure } \mu \text{ on } \mathbb{R} \iff L(f) \ge 0 \text{ for all } f \in \mathcal{P}_1 = \text{SOS}_1$ $\Leftrightarrow \ L\left(\sum_{i=1}^k h_i^2\right) \ge 0 \text{ for all } h_i \in \mathbb{R}[x]$

$$\Leftrightarrow L(h^2) \ge 0 \text{ for all } h \in \mathbb{R}[x]$$

$$\Leftrightarrow$$
 the quadratic form $h \mapsto L(h^2) \ge 0$ is PSD on $\mathbb{R}[x]$.

We can make this more concrete by restricting the degree. That is, considering linear functions $L : \mathbb{R}[x]_{\leq 2d} \to \mathbb{R}$. Suppose $L(x^k) = y_k \in \mathbb{R}$ for $k = 0, \ldots, 2d$. For what values of $(y_0, \ldots, y_{2d}) \in \mathbb{R}^{2d+1}$ does L belong to $(\mathcal{P}_{1,\leq 2d})^*$? Since nonnega-

For what values of $(y_0, \ldots, y_{2d}) \in \mathbb{R}^{2d+1}$ does L belong to $(\mathcal{P}_{1,\leq 2d})^*$? Since nonnegative polynomials are sums of squares, this happens if and only if L is nonnegative on squares h^2 for $h \in \mathbb{R}[x]_{\leq d}$. Note that any $h \in \mathbb{R}[x]_{\leq d}$ can be written as $v^T m_d$ where $m_d = \begin{pmatrix} 1 & x & x^2 & \ldots & x^d \end{pmatrix}^T$ and $v \in \mathbb{R}^{d+1}$.

$$L(f) \ge 0 \text{ for all } f \in \mathcal{P}_{1,\le 2d} \iff L(h^2) \ge 0 \text{ for all } h \in \mathbb{R}[x]_{\le d}$$
$$\Leftrightarrow L((v^T m_d)^2) = L(v^T m_d m_d^T v) \ge 0 \text{ for all } v \in \mathbb{R}^{d+1}$$
$$\Leftrightarrow v^T L(m_d m_d^T) v \ge 0 \text{ for all } v \in \mathbb{R}^{d+1}$$
$$\Leftrightarrow L(m_d m_d^T) \in \text{PSD}_{d+1}$$

Here, by $L(m_d m_d^T)$, we mean the $(d + 1) \times (d + 1)$ real matrix obtained by applying L to the entries of the polynomial matrix $m_d m_d^T$. Note that $m_d m_d^T$ is the matrix with (i, j)th entry x^{i+j-2} , so the (i, j)th entry of $L(m_d m_d^T)$ is y_{i+j-2} . Then $L \in (\mathcal{P}_{1,\leq 2d})^*$ if and only if the following matrix is positive semidefinite:

$$L(m_d m_d^T) = L \begin{pmatrix} 1 & x & x^2 & \dots & x^d \\ x & x^2 & \ddots & x^{d+1} \\ x^2 & & & & \\ \vdots & \ddots & & x^{2d-1} \\ x^d & & x^{2d-1} & x^{2d} \end{pmatrix} = \begin{pmatrix} y_0 & y_1 & y_2 & \dots & y_d \\ y_1 & y_2 & & \ddots & y_{d+1} \\ y_2 & & & & \\ \vdots & \ddots & & y_{2d-1} \\ y_d & & y_{2d-1} & y_{2d} \end{pmatrix}.$$

Example. (d = 1) A linear function $L : \mathbb{R}[x]_{\leq 2} \to \mathbb{R}$ is nonnegative on nonnegative polynomials if and only if $L((a+bx)^2) \ge 0$ for all $(a,b)\mathbb{R}^2$. If $L(1) = y_0$, $L(x) = y_1$, and $L(x^2) = y_2$, then

$$L((a+bx)^2) = L\left(\begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} 1 & x \\ x & x^2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}\right) = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} L(1) & L(x) \\ L(x) & L(x^2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

So $L((a + bx)^2)$ is nonnegative for all $(a, b) \in \mathbb{R}^2$ if and only if the matrix

$$\begin{pmatrix} L(1) & L(x) \\ L(x) & L(x^2) \end{pmatrix} = \begin{pmatrix} y_0 & y_1 \\ y_1 & y_2 \end{pmatrix}$$

is positive semidefinite. We previously found that the dual cone of the set of nonnegative quadratic polynomials, $\mathcal{P}_{1,\leq 2}$, is

$$\overline{\text{conicalHull}\{\text{ev}_p \in \mathbb{R}[x]_{\leq 2}^* : p \in \mathbb{R}\}} \cong \overline{\text{conicalHull}\{(1, p, p^2) : p \in \mathbb{R}\}}.$$

This equals the set of (y_0, y_1, y_2) for which $\begin{pmatrix} y_0 & y_1 \\ y_1 & y_2 \end{pmatrix}$ is positive semidefinite.

We can also do this over semialgebraic sets. Let's first do this in an example. Last class, we saw that a polynomial $f \in \mathbb{R}[x]_{\leq 2d}$ is nonnegative on the interval [-1, 1] if and only if $f = \sigma_0 + \sigma_1(1 - x^2)$ where $\sigma_0 \in \text{SOS}_{1, \leq 2d}$ and $\sigma_1 \in \text{SOS}_{1, \leq 2d-2}$. Then

$$\begin{split} L(f) &\geq 0 \text{ for all } f \in \mathcal{P}([-1,1]) \\ &\Leftrightarrow \ L(\sigma_0 + \sigma_1(1-x^2)) \geq 0 \text{ for all } \sigma_0 \in \mathrm{SOS}_{1,\leq 2d}, \sigma_1 \in \mathrm{SOS}_{1,\leq 2d-2} \\ &\Leftrightarrow \ L(h^2) \geq 0 \text{ for all } h \in \mathbb{R}[x]_{\leq d}, \text{ and} \\ &\qquad L(\tilde{h}^2(1-x^2)) \geq 0 \text{ for all } \tilde{h} \in \mathbb{R}[x]_{\leq d-1} \end{split}$$

As before, we can translate this to a PSD condition on matrices whose entries are linear in the values $L(x^k) = y_k$. Namely, L is nonnegative on $\mathcal{P}([-1, 1])$, the two matrices

$$L(m_d m_d^T) = \begin{pmatrix} y_0 & y_1 & y_2 & \dots & y_d \\ y_1 & y_2 & \ddots & y_{d+1} \\ y_2 & & & \\ \vdots & \ddots & & & \\ y_d & & & y_{2d-1} & y_{2d} \end{pmatrix}$$

and

$$L((1-x)^{2} \cdot m_{d-1}m_{d-1}^{T}) = \begin{pmatrix} y_{0} - y_{2} & y_{1} - y_{3} & y_{2} & \dots & y_{d-1} - y_{d+1} \\ y_{1} - y_{3} & y_{2} - y_{4} & \ddots & y_{d} - y_{d+2} \\ y_{2} - y_{4} & & & \\ \vdots & \ddots & & y_{2d-3} - y_{2d-1} \\ y_{d-1} - y_{d+1} & & y_{2d-3} - y_{2d-1} & y_{2d-2} - y_{2d} \end{pmatrix}$$

are positive semidefinite.

Example. For d = 1, consider the convex cone $K = \{(a, b, c) : a + bx + cx^2 \ge 0 \text{ on } [-1, 1]\}$. By the arguments above, the dual cone is

$$K^* = \left\{ (y_0, y_1, y_2) \in \mathbb{R}^3 : \begin{pmatrix} y_0 & y_1 \\ y_1 & y_2 \end{pmatrix} \succeq 0 \text{ and } y_0 - y_2 \ge 0 \right\}.$$

Connections with point evaluations and duality. For a given semialgebraic set, $S = \{p \in \mathbb{R}^n : g_1(p) \ge 0, \ldots, g_s(p) \ge 0\}$, consider the convex cone

$$\mathcal{P}(S)_{\leq d} = \{ f \in \mathbb{R}[x_1, \dots, x_n]_{\leq d} : f \geq 0 \text{ on } S \}$$

of polynomials of degree $\leq d$ that are nonnegative on S. Then, by definition, $\mathcal{P}(S)_{\leq d}$ is the dual cone of

$$\mathcal{M}(S)_{\leq d} = \operatorname{conic} \operatorname{hull}(\{\operatorname{ev}_p : p \in S\}) \subset \mathbb{R}[x_1 \dots, x_n]_{\leq d}^*$$

where $ev_p(f) = f(p)$. Indeed, we can check that

$$f \in \mathcal{P}(S)_{\leq d} \iff \operatorname{ev}_p(f) \geq 0 \text{ for all } p \in S$$
$$\Leftrightarrow \sum_{i=1}^k \lambda_i \operatorname{ev}_{p_i}(f) \geq 0 \text{ for all } p_1, \dots, p_k \in S \text{ and } \lambda_1, \dots, \lambda_k \in \mathbb{R}_{\geq 0}$$
$$\Leftrightarrow L(f) \geq 0 \text{ for all } L \in \operatorname{conic hull}(\{\operatorname{ev}_p : p \in S\}).$$

Since $(K^*)^* = \overline{K}$ for any convex cone in a finite dimensional vector space, we find that the dual cone of $\mathcal{P}(S)_{\leq d}$ is

$$\mathcal{P}(S)_{\leq d}^* = (\mathcal{M}(S)_{\leq d}^*)^* = \overline{\text{conic hull}(\{\operatorname{ev}_p : p \in S\})}.$$

On the other hand, consider the set of polynomials

$$P(g_1, \dots, g_s)_{\leq d} = \{\sigma_0 + \sigma_1 g_1 + \dots + \sigma_s g_s : \sigma_i \in SOS_n \text{ and } deg(\sigma_i g_i) \leq d\}$$
$$= SOS_{n,\leq d} + SOS_{n,\leq d_1} g_1 + \dots + SOS_{n,\leq d_s} g_s$$

where $d_i = d - \deg(g_i)$ for each $i = 1, \ldots, s$.

Recall that for two convex cones C, K, the dual cone of the sum is the intersection of the dual cones, $(C + K)^* = C^* \cap K^*$. Therefore, the dual cone of $P(g_1, \ldots, g_s)_{\leq d}$ is the intersection of the dual cones of $SOS_{n,\leq d}$ and $SOS_{n,\leq d_i}g_i$. This gives that the dual cone of $P(g_1, \ldots, g_s)_{\leq d}$ is

$$P(g_1, \dots, g_s)_{\leq d}^* = \left\{ L \in \mathbb{R}[x_1, \dots, x_n]_{\leq d} : L(h^2) \geq 0 \text{ for } h \in \mathbb{R}[x_1, \dots, x_n]_{\leq d}, \text{ and} \\ L(h^2g_i) \geq 0 \text{ for } h \in \mathbb{R}[x_1, \dots, x_n]_{\leq d_i/2} \right\} \\ = \left\{ L \in \mathbb{R}[x_1, \dots, x_n]_{\leq d} : L(m_{d/2}m_{d/2}^T) \succeq 0 \text{ and } L(g_im_{d_i/2}m_{d_i/2}^T) \succeq 0 \text{ for all } i \right\}$$

where m_d is the vector of monomials in x_1, \ldots, x_n of degree $\leq d$. This lets us write down $P(g_1, \ldots, g_s)^*_{\leq d}$ as a spectrahedron!

Note that since $P(g_1, \ldots, g_s)_{\leq d} \subseteq \mathcal{P}(S)_{\leq d}$, we immediately have $\mathcal{P}(S)_{\leq d}^* \subseteq P(g_1, \ldots, g_s)_{\leq d}^*$. If it so happens that $P(g_1, \ldots, g_s)_{\leq d}$ equals $\mathcal{P}(S)_{\leq d}$, then we have equality in their duals as well. In particular, this lets use write (the closure) of the conic hull of point evaluations as a spectrahedron.

Example. (n = 1, d = 3) For $S = [0, 1] \subset \mathbb{R}$, we saw that $\mathcal{P}(S)_{\leq 3} = \{x\sigma_0 + (1 - x)\sigma_1 : \sigma_0, \sigma_1 \in SOS_1 \leq 0\}$

$$\mathcal{P}(S)_{\leq 3} = \{x\sigma_0 + (1-x)\sigma_1 : \sigma_0, \sigma_1 \in SOS_{1,\leq 2}\}$$

This gives equalities in the dual cones as well.

conic hull
$$\{(1, t, t^2, t^3) : t \in [0, 1]\}$$

$$= \mathcal{P}(S)^*_{\leq 3}$$

$$= (x \cdot \text{SOS}_{1,\leq 2} + (1-x) \cdot \text{SOS}_{1,\leq 2})^*$$

$$= \{L \in \mathbb{R}[x]^*_{\leq 3} : L(xh^2) \ge 0 \text{ and } L((1-x)h^2) \ge 0 \text{ for all } h \in \mathbb{R}[x]_{\leq 1}\}$$

$$= \left\{L \in \mathbb{R}[x]^*_{\leq 3} : \begin{pmatrix}L(x) & L(x^2) \\ L(x^2) & L(x^3)\end{pmatrix} \ge 0 \text{ and } \begin{pmatrix}L(1) - L(x) & L(x) - L(x^2) \\ L(x) - L(x^2) & L(x^2) \end{pmatrix} \ge 0\right\}$$

Restricting to the plane L(1) = 1, this gives that

$$\operatorname{conv}(\{(t, t^2, t^3) : t \in [0, 1]\}) = \left\{(y_1, y_2, y_3) \in \mathbb{R}^3 : \begin{pmatrix} y_1 & y_2 \\ y_2 & y_3 \end{pmatrix} \succeq 0 \text{ and } \begin{pmatrix} 1 - y_1 & y_1 - y_2 \\ y_1 - y_2 & y_2 - y_3 \end{pmatrix} \succeq 0 \right\}.$$