Math 591 - Real Algebraic Geometry and Convex Optimization
 Lecture 8: Sums of squares and SDPs
 Cynthia Vinzant, Spring 2019

Today we move into the 21st century with a nice connection between sums of squares and semidefinite programming. These connections were pioneered by Pablo Parrilo and Jean Bernard Lasserre in the early 2000's.

Let $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d}$ and let $m_{d} \in\left(\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}\right)^{N}$ denote the vector of all monomials in x_{1}, \ldots, x_{n} of degree at most d.

Proposition. f is a sum of squares if and only if there exists $A \in \mathrm{PSD}_{N}$ such that

$$
f=m_{d}^{T} A m_{d}
$$

Proof. Any polynomial $h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d}$ has a unique representation as $h=v^{T} m_{d}$ where $v \in \mathbb{R}^{N}$. Using this and the fact that a matrix is positive semidefinite if and only if it can be written as a sum of rank one matrices we find that:

$$
\begin{aligned}
f=\sum_{i=1}^{k} h_{i}^{2} \text { for some } h_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq d} \quad \Leftrightarrow \quad f & =\sum_{i=1}^{k}\left(v_{i}^{T} m_{d}\right)^{2} \text { for some } v_{i} \in \mathbb{R}^{N} \\
& =\sum_{i=1}^{k} m_{d}^{T} v_{i} v_{i}^{T} m_{d} \\
& =m_{d}^{T}\left(\sum_{i=1}^{k} v_{i} v_{i}^{T}\right) m_{d} \\
\Leftrightarrow \quad f & =m_{d}^{T} A m_{d} \text { for some } A \in \mathrm{PSD}_{N}
\end{aligned}
$$

Note that for a given polynomial f, the condition $f=m_{d}^{T} A m_{d}$ affine linear constraints on the matrix A. Therefore testing whether or not f is a sum of squares is equivalent to testing whether or not the intersection of the PSD cone with an affine linear space is empty (i.e. whether a certain semidefinite program is feasible).

Example. $(n=1, d=2)$ We have $m_{d}^{T}=\left(\begin{array}{lll}1 & x & x^{2}\end{array}\right)$ and $N=3$. Consider $f=2+2 x^{3}+x^{4}$. To test if f is a sum of squares we write the condition $f=m_{d}^{T} A m_{d}$:

$$
\begin{aligned}
f=\left(\begin{array}{lll}
1 & x & x^{2}
\end{array}\right)\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right)\left(\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right) & =\left\langle\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right),\left(\begin{array}{ccc}
1 & x & x^{2} \\
x & x^{2} & x^{3} \\
x^{2} & x^{3} & x^{4}
\end{array}\right)\right\rangle \\
& =a_{11}+2 a_{12} x+\left(a_{22}+2 a_{13}\right) x^{2}+2 a_{23} x^{3}+a_{33} x^{4}
\end{aligned}
$$

Matching up the coefficients of f with $m_{d}^{T} A m_{d}$ we find the affine-linear conditions:

$$
a_{11}=2, \quad 2 a_{12}=0, \quad a_{22}+2 a_{13}=0, \quad 2 a_{23}=2, \quad \text { and } a_{33}=1 .
$$

This gives as affine line in $\mathbb{R}_{\text {sym }}^{3 \times 3}$. By parametrizing it, we find that f is a sum of squares if and only if there exists $a \in \mathbb{R}$ for which the matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & -a \\
0 & 2 a & 1 \\
-a & 1 & 1
\end{array}\right)
$$

is positive semidefinite. Indeed, one can check that A is positive semidefinite if and only if $(-1+\sqrt{5}) / 2 \leq a \leq 1$. For example, choosing $a=1$, we can decompose the matrix A as

$$
\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 1 & 1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)+\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{lll}
-1 & 1 & 1
\end{array}\right) .
$$

This writes f as $(1+x)^{2}+\left(-1+x+x^{2}\right)^{2}$.
Note that in addition to the different possibilities for a, there are different ways of decomposing the matrix A ! For any 2×2 orthogonal matrix U, we have

$$
\left(\begin{array}{ccc}
2 & 0 & -1 \\
0 & 2 & 1 \\
-1 & 1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
1 & -1 \\
0 & 1
\end{array}\right) U^{T} U\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right)
$$

Taking the rows of $U\left(\begin{array}{ccc}1 & 1 & 0 \\ -1 & 1 & 1\end{array}\right)$ as coefficient vectors would also give a representation of f as a sum of squares.

Corollary. $\mathrm{SOS}_{n, \leq 2 d}$ is the image of PSD_{N} under a linear projection (namely $A \mapsto m_{d}^{T} A m_{d}$). $\mathcal{P}_{n, \leq 2 d}$ is the image of PSD_{N} under a linear projection for $n=1,2 d=2$ and $(n, 2 d)=(2,4)$.

We can use this for polynomial optimization as well. Note that for $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d}$,

$$
f^{*}=\min _{x \in \mathbb{R}^{n}} f(x)=\max _{c \in \mathbb{R}} c \text { such that } f-c \in \mathcal{P}_{n, \leq 2 d} .
$$

From this, we get the following immediate corollary:
Corollary. For $n=1,2 d=2$ and $(n, 2 d)=(2,4)$, minimizing a polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d}$ is a semidefinite program. Namely

$$
f^{*}=\max _{c \in \mathbb{R}} c \quad \text { such that } \quad f-c=m_{d}^{T} A m_{d}, \quad A \in \operatorname{PSD}_{N} .
$$

Example. $(n=1,2 d=4)$ For $f=2+2 x^{3}+x^{4}$, as above, we find that

$$
\min _{x \in \mathbb{R}} f(x)=\max _{a, c \in \mathbb{R}} c \quad \text { such that } \quad\left(\begin{array}{ccc}
2-c & 0 & -a \\
0 & 2 a & 1 \\
-a & 1 & 1
\end{array}\right)
$$

We can check either by the usual tricks for optimizing univariate polynomials or with a semidefinite program solver that the maximum is attained for $c=5 / 16$.

Of course, for any n, d, we could run this semidefinite program! Let's define

$$
f_{\text {sos }}^{*}=\max _{c \in \mathbb{R}} c \quad \text { such that } \quad f-c \in \operatorname{SOS}_{n, \leq 2 d} .
$$

Note that if $f-c$ is a sum of squares, then it is nonnegative, meaning that $c \leq f^{*}$. Although the sum-of squares program may not give the tru minimum, this does give a bound:

$$
f_{s o s}^{*} \leq f^{*}
$$

Constrained polynomial optimization. One might also try to use sums of squares to find or approximate the minimum of a polynomial over a semialgebraic set. Consider

$$
S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{s}(x) \geq 0\right\}
$$

where $g_{1}, \ldots, g_{s} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and take $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Then

$$
\begin{aligned}
f^{*}=\min _{x \in S} f(x) & \geq \max c \text { s.t. } f-c \in \operatorname{PO}\left(g_{1}, \ldots, g_{s}\right) \\
& \geq \max c \quad \text { s.t. } f-c=\sum_{\alpha \in\{0,1\}^{s}} \sigma_{\alpha} g_{1}^{\alpha_{1}} \cdots g_{s}^{\alpha_{s}} \text { where } \sigma_{\alpha} \in \operatorname{SOS}_{n, \leq 2 d} \quad:=f_{\text {sos }, d}^{*} .
\end{aligned}
$$

For any fixed d, the last maximization problem can be written as a semidefinite program, assigning one positive semidefinite matrix for each sum of squares σ_{α}.

Example. Consider $S=[-1,1] \subset \mathbb{R}$ and $f=1-2 x+3 x^{2}-2 x^{3}$. We might try to find f^{*} by bounding is using this semidefinite program:

$$
\begin{array}{r}
f^{*}=\min _{x \in \mathbb{R}} f(x) \geq \max _{c \in \mathbb{R}} c \text { s.t. } f-c=\sigma_{0}+\sigma_{1}\left(1-x^{2}\right) \text { where } \sigma_{0} \in \mathrm{SOS}_{1, \leq 4}, \sigma_{1} \in \mathrm{SOS}_{1, \leq 2} \\
=\max _{c \in \mathbb{R}} c \text { s.t. } f-c=\left(\begin{array}{lll}
1 & x & x^{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right)+\left(\begin{array}{ll}
1 & x
\end{array}\right) B\binom{1}{x} \cdot\left(1-x^{2}\right) \\
\text { where } A \in \mathrm{PSD}_{3} \text { and } B \in \mathrm{PSD}_{2} .
\end{array}
$$

Note that just like in the unconstrained case, the polynomial equality on $f-c$ gives affinelinear constraints on the entries of A and B. For example, if $A=\left(a_{i j}\right)_{i j}$ and $B=\left(b_{i j}\right)_{i j}$, then comparing the coefficient of x^{4} on each side gives that

$$
0=a_{33}-b_{22}
$$

In total comparing the coefficients of $1, x, x^{2}, x^{3}, x^{4}$ gives five affine conditions on the entries of A, B, and $c \in \mathbb{R}$. In this case, it turns out that there is equality: $f^{*}=f_{s o s, 4}^{*}=0$.

On the one hand, $f(1)=0$, so $f^{*} \leq 0$. On the other hand,

$$
f=\frac{1}{2}(1-x)^{4}+\frac{1}{2}\left(1+x^{2}\right)\left(1-x^{2}\right)
$$

which shows that $f^{*} \geq f_{\text {sos }, 4}^{*} \geq 0$.
In fact, general speaking, things behave nicely for univariate polynomials.
Theorem. For $a, b \in \mathbb{R}$, a polynomial $f \in \mathbb{R}[x]$ is nonnegative on the interval $[a, b]$ if and only if
$f(x)= \begin{cases}\sigma_{0}+(x-a)(b-x) \sigma_{1} \text { where } \sigma_{0} \in \operatorname{SOS}_{1, \leq 2 d}, \sigma_{1} \in \operatorname{SOS}_{1, \leq 2 d-2} & \text { if } \operatorname{deg}(f) \leq 2 d \\ (x-a) \sigma_{0}+(b-x) \sigma_{1} \text { where } \sigma_{0}, \sigma_{1} \in \operatorname{SOS}_{1, \leq 2 d}, & \text { if } \operatorname{deg}(f) \leq 2 d+1 .\end{cases}$
This says that not only does every univariate polynomial nonnegative on $[a, b]$ have a representation using sums of squares, but that the certificate has the lowest degree possible.

For example, there is an even lower degree certificate that the univariate polynomial $f=1-2 x+3 x^{2}-2 x^{3}$ is nonnegative on $[-1,1]$, namely

$$
f=(1-x) \cdot\left(\left(\frac{1-4 x}{\sqrt{8}}\right)^{2}+\left(\sqrt{\frac{7}{8}}\right)^{2}\right)
$$

which shows that $f \geq 0$ on the larger set $\{x \in \mathbb{R}: x \leq 1\}$.
Another example of sums-of-squares representations doing well is when S is compact.
Theorem (Schmüdgen). If $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{s}(x) \geq 0\right\}$ is compact and $f>0$ on S, then $f \in \mathrm{PO}\left(g_{1}, \ldots, g_{s}\right)$.

The difference between $f \geq 0$ and $f>0$ here is important. We know that $f-f^{*}$ is nonnegative on S, so for any $\epsilon>0, f-f^{*}+\epsilon$ is positive on S, meaning that there is a representation

$$
f-f^{*}+\epsilon=\sum_{\alpha \in\{0,1\}^{s}} \sigma_{\alpha} g_{1}^{\alpha_{1}} \cdots g_{s}^{\alpha_{s}} \quad \text { where } \quad \sigma_{\alpha} \in \operatorname{SOS}_{\mathrm{n}}
$$

Therefore for high enough d (namely $d \geq \operatorname{deg}\left(\sigma_{\alpha}\right) / 2$), we have $f^{*} \geq f_{s o s, d}^{*} \geq f^{*}-\epsilon$.
Corollary. If S is compact, then $f_{\text {sos }, d}^{*} \rightarrow f^{*}$ as $d \rightarrow \infty$.
The caveat here is that the degrees of σ_{α} might need to grow arbitrarily large, and indeed this can happen when S is high dimensional.

In addition to univariate polynomials, one case where the degrees do not grow arbitrarily high, is when S is finite.
Theorem. Let $S=\left\{p_{1}, \ldots, p_{N}\right\} \subset \mathbb{R}^{n}$. Then $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is nonnegative on S if and only if

$$
f=\sigma+g \quad \text { where } \sigma \in \operatorname{SOS}_{n, \leq 2 N} \text { and } g \in \mathcal{I}(S)
$$

Proof. Find polynomials h_{1}, \ldots, h_{N} of degree $\leq N$ so that $h_{i}\left(p_{j}\right)$ is 1 if $i=j$ and 0 otherwise. Note that h_{i}^{2} has the same evaluations at these points. Consider the polynomial

$$
g=f-\sum_{i=1}^{N} f\left(p_{i}\right) h_{i}^{2}
$$

One can check that $g\left(p_{j}\right)=0$ for all $j=1, \ldots, N$, meaning that $g \in \mathcal{I}(S)$. Then

$$
f=\sum_{i=1}^{N} f\left(p_{i}\right) h_{i}^{2}+g
$$

is the promised representation.

