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Today we move into the 21st century with a nice connection between sums of squares and
semidefinite programming. These connections were pioneered by Pablo Parrilo and Jean
Bernard Lasserre in the early 2000’s.

Let f ∈ R[x1, . . . , xn]≤2d and let md ∈ (R[x1, . . . , xn]≤d)N denote the vector of all mono-
mials in x1, . . . , xn of degree at most d.

Proposition. f is a sum of squares if and only if there exists A ∈ PSDN such that

f = mT
dAmd.

Proof. Any polynomial h ∈ R[x1, . . . , xn]≤d has a unique representation as h = vTmd where
v ∈ RN . Using this and the fact that a matrix is positive semidefinite if and only if it can
be written as a sum of rank one matrices we find that:
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(vTi md)
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⇔ f = mT
dAmd for some A ∈ PSDN
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Note that for a given polynomial f , the condition f = mT
dAmd affine linear constraints

on the matrix A. Therefore testing whether or not f is a sum of squares is equivalent to
testing whether or not the intersection of the PSD cone with an affine linear space is empty
(i.e. whether a certain semidefinite program is feasible).

Example. (n = 1, d = 2) We have mT
d =

(
1 x x2

)
and N = 3. Consider f = 2+2x3+x4.

To test if f is a sum of squares we write the condition f = mT
dAmd:

f =
(
1 x x2

)a11 a12 a13
a12 a22 a23
a13 a23 a33
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x
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〈a11 a12 a13
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〉
= a11 + 2a12x+ (a22 + 2a13)x

2 + 2a23x
3 + a33x
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Matching up the coefficients of f with mT
dAmd we find the affine-linear conditions:

a11 = 2, 2a12 = 0, a22 + 2a13 = 0, 2a23 = 2, and a33 = 1.



This gives as affine line in R3×3
sym. By parametrizing it, we find that f is a sum of squares if

and only if there exists a ∈ R for which the matrix

A =

 2 0 −a
0 2a 1
−a 1 1


is positive semidefinite. Indeed, one can check that A is positive semidefinite if and only if
(−1 +

√
5)/2 ≤ a ≤ 1. For example, choosing a = 1, we can decompose the matrix A as 2 0 −1

0 2 1
−1 1 1

 =

1
1
0

(1 1 0
)
+

−11
1

(−1 1 1
)
.

This writes f as (1 + x)2 + (−1 + x+ x2)2.
Note that in addition to the different possibilities for a, there are different ways of decom-

posing the matrix A! For any 2× 2 orthogonal matrix U , we have 2 0 −1
0 2 1
−1 1 1

 =

1 −1
1 −1
0 1

UTU

(
1 1 0
−1 1 1

)

Taking the rows of U
(

1 1 0
−1 1 1

)
as coefficient vectors would also give a representation of

f as a sum of squares.

Corollary. SOSn,≤2d is the image of PSDN under a linear projection (namely A 7→ mT
dAmd).

Pn,≤2d is the image of PSDN under a linear projection for n = 1, 2d = 2 and (n, 2d) = (2, 4).

We can use this for polynomial optimization as well. Note that for f ∈ R[x1, . . . , xn]≤2d,
f ∗ = min

x∈Rn
f(x) = max

c∈R
c such that f − c ∈ Pn,≤2d.

From this, we get the following immediate corollary:

Corollary. For n = 1, 2d = 2 and (n, 2d) = (2, 4), minimizing a polynomial f ∈ R[x1, . . . , xn]≤2d
is a semidefinite program. Namely

f ∗ = max
c∈R

c such that f − c = mT
dAmd, A ∈ PSDN .

Example. (n = 1, 2d = 4) For f = 2 + 2x3 + x4, as above, we find that

min
x∈R

f(x) = max
a,c∈R

c such that

2− c 0 −a
0 2a 1
−a 1 1


We can check either by the usual tricks for optimizing univariate polynomials or with a
semidefinite program solver that the maximum is attained for c = 5/16.

Of course, for any n, d, we could run this semidefinite program! Let’s define
f ∗sos = max

c∈R
c such that f − c ∈ SOSn,≤2d.

Note that if f−c is a sum of squares, then it is nonnegative, meaning that c ≤ f ∗. Although
the sum-of squares program may not give the tru minimum, this does give a bound:

f ∗sos ≤ f ∗.



Constrained polynomial optimization. One might also try to use sums of squares to
find or approximate the minimum of a polynomial over a semialgebraic set. Consider

S = {x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0}
where g1, . . . , gs ∈ R[x1, . . . , xn] and take f ∈ R[x1, . . . , xn]. Then
f ∗ = min

x∈S
f(x) ≥ max c s.t. f − c ∈ PO(g1, . . . , gs)

≥ max c s.t. f − c =
∑

α∈{0,1}s
σαg

α1
1 · · · gαs

s where σα ∈ SOSn,≤2d := f ∗sos,d.

For any fixed d, the last maximization problem can be written as a semidefinite program,
assigning one positive semidefinite matrix for each sum of squares σα.

Example. Consider S = [−1, 1] ⊂ R and f = 1− 2x+ 3x2 − 2x3. We might try to find f ∗
by bounding is using this semidefinite program:

f ∗ = min
x∈R

f(x) ≥ max
c∈R

c s.t. f − c = σ0 + σ1(1− x2) where σ0 ∈ SOS1,≤4, σ1 ∈ SOS1,≤2

= max
c∈R

c s.t. f − c =
(
1 x x2

)
A

 1
x
x2

+
(
1 x

)
B

(
1
x

)
· (1− x2)

where A ∈ PSD3 and B ∈ PSD2.

Note that just like in the unconstrained case, the polynomial equality on f − c gives affine-
linear constraints on the entries of A and B. For example, if A = (aij)ij and B = (bij)ij,
then comparing the coefficient of x4 on each side gives that

0 = a33 − b22.
In total comparing the coefficients of 1, x, x2, x3, x4 gives five affine conditions on the entries
of A, B, and c ∈ R. In this case, it turns out that there is equality: f ∗ = f ∗sos,4 = 0.

On the one hand, f(1) = 0, so f ∗ ≤ 0. On the other hand,

f =
1

2
(1− x)4 + 1

2
(1 + x2)(1− x2),

which shows that f ∗ ≥ f ∗sos,4 ≥ 0.

In fact, general speaking, things behave nicely for univariate polynomials.

Theorem. For a, b ∈ R, a polynomial f ∈ R[x] is nonnegative on the interval [a, b] if and
only if

f(x) =

{
σ0 + (x− a)(b− x)σ1 where σ0 ∈ SOS1,≤2d, σ1 ∈ SOS1,≤2d−2 if deg(f) ≤ 2d

(x− a)σ0 + (b− x)σ1 where σ0, σ1 ∈ SOS1,≤2d, if deg(f) ≤ 2d+ 1.

This says that not only does every univariate polynomial nonnegative on [a, b] have a
representation using sums of squares, but that the certificate has the lowest degree possible.

For example, there is an even lower degree certificate that the univariate polynomial
f = 1− 2x+ 3x2 − 2x3 is nonnegative on [−1, 1], namely

f = (1− x) ·

(1− 4x√
8

)2

+

(√
7

8

)2
 ,



which shows that f ≥ 0 on the larger set {x ∈ R : x ≤ 1}.
Another example of sums-of-squares representations doing well is when S is compact.

Theorem (Schmüdgen). If S = {x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0} is compact and f > 0
on S, then f ∈ PO(g1, . . . , gs).

The difference between f ≥ 0 and f > 0 here is important. We know that f − f ∗ is
nonnegative on S, so for any ε > 0, f − f ∗ + ε is positive on S, meaning that there is a
representation

f − f ∗ + ε =
∑

α∈{0,1}s
σαg

α1
1 · · · gαs

s where σα ∈ SOSn

Therefore for high enough d (namely d ≥ deg(σα)/2), we have f ∗ ≥ f ∗sos,d ≥ f ∗ − ε.

Corollary. If S is compact, then f ∗sos,d → f ∗ as d→∞.

The caveat here is that the degrees of σα might need to grow arbitrarily large, and indeed
this can happen when S is high dimensional.

In addition to univariate polynomials, one case where the degrees do not grow arbitrarily
high, is when S is finite.

Theorem. Let S = {p1, . . . , pN} ⊂ Rn. Then f ∈ R[x1, . . . , xn] is nonnegative on S if and
only if

f = σ + g where σ ∈ SOSn,≤2N and g ∈ I(S).

Proof. Find polynomials h1, . . . , hN of degree ≤ N so that hi(pj) is 1 if i = j and 0 otherwise.
Note that h2i has the same evaluations at these points. Consider the polynomial

g = f −
N∑
i=1

f(pi)h
2
i .

One can check that g(pj) = 0 for all j = 1, . . . , N , meaning that g ∈ I(S). Then

f =
N∑
i=1

f(pi)h
2
i + g

is the promised representation. �
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