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Today we fix a basic closed semialgebraic set S = {x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0} and
consider the set of polynomials that are nonnegative on S:

P(S) = {f ∈ R[x1, . . . , xn] : f(x) ≥ 0 for all x ∈ S}.

Some important examples to keep in mind are S = Rn, (R≥0)n, [0, 1]n, a real variety, or a
finite collection of points.

The main question of the day is: what polynomials are obviously nonnegative on S? In
other words, how would we certify that a polynomial belongs to P(S)?

Some polynomials that are obviously nonnegative on S:
• h2 for any h ∈ R[x1, . . . , xn],
• g1, . . . , gs,
• the sum of any of the above,
• the product of any of the above.

This list inspires the following definition:

Definition. A preordering of R[x1, . . . , xn] is a subset P ⊂ R[x1, . . . , xn] satisfying
• h2 ∈ P for all h ∈ R[x1, . . . , xn] (contains all squares),
• P + P ⊆ P (closure under addition), and
• P · P ⊆ P (closure under multiplication).

Clearly P(S) is a preordering of R[x1, . . . , xn], but there others.

Example. An preordering contains squares and is closed under addition. Therefore the
smallest preordering is the set of sums of squares:

SOSn =

{
k∑
i=1

h2i : k ∈ N, h1, . . . , hk ∈ R[x1, . . . , xn]

}
.

To see that this is closed under multiplication, note that (
∑

i h
2
i )(
∑

j h̃
2
j) =

∑
i,j(hih̃j)

2.

One might also ask what the smallest preorder is that contains the given polynomials
g1, . . . , gs.

Definition/Proposition. The preordering generated by g1, . . . , gs ∈ R[x1, . . . , xn],
denoted PO(g1, . . . , gs), is the smallest preordering containing g1, . . . , gs. It equals

PO(g1, . . . , gs) =

 ∑
α∈{0,1}s

σαg
α1
1 · · · gαs

s : σα ∈ SOSn for all α ∈ {0, 1}s
 .

Proof. (⊇) By definition, a preordering containing g1, . . . , gs must contain polynomials of the
form σαg

α1
1 · · · gαs

s where σα is a sum of squares and sums of such polynomials.
(⊆) To show that PO(g1, . . . , gs) belongs to the RHS, it suffices to show that the RHS set

is a preordering. It clearly contains squares and is closed under addition. It is also closed



under multiplication! To see this, note that we can write the product of terms as

(σαg
α1
1 · · · gαs

s ) ·
(
σβg

β1
1 · · · gβss

)
= σα · σβ · h2 · gγ11 · · · gγss ,

where γi ≡ αi+βi mod 2 and h =
∏

i g
(αi+βi−γi)/2
i . Since the product of two sum of squares

is again a sum of squares, we see that the coefficient σα · σβ · h2 is a sum of squares and the
product has the form of a sum of squares times a square-free product of g1, . . . , gs. �

Example. (s = 1) The preorder generated by a single polynomial g has the form

PO(g) = {σ0 + σ1g : σ0, σ1 ∈ SOSn}.
For example, let’s take n = 1 and g = 1 − x2. The semialgebraic set defined by g is the
interval [−1, 1]. Written in the monomial basis, it is unclear whether or not the polynomial
f = −4x3 − 3x2 + 4x+ 5 is nonnegative on S, but we can write f as an element of PO(g):

f = −4x3 − 3x2 + 4x+ 5 = 1 + x4 + (x+ 2)2(1− x2) = (12 + (x2)2) + (x+ 2)2g,

which makes it clear that f ≥ 0 on [−1, 1].

Example. (s = 2) The preorder generated by two polynomials g1, g2 has the form

PO(g1, g2) = {σ0 + σ1g1 + σ2g2 + σ12g1g2 : σ0, σ1, σ2, σ12 ∈ SOSn}.
For example, let’s take n = 2 and g1 = x and g2 = y. The corresponding semialgebraic set is
the nonnegative orthant (R≥0)2. Then polynomial f = 1+ x+ y − 2x2 − 2y2 + xy + x3 + y3

is nonnegative on (R≥0)2, as evidenced by its representation as an element in PO(x, y):

f = 1 + x+ y − 2x2 − 2y2 + xy + x3 + y3 = 1 + (1− x)2x+ (1− y)2y + xy.

This leads to the natural question: does PO(g1, . . . , gs) contain every polynomial that is
nonnegative on S? Let us consider this question in the case S = Rn, where the preorder is
the set of sums of squares.

It will be helpful to bound the degrees of the polynomials in question. Consider

SOSn,≤2d =

{
k∑
i=1

h2i : hi ∈ R[x1, . . . , xn]≤d

}
, and

Pn,≤2d = {f ∈ R[x1, . . . , xn]≤2d : f(p) ≥ 0 for all p ∈ Rn} .

The following is a classical theorem of Hilbert:

Theorem (Hilbert). SOSn,≤2d = Pn,≤2d if and only if n = 1, 2d = 2, or (n, 2d) = (2, 4).

Sketch of proof. (⇐) (n = 1) Suppose f ∈ R[x] is a nonnegative univariate polynomial.
Then all real roots of f appear have even multiplicity and non-real roots come in complex
conjugate pairs. Then we can write f =

∏
j(x−rj)2 ·

∏
k((x−ak)2+b2k) where rj and ak± ibk

are the roots of f . Note that this is a product of sums of squares and therefore a sum of
squares!

(2d = 2) Any quadratic polynomial f ∈ R[x1, . . . , xn]≤2 can be (uniquely) written as
f(x) =

(
1 x

)
Q
(
1 x

)T for a (n + 1)× (n + 1) real symmetric matrix Q. Moreover if f is



nonnegative on Rn, then the matrix Q is positive semidefinite, in which case we can write
Q =

∑k
i=1 viv

T
i for some vectors vi ∈ Rn+1. Then

f(x) =
(
1 x

)
Q
(
1 x

)T
=

k∑
i=1

(
1 x

)
viv

T
i

(
1 x

)T
=

k∑
i=1

((
1 x

)
· vi
)2
,

which is a sum of squares.
The case (n, 2d) = (2, 4) is more involved and we skip its proof.
(⇒) The minimal (n, 2d) pairs not covered above are (n, 2d) = (2, 6) and (3, 4). Hilbert’s

original proof was non-constructive, but here are explicit examples of nonnegative polyno-
mials that are not sums of squares:

(n, 2d) = (2, 6) 1− 3x2y2 + x4y2 + x2y4

(n, 2d) = (3, 4) 1− 4xyz + x2y2 + x2z2 + y2z2

These polynomials were found by Motzkin and Choi-Lam, respectively, almost a hundred
years after Hilbert’s original proof. (Neither the fact that these polynomials are nonnegative
or nor that they are not sums of squares is obvious! As a challenge, try to show that they
are nonnegative using the arithmetic-geometric mean inequality.)

From this, one can construct examples of nonnegative polynomials that are not sum of
squares for all higher n, 2d. �

Interestingly, if we multiply the Motzkin polynomial by (1 + x2 + y2), the result is a sum
of squares:
(1 + x2 + y2)(1− 3x2y2 + x4y2 + x2y4) = 2(1

2
x3y + 1

2
xy3 − xy)2 + (x2y − y)2 + (xy2 − x)2

+ 1
2
(x3y − xy)2 + 1

2
(xy3 − xy)2 + (x2y2 − 1)2.

This expression as a ratio of sums of squares confirms that the Motzkin polynomial is non-
negative on R2. One of Hilbert’s famous problems at the turn of the 20th century was to
show that every nonnegative polynomial has such an expression.

Hilbert’s 17th Problem. Is every nonnegative polynomial a ratio of sums of squares?

This was answered positively by Artin in 1927. A more general statement was proven by
Krivine in 1964 and rediscovered by Stengle in 1974.

Theorem. Let g1, . . . , gs ∈ R[x1, . . . , xn] and S = {x ∈ Rn : g1(x) ≥ 0, . . . , gs(x) ≥ 0}. Let
P denote the preordering PO(g1, . . . , gs). Then for any f ∈ R[x1, . . . , xn],

• f > 0 on S ⇔ q · f = 1 + p for some p, q ∈ P ,
• f ≥ 0 on S ⇔ q · f = f 2m + p for some m ∈ N, p, q ∈ P ,
• f = 0 on S ⇔ −f 2m ∈ P for some m ∈ N, and
• S = ∅ ⇔ −1 ∈ P

Idea of proof. The⇐ implications follow directly from the fact that all polynomials in P are
nonnegative on the set S. These representations are certificates of the behavior of f .

The ⇒ implications are much harder. The rough idea is to extend P to an ordering of
R[x1, . . . , xn] and from there to an ordering on a field over which the statement holds. One
can then use model theoretic statements to show that it must hold over R. In particular,
this relies on



Theorem (Tarski Transfer Principle). If a system of polynomial inequalities with coefficients
in R has a solution over some ordered field extension of R, then it has a solution over R.

For more details, see, for example, the book Positive Polynomials and Sums of Squares
by Murray Marshall. �

The name “Positivstellensatz” literally means “positive place theorem” in German.

One corollary of this statement is that every nonnegative polynomial is a ratio of sums of
squares (obtained by taking P = SOSn and S = Rn). Another characterized when a real
variety is empty. (Literally, the real “zero place theorem”.)

Corollary (Real Nullstellensatz). For f1, . . . , fr ∈ R[x1, . . . , xn], the real variety VR(f1, . . . , fr)
is empty if and only if

−1 = σ +
r∑
i=1

hifi

for some sum of squares σ ∈ SOSn and polynomial multipliers hi ∈ R[x1, . . . , xn].

Example. For example, take f1 = x2 + y2 − 1 and f2 = y − 2. While there are complex
solutions to f1 = f2 = 0, there are no real solutions. As promised, by the real Nullstellensatz,
we can find an expression

−1 =

(
x√
3

)2

− 1

3
(x2 + y2 − 1) +

y + 2

3
(y − 2) =

(
x√
3

)2

+
−1
3
· f1 +

y + 2

3
· f2.

Plugging in a real point (x, y) ∈ R2 for which f1(x, y) = 0 and f2(x, y) = 0 would result in
an expression −1 ≥ 0, so no such point exists!

Next time we’ll talk about how one might find such expressions.


