Math 591 - Real Algebraic Geometry and Convex Optimization

Lecture 6: Algebraic geometry basics
Cynthia Vinzant, Spring 2019
For today, we will work over a field k, where $k=\mathbb{R}$ or $k=\mathbb{C}$. (The adventurous reader can replace these by any algebraically closed or real closed field, respectively).
Definition. A variety or algebraic set in k^{n} has the form

$$
V_{k}\left(f_{1}, \ldots, f_{r}\right)=\left\{p \in k^{n}: f_{1}(p)=0, \ldots, f_{r}(p)=0\right\}
$$

where $f_{1}, \ldots, f_{r} \in k\left[x_{1}, \ldots, x_{n}\right]$. A set $S \subseteq k^{n}$ is called constructible if it is a finite Boolean combination of algebraic sets (obtained via finitely many unions, intersections, and complements).

In \mathbb{R}^{n} is a basic closed semialgebraic set is one of the form

$$
\left\{p \in \mathbb{R}^{n}: f_{1}(p) \geq 0, \ldots, f_{r}(p) \geq 0\right\}
$$

where $f_{1}, \ldots, f_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, and a semialgebraic set is a finite Boolean combination of basic closed semialgebraic sets.

For this lecture, we will focus on varieties.
Example. For $f_{1}=x^{2}+y^{2}-1$ and $f_{2}=y-2, V_{\mathbb{C}}\left(f_{1}, f_{2}\right)$ consists of two points $(\pm i \sqrt{3}, 2)$ and $V_{\mathbb{R}}\left(f_{1}, f_{2}\right)$ is empty.

Example. For any positive integers d, n and $r \leq \min \{d, n\}$, the set \mathcal{M}_{r} of $d \times n$ matrices with rank $\leq r$ is a variety defined by the vanishing of all $\binom{d}{r+1} \cdot\binom{n}{r+1}$ of the $(r+1) \times(r+1)$ minors of the matrix. The set of $d \times n$ matrices of rank equal to r is constructible, since it can be written as $\mathcal{M}_{r} \backslash \mathcal{M}_{r-1}$.

Definition. The Zariski topology on k^{n} is a topology whose closed sets are varieties (called Zariski-closed). The Zariski-closure of a set $S \subseteq k^{n}$, denoted \bar{S}^{Zar} is the inclusionminimal variety containing S. Complements of Zariski-closed sets are called Zariski-open, and we say that a generic point in k^{n} has a property is there exists a non-empty Zariski-open set $U \subseteq k^{n}$ so that every point in U has that property.
Question. Consider the subset of $\mathbb{R}_{\text {sym }}^{2 \times 2}$ defined by

$$
S=\left\{\left(\begin{array}{cc}
v_{1}^{2} & v_{1} v_{2} \\
v_{1} v_{2} & v_{2}^{2}
\end{array}\right):\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}\right\}=\left\{\text { rank } \leq 1 \text { PSD matrices in } \mathbb{R}_{\text {sym }}^{2 \times 2}\right\}
$$

Is S a basic closed semialgebraic set? a variety? If not, what is \bar{S}^{Zar} ?

Answer.

We can write S as a basic closed semialgebraic set using the semialgebraic description of the 2×2 PSD cone, namely:

$$
S=\left\{\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{12} & x_{22}
\end{array}\right) \in \mathbb{R}_{\mathrm{sym}}^{2 \times 2}: x_{11} \geq 0, x_{22} \geq 0, \text { and } x_{11} x_{22}-x_{12}^{2} \geq 0\right\}
$$

However S is not a variety! To see this, we show that \bar{S}^{Zar} contains more points than S. Suppose that for some polynomial $F \in \mathbb{R}\left[x_{11}, x_{12}, x_{22}\right], F\left(x_{11}, x_{12}, x_{22}\right)=0$ for whenever $X=\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{12} & x_{22}\end{array}\right)$ belongs to S. Since S is invariant under positive scaling, for any
$X \in S, F\left(\lambda x_{11}, \lambda x_{12}, \lambda x_{22}\right)=0$ for all $\lambda \in \mathbb{R}_{+}$. This implies that as a polynomial in λ, $F\left(\lambda x_{11}, \lambda x_{12}, \lambda x_{22}\right) \in \mathbb{R}[\lambda]$ is identically zero, and therefore $F\left(\lambda x_{11}, \lambda x_{12}, \lambda x_{22}\right)=0$ for all $\lambda \in \mathbb{R}$.

Therefore any polynomial that vanishes on S also vanished on $-S$. For example, the matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right)$ belongs to \bar{S}^{Zar}, but not S. In fact, in this case, we see that $S \cup-S$ equals $V(\operatorname{det}(X))=V\left(x_{11} x_{22}-x_{12}^{2}\right)$ is a variety, so this must be the Zariski-closure of S.

The complement of $V(\operatorname{det}(X))$ is a non-empty Zariski-open set consisting of matrices of rank two. Therefore we can say that a generic matrix in $\mathbb{R}_{\text {sym }}^{2 \times 2}$ has rank two.

Projections. A fundamental question is what can happen to these sets under (linear) projections.

Question. Define the linear map $\pi: \mathbb{R}_{\mathrm{sym}}^{2 \times 2} \rightarrow \mathbb{R}^{2}$ by $\pi\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{12} & x_{22}\end{array}\right)=\left(x_{11}, x_{12}\right)$.
What is $\pi(S)$? What is $\pi\left(\bar{S}^{\mathrm{Zar}}\right)$?
Answer. One can check that $\pi(S)=\{(0,0)\} \cup\left(\mathbb{R} \times \mathbb{R}_{>0}\right)$ and $\pi\left(\bar{S}^{\mathrm{Zar}}\right)=\{(0,0)\} \cup\left(\mathbb{R} \times \mathbb{R}^{*}\right)$.
The following theorems characterize images under linear projections over \mathbb{C} and \mathbb{R}.
Theorem (Chevalley). Over \mathbb{C}, the projection of a variety is a constructible set.
Theorem (Tarski-Seidenberg). The projection of a semialgebraic set is semialgebraic.
In fact, we can replace the linear projection in these theorems by an arbitrary polynomial map, as follows. Suppose that $F: k^{n} \rightarrow k^{m}$ is defined by $F(p)=\left(f_{1}(p), \ldots, f_{m}(p)\right)$, where $f_{1}, \ldots, f_{m} \in k\left[x_{1}, \ldots, x_{n}\right]$. Then for any set $S \subset k^{n}$, we have

$$
F(S)=\pi\left(\left\{(p, q) \in k^{n} \times k^{m}: p \in S, q_{i}=f_{i}(p), \text { for } i=1, \ldots, m\right\}\right),
$$

where $\pi(p, q)=q$. Since $q_{i}=f_{i}(p)$ are algebraic equations on (p, q) this set (before projection $\pi)$ is algebraic if S is algebraic and semialgebraic is S is semialgebraic. Therefore $F(S)$ is the image of an algebraic, or semialgebraic, set under linear projection π.

Computation. Let $\pi: k^{n} \rightarrow k^{m}$ be the linear projection $\pi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots x_{m}\right)$.
Over \mathbb{C}, given a variety $V=V_{\mathbb{C}}\left(f_{1}, \ldots f_{r}\right)$, there are algorithms to compute polynomials $g_{1}, \ldots, g_{s} \in \mathbb{C}\left[x_{1}, \ldots, x_{m}\right]$ defining the image of V, i.e. for which

$$
V\left(g_{1}, \ldots, g_{s}\right)=\overline{\pi\left(V_{\mathbb{C}}\left(f_{1}, \ldots, f_{r}\right)\right)}
$$

See: elimination algorithms, Gröbner bases.

Over \mathbb{R}, given a semialgebraic set $S \subset \mathbb{R}^{n}$, one can compute a semialgebraic description of $\pi(S)$. See: cylindrical algebraic decomposition, quantifier elimination.

Polynomials defining sets and sets defining polynomials. A variety $V \subseteq k^{n}$ is uniquely defined by the set of polynomials vanishing on it, i.e.

$$
\mathcal{I}(V)=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(p)=0 \text { for all } p \in V\right\}
$$

Some useful observations:

- $\mathcal{I}(V)$ is a k-linear subspace of $k\left[x_{1}, \ldots, x_{n}\right]$
- $\mathcal{I}(V)$ is an ideal in the ring $k\left[x_{1}, \ldots, x_{n}\right]$
(For any $f_{1}, f_{2} \in \mathcal{I}(V)$ and $h_{1}, h_{2} \in k\left[x_{1}, \ldots, x_{n}\right], h_{1} f_{1}+h_{2} f_{2} \in \mathcal{I}(V)$.)
- If $V=V_{k}\left(f_{1}, \ldots, f_{r}\right)$, then $f_{1}, \ldots, f_{r} \in \mathcal{I}(V)$.
- V is empty $\Leftrightarrow 1 \in \mathcal{I}(V)$.

Theorem. (Hilbert's Nullstellensatz) Let $f_{1}, \ldots, f_{r} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $V=V_{\mathbb{C}}\left(f_{1}, \ldots, f_{r}\right)$. Then
(1) $V=\emptyset \Leftrightarrow 1=h_{1} f_{1}+\ldots+h_{r} f_{r}$ for some $h_{1}, \ldots, h_{r} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
(2) $g \in \mathcal{I}(V) \Leftrightarrow g^{N}=h_{1} f_{1}+\ldots+h_{r} f_{r}$ for some $N \in \mathbb{Z}_{+}, h_{1}, \ldots, h_{r} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

There are algorithms (based on Gröbner bases) to compute the polynomials h_{1}, \ldots, h_{r}. We could also search for multipliers $h_{1}, \ldots, h_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of bounded degree via linear algebra. Matching up coefficients in $1=h_{1} f_{1}+\ldots+h_{r} f_{r}$ imposes affine linear conditions on the $\left(h_{1}, \ldots, h_{r}\right) \in\left(\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq D}\right)^{r}$.

Example. For $f_{1}=x^{2}-x$ and $f_{2}=x-2 \in \mathbb{C}[x]$, we have $V_{\mathbb{C}}\left(f_{1}, f_{2}\right)=\emptyset$. Using the Euclidean algorithm, we can compute that

$$
1=(1 / 2) \cdot f_{1}-1 / 2(x+1) f_{2}
$$

which certifies that $V_{\mathbb{C}}\left(f_{1}, f_{2}\right)$ is empty. (Plugging in a common root of f_{1}, f_{2} would result in $1=0$.)

What is the correct analogue for semialgebraic sets?
A basic closed semialgebraic set $S \subset \mathbb{R}^{n}$ is uniquely determined by the the set of polynomials that are nonnnegative on it:

$$
\mathcal{P}(S)=\left\{f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]: f(p) \geq 0 \text { for all } p \in S\right\}
$$

Some useful observations:

- $\mathcal{P}(S)$ is a convex cone in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
- If $S=\left\{p \in \mathbb{R}^{n}: g_{1}(p) \geq 0, \ldots, g_{r}(p) \geq 0\right\}$, then $g_{1}, \ldots, g_{r} \in \mathcal{P}(S)$.
- $S=\emptyset \Leftrightarrow-1 \in \mathcal{P}(S)$.
- ???

Next time we expand this list and talk about an analogue of Hilbert's Nullstellensatz.

