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For today, we will work over a field k, where k = R or k = C. (The adventurous reader
can replace these by any algebraically closed or real closed field, respectively).

Definition. A variety or algebraic set in kn has the form
Vk(f1, . . . , fr) = {p ∈ kn : f1(p) = 0, . . . , fr(p) = 0},

where f1, . . . , fr ∈ k[x1, . . . , xn]. A set S ⊆ kn is called constructible if it is a finite
Boolean combination of algebraic sets (obtained via finitely many unions, intersections, and
complements).

In Rn is a basic closed semialgebraic set is one of the form
{p ∈ Rn : f1(p) ≥ 0, . . . , fr(p) ≥ 0},

where f1, . . . , fr ∈ R[x1, . . . , xn], and a semialgebraic set is a finite Boolean combination
of basic closed semialgebraic sets.

For this lecture, we will focus on varieties.

Example. For f1 = x2 + y2 − 1 and f2 = y − 2, VC(f1, f2) consists of two points (±i
√
3, 2)

and VR(f1, f2) is empty.

Example. For any positive integers d, n and r ≤ min{d, n}, the setMr of d × n matrices
with rank ≤ r is a variety defined by the vanishing of all

(
d

r+1

)
·
(

n
r+1

)
of the (r+1)× (r+1)

minors of the matrix. The set of d× n matrices of rank equal to r is constructible, since it
can be written asMr\Mr−1.

Definition. The Zariski topology on kn is a topology whose closed sets are varieties
(called Zariski-closed). The Zariski-closure of a set S ⊆ kn, denoted SZar is the inclusion-
minimal variety containing S. Complements of Zariski-closed sets are called Zariski-open,
and we say that a generic point in kn has a property is there exists a non-empty Zariski-open
set U ⊆ kn so that every point in U has that property.

Question. Consider the subset of R2×2
sym defined by

S =

{(
v21 v1v2
v1v2 v22

)
: (v1, v2) ∈ R2

}
=

{
rank ≤ 1 PSD matrices in R2×2

sym

}
.

Is S a basic closed semialgebraic set? a variety? If not, what is SZar?

Answer.
We can write S as a basic closed semialgebraic set using the semialgebraic description of

the 2× 2 PSD cone, namely:

S =

{(
x11 x12
x12 x22

)
∈ R2×2

sym : x11 ≥ 0, x22 ≥ 0, and x11x22 − x212 ≥ 0

}
However S is not a variety! To see this, we show that SZar contains more points than

S. Suppose that for some polynomial F ∈ R[x11, x12, x22], F (x11, x12, x22) = 0 for when-

ever X =

(
x11 x12
x12 x22

)
belongs to S. Since S is invariant under positive scaling, for any



X ∈ S, F (λx11, λx12, λx22) = 0 for all λ ∈ R+. This implies that as a polynomial in λ,
F (λx11, λx12, λx22) ∈ R[λ] is identically zero, and therefore F (λx11, λx12, λx22) = 0 for all
λ ∈ R.

Therefore any polynomial that vanishes on S also vanished on −S. For example, the

matrix
(
−1 0
0 0

)
belongs to SZar, but not S. In fact, in this case, we see that S ∪−S equals

V (det(X)) = V (x11x22 − x212) is a variety, so this must be the Zariski-closure of S.

S → S
Zar

The complement of V (det(X)) is a non-empty Zariski-open set consisting of matrices of
rank two. Therefore we can say that a generic matrix in R2×2

sym has rank two.

Projections. A fundamental question is what can happen to these sets under (linear) pro-
jections.

Question. Define the linear map π : R2×2
sym → R2 by π

(
x11 x12
x12 x22

)
= (x11, x12).

What is π(S)? What is π(SZar
)?

Answer. One can check that π(S) = {(0, 0)}∪ (R×R>0) and π(S
Zar

) = {(0, 0)}∪ (R×R∗).

The following theorems characterize images under linear projections over C and R.

Theorem (Chevalley). Over C, the projection of a variety is a constructible set.

Theorem (Tarski-Seidenberg). The projection of a semialgebraic set is semialgebraic.

In fact, we can replace the linear projection in these theorems by an arbitrary polynomial
map, as follows. Suppose that F : kn → km is defined by F (p) = (f1(p), . . . , fm(p)), where
f1, . . . , fm ∈ k[x1, . . . , xn]. Then for any set S ⊂ kn, we have

F (S) = π ({(p, q) ∈ kn × km : p ∈ S, qi = fi(p), for i = 1, . . . ,m}) ,
where π(p, q) = q. Since qi = fi(p) are algebraic equations on (p, q) this set (before projection
π) is algebraic if S is algebraic and semialgebraic is S is semialgebraic. Therefore F (S) is
the image of an algebraic, or semialgebraic, set under linear projection π.

Computation. Let π : kn → km be the linear projection π(x1, . . . , xn) = (x1, . . . xm).
Over C, given a variety V = VC(f1, . . . fr), there are algorithms to compute polynomials

g1, . . . , gs ∈ C[x1, . . . , xm] defining the image of V , i.e. for which

V (g1, . . . , gs) = π(VC(f1, . . . , fr)).

See: elimination algorithms, Gröbner bases.



Over R, given a semialgebraic set S ⊂ Rn, one can compute a semialgebraic description
of π(S). See: cylindrical algebraic decomposition, quantifier elimination.

Polynomials defining sets and sets defining polynomials. A variety V ⊆ kn is
uniquely defined by the set of polynomials vanishing on it, i.e.

I(V ) = {f ∈ k[x1, . . . , xn] : f(p) = 0 for all p ∈ V }.
Some useful observations:

• I(V ) is a k-linear subspace of k[x1, . . . , xn]
• I(V ) is an ideal in the ring k[x1, . . . , xn]
(For any f1, f2 ∈ I(V ) and h1, h2 ∈ k[x1, . . . , xn], h1f1 + h2f2 ∈ I(V ).)
• If V = Vk(f1, . . . , fr), then f1, . . . , fr ∈ I(V ).
• V is empty ⇔ 1 ∈ I(V ).

Theorem. (Hilbert’s Nullstellensatz) Let f1, . . . , fr ∈ C[x1, . . . , xn] and V = VC(f1, . . . , fr).
Then

(1) V = ∅ ⇔ 1 = h1f1 + . . .+ hrfr for some h1, . . . , hr ∈ C[x1, . . . , xn].
(2) g ∈ I(V ) ⇔ gN = h1f1 + . . .+ hrfr for some N ∈ Z+, h1, . . . , hr ∈ C[x1, . . . , xn].

There are algorithms (based on Gröbner bases) to compute the polynomials h1, . . . , hr.
We could also search for multipliers h1, . . . , hr ∈ R[x1, . . . , xn] of bounded degree via linear
algebra. Matching up coefficients in 1 = h1f1 + . . . + hrfr imposes affine linear conditions
on the (h1, . . . , hr) ∈ (R[x1, . . . , xn]≤D)

r.

Example. For f1 = x2 − x and f2 = x − 2 ∈ C[x], we have VC(f1, f2) = ∅. Using the
Euclidean algorithm, we can compute that

1 = (1/2) · f1 − 1/2(x+ 1)f2,

which certifies that VC(f1, f2) is empty. (Plugging in a common root of f1, f2 would result
in 1 = 0.)

What is the correct analogue for semialgebraic sets?

A basic closed semialgebraic set S ⊂ Rn is uniquely determined by the the set of polyno-
mials that are nonnnegative on it:

P(S) = {f ∈ R[x1, . . . , xn] : f(p) ≥ 0 for all p ∈ S}.
Some useful observations:

• P(S) is a convex cone in R[x1, . . . , xn].
• If S = {p ∈ Rn : g1(p) ≥ 0, . . . , gr(p) ≥ 0}, then g1, . . . , gr ∈ P(S).
• S = ∅ ⇔ −1 ∈ P(S).
• ???

Next time we expand this list and talk about an analogue of Hilbert’s Nullstellensatz.
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