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Definition. Let C ⊆ V be convex. A function f : C → R is convex if for all x, y ∈ C and
λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

An equivalent condition is that f is convex if its epigraph,

epi(f) = {(x, t) ∈ C × R : f(x) ≤ t}

is a convex subset of V × R.
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Some examples include

• linear functions

• f(x) = max{f1(x), . . . , fk(x)} where f1, . . . , fk are convex

• for C = Rn×n
sym ,

f(A) = maximum eigenvalue of A = max
||v||2=1

vTAv

(a maximum of infinitely many linear functions A 7→ vTAv).

A convex optimization problem is one of the form

min
x∈C

f(x),

where C is convex and f : C → R is a convex function. Note that the set of points achieving
this minimum is itself convex, as its the intersection of epi(f) with {(x, t) : t = min. value},
both of which are convex.

Also, for any convex optimization problem, we can write an equivalent problem that
consists of minimizing a linear function over a convex set. Namely:

min
x∈C

f(x) = min
(x,t)∈epi(f)

t.

It will be useful to translate even further, by viewing the convex set as an affine-linear section
of a convex cone.



Conic Programming. A conic optimization problem has the form

min
x∈K

c(x) such that ai(x) = bi for i = 1, . . . ,m,

where K ⊂ V is a convex cone, c, a1, . . . , am ∈ V ∗ and b1, . . . , bm ∈ R.

Example. For K = (R≥0)n, the feasible sets {x ∈ (R≥0)n : aTi x = bi for i = 1, . . . ,m} are
exactly polyhedra, and methods for solving these problems are called linear programs.

Example. For K = PSDn, the feasible sets {X ∈ PSDn : 〈Ai, X〉 = bi for i = 1, . . . ,m}
are called spectrahedra, and methods for solving these problems are called semidefinite
programs.

For example, given a matrix A ∈ Rn×n
sym , we can find the maximum eigenvalue of A as a

semidefinite program. Namely,

max eigval. of A = min
t∈R

t s.t. t ≥ all eigval. of A = min
t∈R

t s.t. tI − A ∈ PSDn.

The set {tI −A : t ∈ R} is an affine line in the space of real symmetric matrices and we are
interested in minimizing the linear function t over its intersection with PSDn.

Example. For K = P1,≤2d = {f ∈ R[x]≤2d : f(p) ≥ 0 for all p ∈ R}, conic programming
with this cone results in polynomial optimization. Suppose that we want to find the maxi-
mum value of some polynomial f ∈ R[x]≤2d (should that maximum exist). We can rewrite
this as

max
x∈R

f(x) = min
t∈R

t s.t. t− f(x) ∈ K

= f(0) + min
g∈K

g(0) s.t. coeff(g, xk) = −coeff(f, xk) for k = 1, . . . , 2d,

which has the form of a conic optimization problem over K.

Reformulation into a conic optimization problems is useful because it lets us understand
a large family of problems using a single convex cone. This is most useful when the cone is
one that we can work with (for example, easily check membership in). Important examples
of cones that we can easily work with are Rn

≥0 and PSDn.
It is also useful because we can easily formulate a “dual problem”.

Duality in conic optimization. We call out original optimization problem the “primal”
problem and formulate a “dual” optimization problem to provide a lower bound.

min
x∈K

c(x) s.t. ai(x) = bi for i = 1, . . . ,m(Primal)

max
y∈Rm

m∑
i=1

biyi s.t. c−
m∑
i=1

aiyi ∈ K∗(Dual)

Note that {c−
∑m

i=1 aiyi : y ∈ Rm} parametrizes an affine linear space in V ∗. So the dual
problem still has form of optimizing a linear function over the intersection of a convex cone
and an affine space.

We say that a point x ∈ V is primal feasible if x ∈ K and ai(x) = bi for i = 1, . . . ,m.
Similarly we say y ∈ Rm is dual feasible if c−

∑m
i=1 aiyi ∈ K∗.



Theorem (Weak duality). For any primal feasible x and dual feasible y,

c(x) ≥
m∑
i=1

biyi.

Moreover, if c(x̂) =
∑m

i=1 biŷi, then both x̂ and ŷ are optimal.

Proof. Suppose x, y are feasible. Then

c(x)−
m∑
i=1

biyi = c(x)−
m∑
i=1

ai(x)yi

= (c−
m∑
i=1

yiai)(x) ≥ 0.

Here the last inequality follows from the fact that c−
∑m

i=1 yiai ∈ K∗ and x ∈ K.
If c(x̂) =

∑m
i=1 biŷi, then c(x̂) is an upper bound for

∑
i biyi over all feasible y. Since ŷ

achieves this upper bound, it must be optimal. Similarly,
∑

i biŷi is a lower bound for c(x),
which is achieved by x̂. �

This gives a method for certifying the optimal value!

Example. Take K = R3
≥0 and m = 1. We can choose c = (7, 2, 4), a = (1, 1, 1), b = 1. Then

the primal optimization problem is

min
x∈R3

≥0

7x1 + 2x2 + 4x3 s.t. x1 + x2 + x3 = 1

It’s not hard to see that the minimum value is 2, which is achieved by x = (0, 1, 0). We can
certify this by writing the dual problem:

max
y∈R

y s.t. (7, 2, 4)− y(1, 1, 1) ∈ R3
≥0.

Here we see the maximum of the dual problem is also 2, achieved by y = 2. Also, as in the
proof of the theorem of weak duality, (c− ya)(x) = 0 for x, y achieving the optimal value:

(c− ya)(x) = 〈(7, 2, 4)− 2(1, 1, 1)), (0, 1, 0)〉 = 〈(5, 0, 2), (0, 1, 0)〉 = 0.

Example. Take K = PSD3 and m = 3.

C =

0 1 1
1 0 1
1 1 0

 , Ai = eie
T
i , and bi = 1 for i = 1, 2, 3.

Then the primal optimization problem is

min
X∈PSD3

〈C,X〉 s.t. 〈Ai, X〉 = bi for i = 1, 2, 3

= min
X∈PSD3

2(X12 +X13 +X23) s.t. Xii = 1 for i = 1, 2, 3,

where Xij is the (i, j)th entry of X.
We might make a lucky guess and note that the matrix

X =

 1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1





is positive semidefinite and gives the values 〈C,X〉 = −3.
The dual problem is

max
y∈R3

∑
i

biyi s.t. C −
∑
i

yiAi ∈ PSD3

= max
y∈R3

y1 + y2 + y3 s.t.

−y1 1 1
1 −y2 1
1 1 −y3

 ∈ PSD3.

Here we observe that for y = (−1,−1,−1), the matrix C −
∑

i yiAi is positive semidefinite
and y1 + y2 + y3 = −3. This shows that both the matrix X above and y = (−1,−1,−1) are
optimal points.

As in the proof of weak duality, for these optimal X, y,

〈C −
∑
i

yiAi, X〉 =

〈 1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1

 ,

1 1 1
1 1 1
1 1 1

〉 = 0.
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