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In order to understand the faces of the PSD cone, we will use the following useful face
about exposed faces of general convex cones.

Proposition. The exposed faces of a convex cone K ⊆ V have the form

F = {v ∈ K : `(v) = 0}
where ` ∈ K∗.

Proof. By definition an exposed faces has the form F = {v ∈ K : `(v) ≥ `(w) for all w ∈ K}
for some ` ∈ V ∗. Note though that if `(v) > 0 for some v ∈ K, then for any λ > 1, λv ∈ K
and `(λv) = λ`(v) > `(v). Taking λ → ∞ shows that ` in unbounded on K and cannot
expose a face. Otherwise `(v) ≤ 0 for all v ∈ K. Since `(0) = 0, the maximum of ` over K
is zero and −` belongs to K∗. Then the face exposed by ` is

F = {v ∈ K : `(v) = 0} = {v ∈ K : −`(v) = 0}.
�

Applying this to K = PSDn, we find that

Corollary. The exposed faces of PSDn are parametrized by linear subspaces L ⊆ Rn. Namely
they have the form

FL = {A ∈ PSDn : L ⊆ ker(A)},
where L ⊆ Rn is a subspace and for every L ⊆ Rn, FL is a face of PSDn.

Proof. Recall that every element of (PSDn)
∗ has the form A 7→ 〈A,B〉, where B ∈ PSDn.

Then by the proposition above, every exposed face has the form

{A ∈ PSDn : 〈A,B〉 = 0} = {A ∈ PSDn : rowspan(B) ⊆ ker(A)},
where B ∈ PSDn. Furthermore for any subspace L = spanR{v1, . . . , vk} ⊆ Rn, the matrix
B =

∑k
i=1 viv

T
i is positive semidefinite and has rowspan equal to L. �

Note that the PSD cone is invariant under a large group action. Namely, for any n × n
invertible matrix U , the PSD cone is invariant under the map A 7→ UTAU . To check we see
that the image is symmetric and PSD:

• (symmetric) (UTAU)T = UTAT (UT )T = UTAU

• (PSD) vT (UTAU)v = (Uv)TA(Uv) ≥ 0 for all v ∈ Rn

If U is an orthogonal matrix (i.e. UTU = UUT = In), then this action even preserves the
inner product. That is,

〈UTAU,UTBU〉 = trace(UTAUUTBU) = trace(UTABU)

= trace(ABUUT ) = trace(AB) = 〈A,B〉.
We can use this acton to give a very explicit understanding of the faces FL of the PSD

cone. Suppose that U is a matrix with columns u1, . . . , un ∈ Rn. Then

ui ∈ ker(A) ⇔ ei ∈ ker(UTAU),



where ei is the ith unit coordinate vector. Now suppose L = spanR{u1, . . . , uk}. Then

FL = {A ∈ PSDn : L ⊆ ker(A)}
= {U−TBU−1 : B ∈ PSDn and spanR{e1, . . . , ek} ⊆ ker(B)}

=

{
U−T

(
0 0

0 B̃

)
U−1 : B̃ ∈ PSDn−k

}
∼= PSDn−k.

This gives a linear isomorphism between FL and PSDn−dim(L).

Example. Consider L = spanR{(1, 1, 1)} ⊂ R3. Then

FL = {A ∈ PSD3 : (1, 1, 1)A = 0} =

A =

 a b −a− b
b c −b− c

−a− b −b− c a+ 2b+ c

 ∈ PSD3

 .

For a matrix A of this form, we find that for

U =

1 1 0
1 0 1
1 0 0

 , we have UTAU =

0 0 0
0 a b
0 b c

 .

Therefore FL is isomorphic to Fspan{e1}, which is isomorphic to PSD2.

To complete our understanding of the facial structure of PSDn, we need the following:

Theorem (Ramana, Goldman 1995). All faces of PSDn are exposed.

Sketch of proof. For a face F of PSDn, consider the linear space L ⊆ Rn obtained by in-
tersecting ker(A) over all A ∈ F . Then certainly F ⊆ FL. Moreover, for A in the relative
interior of F , one can show that ker(A) = L and thus that A is in the relative interior of
FL. �

Here we used the relative interior of a face F , which is the interior of F relative to its
affine span.

Corollary. The faces of PSDn are linearly isomorphic to PSDr, with dimension
(
r+1
2

)
, for

r = 0, . . . , n.

For example, the six-dimensional cone PSD3 has faces of dimensions 0, 1, 3 and 6.
Note the for the PSD cone, we saw that

PSDn = {A : 〈A, vvT 〉 ≥ 0 for all v} and (PSDn)
∗ = conv{vvT : v ∈ Rn} = PSDn.

Using similar ideas we can understand other nonnegative polynomials.

Nonnegative polynomials. For any d ∈ N, consider the vector space V = R[x]≤2d ∼= R2d+1

of univariate polynomials of degree ≤ 2d and within V define

P1,≤2d = {f ∈ R[x]≤2d : f(p) ≥ 0 for all p ∈ R}

to be the convex cone of nonnegative polynomials. What is the dual cone (P1,≤2d)
∗?



For any point p ∈ R, define the linear function evp : R[x]≤2d → R by evp(f) = f(p). Then
f ∈ P1,≤2d ⇔ evp(f) ≥ 0 for all p ∈ R

⇔
k∑

i=1

λievp(f) ≥ 0 for all k ∈ N, p1, . . . , pk ∈ R, λ1, . . . , λk ∈ R≥0.

This shows that P1,≤2d is already defined as the dual cone of the conical hull of point evalu-
ations, namely

P1,≤2d = (conical hull{evp : p ∈ R})∗ ,
and so dualizing gives that

(P1,≤2d)
∗ = conical hull{evp : p ∈ R}.

To make this concrete, we can write f ∈ R[x]≤2d as f = a0 + a1x+ . . .+ a2dx
2d, then

evp(f) = 〈(a0, a1, a2, . . . , a2d), (1, p, p2, . . . , p2d)〉.
This identifies (P1,≤2d)

∗ with (the closure of) the conical hull of {(1, p, p2, . . . , p2d) : p ∈ R}
in R2d+1.

For example, for d = 1, this is the cone over a parabola at height 1:

It is interesting to note that in the closure we pick up the ray spanned (0, 0, 1), which
corresponds to the linear function a2x2 + a1x+ a0 7→ a2.

These cones having interesting connections with the PSD cone and we will return to them
later in the class.
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