Lecture 3: The cone of positive semidefinite matrices

 Cynthia Vinzant, Spring 2019An important example of a convex cone is the cone of positive semidefinite (PSD) matrices. This cone lives in the vector space of real symmetric matrices, $V=\mathbb{R}_{\text {sym }}^{n \times n}$, which has dimension $\binom{n+1}{2}=\frac{n(n+1)}{2}$. To see this, note that we can identify entries on the diagonal and above with 2 -element subsets of the set $\{\operatorname{diag}, 1,2, \ldots, n\}$. Here $\{i, j\}$ corresponds to the (i, j) entry and (diag, i) corresponds to the (i, i) entry.

Recall that all the eigenvalues of a real symmetric matrix A are real.
Definition. The matrix $A \in \mathbb{R}_{\mathrm{sym}}^{n \times n}$ is positive semidefinite, denoted $A \succeq 0$, if all its eigenvalues are nonnegative and positive definite, denoted $A \succ 0$, if all its eigenvalues are positive.

To characterize positive semi-definiteness, we use the following fact from linear algebra:
Linear Algebra Fact. For any $A \in \mathbb{R}_{\text {sym }}^{n \times n}$, there exists an orthogonal matrix U (i.e. with $U^{T} U=U U^{T}=I_{n}$) such that

$$
A=U\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right) U^{T}
$$

Then $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A and

$$
A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}
$$

where u_{1}, \ldots, u_{n} are the columns of U. For any vector $v \in \mathbb{R}^{n}$, this gives that

$$
v^{T} A v=\sum_{i=1}^{n} \lambda_{i} v^{T} u_{i} u_{i}^{T} v=\sum_{i=1}^{n} \lambda_{i}\left(u_{i}^{T} v\right)^{2} .
$$

Observation 1. $v^{T} A v \geq 0$ for all $v \in \mathbb{R}^{n} \Leftrightarrow \lambda_{1}, \ldots, \lambda_{n} \geq 0$
Proof. (\Leftarrow) Since $u_{i}^{T} v \in \mathbb{R},\left(u_{i}^{T} v\right)^{2} \geq 0$ and $v^{T} A v=\sum_{i=1}^{n} \lambda_{i}\left(u_{i}^{T} v\right)^{2} \geq 0$.
(\Rightarrow) If $\lambda_{j}<0$ for some j, then consider $v=u_{j}$. Then

$$
u_{j}^{T} A u_{j}=\sum_{i=1}^{n} \lambda_{i}\left(u_{i}^{T} u_{j}\right)^{2}=\lambda_{j}<0
$$

The last equality follows from the fact that $\left\{u_{1}, \ldots, u_{n}\right\}$ are orthonormal.
Observation 2. If $A \succeq 0$, then $v^{T} A v=0$ if and only if $v \in \operatorname{ker}(A)$.
Proof. (\Leftarrow) Clear. (\Rightarrow) Suppose $0=v^{T} A v=\sum_{i=1}^{n} \lambda_{i=1}^{n}\left(u_{i}^{T} v\right)^{2}$. For each $i=1, \ldots, n$, $\lambda_{i}\left(u_{i}^{T} v\right)^{2} \geq 0$ and their sum is zero. It follows that each summand, $\lambda_{i}\left(u_{i}^{T} v\right)^{2}$ must be zero. Therefore for each i, either $\lambda_{i}=0$ or $u_{i}^{T} v=0$. It follows that

$$
v \in \operatorname{span}_{\mathbb{R}}\left\{u_{j}: \lambda_{j}=0\right\}=\left(\operatorname{span}_{\mathbb{R}}\left\{u_{j}: \lambda_{j}>0\right\}\right)^{\perp}
$$

Here we used the following useful fact:
Useful Fact. If $a_{1}, \ldots, a_{n} \in \mathbb{R}_{\geq 0}$ and $\sum_{i=1}^{n} a_{i}=0$, then $a_{1}=\ldots=a_{n}=0$.
Observation 3. $A \succeq 0 \Leftrightarrow A \in \operatorname{conv}\left\{x x^{T}: x \in \mathbb{R}^{n}\right\}$.
Proof. (\Leftarrow) If $A \in \operatorname{conv}\left\{x x^{T}: x \in \mathbb{R}^{n}\right\}$, then we can write $A=\sum_{i} \lambda_{i} x_{i} x_{i}^{T}$ where $\lambda_{i} \geq 0$ and $\sum_{i} \lambda_{i}=1$. Then for any $v \in \mathbb{R}^{n}$,

$$
v^{T} A v=\sum_{i} \lambda_{i} v^{T} x_{i} x_{i}^{T} v=\sum_{i} \lambda_{i}\left(x_{i}^{T} v\right)^{2} \geq 0
$$

(\Rightarrow) If $A \succeq 0$, then $A=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}$ where $\lambda_{i} \geq 0$. Then taking $s=\sum_{i=1}^{n} \lambda_{i}$ gives

$$
A=\sum_{i=1}^{n} \frac{\lambda_{i}}{s}\left(\sqrt{s} u_{i}\right)\left(\sqrt{s} u_{i}\right)^{T} .
$$

Here the coefficients λ_{i} / s are nonnegative and sum to one, writing A as a convex combination of matrices of the form $x x^{T}$.

Let PSD_{n} denote the set of positive semidefinite matrices in $\mathbb{R}_{\mathrm{sym}}^{n \times n}$. It follows from both Observations 1 and 3 that PSD_{n} is a convex cone.

For any matrices $A, B \in \mathbb{R}_{\text {sym }}^{n \times n}$ define

$$
\langle A, B\rangle=\operatorname{trace}(A B)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} B_{i j} .
$$

Any linear functional on $\mathbb{R}_{\text {sym }}^{n \times n}$ has the form $A \mapsto\langle A, B\rangle$ for some $B \in \mathbb{R}_{\text {sym }}^{n \times n}$. Under this identification of $\left(\mathbb{R}_{\text {sym }}^{n \times n}\right)^{*}$ with $\mathbb{R}_{\text {sym }}^{n \times n}$, the PSD cone is self-dual.

Theorem. $\left(\mathrm{PSD}_{n}\right)^{*}=\mathrm{PSD}_{n}$. That is, a matrix $B \in \mathbb{R}_{\mathrm{sym}}^{n \times n}$ is positive semidefinite if and only if $\langle A, B\rangle \geq 0$ for all $A \in \mathrm{PSD}_{n}$.

Moreover, for $A, B \in \mathrm{PSD}_{n}$,

$$
\langle A, B\rangle=0 \quad \Leftrightarrow \quad \operatorname{rowspan}(B) \subseteq \operatorname{ker}(A)
$$

Proof. (\Leftarrow) Suppose that $\langle A, B\rangle \geq 0$ for all $A \in \mathrm{PSD}_{n}$. In particular, for any $v \in \mathbb{R}^{n}$, $A=v v^{T}$ is positive semidefinite so

$$
\langle A, B\rangle=\left\langle v v^{T}, B\right\rangle=\operatorname{trace}\left(v v^{T} B\right)=\operatorname{trace}\left(v^{T} B v\right)=v^{T} B v \geq 0 .
$$

Since $v^{T} B v \geq 0$ for all $v \in \mathbb{R}^{n}$, by Observation $1, B \in \mathrm{PSD}_{n}$.
(\Rightarrow) If $B \in \mathrm{PSD}_{n}$, then $B=\sum_{j=1}^{n} \beta_{j} w_{j} w_{j}^{T}$ where $\beta_{j} \geq 0$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ are orthonormal. Then for real symmetric matrix A,

$$
\langle A, B\rangle=\sum_{j=1}^{n} \beta_{j}\left\langle A, w_{j} w_{j}^{T}\right\rangle=\sum_{j=1}^{n} \beta_{j} w_{j}^{T} A w_{j} .
$$

If A is positive semidefinite, each term $w_{j}^{T} A w_{j}$ is nonnegative, giving that $\langle A, B\rangle \geq 0$.

To prove the "moreover" statement, suppose that A, B are positive semidefinite and consider the decomposition $B=\sum_{j=1}^{n} \beta_{j} w_{j} w_{j}^{T}$ as above. Then

$$
\begin{aligned}
\langle A, B\rangle=0 & \Leftrightarrow \beta_{j} w_{j}^{T} A w_{j}=0 \text { for all } j=1, \ldots, n \\
& \Leftrightarrow w_{j}^{T} A w_{j}=0 \text { for all } j \text { with } \beta_{j} \neq 0 \\
& \Leftrightarrow w_{j} \in \operatorname{ker}(A) \text { for all } j \text { with } \beta_{j} \neq 0 \\
& \Leftrightarrow \operatorname{rowspan}(B)=\operatorname{span}_{\mathbb{R}}\left\{w_{j}: \beta_{j} \neq 0\right\} \subseteq \operatorname{ker}(A) .
\end{aligned}
$$

Question. Consider the 3×3 diagonal matrices

$$
B_{1}=\left(\begin{array}{ccc}
-1 & & \\
& 0 & \\
& & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}
-1 & & \\
& -1 & \\
& & 0
\end{array}\right), \quad \text { and } \quad B_{3}=\left(\begin{array}{ccc}
-1 & & \\
& -1 & \\
& & -1
\end{array}\right)
$$

What are the faces of PSD_{3} exposed by the linear functionals $A \mapsto\left\langle A, B_{i}\right\rangle$? What are the dimensions of these faces?

Answer. Since $-B_{1}$ is positive semidefinite, $\left\langle A, B_{1}\right\rangle=-\left\langle A,-B_{1}\right\rangle \leq 0$ for all positive semidefinite matrices A. Therefore the face exposed by B_{1} is the set of PSD matrices A for which $\left\langle A, B_{1}\right\rangle=-\left\langle A,-B_{1}\right\rangle=0$. Using the theorem above, this is the set of PSD matrices with rowspan $\left(B_{1}\right)=\operatorname{span}_{\mathbb{R}}\{(1,0,0)\}$ in the kernel. This is

$$
\left\{A \in \mathrm{PSD}_{3}:(1,0,0) \in \operatorname{ker}(A)\right\}=\left\{\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{A}
\end{array}\right): \tilde{A} \in \mathrm{PSD}_{2}\right\}
$$

Since PSD_{2} has dimension $\binom{2+1}{2}=3$, this face is 3-dimensional.
Similarly, since $-B_{2}$ is positive semidefinite, the face exposed by B_{2} is the set of PSD matrices A for which $\left\langle A, B_{2}\right\rangle=-\left\langle A,-B_{2}\right\rangle=0$, which is the set of matrices with rowspan $\left(B_{2}\right)=$ $\operatorname{span}_{\mathbb{R}}\{(1,0,0),(0,1,0)\}$ in the kernel. This is

$$
\left\{A \in \operatorname{PSD}_{3}:(1,0,0),(0,1,0) \in \operatorname{ker}(A)\right\}=\left\{\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & a
\end{array}\right): a \in \mathbb{R}_{\geq 0}\right\}
$$

This is just a one-dimensional ray.
Finally, the face exposed by $A \mapsto\left\langle A, B_{3}\right\rangle$ is the set of positive semidefinite matrices A with rowspan $\left(B_{3}\right)=\operatorname{span}_{\mathbb{R}}\{(1,0,0),(0,1,0),(0,0,1)\}=\mathbb{R}^{3}$ in the kernel. This is just the zero matrix:

$$
\left\{A \in \mathrm{PSD}_{3}:(1,0,0),(0,1,0),(0,0,1) \in \operatorname{ker}(A)\right\}=\left\{\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\}
$$

which is zero-dimensional.

