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An important example of a convex cone is the cone of positive semidefinite (PSD) matri-

ces. This cone lives in the vector space of real symmetric matrices, V = R**" which has

sym
dimension (";1) = n(”TH) To see this, note that we can identify entries on the diagonal and

above with 2-element subsets of the set {diag,1,2,...,n}. Here {i,j} corresponds to the
(1,7) entry and (diag, i) corresponds to the (7,7) entry.
Recall that all the eigenvalues of a real symmetric matrix A are real.

Definition. The matrix A € R{ " is positive semidefinite, denoted A = 0, if all its
eigenvalues are nonnegative and positive definite, denoted A > 0, if all its eigenvalues are
positive.

To characterize positive semi-definiteness, we use the following fact from linear algebra:

Linear Algebra Fact. For any A € RI\", there exists an orthogonal matrix U (i.e. with
UTU = UUT = I,,) such that

A0 ... 0
a—v|® ™
0 0 ... A
Then Aq,..., A\, are the eigenvalues of A and
A = z”: Nugul
i=1
where uq, ..., u, are the columns of U. For any vector v € R", this gives that

n n
vl Av = E Avluul v = g Ni(uf v)?.
i—1 i=1

Observation 1. v'Av >0 forallv €R® & A\,...,\, >0
Proof. (<) Since ulv € R, (ufv)* > 0 and vTAv =30 Ni(ufv)* > 0.
(=) If A\; <0 for some j, then consider v = u;. Then

uj Au; = Z)\i(uiTuj)z =\; <0.
i=1

The last equality follows from the fact that {us,...,u,} are orthonormal. O
Observation 2. If A = 0, then vT Av = 0 if and only if v € ker(A).

Proof. (<) Clear. (=) Suppose 0 = vTAv = Y0 A" (ulv)?. For each i = 1,...,n,
Ai(ufv)? > 0 and their sum is zero. It follows that each summand, \;(u!v)? must be zero.
Therefore for each 7, either A\; = 0 or u! v = 0. Tt follows that

v € spang{u; : \; = 0} = (spang{u; : A; > 0})*.



Here we used the following useful fact:
Useful Fact. If ay,...,a, € Rygand ;" ,a; =0, thena; =... =a, =0.
Observation 3. A =0 < A € conv{xz! : x € R"}.

Proof. (<) If A € conv{zz” : x € R"}, then we can write A = Y, \iz;z] where \; > 0 and
> ;A = 1. Then for any v € R",

vTAv:Z)\vxxv—Z)\mv >0

(=) If A= 0, then A=>3"", Nuul where \; > 0. Then taking s = >_1" | \; gives

AZ (v/su;) (vVsug)

Here the coefficients \;/s are nonnegative and sum to one, writing A as a convex combination
of matrices of the form zz?. O

Let PSD,, denote the set of positive semidefinite matrices in R It follows from both
Observations 1 and 3 that PSD,, is a convex cone.
For any matrices A, B € R*" define

sym

n n

(A,B) = trace(AB) = ZZAUBU

i=1 j=1

Any linear functional on RL " has the form A +— (A, B) for some B € R ", Under this
identification of (RX")* Wlth Rx" the PSD cone is self-dual.

sym sym

Theorem. (PSD,,)* = PSD,,. That is, a matriz B € R is positive semidefinite if and
only if (A, B) >0 for all A € PSD,,.
Moreover, for A, B € PSD,,,

(A,B) =0 < rowspan(B) C ker(A).

Proof. (<) Suppose that (A, B) > 0 for all A € PSD,,. In particular, for any v € R",
A = vl is positive semidefinite so

(A,B) = (w',B) = trace(vv’B) = trace(v’ Bv) = v Bv > 0.

Since vI' Bv > 0 for all v € R", by Observation 1, B € PSD,,.
(=) If B € PSD,,, then B = Z;L=1 ﬂjijjT where 3; > 0 and {wy,...,w,} are orthonor-
mal. Then for real symmetric matrix A,

B) = ) Bi(Awuw]) = > Bl Aw;.
j=1 j=1

If A is positive semidefinite, each term ijij is nonnegative, giving that (4, B) > 0.



To prove the “moreover” statement, suppose that A, B are positive semidefinite and con-
sider the decomposition B = Z?Zl ijjw;fp as above. Then

(A,B)=0 & Buw Aw;=0forall j=1,...,n
& w;‘-Fij = ( for all j with 3; #0
& w; € ker(A) for all j with §; # 0
< rowspan(B) = spang{w, : §; # 0} C ker(A).

Question. Consider the 3 x 3 diagonal matrices
-1 -1 -1
B1 = 0 s BQ = -1 s and Bg = -1
0 0 -1

What are the faces of PSD3 exposed by the linear functionals A — (A, B;)? What are the
dimensions of these faces?

Answer. Since —B; is positive semidefinite, (A, By) = —(A, —B;) < 0 for all positive
semidefinite matrices A. Therefore the face exposed by B is the set of PSD matrices A for
which (A4, By) = —(A, —B;) = 0. Using the theorem above, this is the set of PSD matrices
with rowspan(B;) = spang{(1,0,0)} in the kernel. This is

{A € PSDs:(1,0,0) € ker(A)} = {(8 2) cAe PSDQ} .

Since PSD, has dimension (2;1) = 3, this face is 3-dimensional.

Similarly, since — B, is positive semidefinite, the face exposed by B, is the set of PSD ma-
trices A for which (A, By) = —(A, —Bs) = 0, which is the set of matrices with rowspan(Bs) =
spang{(1,0,0),(0,1,0)} in the kernel. This is

{A € PSD3 : (1,0,0), (O7 1,0) S ker(A)} = a € RZU

o OO
o O O
Q@ O O

This is just a one-dimensional ray.

Finally, the face exposed by A +— (A, Bs) is the set of positive semidefinite matrices A
with rowspan(B3) = spang{(1,0,0),(0,1,0),(0,0,1)} = R? in the kernel. This is just the
zero matrix:

{A € PSD;: (1,0,0),(0,1,0),(0,0,1) € ker(A)} =

o O O
o O O
o O O

which is zero-dimensional.



