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An important example of a convex cone is the cone of positive semidefinite (PSD) matri-
ces. This cone lives in the vector space of real symmetric matrices, V = Rn×n

sym , which has
dimension

(
n+1
2

)
= n(n+1)

2
. To see this, note that we can identify entries on the diagonal and

above with 2-element subsets of the set {diag, 1, 2, . . . , n}. Here {i, j} corresponds to the
(i, j) entry and (diag, i) corresponds to the (i, i) entry.

Recall that all the eigenvalues of a real symmetric matrix A are real.

Definition. The matrix A ∈ Rn×n
sym is positive semidefinite, denoted A � 0, if all its

eigenvalues are nonnegative and positive definite, denoted A � 0, if all its eigenvalues are
positive.

To characterize positive semi-definiteness, we use the following fact from linear algebra:

Linear Algebra Fact. For any A ∈ Rn×n
sym , there exists an orthogonal matrix U (i.e. with

UTU = UUT = In) such that

A = U


λ1 0 . . . 0
0 λ2 0
... . . . ...
0 0 . . . λn

UT .

Then λ1, . . . , λn are the eigenvalues of A and

A =
n∑

i=1

λiuiu
T
i

where u1, . . . , un are the columns of U . For any vector v ∈ Rn, this gives that

vTAv =
n∑

i=1

λiv
Tuiu

T
i v =

n∑
i=1

λi(u
T
i v)

2.

Observation 1. vTAv ≥ 0 for all v ∈ Rn ⇔ λ1, . . . , λn ≥ 0

Proof. (⇐) Since uTi v ∈ R, (uTi v)2 ≥ 0 and vTAv =
∑n

i=1 λi(u
T
i v)

2 ≥ 0.
(⇒) If λj < 0 for some j, then consider v = uj. Then

uTj Auj =
n∑

i=1

λi(u
T
i uj)

2 = λj < 0.

The last equality follows from the fact that {u1, . . . , un} are orthonormal. �

Observation 2. If A � 0, then vTAv = 0 if and only if v ∈ ker(A).

Proof. (⇐) Clear. (⇒) Suppose 0 = vTAv =
∑n

i=1 λ
n
i=1(u

T
i v)

2. For each i = 1, . . . , n,
λi(u

T
i v)

2 ≥ 0 and their sum is zero. It follows that each summand, λi(uTi v)2 must be zero.
Therefore for each i, either λi = 0 or uTi v = 0. It follows that

v ∈ spanR{uj : λj = 0} = (spanR{uj : λj > 0})⊥.
�



Here we used the following useful fact:

Useful Fact. If a1, . . . , an ∈ R≥0 and
∑n

i=1 ai = 0, then a1 = . . . = an = 0.

Observation 3. A � 0 ⇔ A ∈ conv{xxT : x ∈ Rn}.

Proof. (⇐) If A ∈ conv{xxT : x ∈ Rn}, then we can write A =
∑

i λixix
T
i where λi ≥ 0 and∑

i λi = 1. Then for any v ∈ Rn,

vTAv =
∑
i

λiv
Txix

T
i v =

∑
i

λi(x
T
i v)

2 ≥ 0

(⇒) If A � 0, then A =
∑n

i=1 λiuiu
T
i where λi ≥ 0. Then taking s =

∑n
i=1 λi gives

A =
n∑

i=1

λi
s
(
√
sui)(

√
sui)

T .

Here the coefficients λi/s are nonnegative and sum to one, writing A as a convex combination
of matrices of the form xxT . �

Let PSDn denote the set of positive semidefinite matrices in Rn×n
sym . It follows from both

Observations 1 and 3 that PSDn is a convex cone.
For any matrices A,B ∈ Rn×n

sym define

〈A,B〉 = trace(AB) =
n∑

i=1

n∑
j=1

AijBij.

Any linear functional on Rn×n
sym has the form A 7→ 〈A,B〉 for some B ∈ Rn×n

sym . Under this
identification of (Rn×n

sym )∗ with Rn×n
sym , the PSD cone is self-dual.

Theorem. (PSDn)
∗ = PSDn. That is, a matrix B ∈ Rn×n

sym is positive semidefinite if and
only if 〈A,B〉 ≥ 0 for all A ∈ PSDn.

Moreover, for A,B ∈ PSDn,

〈A,B〉 = 0 ⇔ rowspan(B) ⊆ ker(A).

Proof. (⇐) Suppose that 〈A,B〉 ≥ 0 for all A ∈ PSDn. In particular, for any v ∈ Rn,
A = vvT is positive semidefinite so

〈A,B〉 = 〈vvT , B〉 = trace(vvTB) = trace(vTBv) = vTBv ≥ 0.

Since vTBv ≥ 0 for all v ∈ Rn, by Observation 1, B ∈ PSDn.
(⇒) If B ∈ PSDn, then B =

∑n
j=1 βjwjw

T
j where βj ≥ 0 and {w1, . . . , wn} are orthonor-

mal. Then for real symmetric matrix A,

〈A,B〉 =
n∑

j=1

βj〈A,wjw
T
j 〉 =

n∑
j=1

βjw
T
j Awj.

If A is positive semidefinite, each term wT
j Awj is nonnegative, giving that 〈A,B〉 ≥ 0.



To prove the “moreover” statement, suppose that A,B are positive semidefinite and con-
sider the decomposition B =

∑n
j=1 βjwjw

T
j as above. Then

〈A,B〉 = 0 ⇔ βjw
T
j Awj = 0 for all j = 1, . . . , n

⇔ wT
j Awj = 0 for all j with βj 6= 0

⇔ wj ∈ ker(A) for all j with βj 6= 0

⇔ rowspan(B) = spanR{wj : βj 6= 0} ⊆ ker(A).

�

Question. Consider the 3× 3 diagonal matrices

B1 =

−1 0
0

 , B2 =

−1 −1
0

 , and B3 =

−1 −1
−1

 .

What are the faces of PSD3 exposed by the linear functionals A 7→ 〈A,Bi〉? What are the
dimensions of these faces?

Answer. Since −B1 is positive semidefinite, 〈A,B1〉 = −〈A,−B1〉 ≤ 0 for all positive
semidefinite matrices A. Therefore the face exposed by B1 is the set of PSD matrices A for
which 〈A,B1〉 = −〈A,−B1〉 = 0. Using the theorem above, this is the set of PSD matrices
with rowspan(B1) = spanR{(1, 0, 0)} in the kernel. This is

{A ∈ PSD3 : (1, 0, 0) ∈ ker(A)} =

{(
0 0

0 Ã

)
: Ã ∈ PSD2

}
.

Since PSD2 has dimension
(
2+1
2

)
= 3, this face is 3-dimensional.

Similarly, since −B2 is positive semidefinite, the face exposed by B2 is the set of PSD ma-
trices A for which 〈A,B2〉 = −〈A,−B2〉 = 0, which is the set of matrices with rowspan(B2) =
spanR{(1, 0, 0), (0, 1, 0)} in the kernel. This is

{A ∈ PSD3 : (1, 0, 0), (0, 1, 0) ∈ ker(A)} =


0 0 0
0 0 0
0 0 a

 : a ∈ R≥0

 .

This is just a one-dimensional ray.
Finally, the face exposed by A 7→ 〈A,B3〉 is the set of positive semidefinite matrices A

with rowspan(B3) = spanR{(1, 0, 0), (0, 1, 0), (0, 0, 1)} = R3 in the kernel. This is just the
zero matrix:

{A ∈ PSD3 : (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ ker(A)} =


0 0 0
0 0 0
0 0 0

 ,

which is zero-dimensional.


