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From last time, we take V to be a vector space over R, V ∗ to be the dual vector space of
linear functionals ` : V → R. For any convex set C ⊆ V , we say that ` ∈ V ∗ exposes the
face F ⊆ C where

F = {v ∈ C : `(v) ≥ `(w) for all w ∈ C}.
Many linear functions give the same face. For example, multiplying ` by a positive scalar
results in the same face. The question we start with today is: what is this collection of linear
functions?

Definition. Given a convex set C ⊂ V and point v ∈ C, the (outer) normal cone of C at
v is

NC(v) = {` ∈ V ∗ : `(v) ≥ `(w) for all w ∈ C},
and the (outer) normal cone of C at a face F is

NC(F ) =
⋂
v∈F

NC(v) = {` ∈ V ∗ : `(v) ≥ `(w) for all v ∈ F,w ∈ C}.

Example. Consider the square C = [−1, 1]2 ⊂ R2 and the points u = (1, 1), v = (0, 1), and
w = (0, 0). Note that any linear function ` : R2 → R has the form `(x, y) = ax+ by for some
a, b ∈ R. This explicitly identifies (R2)∗ with R2 via `↔ (a, b). Then computing the normal
cones at these points we find:

NC(u) = {`(x, y) = ax+ by : a ≥ 0, b ≥ 0} ∼= R2
≥0

NC(v) = {`(x, y) = ax+ by : a = 0, b ≥ 0} ∼= {0} × R≥0
NC(w) = {`(x, y) = ax+ by : a = 0, b = 0} ∼= {(0, 0)}

Proposition. The normal cone NC(v) ⊂ V ∗ is convex.

Proof. Let `1, `2 ∈ NC(v) and λ ∈ [0, 1]. To show λ`1 + (1 − λ)`2 ∈ NC(v), we take any
w ∈ C. By definition `i(v) ≥ `i(w). Scaling and adding these inequalities appropriately we
find that

λ`(v) + (1− λ)`2(v) ≥ λ`1(w) + (1− λ)`2(w).
Since this holds for all w, λ`1 + (1− λ)`2 ∈ NC(v). �

Note that the normal cone NC(v) is also invariant under nonnegative scaling, i.e. for any
` ∈ V∗, we have ` ∈ NC(v)⇔ λ` ∈ NC(v) for λ ∈ R≥0. This together with convexity shows
that NC(v) is a convex cone (and justifies its name).

(Aside on convex cones)

Definition. A subset K ⊆ V is a convex cone if K is convex and invariant under non-
negative scaling (i.e. R≥0K ⊆ K). Equivalently if K if for all u, v ∈ K and λ, µ ∈ R≥0, the
point λu+ µv belongs to K.

For much of the terminology of convex sets has a conical version.



Definition. A conic combination of points v1, . . . , vk ∈ V is a point of the form
∑k

i=1 λivi
where λi ≥ 0 and the conical hull of a set S ⊆ V is the set of all conic combinations of
finitely-many points from S:{

k∑
i=1

λivi : k ∈ N, v1, . . . , vk ∈ S, λ1, . . . , λk ∈ R≥0

}
.

Another natural cone associated to a convex set at a point is the tangent cone.

Definition. The tangent cone of C at v is

TC(v) = {w ∈ V : v + εw ∈ C for sufficiently small ε > 0}.

Note that TC(v) is also a convex cone. If w1, w2 ∈ TC(v), then v+ε1w1 and v+ε2w2 belong
to C for some ε1, ε2 > 0. Then for any λ, µ ∈ R≥0 we need to show λw1+µw2 ∈ TC(v). This
can be done for finding ε so that the point v + ε(λw1 + µw2) belongs to the convex hull of
the three points v, v + ε1w1, v + ε2w2.

Example. Let’s again consider the square C = [−1, 1]2 ⊂ R2 and the points u = (1, 1),
v = (0, 1), and w = (0, 0). Then we find that

TC(u) = (R≤0)2

TC(v) = R× R≤0
TC(w) = R2.

It gets slightly more interesting if instead a point on the boundary of the disk

C̃ = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
For v = (0, 1), we find that the tangent cone is not closed. Specifically,

TC̃(v) = {0, 0} ∪ (R× R<0).

Question. What are the normal and tangent cones of the following convex sets?:
• a slanty quadrilateral where v is the top right vertex
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• a cylinder C = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1,−1 ≤ z ≤ 1} at each of the three points
(1, 0, 1), (1, 0, 0) and (0, 0, 1)

For every point w ∈ TC(v) and every ` ∈ NC(v), we see that `(w) ≤ 0. Indeed if v+εw ∈ C
and `(w) > 0, then

`(v + εw) = `(v) + ε`(w) > `(v)



which implies that ` 6∈ NC(v).
When dim(V ) <∞, this becomes if and only if (up to closure). Then −TC(v) and NC(v)

are dual cones.

Definition. The dual cone of a convex cone K ⊆ V is

K∗ = {` ∈ V ∗ : `(v) ≥ 0 for all v ∈ K}.

One can check that this is a convex cone in V ∗.

Example. Consider the nonnegative orthant K = (R≥0)n We can write linear functions on
Rn as `(x) =

∑n
i=1 aixi. Then

`(x) =
n∑

i=1

aixi ≥ 0 on K ⇔ a1 ≥ 0, . . . , an ≥ 0.

Certainly if each ai is nonnegative, then for any p ∈ (R≥0)n, `(p) =
∑n

i=1 aipi which is
nonnegative, since aipi ≥ 0. Conversely, if ai < 0 for some ai, then the evaluation at the ith
coordinate vector ei is negative, `(ei) = ai < 0. Therefore

K∗ = {`(x) =
n∑

i=1

aixi : a1 ≥ 0, . . . , an ≥ 0} ∼= (R≥0)n.

So the dual cone of the nonnegative orthant is again the nonnegative orthant. When K and
K∗ are the same (or more precisely, linearly isomorphic) we say that K is “self-dual”.

What about the dual of the dual, (K∗)∗?

First, let’s remark that for vector spaces, there is a natural linear isomorphism between
V and ((V ∗)∗), namely

v ∈ V ↔ ` 7→ `(v) (a linear functional on V ∗).

From now on we will identify V and (V ∗)∗ in this way.
With this out of the way, (K∗)∗ is a convex cone in V and we see immediately that it

contains K:
K ⊆ (K∗)∗ = {v ∈ V : `(v) ≥ 0 for all ` ∈ K∗}.

When dim(V ) = n < ∞, then V = Rn comes equipped with the Euclidean topology.
Then ((K∗)∗ is closed and we see that up to closure, all the nonnegative linear functions on
K∗ come from points evaluations at points in K.

Proposition. If dim(V ) <∞ and K is closed, then (K∗)∗ = K.



Question. Consider the real vector space V = R[x]≤2 of univariate polynomials of degree≤ 2
and the convex cone of nonnegative polynomails

Pos = {f = ax2 + bx+ c : f(p) ≥ 0 for all p ∈ R}.
What is (Pos)∗?


