Math 591 - Real Algebraic Geometry and Convex Optimization

Lecture 2: Cones and Duality
Cynthia Vinzant, Spring 2019

From last time, we take V to be a vector space over \mathbb{R}, V^{*} to be the dual vector space of linear functionals $\ell: V \rightarrow \mathbb{R}$. For any convex set $C \subseteq V$, we say that $\ell \in V^{*}$ exposes the face $F \subseteq C$ where

$$
F=\{v \in C: \ell(v) \geq \ell(w) \text { for all } w \in C\}
$$

Many linear functions give the same face. For example, multiplying ℓ by a positive scalar results in the same face. The question we start with today is: what is this collection of linear functions?

Definition. Given a convex set $C \subset V$ and point $v \in C$, the (outer) normal cone of C at v is

$$
N_{C}(v)=\left\{\ell \in V^{*}: \ell(v) \geq \ell(w) \text { for all } w \in C\right\}
$$

and the (outer) normal cone of C at a face F is

$$
N_{C}(F)=\bigcap_{v \in F} N_{C}(v)=\left\{\ell \in V^{*}: \ell(v) \geq \ell(w) \text { for all } v \in F, w \in C\right\}
$$

Example. Consider the square $C=[-1,1]^{2} \subset \mathbb{R}^{2}$ and the points $u=(1,1), v=(0,1)$, and $w=(0,0)$. Note that any linear function $\ell: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has the form $\ell(x, y)=a x+b y$ for some $a, b \in \mathbb{R}$. This explicitly identifies $\left(\mathbb{R}^{2}\right)^{*}$ with \mathbb{R}^{2} via $\ell \leftrightarrow(a, b)$. Then computing the normal cones at these points we find:

$$
\begin{aligned}
N_{C}(u) & =\{\ell(x, y)=a x+b y: a \geq 0, b \geq 0\} \cong \mathbb{R}_{\geq 0}^{2} \\
N_{C}(v) & =\{\ell(x, y)=a x+b y: a=0, b \geq 0\} \cong\{0\} \times \mathbb{R}_{\geq 0} \\
N_{C}(w) & =\{\ell(x, y)=a x+b y: a=0, b=0\} \cong\{(0,0)\}
\end{aligned}
$$

Proposition. The normal cone $N_{C}(v) \subset V^{*}$ is convex.
Proof. Let $\ell_{1}, \ell_{2} \in N_{C}(v)$ and $\lambda \in[0,1]$. To show $\lambda \ell_{1}+(1-\lambda) \ell_{2} \in N_{C}(v)$, we take any $w \in C$. By definition $\ell_{i}(v) \geq \ell_{i}(w)$. Scaling and adding these inequalities appropriately we find that

$$
\left.\lambda \ell_{(} v\right)+(1-\lambda) \ell_{2}(v) \geq \lambda \ell_{1}(w)+(1-\lambda) \ell_{2}(w) .
$$

Since this holds for all $w, \lambda \ell_{1}+(1-\lambda) \ell_{2} \in N_{C}(v)$.
Note that the normal cone $N_{C}(v)$ is also invariant under nonnegative scaling, i.e. for any $\ell \in \mathcal{V}^{*}$, we have $\ell \in N_{C}(v) \Leftrightarrow \lambda \ell \in N_{C}(v)$ for $\lambda \in \mathbb{R}_{\geq 0}$. This together with convexity shows that $N_{C}(v)$ is a convex cone (and justifies its name).
(Aside on convex cones)
Definition. A subset $K \subseteq V$ is a convex cone if K is convex and invariant under nonnegative scaling (i.e. $\mathbb{R}_{\geq 0} K \subseteq K$). Equivalently if K if for all $u, v \in K$ and $\lambda, \mu \in \mathbb{R}_{\geq 0}$, the point $\lambda u+\mu v$ belongs to K.

For much of the terminology of convex sets has a conical version.

Definition. A conic combination of points $v_{1}, \ldots, v_{k} \in V$ is a point of the form $\sum_{i=1}^{k} \lambda_{i} v_{i}$ where $\lambda_{i} \geq 0$ and the conical hull of a set $S \subseteq V$ is the set of all conic combinations of finitely-many points from S :

$$
\left\{\sum_{i=1}^{k} \lambda_{i} v_{i}: k \in \mathbb{N}, v_{1}, \ldots, v_{k} \in S, \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}_{\geq 0}\right\}
$$

Another natural cone associated to a convex set at a point is the tangent cone.
Definition. The tangent cone of C at v is

$$
T_{C}(v)=\{w \in V: v+\epsilon w \in C \text { for sufficiently small } \epsilon>0\}
$$

Note that $T_{C}(v)$ is also a convex cone. If $w_{1}, w_{2} \in T_{C}(v)$, then $v+\epsilon_{1} w_{1}$ and $v+\epsilon_{2} w_{2}$ belong to C for some $\epsilon_{1}, \epsilon_{2}>0$. Then for any $\lambda, \mu \in \mathbb{R}_{\geq 0}$ we need to show $\lambda w_{1}+\mu w_{2} \in T_{C}(v)$. This can be done for finding ϵ so that the point $v+\epsilon\left(\lambda w_{1}+\mu w_{2}\right)$ belongs to the convex hull of the three points $v, v+\epsilon_{1} w_{1}, v+\epsilon_{2} w_{2}$.

Example. Let's again consider the square $C=[-1,1]^{2} \subset \mathbb{R}^{2}$ and the points $u=(1,1)$, $v=(0,1)$, and $w=(0,0)$. Then we find that

$$
\begin{aligned}
T_{C}(u) & =\left(\mathbb{R}_{\leq 0}\right)^{2} \\
T_{C}(v) & =\mathbb{R} \times \mathbb{R}_{\leq 0} \\
T_{C}(w) & =\mathbb{R}^{2}
\end{aligned}
$$

It gets slightly more interesting if instead a point on the boundary of the disk

$$
\tilde{C}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\} .
$$

For $v=(0,1)$, we find that the tangent cone is not closed. Specifically,

$$
T_{\tilde{C}}(v)=\{0,0\} \cup\left(\mathbb{R} \times \mathbb{R}_{<0}\right)
$$

Question. What are the normal and tangent cones of the following convex sets?:

- a slanty quadrilateral where v is the top right vertex

- a cylinder $C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1,-1 \leq z \leq 1\right\}$ at each of the three points $(1,0,1),(1,0,0)$ and $(0,0,1)$

For every point $w \in T_{C}(v)$ and every $\ell \in N_{C}(v)$, we see that $\ell(w) \leq 0$. Indeed if $v+\epsilon w \in C$ and $\ell(w)>0$, then

$$
\ell(v+\epsilon w)=\ell(v)+\epsilon \ell(w)>\ell(v)
$$

which implies that $\ell \notin N_{C}(v)$.
When $\operatorname{dim}(V)<\infty$, this becomes if and only if (up to closure). Then $-\overline{T_{C}(v)}$ and $N_{C}(v)$ are dual cones.

Definition. The dual cone of a convex cone $K \subseteq V$ is

$$
K^{*}=\left\{\ell \in V^{*}: \ell(v) \geq 0 \text { for all } v \in K\right\}
$$

One can check that this is a convex cone in V^{*}.

Example. Consider the nonnegative orthant $K=\left(\mathbb{R}_{\geq 0}\right)^{n}$ We can write linear functions on \mathbb{R}^{n} as $\ell(x)=\sum_{i=1}^{n} a_{i} x_{i}$. Then

$$
\ell(x)=\sum_{i=1}^{n} a_{i} x_{i} \geq 0 \text { on } K \Leftrightarrow a_{1} \geq 0, \ldots, a_{n} \geq 0
$$

Certainly if each a_{i} is nonnegative, then for any $p \in\left(\mathbb{R}_{\geq 0}\right)^{n}, \ell(p)=\sum_{i=1}^{n} a_{i} p_{i}$ which is nonnegative, since $a_{i} p_{i} \geq 0$. Conversely, if $a_{i}<0$ for some a_{i}, then the evaluation at the i th coordinate vector e_{i} is negative, $\ell\left(e_{i}\right)=a_{i}<0$. Therefore

$$
K^{*}=\left\{\ell(x)=\sum_{i=1}^{n} a_{i} x_{i}: a_{1} \geq 0, \ldots, a_{n} \geq 0\right\} \cong\left(\mathbb{R}_{\geq 0}\right)^{n}
$$

So the dual cone of the nonnegative orthant is again the nonnegative orthant. When K and K^{*} are the same (or more precisely, linearly isomorphic) we say that K is "self-dual".

What about the dual of the dual, $\left(K^{*}\right)^{*}$?
First, let's remark that for vector spaces, there is a natural linear isomorphism between V and $\left(\left(V^{*}\right)^{*}\right)$, namely

$$
v \in V \quad \leftrightarrow \quad \ell \mapsto \ell(v) \quad \text { (a linear functional on } V^{*} \text {). }
$$

From now on we will identify V and $\left(V^{*}\right)^{*}$ in this way.
With this out of the way, $\left(K^{*}\right)^{*}$ is a convex cone in V and we see immediately that it contains K :

$$
K \subseteq\left(K^{*}\right)^{*}=\left\{v \in V: \ell(v) \geq 0 \text { for all } \ell \in K^{*}\right\}
$$

When $\operatorname{dim}(V)=n<\infty$, then $V=\mathbb{R}^{n}$ comes equipped with the Euclidean topology. Then $\left(\left(K^{*}\right)^{*}\right.$ is closed and we see that up to closure, all the nonnegative linear functions on K^{*} come from points evaluations at points in K.

Proposition. If $\operatorname{dim}(V)<\infty$ and K is closed, then $\left(K^{*}\right)^{*}=K$.

Question. Consider the real vector space $V=\mathbb{R}[x]_{\leq 2}$ of univariate polynomials of degree ≤ 2 and the convex cone of nonnegative polynomails

$$
\operatorname{Pos}=\left\{f=a x^{2}+b x+c: f(p) \geq 0 \text { for all } p \in \mathbb{R}\right\} .
$$

What is (Pos)*?

