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Recall that a spectrahedron is a set C ⊆ Rn of the form

C = {x ∈ Rn : A0 +
n∑
i=1

xiAi � 0}

where A0, A1, . . . , An ∈ Rd×d
sym. Since the cone of PSD matrices is convex and semialgebraic,

C is also. One of the motivating questions for today is:

Question. What convex semialgebraic sets are spectrahedra?

Let’s consider some examples:

Example. Consider the disk {(x, y) ∈ R2 : x2 + y2 ≤ 1}. This is convex and semialgebraic.
In this case, we see that this is a spectrahedron by writing down a description{

(x, y) ∈ R2 :

(
1− x y
y 1 + x

)}
.

Example. One of our examples from the beginning of class was the union of the disk and
the square {(x, y) ∈ R2 : x2 + y2 ≤ 1} ∪ {(x, y) ∈ R2 : 0 ≤ x ≤ 2,−1 ≤ y ≤ 1}. This is not
a spectrahedron because it is not a basic closed semialgebraic set.

Indeed, the matrix A0+
∑n

i=1 xiAi is positive semidefinite if and only if all of its principal
minors are nonnegative. This gives a description of C as a the set of points x satisfying
finitely-many polynomial inequalities (i.e. as a basic closed semialgebraic set).

Example. Consider the fourth norm ball {(x, y) ∈ R2 : x4+y4 ≤ 1}, which is a convex, basic
closed semialgebraic set. It’s not clear whether or not this has a description as spectrahedron.

To summarize, are the following set spectrahedra?

YES NO ??

To address the last example, we will consider a special property of the algebraic boundary
of spectrahedra. Note that the polynomial f = det(A0 +

∑n
i=1 xiAi) necessarily vanishes on

the boundary of the set C.
For simplicity, let us suppose that the origin belongs to the interior of C and the matrix A0

is positive definite. Then we can write A0 = UUT for some full rank matrix U ∈ Rd×d. Then
for any vector v ∈ Rn, consider the univariate polynomial f(tv) = f(tv1, . . . , tvn) obtained



by restricting f to the line through the origin in direction v. Then

f(tv) = det

(
A0 +

n∑
i=1

tviAi

)

= det

(
UU−1(A0 +

n∑
i=1

tviAi)U
−TUT

)

= det(U) det

(
U−1A0U

−T + t · U−1

n∑
i=1

viAiU
−T

)
det(UT )

= det(U)2 det (I + tB)

where B = U−1(
∑n

i=1 viAi)U
−T . Since B is a real symmetric matrix, its eigenvalues are real.

In particular, the roots of f(tv) are −1/λ1, . . . ,−1/λd where λ1, . . . , λd are the eigenvalues
of B. In particular these are all real.

Corollary. If C = {x ∈ Rn : A0 +
∑n

i=1 xiAi} where Ai ∈ Rd×d
sym and A0 is positive definite

and g is the minimal polynomial vanishing on the boundary of C, then for every v ∈ Rn, the
polynomial g(tv) ∈ R[t] is real rooted.

Proof. The polynomial g must be a factor of f = det(A0 +
∑n

i=1 xiAi). Therefore for every
v ∈ Rn, g(tv) is a factor of f(tv) and must also be real rooted. �

Example. For the example f = 1 − x2 − y2 and v = (v1, v2) ∈ R2, we see that f(tv) =

f(tv1, tv2) = 1− t2(v21 + v22). When v 6= (0, 0), this has roots t = ±1/
√
v21 + v22 ∈ R.

Non-example. On the other hand, consider the polynomial f = 1− x4− y4, whose variety
bounds the fourth-norm ball consider above. For v = (v1, v2) ∈ R2, we see that f(tv) =

f(tv1, tv2) = 1 − t4(v41 + v42). When v 6= (0, 0), this has roots t = ±ω/ 4
√
v41 + v42 ∈ R where

ω ∈ {±1,±i}. This polynomial is not real rooted! Therefore the fourth-norm ball is not a
spectrahedron.

Example. The following is a picture of the variety VR(f) of a polynomial f ∈ R[x, y] of
degree 4 with the the property that f(0, 0) 6= 0 and f(tv) is real-rooted for all v ∈ R2.

Any line through the origin intersects VR(f) in four real points.

Polynomials with this “real-rootedness” property are very special. To discuss them fur-
ther we move the setting of homogeneous polynomials. Recall that a polynomial f =∑

α cαx
α1
1 · · ·xαn

n is homogeneous of degree d if
∑n

i=1 αi = d for all α with cα 6= 0. In



particular, f then has the property that f(λx1, . . . , λxn) = λdf(x1, . . . , xn). We will use
R[x1, . . . , xn]d to denote the space of homogeneous polynomials of degree d.

Definition. A polynomial f ∈ R[x1, . . . , xn]d is hyperbolic with respect to e ∈ Rn if
f(e) 6= 0 and for every v ∈ Rn, the polynomial f(te− v) ∈ R[t] is real rooted.

Since f is homogeneous, an equivalent condition is that f(e− sv) ∈ R[s] is real rooted for
all v ∈ Rn. To see this note that

f(e− sv) = f

(
s ·
(
1

s
· e− v

))
= sdf

(
1

s
· e− v

)
So the roots of f(e − sv) are the reciprocals of the roots of f(te − v). In particular, one is
real rooted if and only if the other is.

Example. The polynomial x2 + y2 − z2 is hyperbolic with respect to the vector (0, 0, 1).

We see that any vertical line intersects VR(x2 + y2 − z2) in two real points (which is a single
double point when the line passes through the origin).

Example. The polynomial f = det(A(x)) if hyperbolic with respect to e ∈ Rn if A(x) =∑n
i=1 xiAi where Ai ∈ Rd×d

sym and A(e) is positive definite. Just as before, if A(e) = UUT ,
then

f(te− v) = det(tA(e)− A(v)) = det(U)2 · det(tI − U−1A(v)U−T ),

whose roots are the eigenvalues of the real symmetric matrix U−1A(v)U−T .

Remark. The example above shows that if K is a spectrahedral cone, then the minimal
polynomial vanishing on the boundary of K is hyperbolic with respect to any point in the
interior of K. This shows that we have some flexibility in the choice of point e.

Before making this precise, we need a little more terminology.

Definition. If f ∈ R[x1, . . . , xn]d is hyperbolic with respect to e ∈ Rn, then for any x ∈ Rn,
we call the roots

λ1(x) ≥ . . . ≥ λd(x)

of f(te− x) the eigenvalues of x (with respect to f and e).

Definition. The hyperbolicity cone of f with respect to e is

Ce(f) = {x ∈ Rn : all roots of f(te− x) are nonnegative} = {x ∈ Rn : λd(x) ≥ 0}.

We will see that this is actually a convex cone (justify its name).



Example. Consider f =
∏n

i=1 xi and e = (1, . . . , 1). Then f is hyperbolic with respect to e
and for any x ∈ Rn,

eigenvalues of x = roots of f(te− x) =
n∏
i=1

(t− xi)

= {x1, . . . , xn}
The hyperbolicity cone is the set of x ∈ Rn for which all of the eigenvalues are nonnegative
which is (R≥0)

n.

Example. Consider the polynomial

f = det


x11 x12 . . . x1d
x12 x22 . . . x2d
... . . .
x1d . . . xdd


in R[xij : 1 ≤ i ≤ j ≤ d]d and the point e corresponding to the identity matrix (with xii = 1
and xij = 0 for i 6= j). Then f is hyperbolic with respect to e and for any point X ∈ Rd×d

sym,

eigenvalues of X (w.r.t f) = roots of f(te− x) = det(tI −X)

= eigenvalues of X (as a matrix)

The hyperbolicity cone is the set of X ∈ Rd×d
sym for which all of the eigenvalues are nonnegative

which is the convex cone of positive semidefinite matrix PSDd.

Both of these examples suggest the following theorem, which was proved by Gårding in
1959. Gårding started studying hyperbolic polynomials in the context of partial differential
equations, which inspired their name.

Theorem. If f is hyperbolic with respect to e, then Ce(f) is a convex cone and f is hyperbolic
with respect to any point in its interior.

We discuss the proof of this next class. An important lemma will be the following char-
acterization of the hyperbolicity cone.

Lemma. The interior of Ce(f) is the connected component of Rn\VR(f) containing e.

For example, if f = x2+y2−z2 and e = (0, 0, 1), then removing VR(f) from R3, leaves three
connected components (two open, convex cones and the rest). The component containing e
is the open convex cone {(x, y, z) ∈ R3 : z >

√
x2 + y2}.

One of the main motivations for studying hyperbolic polynomial and their hyperbolicity
cones is that they provide a natural generalization for linear and semidefinite programming.

Definition. A hyperbolic program is a convex optimization problem of the form
min〈c, x〉 such that x ∈ Ce(f) and 〈ai, x〉 = bi for i = 1, . . . ,m.

When f =
∏n

i=1 xi and Ce(f) = (R≥0)
n, then this is a linear program. When f = det(X)

and Ce(f) = PSDd, then this is a semidefinite program. We will see that some of the
techniques for solving linear and semidefinite programs extend to this more general context
and can be understood by understanding the roots of univariate polynomials.
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