Math 591 - Real Algebraic Geometry and Convex Optimization

Lecture 16: Algebraic boundaries and optimization
Cynthia Vinzant, Spring 2019
For this lecture, we will take K to be a full-dimensional, pointed (i.e. containing no lines), semialgebraic, convex cone inside of a finite dimensional real vector space (like \mathbb{R}^{n}) so that the dual cone K^{*} is also a full-dimensional, pointed, semialgebraic, convex cone

Recall that the algebraic boundary of K, denoted $\partial_{\text {alg }} K$ is the Zariski-closure of the Euclidean boundary of $K, \partial K$. Since K is a full-dimensional cone and not the whole space, the boundary ∂K is a semi-algebraic set of codimension one. Then the algebraic boundary $\partial_{\text {alg }} K$ also has codimension one and is defined by a single polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=0$.

Example. Consider the convex cone

$$
K=\left\{(x, y, z) \in \mathbb{R}^{3}: f \geq 0, z \geq x, z \geq 0\right\}
$$

where $f=(x+z)(x-z)^{2}-y^{2} z$. Then the algebraic boundary of K is the surface $V_{\mathbb{R}}(f)$.
The condition that the plane $\{(x, y, z): a x+b y+c z\}$ is tangent to ∂K at some point imposes conditions on the coefficients (a, b, c). Namely (a, b, c) must belong to the boundary of the dual cone and thus the algebraic boundary of the dual cone,

$$
\partial_{\mathrm{alg}}\left(K^{*}\right)=V_{\mathbb{R}}\left(4 a^{4}+13 a^{2} b^{2}+32 b^{4}-4 a^{3} c+18 a b^{2} c-27 b^{2} c^{2}\right) \cup V_{\mathbb{R}}(a+c)
$$

This is the union of the dual varieties $V(f)^{*}$ and $V(x-z, y)^{*}$.
Application to optimization. One can think of the algebraic boundary of the dual cone K^{*} as simultaneously solving the Lagrange multiplier equations for a family of optimization problems over K.

Take $c, a \in\left(\mathbb{R}^{n}\right)^{*} \cong \mathbb{R}^{n}$ such that the intersection $K \cap\{x:\langle a, x\rangle=1\}$ is compact, and consider the optimization problem

$$
p^{*}=\min \langle c, x\rangle \text { such that }\langle a, x\rangle=1, x \in K .
$$

Here p^{*} is the optimal value.
Proposition. $c-p^{*}$ a belongs to the boundary of the dual cone K^{*}.
Proof. We will show this by showing that $c-\lambda a$ belongs to K^{*} if and only if $\lambda \leq p^{*}$.
Let $x \in K \backslash\{0\}$. Since $K \cap\{y:\langle a, y\rangle=1\}$ in compact, $\langle a, x\rangle$ is strictly positive, and we can consider $\tilde{x}=\left(\frac{1}{\langle a, x\rangle}\right) \cdot x$ which belongs to K and satisfies $\langle a, \tilde{x}\rangle=1$. Then

$$
p^{*} \leq\langle c, \tilde{x}\rangle=\frac{1}{\langle a, x\rangle} \cdot\langle c, x\rangle
$$

If $\lambda \leq p^{*}$, then multiplying this inequality by $\langle a, x\rangle$ shows that $\lambda\langle a, x\rangle \leq\langle c, x\rangle$. Therefore $\langle c-\lambda a, x\rangle \geq 0$ for all $x \in K$, meaning that $c-\lambda a \in K^{*}$.

Similarly, if $p^{*}<\lambda$, then consider the point $x \in K$ achieving the minimum p^{*}. That is, for which $\langle a, x\rangle=1$ and $\langle c, x\rangle=p^{*}<\lambda$. Then $\langle c-\lambda a, x\rangle=\langle c, x\rangle-\lambda\langle a, x\rangle=p^{*}-\lambda<0$. This shows that $c-\lambda a$ does not belong to K^{*}.

Putting this together we see that $c-p^{*} a$ belongs to K^{*} but $c-\left(p^{*}+\epsilon\right) a$ does not belong to K^{*} for $\epsilon>0$. Therefore $c-p^{*} a$ is on the boundary of K^{*}
Corollary. If g is a polynomial that vanishes on ∂K^{*}, then the optimal value p^{*} is a root of the univariate polynomial $g(c-t a) \in \mathbb{R}[t]$.

Example. Consider the cone $K=\left\{(x, y, z) \in \mathbb{R}^{3}:(x+z)(x-z)^{2}-y^{2} z \geq 0, z \geq x, z \geq 0\right\}$ from above and the optimization problem

$$
p^{*}=\min a x+b y \text { such that }(x, y, z) \in K, z=1
$$

The polynomial $g=\left(4 a^{4}+13 a^{2} b^{2}+32 b^{4}-4 a^{3} c+18 a b^{2} c-27 b^{2} c^{2}\right) \cdot(a+c)$ vanishes on the boundary of the dual cone K^{*}, meaning that if p^{*} is the optimal value given by the objective function $a x+b y$, then $g\left(a, b,-p^{*}\right)=0$. This lets us solve for p^{*} in terms of a and b :

$$
p^{*} \in\left\{a, \frac{-2 a^{3}+9 a b^{2} \pm 2 \sqrt{\left(a^{2}+6 b^{2}\right)^{3}}}{27 b^{2}}\right\}
$$

To visualize this in the $c=1$ plane, we note that since g is homogeneous, $g\left(a, b,-p^{*}\right)=0$ if and only if $g\left(\frac{-a}{p^{*}}, \frac{-b}{p^{*}}, 1\right)=0$ meaning that $-1 / p^{*}$ is a root of the univariate polynomial $g(t a, t b, 1) \in \mathbb{R}[t]$.

For example, for $(a, b)=(1,2)$, the minimal value of $a x+b y$ is $p^{*}=-71 / 27$. The line $1 x+2 y=-71 / 27$ is tangent to the boundary of K in the plane $z=1$. Moreover, for $t=-71 / 27$, the point $(t, 2 t, 1)$ belongs to the algebraic boundary of K^{*}, shown below in the plane $c=1$.

By intersecting with an affine plane, we can visualize a three-dimensional cone via a two-dimensional convex set. Similarly, we can visualize a four-dimensional cone via a threedimensional set.

Example. Consider the cone

$$
\partial_{\mathrm{alg}} K=\left\{(t, x, y, z) \in \mathbb{R}^{4}:\left(\begin{array}{ccc}
t & x & y \\
x & t & z \\
y & z & t
\end{array}\right) \succeq 0\right\}
$$

The algebraic boundary of K is given by the determinant of the defining 3×3 matrix

$$
\partial_{\mathrm{alg}} K=V\left(\operatorname{det}\left(\begin{array}{lll}
t & x & y \\
x & t & z \\
y & z & t
\end{array}\right)\right)=V\left(t^{3}-t\left(x^{2}+y^{2}+z^{2}\right)+2 x y z\right)
$$

This hypersurface is singular alone the lines spanned by each of the four points $(x, y, z, t)=$ $(1,1,1,1),(1,-1,-1,1),(-1,1,-1,1)$, and $(-1,-1,1,1)$. The algebraic boundary of the
dual cone is the dual hypersurface of $\partial_{\text {alg }} K$ along with the four hyperplanes dual to these lines:

$$
\partial_{\mathrm{alg}}\left(K^{*}\right)=\left(\partial_{\mathrm{alg}} K\right)^{*} \cup \text { four hyperplanes }=V(g)
$$

where
$g=\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}-2 a b c d\right)(a+b+c+d)(a-b-c+d)(-a+b-c+d)(-a-b+c+d)$.
The intersection of K with the plane $t=1$ along with the variety of the quartic and one linear factor of g in the plane $d=1$ is shown here:

Consider the minimization problem

$$
p^{*}=\min a x+b y+c z \text { such that }(x, y, z, 1) \in K .
$$

Despite the quartic factor of g, the roots of the polynomial $g(a, b, c,-t)$ are rational in a, b, c. Namely we find that

$$
p^{*} \in\left\{\frac{-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2}}{2 a b c}, a+b+c, a-b-c,-a+b-c,-a-b+c\right\} .
$$

In general, one cannot hope for the optimal value to be a rational function of the input data.
An important case of this theory is a spectrahedral cone

$$
K=\left\{y \in \mathbb{R}^{d}: \sum i=1^{d} y_{i} A_{i} \in \mathrm{PSD}_{n}\right\}
$$

defined by $A_{1}, \ldots, A_{d} \in \mathbb{R}_{\text {sym }}^{n \times n}$. Its dual cone is

$$
K^{*}=\left\{\left(\left\langle A_{i}, X\right\rangle\right)_{i=1, \ldots, d}: X \in \mathrm{PSD}_{n}\right\} .
$$

In the example above with $d=4, n=3$, we had that

$$
\left.K^{*}=\left(2 X_{12}, 2 X_{13}, 2 X_{23}, X_{11}+X_{22}+X_{33}\right): X \in \mathrm{PSD}_{3}\right\} .
$$

In this case, if K has extreme rays of rank r, then we expect that the dual variety of the rank-r locus of K

$$
\left(\overline{(K \cap\{\operatorname{rank} \leq r\}}{ }^{Z a r}\right)^{*}
$$

will appear as a component of the algebraic boundary of K^{*}. For generic choices of $A_{i} \in \mathbb{R}_{\text {sym }}^{d \times d}$, the degrees of the hypersurfaces (which depend on d, n, and r are given by the algebraic degree of semidefinite programming.

