Math 591 – Real Algebraic Geometry and Convex Optimization Lecture 16: Algebraic boundaries and optimization Cynthia Vinzant, Spring 2019

For this lecture, we will take K to be a full-dimensional, pointed (i.e. containing no lines), semialgebraic, convex cone inside of a finite dimensional real vector space (like \mathbb{R}^n) so that the dual cone K^* is also a full-dimensional, pointed, semialgebraic, convex cone

Recall that the **algebraic boundary** of K, denoted $\partial_{\text{alg}}K$ is the Zariski-closure of the Euclidean boundary of K, ∂K . Since K is a full-dimensional cone and not the whole space, the boundary ∂K is a semi-algebraic set of codimension one. Then the algebraic boundary $\partial_{\text{alg}}K$ also has codimension one and is defined by a single polynomial equation $f(x_1, \ldots, x_n) = 0$.

Example. Consider the convex cone

$$K = \{ (x, y, z) \in \mathbb{R}^3 : f \ge 0, \ z \ge x, \ z \ge 0 \}$$

where $f = (x+z)(x-z)^2 - y^2 z$. Then the algebraic boundary of K is the surface $V_{\mathbb{R}}(f)$.

The condition that the plane $\{(x, y, z) : ax + by + cz\}$ is tangent to ∂K at some point imposes conditions on the coefficients (a, b, c). Namely (a, b, c) must belong to the boundary of the dual cone and thus the *algebraic boundary* of the dual cone,

$$\partial_{\mathrm{alg}}(K^*) = V_{\mathbb{R}}(4a^4 + 13a^2b^2 + 32b^4 - 4a^3c + 18ab^2c - 27b^2c^2) \cup V_{\mathbb{R}}(a+c).$$

This is the union of the dual varieties $V(f)^*$ and $V(x-z, y)^*$.

Application to optimization. One can think of the algebraic boundary of the dual cone K^* as simultaneously solving the Lagrange multiplier equations for a family of optimization problems over K.

Take $c, a \in (\mathbb{R}^n)^* \cong \mathbb{R}^n$ such that the intersection $K \cap \{x : \langle a, x \rangle = 1\}$ is compact, and consider the optimization problem

 $p^* = \min\langle c, x \rangle$ such that $\langle a, x \rangle = 1, x \in K$.

Here p^* is the optimal value.

Proposition. $c - p^*a$ belongs to the boundary of the dual cone K^* .

Proof. We will show this by showing that $c - \lambda a$ belongs to K^* if and only if $\lambda \leq p^*$.

Let $x \in K \setminus \{0\}$. Since $K \cap \{y : \langle a, y \rangle = 1\}$ in compact, $\langle a, x \rangle$ is strictly positive, and we can consider $\tilde{x} = (\frac{1}{\langle a, x \rangle}) \cdot x$ which belongs to K and satisfies $\langle a, \tilde{x} \rangle = 1$. Then

$$p^* \le \langle c, \tilde{x} \rangle = \frac{1}{\langle a, x \rangle} \cdot \langle c, x \rangle.$$

If $\lambda \leq p^*$, then multiplying this inequality by $\langle a, x \rangle$ shows that $\lambda \langle a, x \rangle \leq \langle c, x \rangle$. Therefore $\langle c - \lambda a, x \rangle \geq 0$ for all $x \in K$, meaning that $c - \lambda a \in K^*$.

Similarly, if $p^* < \lambda$, then consider the point $x \in K$ achieving the minimum p^* . That is, for which $\langle a, x \rangle = 1$ and $\langle c, x \rangle = p^* < \lambda$. Then $\langle c - \lambda a, x \rangle = \langle c, x \rangle - \lambda \langle a, x \rangle = p^* - \lambda < 0$. This shows that $c - \lambda a$ does not belong to K^* .

Putting this together we see that $c - p^*a$ belongs to K^* but $c - (p^* + \epsilon)a$ does not belong to K^* for $\epsilon > 0$. Therefore $c - p^*a$ is on the boundary of K^*

Corollary. If g is a polynomial that vanishes on ∂K^* , then the optimal value p^* is a root of the univariate polynomial $g(c-ta) \in \mathbb{R}[t]$.

Example. Consider the cone $K = \{(x, y, z) \in \mathbb{R}^3 : (x+z)(x-z)^2 - y^2 z \ge 0, z \ge x, z \ge 0\}$ from above and the optimization problem

 $p^* = \min ax + by$ such that $(x, y, z) \in K$, z = 1

The polynomial $g = (4a^4 + 13a^2b^2 + 32b^4 - 4a^3c + 18ab^2c - 27b^2c^2) \cdot (a+c)$ vanishes on the boundary of the dual cone K^* , meaning that if p^* is the optimal value given by the objective function ax + by, then $g(a, b, -p^*) = 0$. This lets us solve for p^* in terms of a and b:

$$p^* \in \left\{ a, \ \frac{-2a^3 + 9ab^2 \pm 2\sqrt{\left(a^2 + 6b^2\right)^3}}{27b^2} \right\}$$

To visualize this in the c = 1 plane, we note that since g is homogeneous, $g(a, b, -p^*) = 0$ if and only if $g(\frac{-a}{p^*}, \frac{-b}{p^*}, 1) = 0$ meaning that $-1/p^*$ is a root of the univariate polynomial $g(ta, tb, 1) \in \mathbb{R}[t]$.

For example, for (a, b) = (1, 2), the minimal value of ax + by is $p^* = -71/27$. The line 1x + 2y = -71/27 is tangent to the boundary of K in the plane z = 1. Moreover, for t = -71/27, the point (t, 2t, 1) belongs to the algebraic boundary of K^* , shown below in the plane c = 1.

By intersecting with an affine plane, we can visualize a three-dimensional cone via a two-dimensional convex set. Similarly, we can visualize a four-dimensional cone via a three-dimensional set.

Example. Consider the cone

$$\partial_{\mathrm{alg}} K = \left\{ (t, x, y, z) \in \mathbb{R}^4 : \begin{pmatrix} t & x & y \\ x & t & z \\ y & z & t \end{pmatrix} \succeq 0 \right\}.$$

The algebraic boundary of K is given by the determinant of the defining 3×3 matrix

$$\partial_{\text{alg}}K = V(\det \begin{pmatrix} t & x & y \\ x & t & z \\ y & z & t \end{pmatrix}) = V(t^3 - t(x^2 + y^2 + z^2) + 2xyz).$$

This hypersurface is singular alone the lines spanned by each of the four points (x, y, z, t) = (1, 1, 1, 1), (1, -1, -1, 1), (-1, 1, -1, 1), and (-1, -1, 1, 1). The algebraic boundary of the

dual cone is the dual hypersurface of $\partial_{\text{alg}} K$ along with the four hyperplanes dual to these lines:

 $\partial_{\mathrm{alg}}(K^*) \ = \ (\partial_{\mathrm{alg}}K)^* \cup \ \text{four hyperplanes} \ = \ V(g)$

where

 $g = (a^2b^2 + a^2c^2 + b^2c^2 - 2abcd)(a + b + c + d)(a - b - c + d)(-a + b - c + d)(-a - b + c + d).$

The intersection of K with the plane t = 1 along with the variety of the quartic and one linear factor of g in the plane d = 1 is shown here:

Consider the minimization problem

 $p^* = \min ax + by + cz$ such that $(x, y, z, 1) \in K$.

Despite the quartic factor of g, the roots of the polynomial g(a, b, c, -t) are rational in a, b, c. Namely we find that

$$p^* \in \left\{ \frac{-a^2b^2 - a^2c^2 - b^2c^2}{2abc}, \ a + b + c, \ a - b - c, \ -a + b - c, \ -a - b + c \right\}.$$

In general, one cannot hope for the optimal value to be a rational function of the input data.

An important case of this theory is a spectrahedral cone

$$K = \left\{ y \in \mathbb{R}^d : \sum i = 1^d y_i A_i \in \mathrm{PSD}_n \right\}$$

defined by $A_1, \ldots, A_d \in \mathbb{R}^{n \times n}_{sym}$. Its dual cone is

$$K^* = \{(\langle A_i, X \rangle)_{i=1,\dots,d} : X \in \mathrm{PSD}_n\}.$$

In the example above with d = 4, n = 3, we had that

$$K^* = (2X_{12}, 2X_{13}, 2X_{23}, X_{11} + X_{22} + X_{33}) : X \in PSD_3\}.$$

In this case, if K has extreme rays of rank r, then we expect that the dual variety of the rank-r locus of K

$$\left(\overline{(K \cap \{\operatorname{rank} \le r\})}^{Zar}\right)^*$$

will appear as a component of the algebraic boundary of K^* . For generic choices of $A_i \in \mathbb{R}^{d \times d}_{sym}$, the degrees of the hypersurfaces (which depend on d, n, and r are given by the algebraic degree of semidefinite programming.