Math 591 — Real Algebraic Geometry and Convex Optimization

Lecture 16: Algebraic boundaries and optimization
Cynthia Vinzant, Spring 2019

For this lecture, we will take K to be a full-dimensional, pointed (i.e. containing no lines),
semialgebraic, convex cone inside of a finite dimensional real vector space (like R™) so that
the dual cone K* is also a full-dimensional, pointed, semialgebraic, convex cone

Recall that the algebraic boundary of K, denoted 0., K is the Zariski-closure of the Eu-
clidean boundary of K, K. Since K is a full-dimensional cone and not the whole space, the
boundary 0K is a semi-algebraic set of codimension one. Then the algebraic boundary Oy K
also has codimension one and is defined by a single polynomial equation f(z1,...,z,) = 0.

Example. Consider the convex cone
K={(z,y,2) €ER*: f>0, 2>z, >0}

where f = (¥ + z)(z — 2)? — y?z. Then the algebraic boundary of K is the surface Vi(f).

The condition that the plane {(z,y,z2) : az + by + cz} is tangent to 0K at some point
imposes conditions on the coefficients (a, b, ¢). Namely (a, b, ¢) must belong to the boundary
of the dual cone and thus the algebraic boundary of the dual cone,

Oug(K*) = Vi(4a" + 13a?b* + 32b* — 4a’c + 18ab*c — 27b*c?) U Vi(a + ¢).
This is the union of the dual varieties V' (f)* and V(z — z,y)*.

Application to optimization. One can think of the algebraic boundary of the dual cone
K* as simultaneously solving the Lagrange multiplier equations for a family of optimization
problems over K.

Take ¢,a € (R™)* =2 R™ such that the intersection K N {z : (a,x2) = 1} is compact, and
consider the optimization problem

p* = min(c,z) such that (a,z) =1, z € K.
Here p* is the optimal value.
Proposition. ¢ — p*a belongs to the boundary of the dual cone K*.

Proof. We will show this by showing that ¢ — Aa belongs to K* if and only if A < p*.
Let x € K\{0}. Since K N{y : (a,y) = 1} in compact, (a,z) is strictly positive, and we
can consider & = (- ) - # which belongs to K and satisfies (a,Z) = 1. Then

(a,T)
1
@) {c, x).

If A < p*, then multiplying this inequality by (a, x) shows that A(a, z) < (¢, z). Therefore
(¢ — Aa,z) > 0 for all x € K, meaning that ¢ — \a € K*.

Similarly, if p* < A, then consider the point x € K achieving the minimum p*. That is,
for which (a,z) =1 and (c,z) = p* < A. Then (c — Aa,z) = (¢, z) — Na,x) = p* — X < 0.
This shows that ¢ — Aa does not belong to K*.

Putting this together we see that ¢ — p*a belongs to K* but ¢ — (p* + €)a does not belong
to K* for € > 0. Therefore ¢ — p*a is on the boundary of K* O

p* < <C7‘%> =

Corollary. If g is a polynomial that vanishes on OK*, then the optimal value p* is a root of
the univariate polynomial g(c — ta) € R[t].



Example. Consider the cone K = {(x,y,2) ER*: (z+2)(x —2) —¢y*2 >0, 2z >z, z > 0}
from above and the optimization problem

p" = minax + by such that (z,y,2) € K, z=1
The polynomial g = (4a* + 13a?b? + 32b* — 4a3c + 18ab*c — 27b%c?) - (a + ¢) vanishes on the
boundary of the dual cone K*, meaning that if p* is the optimal value given by the objective
function ax + by, then g(a,b, —p*) = 0. This lets us solve for p* in terms of a and b:
—2a® 4 9ab? & 24/ (a2 + 602)°
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p" € q a,

To visualize this in the ¢ = 1 plane, we note that since g is homogeneous, g(a, b, —p*) = 0
if and only if g(;—f, ;—f, 1) = 0 meaning that —1/p* is a root of the univariate polynomial
g(ta,tb, 1) € R[t].

For example, for (a,b) = (1,2), the minimal value of ax + by is p* = —71/27. The line
lz 4+ 2y = —71/27 is tangent to the boundary of K in the plane z = 1. Moreover, for
t = —71/27, the point (t,2t, 1) belongs to the algebraic boundary of K*, shown below in the
plane ¢ = 1.
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and {1z + 2y = p*} and {(t,2t) : t € R}
By intersecting with an affine plane, we can visualize a three-dimensional cone via a

two-dimensional convex set. Similarly, we can visualize a four-dimensional cone via a three-
dimensional set.

Example. Consider the cone
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The algebraic boundary of K is given by the determinant of the defining 3 x 3 matrix

t vy
OugK = V(det [z t 2|) = V(& —t(a®+y*+ 2%) + 22y2).
y 2zt

This hypersurface is singular alone the lines spanned by each of the four points (z,y, z,t) =
(1,1,1,1), (1,-1,-1,1), (-1,1,—1,1), and (—1,—1,1,1). The algebraic boundary of the



dual cone is the dual hypersurface of 9,,K along with the four hyperplanes dual to these
lines:

Oalg(K™) = (OagK)* U four hyperplanes = V(g)
where
g = (a*V* +a’c +b*c* — 2abed)(a+b+c+d)(a—b—c+d)(—a+b—c+d)(—a—b+c+d).
The intersection of K with the plane ¢ = 1 along with the variety of the quartic and one
linear factor of g in the plane d = 1 is shown here:
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Consider the minimization problem
p* = minax + by + ¢z such that (z,y,z2,1) € K.

Despite the quartic factor of g, the roots of the polynomial ¢(a, b, ¢, —t) are rational in a, b, c.
Namely we find that

—a2b? — a2 — D22
s
P { 2abc

In general, one cannot hope for the optimal value to be a rational function of the input data.

,a+b+c,a—b—c, —a+b—c, —a—b—i—c}.

An important case of this theory is a spectrahedral cone
K = {y ERY 1Y i= 1A € PSDn}
defined by Ay, ..., Aq € RET. Its dual cone is
K* = {({4,X))iz1,.a: X € PSD, }.
In the example above with d = 4,n = 3, we had that
K* = (2X19,2X43,2X03, X171 + Xoo + X33) : X € PSDs}.

In this case, if K has extreme rays of rank r, then we expect that the dual variety of the
rank-r locus of K

((K N {rank < r})ZW>*

will appear as a component of the algebraic boundary of K*. For generic choices of A; € REf,
the degrees of the hypersurfaces (which depend on d, n, and r are given by the algebraic degree
of semidefinite programming.
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