Math 591 - Real Algebraic Geometry and Convex Optimization
 Lecture 15: Algebraic boundaries and duality
 Cynthia Vinzant, Spring 2019

For this lecture, we will take K to be a full dimensional, pointed (i.e. containing no lines), semialgebraic, convex cone inside of a finite dimensional real vector space (like \mathbb{R}^{n}).

Definition. The algebraic boundary of K, denoted $\partial_{\text {alg }} K$ is the Zariski-closure of the Euclidean boundary of $K, \partial K$.

Since K is a full-dimensional cone and not the whole space, the boundary ∂K is a semialgebraic set of codimension one. Then the algebraic boundary $\partial_{\mathrm{alg}} K$ also has codimension one and is defined by a single polynomial equation $f\left(x_{1}, \ldots, x_{n}\right)=0$.

We say that a polynomial $f=\sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is homogeneous of degree d if $\sum_{i=1}^{n} \alpha_{i}$ for all α with $c_{\alpha} \neq 0$. Note that this implies that $f\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\lambda^{d} f(x)$. Moreover, taking the partial derivatives with respect to λ and then restricting to $\lambda=1$ gives Euler's identity:

$$
\sum_{i=1}^{n} x_{i} \frac{\partial f}{\partial x_{i}}=d \cdot f
$$

Since ∂K is invariant under positive scaling ($x \mapsto \lambda x$ for $\lambda \in \mathbb{R}_{+}$), the algebraic boundary $\partial_{\mathrm{alg}} K$ will be invariant under real scaling ($x \mapsto \lambda x$ for $\lambda \in \mathbb{R}$), implying that the defining polynomial f will be homogeneous of some degree d.
Example. For $K=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2} \geq x^{2}+y^{2}, z \geq 0\right\}, \partial_{\mathrm{alg}}(K)$ equals $V\left(x^{2}+y^{2}-z^{2}\right)$.
Example. For $K=\left(\mathbb{R}_{\geq 0}\right)^{n}$, the boundary of K is $\left\{x \in\left(\mathbb{R}_{\geq 0}\right)^{n}: x_{i}=0\right.$ for some $\left.i\right\}$. Then $\partial_{\text {alg }}(K)$ equals $V\left(\prod_{i=1}^{n} x_{i}\right)=\left\{x \in \mathbb{R}^{n}: x_{i}=0\right.$ for some $\left.i\right\}$.

Example. For $K=\mathrm{PSD}_{n}$, the boundary of K is $\left\{X \in \operatorname{PSD}_{n}: \operatorname{rank}(X) \leq n-1\right\}$. Then $\partial_{\text {alg }}(K)$ equals $V(\operatorname{det}(X))=\left\{X \in \mathbb{R}_{\text {sym }}^{n \times n}: \operatorname{rank}(X) \leq n-1\right\}$.

A motivating question for the day is
Question. How are the algebraic boundaries of K and K^{*} related?
Note that by definition

$$
K^{*}=\left\{a \in \mathbb{R}^{n}:\langle a, x\rangle \geq 0 \text { for all } x \in K\right\}
$$

Since K is pointed, the intersection of all these hyperplanes $\{x:\langle a, x\rangle\}$ where $a \in K^{*}$ is the origin $\mathbf{0}=(0, \ldots, 0)$. Therefore the boundary of K^{*} is

$$
\partial K^{*}=\left\{a \in K^{*}:\left\langle a, x_{0}\right\rangle=0 \text { for some } x_{0} \in \partial K \backslash\{\mathbf{0}\}\right\} .
$$

Since $\langle a, x\rangle \geq 0$ for all $x \in K$, the plane $\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle=0\right\}$ must be tangent to the cone K at the point $x=x_{0}$. In particular, if f vanishes on ∂K, then $\nabla f\left(x_{0}\right)$ must be a scalar multiple of a. (Note if $\nabla f\left(x_{0}\right)=\mathbf{0}$, this scalar might be zero.)
Proposition. If $\partial_{\mathrm{alg}} K=V(f)$ and $\nabla f(p) \neq 0$ for all $p \in \partial K \backslash\{\mathbf{0}\}$, then

$$
\partial K^{*}=\{\nabla f(p): p \in \partial K\}
$$

Proof. Note that $\mathbf{0} \in K^{*}$. Since f is homogeneous of degree $\geq 2, \mathbf{0}=\nabla f(\mathbf{0})$. (Note that if f has degree one, then K would not be pointed.)

If $a \in \partial K^{*} \backslash\{\mathbf{0}\}$, the argument above shows that $a=\lambda \cdot \nabla f(p)$ for some $\lambda \in \mathbb{R}$ and $p \in \partial K$. Since $a \neq \mathbf{0}, \lambda$ and $\nabla f(p)$ are also non-zero. Since f is homogeneous of some degree $d \geq 2$, the entries of ∇f are homogeneous of degree $d-1 \geq 1$. Then $a=\lambda \cdot \nabla f(p)=\nabla f(q)$, where $q=\lambda^{1 /(d-1)} p \in \partial K$.

Similarly, for any point $p \in \partial K$, by convexity $x \mapsto\langle\nabla f(p), x\rangle$ is nonnegative on K, meaning that $\nabla f(p) \in K^{*}$ and $p \cdot \nabla f(p)=d \cdot f(p)=0$, implying that $\nabla f(p) \in \partial K^{*}$.
Example. For $K=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2} \geq x^{2}+y^{2}, z \geq 0\right\}$, we had that $\partial_{\text {alg }} K=V(f)$ where $f=x^{2}+y^{2}-z^{2}$ and $\nabla f=(2 x, 2 y,-2 z)$. Then

$$
\begin{aligned}
& \partial K^{*}=\left\{(a, b, c) \in \mathbb{R}^{3}:\right. a x+b y+c z \geq 0 \text { for all }(x, y, z) \in K \text { and } \\
&\left.a x_{0}+b y_{0}+c z_{0}=0 \text { for some }\left(x_{0}, y_{0}, z_{0}\right) \in \partial K\right\} \\
&=\left\{\left(2 x_{0}, 2 y_{0},-2 z_{0}\right):\left(x_{0}, y_{0}, z_{0}\right) \in \partial K\right\}
\end{aligned}
$$

More, any point $\left(x_{0}, y_{0}, z_{0}\right) \in \partial K$ satisfies $f\left(x_{0}, y_{0}, z_{0}\right)$, so $(a, b, c)=\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ satisfies

$$
a^{2}+b^{2}-c^{2}=\left(2 x_{0}\right)^{2}+\left(2 y_{0}\right)^{2}-\left(2 z_{0}\right)^{2}=4 \cdot f\left(x_{0}, y_{0}, z_{0}\right)=0
$$

Indeed in this case $\partial_{\mathrm{alg}} K^{*}=V\left(a^{2}+b^{2}-c^{2}\right)$. (In fact, K is self-dual, and this is the same as the algebraic boundary of K in different coordinates!)

To understand the boundary more generally, we need another definition.
Definition. Let $W \subset \mathbb{R}^{n}$ be a real variety that is invariant under scaling $(x \in W \Rightarrow \lambda x \in$ $W)$. The tangent space of W at a point $p \in W$ is defined as

$$
T_{p} W=\left\{x \in R^{n}:\langle x, \nabla f(p)\rangle=0 \text { for all } f \in \mathcal{I}(W)\right\} .
$$

We say that p is a regular or nonsingular point of W if $p \in W$ and the dimension of the tangent space $\operatorname{dim}\left(T_{p} W\right)$ equals the dimension of W.

This is easiest when W is a hypersurface, meaning that the ideal of polynomials vanishing on W is the set of polynomial multiples of some $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. If $\mathcal{I}(W)=\langle f\rangle=\{h \cdot f$: $\left.h \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]\right\}$, then one can check that

$$
T_{p} W=\left\{x \in \mathbb{R}^{n}:\langle x, \nabla f(p)\rangle=0\right\} .
$$

In particular, this is a hyperplane with $\nabla f(p) \neq \mathbf{0}$ and all of \mathbb{R}^{n} when $\nabla f(p)=\mathbf{0}$.
Since $\operatorname{dim}(W)=n-1, p \in W$ is a regular point of W if $\nabla f(p) \neq \mathbf{0}$ and a singular point if $\nabla f(p)=\mathbf{0}$.

Example. For $W=V(f)$ where $f=x^{2}+y^{2}-z^{2}$, we have $\nabla f=(2 x, 2 y,-2 z)$, so $\nabla f(p)=\mathbf{0}$ only for $p=\mathbf{0}$. Therefore the only singular point of W is $\mathbf{0}=(0,0,0)$.
Definition. The dual variety of W, denoted W^{*}, equals the Zariski-closure of the set of hyperplanes containing the tangent space of W at some regular point. That is,

$$
W^{*}=\overline{\left\{a \in \mathbb{R}^{n}: T_{p} W \subseteq\{x:\langle a, x\rangle\} \text { for some regular point } p \in W\right\}}
$$

Just as in convex duality, under some mild assumptions, the dual variety of the dual variety is the original.
Theorem (Biduality). If W is invariant under scaling and irreducible (i.e. not a union of proper subvarieties), then $\left(W^{*}\right)^{*}=W$.

If W is a hypersurface, $\mathcal{I}(W)=\langle f\rangle$, then at every regular point $p \in W$, the tangent space $T_{p} W$ is a hyperplane defined by $\langle\nabla f(p), x\rangle=0$. Then $T_{p} W$ is contained in $\{x:\langle a, x\rangle=0$ if and only if $a=\lambda \nabla f(p)$ for some $\lambda \in \mathbb{R}$.

Corollary. If $\mathcal{I}(W)=\langle f\rangle$, then

$$
\left.W^{*}=\overline{\{\nabla f(p): p} \text { is a regular point of } W\right\}^{\text {Zar }} .
$$

Example. Consider

$$
W=\left\{\left(\lambda, \lambda t, \lambda t^{2}\right): \lambda, t \in \mathbb{R}\right\}=\left\{(x, y, z) \in \mathbb{R}^{3}: x z-y^{2}=0\right\}
$$

Then $\mathcal{I}(W)=\langle f\rangle$ where $f=x z-y^{2}$ and $\nabla f=(z,-2 y, x)$. At a point $p=\left(1, t, t^{2}\right)$ of W, we find that

$$
T_{p} W=\left\{(x, y, z) \in \mathbb{R}^{3}: t^{2} x-2 t y+z=0\right\}=\operatorname{span}_{\mathbb{R}}\left\{\left(1, t, t^{2}\right),(0,1,2 t)\right\}
$$

We can also check that the tangent space of W at λp equals the tangent space of W at p. Then

$$
\begin{aligned}
W^{*} & ={\overline{\left\{(a, b, c) \in \mathbb{R}^{3}: a+b t+c t^{2}=0 \text { and } b+2 c t=0 \text { for some } t \in \mathbb{R}\right\}}}^{\text {Zar }} \\
& ={\overline{\left\{(a, b, c) \in \mathbb{R}^{3}: a+b t+c t^{2} \text { has a double root }\right\}}}^{\text {Zar }} \\
& =V\left(b^{2}-4 a c\right)
\end{aligned}
$$

This generalizes to the following:
Example. Consider

$$
\begin{aligned}
W & =\left\{\left(\lambda, \lambda t, \lambda t^{2}, \ldots, t^{d}\right): \lambda, t \in \mathbb{R}\right\} \\
& =\left\{\left(\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: x_{i+1} x_{i-1}^{2}=x_{i}^{2} \text { for } i=1, \ldots, n-1\right\}\right.
\end{aligned}
$$

One can check that at a point $p=\left(1, t, t^{2}, \ldots, t^{d}\right)$ of W, we find that

$$
T_{p} W=\operatorname{span}_{\mathbb{R}}\left\{\left(1, t, t^{2}, \ldots, t^{d}\right),\left(0,1,2 t, \ldots, d t^{d-1}\right)\right\} .
$$

Then just as before,

$$
\begin{aligned}
W^{*} & =\overline{\left\{\left(a_{0}, a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{n+1}: \sum_{i=0}^{n} a_{i} t^{i}=0 \text { and } \sum_{i=0}^{n} i \cdot a_{i} t^{i-1}=0 \text { for some } t \in \mathbb{R}\right\}} \text { Zar } \\
& ={\overline{\left\{\left(a_{0}, a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{n+1}: \sum_{i=0}^{n} a_{i} t^{i} \text { has a double root }\right\}} .}^{\text {Zar }} .
\end{aligned}
$$

Proposition. If $\partial_{\mathrm{alg}} K$ has no singular points besides $\mathbf{0}=(0, \ldots, 0)$, then the algebraic boundary of the dual cone, $\partial_{\mathrm{alg}} K^{*}$, equals the dual variety of the algebraic boundary, $\left(\partial_{\mathrm{alg}} K\right)^{*}$.
Proof. If $\partial_{\text {alg }} K=V(f)$ has no singular points besides $\mathbf{0}=(0, \ldots, 0)$, then

$$
\partial K^{*}=\{\nabla f(p): p \in \partial K\}
$$

and

$$
\partial_{\mathrm{alg}} K^{*}=\overline{\{\nabla f(p): p \in \partial K\}}^{\text {Zar }}=\overline{\{\nabla f(p): p \in V(f)\}}^{\text {Zar }}=V(f)^{*}=\left(\partial_{\mathrm{alg}} K\right)^{*} .
$$

However if $\partial_{\text {alg }} K$ has a nonzero singular point on its boundary, then things can be more difficult.

Example. Let K be the conic hull of $\left\{\left(1, t, t^{2}\right): t \in[-1,1]\right\}$. A semialgebraic description of K is $\left\{(x, y, z) \in \mathbb{R}^{3}: x z \geq y^{2}, x \geq z\right\}$. Then

$$
\partial_{\mathrm{alg}} K=V\left(\left(x z-y^{2}\right)(x-z)\right) .
$$

Note that this has two singular points in $V\left(x z-y^{2}\right) \cap V(x-z)$, namely $(1,1,1)$ and $(1,-1,1)$ on the boundary of K.

One can check that the dual variety of $V\left(\left(x z-y^{2}\right)(x-z)\right)$ is a union

$$
\left(\partial_{\mathrm{alg}} K\right)^{*}=V\left(b^{2}-4 a c\right) \cup V(b, a+c) .
$$

But the dual cone

$$
K^{*}=\left\{(a, b, c) \in \mathbb{R}^{3}: a+b t+c t^{2} \geq 0 \text { for } t \in[-1,1]\right\} .
$$

Its algebraic boundary has three components
$\partial_{\mathrm{alg}}\left(K^{*}\right)=V\left(\left(b^{2}-4 a c\right)(a+b+c)(a-b+c)\right)=V\left(b^{2}-4 a c\right) \cup V(a+b+c) \cup V(a-b+c)$.
Here are the cones K and K^{*} in the planes $x=1$ and $a=1$, respectively:

Theorem (Sinn, 2014). Let $\operatorname{Exr}(K)$ denote the extreme rays of K, then the dual variety of the Zariski-closure of the set of extreme rays belongs to the algebraic boundary of the dual cone K^{*} :

$$
\left(\overline{\operatorname{Exr}(K)}^{\text {Zar }}\right)^{*} \subset \partial_{\mathrm{alg}}\left(K^{*}\right)
$$

In fact, $\left(\overline{\operatorname{Exr}(K)}^{\text {Zar }}\right)^{*}$ is an irreducible component of $\partial_{\mathrm{alg}}\left(K^{*}\right)$. Moreover

$$
\left(\partial_{\mathrm{alg}} K\right)^{*}={\overline{\operatorname{Exr}\left(K^{*}\right)}}^{\mathrm{Zar}}
$$

Example. In the example above, where K be the conic hull of $\left\{\left(1, t, t^{2}\right): t \in[-1,1]\right\}$

$$
\begin{aligned}
\operatorname{Exr}(K) & =\left\{\left(\lambda, \lambda t, \lambda t^{2}\right): t \in[-1,1], \lambda \in \mathbb{R}_{\geq 0}\right\} \\
\overline{\operatorname{Exr}(K)}^{\text {Zar }} & =V\left(x z-y^{2}\right), \\
\left(\overline{\operatorname{Exr}(K)}^{\text {Zar }}\right)^{*} & =V\left(b^{2}-4 a c\right),
\end{aligned}
$$

which is a component of $\partial_{\text {alg }}\left(K^{*}\right)$.
For the second equation, one can check that the dual variety of $\partial_{\mathrm{alg}} K$ is

$$
\left(\partial_{\mathrm{alg}} K\right)^{*}=V\left(b^{2}-4 a c\right) \cup V(b, a+c) .
$$

The extreme rays of K^{*} are

$$
\left.\operatorname{Exr}\left(K^{*}\right)=\left\{(\lambda, 0,-\lambda): \lambda \in \mathbb{R}_{\geq 0}\right\}\right\} \cup\left\{(a, b, c) \in \mathbb{R}^{3}: b^{2}=4 a c, c \geq 0\right\}
$$

Example. Consider the polynomial $\operatorname{det}(X)$ for a square non-symmetric matrix of variables.

$$
\frac{\partial \operatorname{det}(X)}{\partial X_{i j}}=(-1)^{i+j} \cdot \operatorname{det}\left(X_{[n \backslash \backslash i,[n] \backslash j}\right)
$$

We can differentiate X with respect to any variable, and we can organize the partial derivatives into a matrix. Then

$$
\nabla \operatorname{det}(X)=X^{\mathrm{adj}}
$$

Then M is a regular point of $\operatorname{det}(X)$ if and only if $\nabla \operatorname{det}(M)$ is non-zero if and only if $\operatorname{rank}(M)=n-1$. Moreover

$$
\nabla \operatorname{det}(M)=v w^{T}
$$

where $v, w \in \mathbb{R}^{n}$ are the right and left kernel of M, respectively. Indeed, if $\operatorname{det}(M)=0$, then

$$
M \cdot M^{\text {adj }}=M^{\text {adj }} \cdot M=\operatorname{det}(M) \cdot I_{n}=0 \cdot I_{n} .
$$

In particular, the columnspan of $M^{\text {adj }}$ belongs to the right kernel of M and the rowspan of $M^{\text {adj }}$ belongs to the left kernel of M.

The dual variety of $V(\operatorname{det}(X))$ is therefore

$$
V(\operatorname{det}(X))^{*}=\left\{Y \in \mathbb{R}^{n \times n}: \operatorname{rank}(Y) \leq 1\right\}
$$

Example. For $K=\mathrm{PSD}_{n}$, the algebraic boundary

$$
\begin{aligned}
\partial_{\mathrm{alg}} K & =V(\operatorname{det}(X)) \\
\left(\partial_{\mathrm{alg}} K\right)^{*} & =\left\{Y \in \mathbb{R}_{\mathrm{sym}}^{n \times n}: \operatorname{rank}(Y) \leq 1\right\} .
\end{aligned}
$$

The dual cone is again the PSD cone, $K^{*}=\mathrm{PSD}_{n}$, whose extreme rays are the rank-one positive semidefinite matrices. Again we see that the Zariski-closure agrees with $\left(\partial_{\text {alg }} K\right)^{*}$:

$$
\begin{aligned}
\operatorname{Exr}\left(K^{*}\right) & =\left\{Y \in \mathrm{PSD}_{n}: \operatorname{rank}(Y) \leq 1\right\} \\
\operatorname{Exr}\left(K^{*}\right)^{\text {Zar }} & =\left\{Y \in \mathbb{R}_{\text {sym }}^{n \times n}: \operatorname{rank}(Y) \leq 1\right\} .
\end{aligned}
$$

