Math 591 — Real Algebraic Geometry and Convex Optimization

Lecture 15: Algebraic boundaries and duality
Cynthia Vinzant, Spring 2019

For this lecture, we will take K to be a full dimensional, pointed (i.e. containing no lines),
semialgebraic, convex cone inside of a finite dimensional real vector space (like R™).

Definition. The algebraic boundary of K, denoted 0,,K is the Zariski-closure of the
Euclidean boundary of K, 0K.

Since K is a full-dimensional cone and not the whole space, the boundary 0K is a semi-
algebraic set of codimension one. Then the algebraic boundary 0.,/ also has codimension
one and is defined by a single polynomial equation f(z1,...,x,) = 0.

We say that a polynomial f = Y co2® € R[zq,...,2,] is homogeneous of degree d
if >« for all @ with ¢, # 0. Note that this implies that f(Az1,...,Az,) = Xf(x).
Moreover, taking the partial derivatives with respect to A and then restricting to A = 1 gives
Euler’s identity:

Since 0K is invariant under positive scaling (z — Az for A € Ry), the algebraic boundary
Oag K will be invariant under real scaling (z — Az for A € R), implying that the defining
polynomial f will be homogeneous of some degree d.

Example. For K = {(z,y,2) € R*: 22 > 22 + ¢y*, 2 > 0}, Dag(K) equals V(22 4+ y* — 22).

Example. For K = (R>()", the boundary of K is {x € (R>()" : 2; = 0 for some i}. Then
Dag(K) equals V([T x;) = {x € R" : &; = 0 for some 7}.

Example. For K = PSD,,, the boundary of K is {X € PSD,, : rank(X) < n — 1}. Then
Oalg(K) equals V(det(X)) = {X € R : rank(X) <n — 1}.

sym
A motivating question for the day is
Question. How are the algebraic boundaries of K and K* related?
Note that by definition
K*={aeR": {(a,z) >0forallz € K}

Since K is pointed, the intersection of all these hyperplanes {z : (a,z)} where a € K* is the
origin 0 = (0, ...,0). Therefore the boundary of K* is

OK* = {a € K*: (a,z0) = 0 for some 29 € IK\{0}}.

Since (a,x) > 0 for all x € K, the plane {x € R" : (a,x) = 0} must be tangent to the cone
K at the point z = 2. In particular, if f vanishes on 0K, then V f(z() must be a scalar
multiple of a. (Note if V f(z() = 0, this scalar might be zero.)

Proposition. If 0y, K = V(f) and Vf(p) # 0 for all p € OK\{0}, then
OK*={Vf(p) : pedK}.



Proof. Note that 0 € K*. Since f is homogeneous of degree > 2, 0 = V f(0). (Note that if
f has degree one, then K would not be pointed.)

If a € 0K*\{0}, the argument above shows that a = \-V f(p) for some A € Rand p € 0K.
Since a # 0, X and V f(p) are also non-zero. Since f is homogeneous of some degree d > 2,
the entries of V f are homogeneous of degree d —1 > 1. Thena = A-V f(p) = V f(q), where
qg=A\/"Vpe oK.

Similarly, for any point p € 0K, by convexity x — (V f(p),z) is nonnegative on K,
meaning that Vf(p) € K* and p- Vf(p) =d- f(p) = 0, implying that V f(p) € 0K™*. O
Example. For K = {(x,y,2) € R®: 22 > 2? 4+ ¢?, 2 > 0}, we had that d,,K = V(f) where
f=2*+y*— 2% and Vf = (2z,2y, —2z). Then

OK* = {(a,b,c) eR® : az+by+cz >0 for all (z,y,2) € K and
axg + byo + czo = 0 for some (g, yo, 20) € 8K}
= {(220, 240, —220) : (20, %0, 20) € OK '}
More, any point (xg, yo, 20) € OK satisfies f(xg, yo, 20), s0 (a,b,c) = V f(xq, yo, 20) satisfies
a® 4+ b — = (220)* + (200)* — (220)* = 4 - (w0, Yo, 20) = 0.
Indeed in this case Oy K* = V(a® +b* — ¢?). (In fact, K is self-dual, and this is the same as
the algebraic boundary of K in different coordinates!)
To understand the boundary more generally, we need another definition.

Definition. Let W C R" be a real variety that is invariant under scaling (z € W = Az €
W). The tangent space of W at a point p € W is defined as

T,W={xeR":(z,Vf(p) =0forall feZ(W)}.
We say that p is a regular or nonsingular point of W if p € W and the dimension of the
tangent space dim(7,1W) equals the dimension of .

This is easiest when W is a hypersurface, meaning that the ideal of polynomials vanishing
on W is the set of polynomial multiples of some f € Rzy,...,z,]. HZ(W) = (f)={h- f:
h € R[z1,...,2,]}, then one can check that

T,W = {z € R": (2, Vf(p)) = 0}.

In particular, this is a hyperplane with V f(p) # 0 and all of R" when V f(p) = 0.
Since dim(W) =n — 1, p € W is a regular point of W if V f(p) # 0 and a singular point

if Vf(p)=0.
Example. For W = V(f) where f = 22 +y?— 2%, we have V f = (2z,2y, —22),s0 Vf(p) =0
only for p = 0. Therefore the only singular point of W is 0 = (0,0, 0).

Definition. The dual variety of W, denoted W*, equals the Zariski-closure of the set of
hyperplanes containing the tangent space of W at some regular point. That is,

W* = {aeR":T,IW C{z: (a,z)} for some regular point p € W}.

Just as in convex duality, under some mild assumptions, the dual variety of the dual
variety is the original.

Theorem (Biduality). If W is invariant under scaling and irreducible (i.e. not a union of
proper subvarieties), then (W*)* = W.



If W is a hypersurface, Z(W) = (f), then at every regular point p € W, the tangent space
T,W is a hyperplane defined by (V f(p),z) = 0. Then T,V is contained in {z : (a,z) = 0 if
and only if a = AV f(p) for some A € R.

Corollary. If Z(W) = (f), then
W* ={Vf(p):p is a reqular point of W}Zar.

Example. Consider
W ={(\ M)\t € RY = {(z,y,2) E R : 2z — y* = 0}

Then Z(W) = (f) where f = xz —y* and Vf = (2, -2y, ). At a point p = (1,¢,t?) of W,
we find that

T,W = {(z,y,2) € R® : ?x — 2ty + 2z = 0} = spang{(1,¢,t*),(0,1,2t)}.

We can also check that the tangent space of W at Ap equals the tangent space of W at p.
Then

w a,b,c) € R :a+ bt + ct?> =0 and b+ 2ct = 0 for SometER}Zar

— o~

{
{(a,b,c) € R3:a+ bt + ct? has a double root}Zar
V(b? — 4ac)

This generalizes to the following:
Example. Consider
W ={(\ M A2, ) o\t € R}
= {((wo,...,2p) ER"™ 1y 127 | = fori=1,....,n—1}
One can check that at a point p = (1,¢,¢%,...,t%) of W, we find that
T,W = spang{(1,¢,12,...,t%),(0,1,2¢,...,dt*")}.

Then just as before,

Zar

W ={(ap,a1,...,aq) € RP*1: Zaiti =0 and Zz - q;t"=1 = 0 for some t € R}

=0 i=0

Zar

= {(ap, a1, ...,aq) € R+ : Zaiti has a double root}
i=0

Proposition. If 0,,K has no singular points besides 0 = (0,...,0), then the algebraic
boundary of the dual cone, 0. K*, equals the dual variety of the algebraic boundary, (OugK)*.

Proof. If Oy K = V(f) has no singular points besides 0 = (0, .. .,0), then
OK*={Vf(p) : p€oK}.

and

Zar

OueK™ = {VI(p) - pEOK) " ={VI(p) : peVINL " =V(f)' = (OuK)"



However if 0,/ has a nonzero singular point on its boundary, then things can be more
difficult.

Example. Let K be the conic hull of {(1,¢,¢?) : ¢t € [-1,1]}. A semialgebraic description
of K is {(x,y,2) € R®: 2z > y? x > 2}. Then

Oug K =V ((x2 — y*)(z — 2)).

Note that this has two singular points in V (zz—y*)NV (z—z), namely (1,1,1) and (1, —1,1)
on the boundary of K.
One can check that the dual variety of V((zz — y?)(z — 2)) is a union

(0ugK)* =V (b* — dac) UV (b,a + c).
But the dual cone
K*={(a,b,c) €R*:a+ bt +ct* >0 for t € [-1,1]}.
Its algebraic boundary has three components
Oug(K*) = V((b* —dac)(a+b+c)la—b+c)=V(* —dac) UV (a+b+c)UV(a—b+c).

Here are the cones K and K* in the planes x = 1 and a = 1, respectively:

Theorem (Sinn, 2014). Let Exr(K) denote the extreme rays of K, then the dual variety of
the Zariski-closure of the set of extreme rays belongs to the algebraic boundary of the dual
cone K*:

(Exr(K)Z‘”") C Oug(K).
In fact, (Exr(K)Zw) is an irreducible component of Oug(K™). Moreover

(OueK) = mzm.
Example. In the example above, where K be the conic hull of {(1,¢,¢?) : ¢t € [-1,1]}
Exr(K) = {(\AM,AM2) 1t € [—1,1], A € Rag),
Exr(K) " = V(ez—y?),
<W(K)ZM>* =V (b* — 4dac),

which is a component of Ju, (K™).
For the second equation, one can check that the dual variety of Oy K is
(0ugK)* =V (b* — dac) UV (b,a + c).
The extreme rays of K* are

Exr(K*) = {(),0,-)\) : A € Rso}} U {(a,b,c) € R®: b* = 4ac,c > 0}.



Example. Consider the polynomial det(X) for a square non-symmetric matrix of variables.
0 det(X) i
—ox, = (DT det(Xpipapy)-
We can differentiate X with respect to any variable, and we can organize the partial deriva-
tives into a matrix. Then _
Vdet(X) = X
Then M is a regular point of det(X) if and only if Vdet(M) is non-zero if and only if
rank(M) = n — 1. Moreover
Vdet(M) = vw”
where v, w € R™ are the right and left kernel of M, respectively. Indeed, if det(M) = 0, then
M- M5 = M. M =det(M) -1, =0-1I,.
In particular, the columnspan of M?d belongs to the right kernel of M and the rowspan of
M3 belongs to the left kernel of M.
The dual variety of V(det(X)) is therefore
V(det(X))" = {Y € R"" : rank(Y) < 1}.
Example. For K = PSD,,, the algebraic boundary
Oatg K = V (det(X))
(OagK)" ={Y € R : rank(Y) < 1}
The dual cone is again the PSD cone, K* = PSD,,, whose extreme rays are the rank-one
positive semidefinite matrices. Again we see that the Zariski-closure agrees with (0., /)"
Exr(K*) = {Y € PSD,, : rank(Y) < 1}
EXI‘(K*)ZW ={Y e R : rank(Y) < 1}.

sym



