Math 591 – Real Algebraic Geometry and Convex Optimization Lecture 15: Algebraic boundaries and duality Cynthia Vinzant, Spring 2019

For this lecture, we will take K to be a full dimensional, pointed (i.e. containing no lines), semialgebraic, convex cone inside of a finite dimensional real vector space (like \mathbb{R}^n).

Definition. The algebraic boundary of K, denoted $\partial_{\text{alg}}K$ is the Zariski-closure of the Euclidean boundary of K, ∂K .

Since K is a full-dimensional cone and not the whole space, the boundary ∂K is a semialgebraic set of codimension one. Then the algebraic boundary $\partial_{\text{alg}} K$ also has codimension one and is defined by a single polynomial equation $f(x_1, \ldots, x_n) = 0$.

We say that a polynomial $f = \sum_{\alpha} c_{\alpha} x^{\alpha} \in \mathbb{R}[x_1, \ldots, x_n]$ is **homogeneous** of degree d if $\sum_{i=1}^n \alpha_i$ for all α with $c_{\alpha} \neq 0$. Note that this implies that $f(\lambda x_1, \ldots, \lambda x_n) = \lambda^d f(x)$. Moreover, taking the partial derivatives with respect to λ and then restricting to $\lambda = 1$ gives Euler's identity:

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i} = d \cdot f$$

Since ∂K is invariant under positive scaling $(x \mapsto \lambda x \text{ for } \lambda \in \mathbb{R}_+)$, the algebraic boundary $\partial_{\text{alg}} K$ will be invariant under real scaling $(x \mapsto \lambda x \text{ for } \lambda \in \mathbb{R})$, implying that the defining polynomial f will be homogeneous of some degree d.

Example. For $K = \{(x, y, z) \in \mathbb{R}^3 : z^2 \ge x^2 + y^2, z \ge 0\}, \partial_{alg}(K)$ equals $V(x^2 + y^2 - z^2)$.

Example. For $K = (\mathbb{R}_{\geq 0})^n$, the boundary of K is $\{x \in (\mathbb{R}_{\geq 0})^n : x_i = 0 \text{ for some } i\}$. Then $\partial_{\text{alg}}(K)$ equals $V(\prod_{i=1}^n x_i) = \{x \in \mathbb{R}^n : x_i = 0 \text{ for some } i\}$.

Example. For $K = \text{PSD}_n$, the boundary of K is $\{X \in \text{PSD}_n : \text{rank}(X) \le n-1\}$. Then $\partial_{\text{alg}}(K)$ equals $V(\det(X)) = \{X \in \mathbb{R}^{n \times n}_{\text{sym}} : \text{rank}(X) \le n-1\}$.

A motivating question for the day is

Question. How are the algebraic boundaries of K and K^* related?

Note that by definition

$$K^* = \{ a \in \mathbb{R}^n : \langle a, x \rangle \ge 0 \text{ for all } x \in K \}$$

Since K is pointed, the intersection of all these hyperplanes $\{x : \langle a, x \rangle\}$ where $a \in K^*$ is the origin $\mathbf{0} = (0, \dots, 0)$. Therefore the boundary of K^* is

$$\partial K^* = \{ a \in K^* : \langle a, x_0 \rangle = 0 \text{ for some } x_0 \in \partial K \setminus \{0\} \}.$$

Since $\langle a, x \rangle \geq 0$ for all $x \in K$, the plane $\{x \in \mathbb{R}^n : \langle a, x \rangle = 0\}$ must be *tangent* to the cone K at the point $x = x_0$. In particular, if f vanishes on ∂K , then $\nabla f(x_0)$ must be a scalar multiple of a. (Note if $\nabla f(x_0) = \mathbf{0}$, this scalar might be zero.)

Proposition. If $\partial_{\text{alg}}K = V(f)$ and $\nabla f(p) \neq 0$ for all $p \in \partial K \setminus \{0\}$, then

$$\partial K^* = \big\{ \nabla f(p) : p \in \partial K \big\}.$$

Proof. Note that $\mathbf{0} \in K^*$. Since f is homogeneous of degree ≥ 2 , $\mathbf{0} = \nabla f(\mathbf{0})$. (Note that if f has degree one, then K would not be pointed.)

If $a \in \partial K^* \setminus \{0\}$, the argument above shows that $a = \lambda \cdot \nabla f(p)$ for some $\lambda \in \mathbb{R}$ and $p \in \partial K$. Since $a \neq 0$, λ and $\nabla f(p)$ are also non-zero. Since f is homogeneous of some degree $d \geq 2$, the entries of ∇f are homogeneous of degree $d - 1 \geq 1$. Then $a = \lambda \cdot \nabla f(p) = \nabla f(q)$, where $q = \lambda^{1/(d-1)} p \in \partial K$.

Similarly, for any point $p \in \partial K$, by convexity $x \mapsto \langle \nabla f(p), x \rangle$ is nonnegative on K, meaning that $\nabla f(p) \in K^*$ and $p \cdot \nabla f(p) = d \cdot f(p) = 0$, implying that $\nabla f(p) \in \partial K^*$. \Box

Example. For $K = \{(x, y, z) \in \mathbb{R}^3 : z^2 \ge x^2 + y^2, z \ge 0\}$, we had that $\partial_{\text{alg}}K = V(f)$ where $f = x^2 + y^2 - z^2$ and $\nabla f = (2x, 2y, -2z)$. Then

$$\partial K^* = \left\{ (a, b, c) \in \mathbb{R}^3 : ax + by + cz \ge 0 \text{ for all } (x, y, z) \in K \text{ and} \\ ax_0 + by_0 + cz_0 = 0 \text{ for some } (x_0, y_0, z_0) \in \partial K \right\} \\ = \left\{ (2x_0, 2y_0, -2z_0) : (x_0, y_0, z_0) \in \partial K \right\}$$

More, any point $(x_0, y_0, z_0) \in \partial K$ satisfies $f(x_0, y_0, z_0)$, so $(a, b, c) = \nabla f(x_0, y_0, z_0)$ satisfies

$$a^{2} + b^{2} - c^{2} = (2x_{0})^{2} + (2y_{0})^{2} - (2z_{0})^{2} = 4 \cdot f(x_{0}, y_{0}, z_{0}) = 0.$$

Indeed in this case $\partial_{\text{alg}}K^* = V(a^2 + b^2 - c^2)$. (In fact, K is self-dual, and this is the same as the algebraic boundary of K in different coordinates!)

To understand the boundary more generally, we need another definition.

Definition. Let $W \subset \mathbb{R}^n$ be a real variety that is invariant under scaling $(x \in W \Rightarrow \lambda x \in W)$. The **tangent space** of W at a point $p \in W$ is defined as

$$T_pW = \{ x \in \mathbb{R}^n : \langle x, \nabla f(p) \rangle = 0 \text{ for all } f \in \mathcal{I}(W) \}.$$

We say that p is a **regular** or **nonsingular** point of W if $p \in W$ and the dimension of the tangent space dim (T_pW) equals the dimension of W.

This is easiest when W is a hypersurface, meaning that the ideal of polynomials vanishing on W is the set of polynomial multiples of some $f \in \mathbb{R}[x_1, \ldots, x_n]$. If $\mathcal{I}(W) = \langle f \rangle = \{h \cdot f : h \in \mathbb{R}[x_1, \ldots, x_n]\}$, then one can check that

$$T_pW = \{ x \in \mathbb{R}^n : \langle x, \nabla f(p) \rangle = 0 \}.$$

In particular, this is a hyperplane with $\nabla f(p) \neq \mathbf{0}$ and all of \mathbb{R}^n when $\nabla f(p) = \mathbf{0}$.

Since dim(W) = n - 1, $p \in W$ is a regular point of W if $\nabla f(p) \neq \mathbf{0}$ and a singular point if $\nabla f(p) = \mathbf{0}$.

Example. For W = V(f) where $f = x^2 + y^2 - z^2$, we have $\nabla f = (2x, 2y, -2z)$, so $\nabla f(p) = \mathbf{0}$ only for $p = \mathbf{0}$. Therefore the only singular point of W is $\mathbf{0} = (0, 0, 0)$.

Definition. The **dual variety** of W, denoted W^* , equals the Zariski-closure of the set of hyperplanes containing the tangent space of W at some regular point. That is,

 $W^* = \overline{\{a \in \mathbb{R}^n : T_p W \subseteq \{x : \langle a, x \rangle\}} \text{ for some regular point } p \in W\}}.$

Just as in convex duality, under some mild assumptions, the dual variety of the dual variety is the original.

Theorem (Biduality). If W is invariant under scaling and irreducible (i.e. not a union of proper subvarieties), then $(W^*)^* = W$.

If W is a hypersurface, $\mathcal{I}(W) = \langle f \rangle$, then at every regular point $p \in W$, the tangent space T_pW is a hyperplane defined by $\langle \nabla f(p), x \rangle = 0$. Then T_pW is contained in $\{x : \langle a, x \rangle = 0 \text{ if and only if } a = \lambda \nabla f(p) \text{ for some } \lambda \in \mathbb{R}.$

Corollary. If $\mathcal{I}(W) = \langle f \rangle$, then

$$W^* = \overline{\{\nabla f(p) : p \text{ is a regular point of } W\}}^{Zar}$$

Example. Consider

$$W = \{(\lambda, \lambda t, \lambda t^2) : \lambda, t \in \mathbb{R}\} = \{(x, y, z) \in \mathbb{R}^3 : xz - y^2 = 0\}$$

Then $\mathcal{I}(W) = \langle f \rangle$ where $f = xz - y^2$ and $\nabla f = (z, -2y, x)$. At a point $p = (1, t, t^2)$ of W, we find that

$$T_pW = \{(x, y, z) \in \mathbb{R}^3 : t^2x - 2ty + z = 0\} = \operatorname{span}_{\mathbb{R}}\{(1, t, t^2), (0, 1, 2t)\}$$

We can also check that the tangent space of W at λp equals the tangent space of W at p. Then

$$W^* = \overline{\{(a, b, c) \in \mathbb{R}^3 : a + bt + ct^2 = 0 \text{ and } b + 2ct = 0 \text{ for some } t \in \mathbb{R}\}}^{Zar}$$
$$= \overline{\{(a, b, c) \in \mathbb{R}^3 : a + bt + ct^2 \text{ has a double root}\}}^{Zar}$$
$$= V(b^2 - 4ac)$$

This generalizes to the following:

Example. Consider

$$W = \{ (\lambda, \lambda t, \lambda t^2, \dots, t^d) : \lambda, t \in \mathbb{R} \}$$

= $\{ ((x_0, \dots, x_n) \in \mathbb{R}^{n+1} : x_{i+1} x_{i-1}^2 = x_i^2 \text{ for } i = 1, \dots, n-1 \}$

One can check that at a point $p = (1, t, t^2, ..., t^d)$ of W, we find that

$$T_p W = \operatorname{span}_{\mathbb{R}} \{ (1, t, t^2, \dots, t^d), (0, 1, 2t, \dots, dt^{d-1}) \}$$

Then just as before,

$$W^* = \overline{\{(a_0, a_1, \dots, a_d) \in \mathbb{R}^{n+1} : \sum_{i=0}^n a_i t^i = 0 \text{ and } \sum_{i=0}^n i \cdot a_i t^{i-1} = 0 \text{ for some } t \in \mathbb{R}\}}^{Zar}$$
$$= \overline{\{(a_0, a_1, \dots, a_d) \in \mathbb{R}^{n+1} : \sum_{i=0}^n a_i t^i \text{ has a double root}\}}$$

Proposition. If $\partial_{\text{alg}}K$ has no singular points besides $\mathbf{0} = (0, \ldots, 0)$, then the algebraic boundary of the dual cone, $\partial_{\text{alg}}K^*$, equals the dual variety of the algebraic boundary, $(\partial_{\text{alg}}K)^*$.

Proof. If $\partial_{\text{alg}}K = V(f)$ has no singular points besides $\mathbf{0} = (0, \dots, 0)$, then

$$\partial K^* = \{ \nabla f(p) : p \in \partial K \}.$$

and

$$\partial_{\mathrm{alg}}K^* = \overline{\{\nabla f(p) : p \in \partial K\}}^{Zar} = \overline{\{\nabla f(p) : p \in V(f)\}}^{Zar} = V(f)^* = (\partial_{\mathrm{alg}}K)^*.$$

However if $\partial_{\text{alg}} K$ has a nonzero singular point on its boundary, then things can be more difficult.

Example. Let K be the conic hull of $\{(1, t, t^2) : t \in [-1, 1]\}$. A semialgebraic description of K is $\{(x, y, z) \in \mathbb{R}^3 : xz \ge y^2, x \ge z\}$. Then

$$\partial_{\text{alg}}K = V((xz - y^2)(x - z)).$$

Note that this has two singular points in $V(xz-y^2) \cap V(x-z)$, namely (1,1,1) and (1,-1,1) on the boundary of K.

One can check that the dual variety of $V((xz - y^2)(x - z))$ is a union

$$(\partial_{\text{alg}}K)^* = V(b^2 - 4ac) \cup V(b, a + c).$$

But the dual cone

$$K^* = \{ (a, b, c) \in \mathbb{R}^3 : a + bt + ct^2 \ge 0 \text{ for } t \in [-1, 1] \}.$$

Its algebraic boundary has three components

$$\partial_{\text{alg}}(K^*) = V((b^2 - 4ac)(a + b + c)(a - b + c)) = V(b^2 - 4ac) \cup V(a + b + c) \cup V(a - b + c).$$

Here are the cones K and K^* in the planes x = 1 and a = 1, respectively:

Theorem (Sinn, 2014). Let Exr(K) denote the extreme rays of K, then the dual variety of the Zariski-closure of the set of extreme rays belongs to the algebraic boundary of the dual cone K^* :

$$\left(\overline{\operatorname{Exr}(K)}^{Zar}\right)^* \subset \partial_{\operatorname{alg}}(K^*).$$

In fact, $\left(\overline{\operatorname{Exr}(K)}^{Zar}\right)^*$ is an irreducible component of $\partial_{\operatorname{alg}}(K^*)$. Moreover

$$(\partial_{\mathrm{alg}}K)^* = \overline{\mathrm{Exr}(K^*)}^{\mathrm{Zar}}.$$

Example. In the example above, where K be the conic hull of $\{(1, t, t^2) : t \in [-1, 1]\}$

$$\operatorname{Exr}(K) = \{(\lambda, \lambda t, \lambda t^2) : t \in [-1, 1], \lambda \in \mathbb{R}_{\geq 0}\},\$$

$$\overline{\operatorname{Exr}(K)}^{Zar} = V(xz - y^2),$$

$$\overline{\operatorname{Exr}(K)}^{Zar})^* = V(b^2 - 4ac),$$

which is a component of $\partial_{\text{alg}}(K^*)$.

For the second equation, one can check that the dual variety of $\partial_{\text{alg}} K$ is

$$(\partial_{\mathrm{alg}}K)^* = V(b^2 - 4ac) \cup V(b, a+c).$$

The extreme rays of K^* are

$$\operatorname{Exr}(K^*) = \{ (\lambda, 0, -\lambda) : \lambda \in \mathbb{R}_{\geq 0} \} \} \cup \{ (a, b, c) \in \mathbb{R}^3 : b^2 = 4ac, c \geq 0 \}.$$

Example. Consider the polynomial det(X) for a square non-symmetric matrix of variables.

$$\frac{\partial \det(X)}{\partial X_{ij}} = (-1)^{i+j} \cdot \det(X_{[n]\setminus i, [n]\setminus j}).$$

We can differentiate X with respect to any variable, and we can organize the partial derivatives into a matrix. Then

$$\nabla \det(X) = X^{\mathrm{adj}}$$

Then M is a regular point of det(X) if and only if $\nabla det(M)$ is non-zero if and only if rank(M) = n - 1. Moreover

$$\nabla \det(M) = v w^T$$

where $v, w \in \mathbb{R}^n$ are the right and left kernel of M, respectively. Indeed, if det(M) = 0, then

$$M \cdot M^{\operatorname{adj}} = M^{\operatorname{adj}} \cdot M = \det(M) \cdot I_n = 0 \cdot I_n.$$

In particular, the columnspan of M^{adj} belongs to the right kernel of M and the rowspan of M^{adj} belongs to the left kernel of M.

The dual variety of $V(\det(X))$ is therefore

$$V(\det(X))^* = \{ Y \in \mathbb{R}^{n \times n} : \operatorname{rank}(Y) \le 1 \}.$$

Example. For $K = PSD_n$, the algebraic boundary

$$\partial_{\text{alg}} K = V(\det(X))$$
$$(\partial_{\text{alg}} K)^* = \{ Y \in \mathbb{R}^{n \times n}_{\text{sym}} : \text{rank}(Y) \le 1 \}.$$

The dual cone is again the PSD cone, $K^* = \text{PSD}_n$, whose extreme rays are the rank-one positive semidefinite matrices. Again we see that the Zariski-closure agrees with $(\partial_{\text{alg}} K)^*$:

$$\operatorname{Exr}(K^*) = \{Y \in \operatorname{PSD}_n : \operatorname{rank}(Y) \le 1\}$$
$$\overline{\operatorname{Exr}(K^*)}^{Zar} = \{Y \in \mathbb{R}^{n \times n}_{\operatorname{sym}} : \operatorname{rank}(Y) \le 1\}.$$