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For this lecture, we will take K to be a full dimensional, pointed (i.e. containing no lines),
semialgebraic, convex cone inside of a finite dimensional real vector space (like Rn).

Definition. The algebraic boundary of K, denoted ∂algK is the Zariski-closure of the
Euclidean boundary of K, ∂K.

Since K is a full-dimensional cone and not the whole space, the boundary ∂K is a semi-
algebraic set of codimension one. Then the algebraic boundary ∂algK also has codimension
one and is defined by a single polynomial equation f(x1, . . . , xn) = 0.

We say that a polynomial f =
∑

α cαx
α ∈ R[x1, . . . , xn] is homogeneous of degree d

if
∑n

i=1 αi for all α with cα 6= 0. Note that this implies that f(λx1, . . . , λxn) = λdf(x).
Moreover, taking the partial derivatives with respect to λ and then restricting to λ = 1 gives
Euler’s identity:

n∑
i=1

xi
∂f

∂xi
= d · f.

Since ∂K is invariant under positive scaling (x 7→ λx for λ ∈ R+), the algebraic boundary
∂algK will be invariant under real scaling (x 7→ λx for λ ∈ R), implying that the defining
polynomial f will be homogeneous of some degree d.

Example. For K = {(x, y, z) ∈ R3 : z2 ≥ x2 + y2, z ≥ 0}, ∂alg(K) equals V (x2 + y2 − z2).

Example. For K = (R≥0)n, the boundary of K is {x ∈ (R≥0)n : xi = 0 for some i}. Then
∂alg(K) equals V (

∏n
i=1 xi) = {x ∈ Rn : xi = 0 for some i}.

Example. For K = PSDn, the boundary of K is {X ∈ PSDn : rank(X) ≤ n − 1}. Then
∂alg(K) equals V (det(X)) = {X ∈ Rn×n

sym : rank(X) ≤ n− 1}.

A motivating question for the day is

Question. How are the algebraic boundaries of K and K∗ related?

Note that by definition

K∗ = {a ∈ Rn : 〈a, x〉 ≥ 0 for all x ∈ K}

Since K is pointed, the intersection of all these hyperplanes {x : 〈a, x〉} where a ∈ K∗ is the
origin 0 = (0, . . . , 0). Therefore the boundary of K∗ is

∂K∗ =
{
a ∈ K∗ : 〈a, x0〉 = 0 for some x0 ∈ ∂K\{0}

}
.

Since 〈a, x〉 ≥ 0 for all x ∈ K, the plane {x ∈ Rn : 〈a, x〉 = 0} must be tangent to the cone
K at the point x = x0. In particular, if f vanishes on ∂K, then ∇f(x0) must be a scalar
multiple of a. (Note if ∇f(x0) = 0, this scalar might be zero.)

Proposition. If ∂algK = V (f) and ∇f(p) 6= 0 for all p ∈ ∂K\{0}, then

∂K∗ =
{
∇f(p) : p ∈ ∂K

}
.



Proof. Note that 0 ∈ K∗. Since f is homogeneous of degree ≥ 2, 0 = ∇f(0). (Note that if
f has degree one, then K would not be pointed.)

If a ∈ ∂K∗\{0}, the argument above shows that a = λ·∇f(p) for some λ ∈ R and p ∈ ∂K.
Since a 6= 0, λ and ∇f(p) are also non-zero. Since f is homogeneous of some degree d ≥ 2,
the entries of ∇f are homogeneous of degree d− 1 ≥ 1. Then a = λ · ∇f(p) = ∇f(q), where
q = λ1/(d−1)p ∈ ∂K.

Similarly, for any point p ∈ ∂K, by convexity x 7→ 〈∇f(p), x〉 is nonnegative on K,
meaning that ∇f(p) ∈ K∗ and p · ∇f(p) = d · f(p) = 0, implying that ∇f(p) ∈ ∂K∗. �

Example. For K = {(x, y, z) ∈ R3 : z2 ≥ x2 + y2, z ≥ 0}, we had that ∂algK = V (f) where
f = x2 + y2 − z2 and ∇f = (2x, 2y,−2z). Then

∂K∗ =
{
(a, b, c) ∈ R3 : ax+ by + cz ≥ 0 for all (x, y, z) ∈ K and

ax0 + by0 + cz0 = 0 for some (x0, y0, z0) ∈ ∂K
}

=
{
(2x0, 2y0,−2z0) : (x0, y0, z0) ∈ ∂K

}
More, any point (x0, y0, z0) ∈ ∂K satisfies f(x0, y0, z0), so (a, b, c) = ∇f(x0, y0, z0) satisfies

a2 + b2 − c2 = (2x0)
2 + (2y0)

2 − (2z0)
2 = 4 · f(x0, y0, z0) = 0.

Indeed in this case ∂algK∗ = V (a2 + b2− c2). (In fact, K is self-dual, and this is the same as
the algebraic boundary of K in different coordinates!)

To understand the boundary more generally, we need another definition.

Definition. Let W ⊂ Rn be a real variety that is invariant under scaling (x ∈ W ⇒ λx ∈
W ). The tangent space of W at a point p ∈ W is defined as

TpW = {x ∈ Rn : 〈x,∇f(p)〉 = 0 for all f ∈ I(W )}.
We say that p is a regular or nonsingular point of W if p ∈ W and the dimension of the
tangent space dim(TpW ) equals the dimension of W .

This is easiest when W is a hypersurface, meaning that the ideal of polynomials vanishing
on W is the set of polynomial multiples of some f ∈ R[x1, . . . , xn]. If I(W ) = 〈f〉 = {h · f :
h ∈ R[x1, . . . , xn]}, then one can check that

TpW = {x ∈ Rn : 〈x,∇f(p)〉 = 0}.
In particular, this is a hyperplane with ∇f(p) 6= 0 and all of Rn when ∇f(p) = 0.

Since dim(W ) = n− 1, p ∈ W is a regular point of W if ∇f(p) 6= 0 and a singular point
if ∇f(p) = 0.

Example. ForW = V (f) where f = x2+y2−z2, we have ∇f = (2x, 2y,−2z), so ∇f(p) = 0
only for p = 0. Therefore the only singular point of W is 0 = (0, 0, 0).

Definition. The dual variety of W , denoted W ∗, equals the Zariski-closure of the set of
hyperplanes containing the tangent space of W at some regular point. That is,

W ∗ = {a ∈ Rn : TpW ⊆ {x : 〈a, x〉} for some regular point p ∈ W}.
Just as in convex duality, under some mild assumptions, the dual variety of the dual

variety is the original.

Theorem (Biduality). If W is invariant under scaling and irreducible (i.e. not a union of
proper subvarieties), then (W ∗)∗ = W .



If W is a hypersurface, I(W ) = 〈f〉, then at every regular point p ∈ W , the tangent space
TpW is a hyperplane defined by 〈∇f(p), x〉 = 0. Then TpW is contained in {x : 〈a, x〉 = 0 if
and only if a = λ∇f(p) for some λ ∈ R.

Corollary. If I(W ) = 〈f〉, then

W ∗ = {∇f(p) : p is a regular point of W}
Zar

.

Example. Consider

W = {(λ, λt, λt2) : λ, t ∈ R} = {(x, y, z) ∈ R3 : xz − y2 = 0}
Then I(W ) = 〈f〉 where f = xz − y2 and ∇f = (z,−2y, x). At a point p = (1, t, t2) of W ,
we find that

TpW = {(x, y, z) ∈ R3 : t2x− 2ty + z = 0} = spanR{(1, t, t2), (0, 1, 2t)}.
We can also check that the tangent space of W at λp equals the tangent space of W at p.
Then

W ∗ = {(a, b, c) ∈ R3 : a+ bt+ ct2 = 0 and b+ 2ct = 0 for some t ∈ R}
Zar

= {(a, b, c) ∈ R3 : a+ bt+ ct2 has a double root}
Zar

= V (b2 − 4ac)

This generalizes to the following:

Example. Consider

W = {(λ, λt, λt2, . . . , td) : λ, t ∈ R}
= {((x0, . . . , xn) ∈ Rn+1 : xi+1x

2
i−1 = x2i for i = 1, . . . , n− 1}

One can check that at a point p = (1, t, t2, . . . , td) of W , we find that

TpW = spanR{(1, t, t2, . . . , td), (0, 1, 2t, . . . , dtd−1)}.
Then just as before,

W ∗ = {(a0, a1, . . . , ad) ∈ Rn+1 :
n∑
i=0

aiti = 0 and
n∑
i=0

i · aiti−1 = 0 for some t ∈ R}
Zar

= {(a0, a1, . . . , ad) ∈ Rn+1 :
n∑
i=0

aiti has a double root}
Zar

.

Proposition. If ∂algK has no singular points besides 0 = (0, . . . , 0), then the algebraic
boundary of the dual cone, ∂algK∗, equals the dual variety of the algebraic boundary, (∂algK)∗.

Proof. If ∂algK = V (f) has no singular points besides 0 = (0, . . . , 0), then

∂K∗ = {∇f(p) : p ∈ ∂K}.
and

∂algK
∗ = {∇f(p) : p ∈ ∂K}

Zar
= {∇f(p) : p ∈ V (f)}

Zar
= V (f)∗ = (∂algK)∗.

�



However if ∂algK has a nonzero singular point on its boundary, then things can be more
difficult.

Example. Let K be the conic hull of {(1, t, t2) : t ∈ [−1, 1]}. A semialgebraic description
of K is {(x, y, z) ∈ R3 : xz ≥ y2, x ≥ z}. Then

∂algK = V ((xz − y2)(x− z)).

Note that this has two singular points in V (xz−y2)∩V (x−z), namely (1, 1, 1) and (1,−1, 1)
on the boundary of K.

One can check that the dual variety of V ((xz − y2)(x− z)) is a union

(∂algK)∗ = V (b2 − 4ac) ∪ V (b, a+ c).

But the dual cone

K∗ = {(a, b, c) ∈ R3 : a+ bt+ ct2 ≥ 0 for t ∈ [−1, 1]}.

Its algebraic boundary has three components

∂alg(K
∗) = V ((b2 − 4ac)(a+ b+ c)(a− b+ c)) = V (b2 − 4ac) ∪ V (a+ b+ c) ∪ V (a− b+ c).

Here are the cones K and K∗ in the planes x = 1 and a = 1, respectively:

Theorem (Sinn, 2014). Let Exr(K) denote the extreme rays of K, then the dual variety of
the Zariski-closure of the set of extreme rays belongs to the algebraic boundary of the dual
cone K∗: (

Exr(K)
Zar
)∗
⊂ ∂alg(K

∗).

In fact,
(
Exr(K)

Zar
)∗

is an irreducible component of ∂alg(K∗). Moreover

(∂algK)∗ = Exr(K∗)
Zar
.

Example. In the example above, where K be the conic hull of {(1, t, t2) : t ∈ [−1, 1]}

Exr(K) = {(λ, λt, λt2) : t ∈ [−1, 1], λ ∈ R≥0},

Exr(K)
Zar

= V (xz − y2),(
Exr(K)

Zar
)∗

= V (b2 − 4ac),

which is a component of ∂alg(K∗).
For the second equation, one can check that the dual variety of ∂algK is

(∂algK)∗ = V (b2 − 4ac) ∪ V (b, a+ c).

The extreme rays of K∗ are

Exr(K∗) = {(λ, 0,−λ) : λ ∈ R≥0}} ∪ {(a, b, c) ∈ R3 : b2 = 4ac, c ≥ 0}.



Example. Consider the polynomial det(X) for a square non-symmetric matrix of variables.
∂ det(X)

∂Xij

= (−1)i+j · det(X[n]\i,[n]\j).

We can differentiate X with respect to any variable, and we can organize the partial deriva-
tives into a matrix. Then

∇ det(X) = Xadj

Then M is a regular point of det(X) if and only if ∇ det(M) is non-zero if and only if
rank(M) = n− 1. Moreover

∇ det(M) = vwT

where v, w ∈ Rn are the right and left kernel of M , respectively. Indeed, if det(M) = 0, then

M ·Madj =Madj ·M = det(M) · In = 0 · In.
In particular, the columnspan of Madj belongs to the right kernel of M and the rowspan of
Madj belongs to the left kernel of M .

The dual variety of V (det(X)) is therefore
V (det(X))∗ = {Y ∈ Rn×n : rank(Y ) ≤ 1}.

Example. For K = PSDn, the algebraic boundary
∂algK = V (det(X))

(∂algK)∗ = {Y ∈ Rn×n
sym : rank(Y ) ≤ 1}.

The dual cone is again the PSD cone, K∗ = PSDn, whose extreme rays are the rank-one
positive semidefinite matrices. Again we see that the Zariski-closure agrees with (∂algK)∗:

Exr(K∗) = {Y ∈ PSDn : rank(Y ) ≤ 1}

Exr(K∗)
Zar

= {Y ∈ Rn×n
sym : rank(Y ) ≤ 1}.


