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For linearly independent matrices A1, . . . , Ad ∈ Rn×n
sym and b ∈ Rd, consider the linear space

L =
{
X ∈ Rn×n

sym : 〈Ai, X〉 = bi for i = 1, . . . , d
}
.

Last time we saw that

Theorem. If d <
(
r+2
2

)
and L ∩ PSDn is nonempty, then L ∩ PSDn contains a matrix of

rank ≤ r.

Today we improve on this slightly:

Theorem (Barvinok’s improvement). If d =
(
r+2
2

)
, n ≥ r+2 ≥ 3, and L∩PSDn is nonempty

and bounded, then L ∩ PSDn contains a matrix of rank ≤ r.

Sketch of proof (when n = r − 2). If n = r − 2, then d =
(
n
2

)
and L is an affine linearspace

of dimension n. Suppose that L contains a positive definite matrix, so that the intersection
L∩PSDn is full dimensional. Let S = L∩PSDn. Then S is a n-dimensional compact convex
set. It is homeomorphic to a n-dimensional ball and its boundary ∂S is homeomorphic to
the (n − 1)-dimensional sphere, Sn−1. Suppose that rank(X) ≥ n − 1 for all X ∈ S. Then
rank(X) = n− 1 for all X on the boundary ∂S. If X is an n×n matrix with rank n− 1, the
kernel of X is a line in Rn, which, by definition, is a point in the real projective space RPn−1.
Then X 7→ ker(X) gives a continuous, injective map from ∂S ∼= Sn−1 to RPn−1. However it
is topologically impossible to embed Sn−1 in to RPn−1 for n ≥ 3! �

Let’s examine the smallest possible case of this:

Example. (n = 3, r = 1, d =
(
r+2
2

)
= 3) Consider a linear space

L =
{
X ∈ R3×3

sym : 〈A1, X〉 = b1, 〈A2, X〉 = b2, 〈A3, X〉 = b3
}

that contains some positive definite matrix and whose intersection with PSD3 is bounded.
For example, if we take Ai = Eii and bi = 1, we get the 3-dimensional affine space

L =


1 x y
x 1 z
y z 1

 : (x, y, z) ∈ R3

 .

Then S = L ∩ PSD3 is homeomorphic to a ball and its boundary ∂S is homemorphic to a
sphere S2. For a matrix X ∈ R3×3

sym with rank 2, its kernel ker(X) is a vector of length 3, up
to scaling, which is a point in the real projective plane RP2. Since there is no embedding of
S2 into RP2, there must be some point on the boundary of S at which the map X 7→ ker(X)
is not defined. This will be a matrix of rank 1. Indeed, for the specific example above, we
find (several) rank-one matrices. One such is given by (x, y, z) = (1, 1, 1).

Application to graph realizability.

Definition. A weighted graph G on n vertices is a set of edges E ⊆
(
[n]
2

)
and a weight

function ρ : E → R+. We say that G is r-realizable if there exist points v1, . . . , vn ∈ Rr

whose pairwise distances are the prescribed weights, i.e.
||vi − vj||2 = ρ(ij) for all ij ∈ E.



We say that G is realizable if it is r-realizable for some r ∈ Z+.

Example. Let G be the weighted graph with n = 4, E = {12, 23, 34, 14}, and ρ(i(i+1)) = 2
for i = 1, 2, 3 and ρ(14) = 3. Then G is 2-realizable but not 1-realizable.

The weighted graph G′ with the same vertices and edges, but weights ρ′(ij) = 2 for all
ij ∈ E is 1-realizable, by points v1 = v3 = 0 and v2 = v4 = 2 on the real line.

Some weighted graphs are not realizable in any dimension. For example the graph on
n = 3 vertices with all edges E = {12, 13, 23} with weights ρ(12) = ρ(13) = 1 and ρ(23) = 3
does not satisfy the triangle inequality, and so cannot come from distances between points
in Rr.

Observation. If G is realizable, then it is (n− 1)-realizable. To see this, note that if G is
realized by v1, . . . , vn ∈ Rr for some r ≥ n, then the affine span of v1, . . . , vn is (at most)
(n− 1)-dimensional and there is an isometry between this affine span and Rn−1.

If v1, . . . , vn ∈ Rr, then the n× n matrix

X =


−vT1 −
−vT2 −

...
−vTn−


 | | |
v1 v2 . . . vn
| | |

 =


〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn〉
〈v1, v2〉 〈v2, v2〉 . . . 〈v2, vn〉

... . . . ...
〈v1, vn〉 〈v2, vn〉 . . . 〈vn, vn〉


is positive semidefinite with rank ≤ r. Moreover, for any ij ∈ E,

ρ(ij)2 = ||vi − vj||22 = 〈vi − vj, vi − vj〉
= 〈vi, vi〉 − 2〈vi, vj〉+ 〈vj, vj〉
= Xii − 2Xij +Xjj.

Proposition. The weighted graph G is r-realizable if and only if there is a matrix X ∈ PSDn

of rank ≤ r satisfying the affine linear equations

ρ(ij)2 = Xii − 2Xij +Xjj for all ij ∈ E.

Proof. (⇒) By the argument above, given a realization v1, . . . , vn, the matrix X = V TV
where V is the r × n matrix with columns v1, . . . , vn satisfies the desired conditions.

(⇐) If X is positive semidefinite of rank ≤ r, then it can be factored as X = V TV where
V ∈ Rr×n. Let v1, . . . , vn ∈ Rr be the columns of V . Then ||vi − vj||2 = Xii − 2Xij +Xjj =
ρ(ij)2, meaning that v1, . . . , vn are a realization of G. �

Corollary. If G has less than
(
r+2
2

)
edges, then G is realizable if and only if it is r-realizable.

Proof. The linear space

L = {X ∈ Rn×n
sym : Xii − 2Xij +Xjj = ρ(ij)2 for all ij ∈ E}

has codimension |E|, since every edge imposes a linearly independent constraint. The graph
G is realizable if and only if L ∩ PSDn is non-empty and G is r-realizable if and only if
L ∩ PSDn contains a matrix of rank ≤ r. So this follows from our first theorem on PSD
matrix completion. �

For example, any realizable graph with at most 5 edges it 2-realizable and any realizable
graph with at most 9 edges is 3-realizable.



0.1. A smaller representation. Since distances are preserved under translation, we can
assume, without loss of generality, that the last vector vn is the origin. (Explicitly, we can
replace a representation v1, . . . , vn with v1 − vn, . . . , vn−1 − vn, vn − vn.)

Then, if v1, . . . , vn−1 ∈ Rr, the (n− 1)× (n− 1) matrix

X =


−vT1 −
−vT2 −

...
−vTn−1−


 | | |
v1 v2 . . . vn−1
| | |

 =


〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn−1〉
〈v1, v2〉 〈v2, v2〉 . . . 〈v2, vn−1〉

... . . . ...
〈v1, vn−1〉 〈v2, vn−1〉 . . . 〈vn−1, vn−1〉


is positive semidefinite with rank ≤ r that satisfies

Xii = 〈vi, vi〉 = ρ(in)2 for in ∈ E

and
Xii − 2Xij +Xjj = ρ(ij)2 for ij ∈ E, i, j 6= n.

Example. Consider the weighted graphG on vertices {1, 2, 3, 4} with edgesE = {12, 13, 23, 24, 34}
where ρ(ij) = 1 for all ij ∈ E. This graph is realizable if and only if there exists a matrix
X ∈ PSD3 with

X22 = 1, X33 = 1

X11 − 2X12 +X22 = 1

X11 − 2X13 +X33 = 1

X22 − 2X23 +X33 = 1

Solving this equations shows that

X =

 X11
1
2
X11

1
2
X11

1
2
X11 1 1

2
1
2
X11

1
2

1

 ,

which is positive semidefinite if and only if X11 ∈ [0, 3]. For X11 ∈ {0, 3} is has rank two,
and there is a realization of the graph in R2 with the distance between v1 and v4 equal to√
X11.
For X11 ∈ (0, 3), this matrix has rank three and there is a realization of the graph in R3

with the distance between v1 and v4 equal to
√
X11.

This allows us to translate between graph realization problems and matrix completion
problems. Barvinok’s improvement for matrix completion gives the following:

Proposition. If G has
(
r+2
2

)
edges and G is not the union of the complete graph Kr+2 with

some isolated vertices, then G is realizable if and only if it is r-realizable.

Proof. Suppose that G is connected. Since G is not a complete graph, the number of edges
implies that there are at least r + 3 vertices, implying that n− 1 ≥ r + 2. The linear space

L = {X ∈ R(n−1)×(n−1)
sym : Xii = ρ(in)2 for in ∈ E,Xii − 2Xij +Xjj = ρ(ij)2 for ij ∈ E}

has codimension |E| =
(
r+2
2

)
. Then G is realizable if and only if L ∩ PSDn−1 is non-empty.

If G is connected, then L ∩ PSDn−1 is bounded. Therefore by Barvinok’s improvement,
L ∩ PSDn−1 contains a matrix of rank ≤ r, which gives a realization of G in Rr. �



Example. For example, consider the following graph on six vertices with 10 =
(
3+2
2

)
edges

and all weights ρ(ij) = 1 for ij ∈ E.

1

23

4

5 6

This realized by vectors in R6 by taking vi = 1√
2
ei for each i = 1, . . . , 6. Then by the

proposition above, it has some realization in R3.
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