Math 591 - Real Algebraic Geometry and Convex Optimization

Lecture 14: Matrix Completion and Graph Realizability Cynthia Vinzant, Spring 2019

For linearly independent matrices $A_{1}, \ldots, A_{d} \in \mathbb{R}_{\text {sym }}^{n \times n}$ and $b \in \mathbb{R}^{d}$, consider the linear space

$$
\mathcal{L}=\left\{X \in \mathbb{R}_{\text {sym }}^{n \times n}:\left\langle A_{i}, X\right\rangle=b_{i} \text { for } i=1, \ldots, d\right\}
$$

Last time we saw that
Theorem. If $d<\binom{r+2}{2}$ and $\mathcal{L} \cap \mathrm{PSD}_{n}$ is nonempty, then $\mathcal{L} \cap \mathrm{PSD}_{n}$ contains a matrix of rank $\leq r$.

Today we improve on this slightly:
Theorem (Barvinok's improvement). If $d=\binom{r+2}{2}, n \geq r+2 \geq 3$, and $\mathcal{L} \cap \mathrm{PSD}_{n}$ is nonempty and bounded, then $\mathcal{L} \cap \mathrm{PSD}_{n}$ contains a matrix of rank $\leq r$.
Sketch of proof (when $n=r-2$). If $n=r-2$, then $d=\binom{n}{2}$ and \mathcal{L} is an affine linearspace of dimension n. Suppose that \mathcal{L} contains a positive definite matrix, so that the intersection $\mathcal{L} \cap \mathrm{PSD}_{n}$ is full dimensional. Let $S=\mathcal{L} \cap \mathrm{PSD}_{n}$. Then S is a n-dimensional compact convex set. It is homeomorphic to a n-dimensional ball and its boundary ∂S is homeomorphic to the $(n-1)$-dimensional sphere, \mathbb{S}^{n-1}. Suppose that $\operatorname{rank}(X) \geq n-1$ for all $X \in S$. Then $\operatorname{rank}(X)=n-1$ for all X on the boundary ∂S. If X is an $n \times n$ matrix with rank $n-1$, the kernel of X is a line in \mathbb{R}^{n}, which, by definition, is a point in the real projective space $\mathbb{R} \mathbb{P}^{n-1}$. Then $X \mapsto \operatorname{ker}(X)$ gives a continuous, injective map from $\partial S \cong \mathbb{S}^{n-1}$ to $\mathbb{R} \mathbb{P}^{n-1}$. However it is topologically impossible to embed \mathbb{S}^{n-1} in to $\mathbb{R}^{\mathbb{P}^{n-1}}$ for $n \geq 3$!

Let's examine the smallest possible case of this:
Example. $\left(n=3, r=1, d=\binom{r+2}{2}=3\right)$ Consider a linear space

$$
\mathcal{L}=\left\{X \in \mathbb{R}_{\text {sym }}^{3 \times 3}:\left\langle A_{1}, X\right\rangle=b_{1},\left\langle A_{2}, X\right\rangle=b_{2},\left\langle A_{3}, X\right\rangle=b_{3}\right\}
$$

that contains some positive definite matrix and whose intersection with PSD_{3} is bounded. For example, if we take $A_{i}=E_{i i}$ and $b_{i}=1$, we get the 3 -dimensional affine space

$$
\mathcal{L}=\left\{\left(\begin{array}{lll}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right):(x, y, z) \in \mathbb{R}^{3}\right\}
$$

Then $S=\mathcal{L} \cap \mathrm{PSD}_{3}$ is homeomorphic to a ball and its boundary ∂S is homemorphic to a sphere \mathbb{S}^{2}. For a matrix $X \in \mathbb{R}_{\text {sym }}^{3 \times 3}$ with rank 2 , its $\operatorname{kernel} \operatorname{ker}(X)$ is a vector of length 3 , up to scaling, which is a point in the real projective plane $\mathbb{R P P}^{2}$. Since there is no embedding of \mathbb{S}^{2} into $\mathbb{R} \mathbb{P}^{2}$, there must be some point on the boundary of S at which the map $X \mapsto \operatorname{ker}(X)$ is not defined. This will be a matrix of rank 1. Indeed, for the specific example above, we find (several) rank-one matrices. One such is given by $(x, y, z)=(1,1,1)$.

Application to graph realizability.

Definition. A weighted graph G on n vertices is a set of edges $E \subseteq\binom{[n]}{2}$ and a weight function $\rho: E \rightarrow \mathbb{R}_{+}$. We say that G is r-realizable if there exist points $v_{1}, \ldots, v_{n} \in \mathbb{R}^{r}$ whose pairwise distances are the prescribed weights, i.e.

$$
\left\|v_{i}-v_{j}\right\|_{2}=\rho(i j) \quad \text { for all } i j \in E
$$

We say that G is realizable if it is r-realizable for some $r \in \mathbb{Z}_{+}$.
Example. Let G be the weighted graph with $n=4, E=\{12,23,34,14\}$, and $\rho(i(i+1))=2$ for $i=1,2,3$ and $\rho(14)=3$. Then G is 2-realizable but not 1-realizable.

The weighted graph G^{\prime} with the same vertices and edges, but weights $\rho^{\prime}(i j)=2$ for all $i j \in E$ is 1-realizable, by points $v_{1}=v_{3}=0$ and $v_{2}=v_{4}=2$ on the real line.

Some weighted graphs are not realizable in any dimension. For example the graph on $n=3$ vertices with all edges $E=\{12,13,23\}$ with weights $\rho(12)=\rho(13)=1$ and $\rho(23)=3$ does not satisfy the triangle inequality, and so cannot come from distances between points in \mathbb{R}^{r}.

Observation. If G is realizable, then it is $(n-1)$-realizable. To see this, note that if G is realized by $v_{1}, \ldots, v_{n} \in \mathbb{R}^{r}$ for some $r \geq n$, then the affine span of v_{1}, \ldots, v_{n} is (at most) $(n-1)$-dimensional and there is an isometry between this affine span and \mathbb{R}^{n-1}.

If $v_{1}, \ldots, v_{n} \in \mathbb{R}^{r}$, then the $n \times n$ matrix

$$
X=\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{n}^{T}-
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \ldots & v_{n} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\begin{array}{cccc}
\left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}, v_{2}\right\rangle & \ldots & \left\langle v_{1}, v_{n}\right\rangle \\
\left\langle v_{1}, v_{2}\right\rangle & \left\langle v_{2}, v_{2}\right\rangle & \ldots & \left\langle v_{2}, v_{n}\right\rangle \\
\vdots & & \ddots & \vdots \\
\left\langle v_{1}, v_{n}\right\rangle & \left\langle v_{2}, v_{n}\right\rangle & \ldots & \left\langle v_{n}, v_{n}\right\rangle
\end{array}\right)
$$

is positive semidefinite with rank $\leq r$. Moreover, for any $i j \in E$,

$$
\begin{aligned}
\rho(i j)^{2}=\left\|v_{i}-v_{j}\right\|_{2}^{2} & =\left\langle v_{i}-v_{j}, v_{i}-v_{j}\right\rangle \\
& =\left\langle v_{i}, v_{i}\right\rangle-2\left\langle v_{i}, v_{j}\right\rangle+\left\langle v_{j}, v_{j}\right\rangle \\
& =X_{i i}-2 X_{i j}+X_{j j} .
\end{aligned}
$$

Proposition. The weighted graph G is r-realizable if and only if there is a matrix $X \in \mathrm{PSD}_{n}$ of rank $\leq r$ satisfying the affine linear equations

$$
\rho(i j)^{2}=X_{i i}-2 X_{i j}+X_{j j} \text { for all } i j \in E .
$$

Proof. (\Rightarrow) By the argument above, given a realization v_{1}, \ldots, v_{n}, the matrix $X=V^{T} V$ where V is the $r \times n$ matrix with columns v_{1}, \ldots, v_{n} satisfies the desired conditions.
(\Leftarrow) If X is positive semidefinite of rank $\leq r$, then it can be factored as $X=V^{T} V$ where $V \in \mathbb{R}^{r \times n}$. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{r}$ be the columns of V. Then $\left\|v_{i}-v_{j}\right\|^{2}=X_{i i}-2 X_{i j}+X_{j j}=$ $\rho(i j)^{2}$, meaning that v_{1}, \ldots, v_{n} are a realization of G.
Corollary. If G has less than $\binom{r+2}{2}$ edges, then G is realizable if and only if it is r-realizable.
Proof. The linear space

$$
\mathcal{L}=\left\{X \in \mathbb{R}_{\text {sym }}^{n \times n}: X_{i i}-2 X_{i j}+X_{j j}=\rho(i j)^{2} \text { for all } i j \in E\right\}
$$

has codimension $|E|$, since every edge imposes a linearly independent constraint. The graph G is realizable if and only if $L \cap \mathrm{PSD}_{n}$ is non-empty and G is r-realizable if and only if $L \cap \mathrm{PSD}_{n}$ contains a matrix of rank $\leq r$. So this follows from our first theorem on PSD matrix completion.

For example, any realizable graph with at most 5 edges it 2-realizable and any realizable graph with at most 9 edges is 3 -realizable.
0.1. A smaller representation. Since distances are preserved under translation, we can assume, without loss of generality, that the last vector v_{n} is the origin. (Explicitly, we can replace a representation v_{1}, \ldots, v_{n} with $v_{1}-v_{n}, \ldots, v_{n-1}-v_{n}, v_{n}-v_{n}$.)

Then, if $v_{1}, \ldots, v_{n-1} \in \mathbb{R}^{r}$, the $(n-1) \times(n-1)$ matrix

$$
X=\left(\begin{array}{c}
-v_{1}^{T}- \\
-v_{2}^{T}- \\
\vdots \\
-v_{n-1}^{T}-
\end{array}\right)\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \ldots & v_{n-1} \\
\mid & \mid & & \mid
\end{array}\right)=\left(\begin{array}{cccc}
\left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}, v_{2}\right\rangle & \ldots & \left\langle v_{1}, v_{n-1}\right\rangle \\
\left\langle v_{1}, v_{2}\right\rangle & \left\langle v_{2}, v_{2}\right\rangle & \ldots & \left\langle v_{2}, v_{n-1}\right\rangle \\
\vdots & & \ddots & \vdots \\
\left\langle v_{1}, v_{n-1}\right\rangle & \left\langle v_{2}, v_{n-1}\right\rangle & \ldots & \left\langle v_{n-1}, v_{n-1}\right\rangle
\end{array}\right)
$$

is positive semidefinite with rank $\leq r$ that satisfies

$$
X_{i i}=\left\langle v_{i}, v_{i}\right\rangle=\rho(i n)^{2} \text { for } \text { in } \in E
$$

and

$$
X_{i i}-2 X_{i j}+X_{j j}=\rho(i j)^{2} \text { for } i j \in E, i, j \neq n
$$

Example. Consider the weighted graph G on vertices $\{1,2,3,4\}$ with edges $E=\{12,13,23,24,34\}$ where $\rho(i j)=1$ for all $i j \in E$. This graph is realizable if and only if there exists a matrix $X \in \mathrm{PSD}_{3}$ with

$$
\begin{aligned}
& X_{22}=1, \quad X_{33}=1 \\
& X_{11}-2 X_{12}+X_{22}=1 \\
& X_{11}-2 X_{13}+X_{33}=1 \\
& X_{22}-2 X_{23}+X_{33}=1
\end{aligned}
$$

Solving this equations shows that

$$
X=\left(\begin{array}{ccc}
X_{11} & \frac{1}{2} X_{11} & \frac{1}{2} X_{11} \\
\frac{1}{2} X_{11} & 1 & \frac{1}{2} \\
\frac{1}{2} X_{11} & \frac{1}{2} & 1
\end{array}\right)
$$

which is positive semidefinite if and only if $X_{11} \in[0,3]$. For $X_{11} \in\{0,3\}$ is has rank two, and there is a realization of the graph in \mathbb{R}^{2} with the distance between v_{1} and v_{4} equal to $\sqrt{X_{11}}$.

For $X_{11} \in(0,3)$, this matrix has rank three and there is a realization of the graph in \mathbb{R}^{3} with the distance between v_{1} and v_{4} equal to $\sqrt{X_{11}}$.

This allows us to translate between graph realization problems and matrix completion problems. Barvinok's improvement for matrix completion gives the following:
Proposition. If G has $\binom{r+2}{2}$ edges and G is not the union of the complete graph K_{r+2} with some isolated vertices, then G is realizable if and only if it is r-realizable.

Proof. Suppose that G is connected. Since G is not a complete graph, the number of edges implies that there are at least $r+3$ vertices, implying that $n-1 \geq r+2$. The linear space

$$
\mathcal{L}=\left\{X \in \mathbb{R}_{\mathrm{sym}}^{(n-1) \times(n-1)}: X_{i i}=\rho(i n)^{2} \text { for } i n \in E, X_{i i}-2 X_{i j}+X_{j j}=\rho(i j)^{2} \text { for } i j \in E\right\}
$$

has codimension $|E|=\binom{r+2}{2}$. Then G is realizable if and only if $\mathcal{L} \cap \mathrm{PSD}_{n-1}$ is non-empty. If G is connected, then $\mathcal{L} \cap \mathrm{PSD}_{n-1}$ is bounded. Therefore by Barvinok's improvement, $\mathcal{L} \cap \mathrm{PSD}_{n-1}$ contains a matrix of rank $\leq r$, which gives a realization of G in \mathbb{R}^{r}.

Example. For example, consider the following graph on six vertices with $10=\binom{3+2}{2}$ edges and all weights $\rho(i j)=1$ for $i j \in E$.

This realized by vectors in \mathbb{R}^{6} by taking $v_{i}=\frac{1}{\sqrt{2}} e_{i}$ for each $i=1, \ldots, 6$. Then by the proposition above, it has some realization in \mathbb{R}^{3}.

