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For linearly independent matrices Ay, ..., A; € RE " and b € R?, consider the linear space
L={XeRy": (A, X)=bfori=1,...d}.

Last time we saw that

Theorem. If d < (T;Q) and £ N PSD,, is nonempty, then £ N PSD,, contains a matriz of
rank <r.

Today we improve on this slightly:

Theorem (Barvinok’s improvement). Ifd = (T;rz), n >r+2 >3, and LNPSD,, is nonempty

and bounded, then £ N PSD,, contains a matrixz of rank < r.

Sketch of proof (whenn =r—2). if n =1r — 2, then d = (;‘) and L is an affine linearspace
of dimension n. Suppose that £ contains a positive definite matrix, so that the intersection
LNPSD,, is full dimensional. Let S = LNPSD,,. Then S is a n-dimensional compact convex
set. It is homeomorphic to a n-dimensional ball and its boundary 0S is homeomorphic to
the (n — 1)-dimensional sphere, S"~!. Suppose that rank(X) > n — 1 for all X € S. Then
rank(X) = n—1 for all X on the boundary 0S. If X is an n x n matrix with rank n — 1, the
kernel of X is a line in R", which, by definition, is a point in the real projective space RP"~*.
Then X s ker(X) gives a continuous, injective map from 95 = S*~! to RP"~!. However it
is topologically impossible to embed S*! in to RP"~! for n > 3! O

Let’s examine the smallest possible case of this:
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L={X Ry (A1, X) = by, (A3, X) = by, (A5, X) = bs}

sym

Example. (n=3,r=1,d= ( ) = 3) Consider a linear space

that contains some positive definite matrix and whose intersection with PSDj3 is bounded.
For example, if we take A; = E;; and b; = 1, we get the 3-dimensional affine space

1 z gy
L= z 1 z|:(r,y,2) eR?
y 2z 1

Then S = £ N PSD;3 is homeomorphic to a ball and its boundary 05 is homemorphic to a
sphere S?. For a matrix X € R;";rg with rank 2, its kernel ker(X) is a vector of length 3, up
to scaling, which is a point in the real projective plane RIP?. Since there is no embedding of
S? into RP2, there must be some point on the boundary of S at which the map X ~ ker(X)
is not defined. This will be a matrix of rank 1. Indeed, for the specific example above, we

find (several) rank-one matrices. One such is given by (z,y,z) = (1,1,1).
Application to graph realizability.

Definition. A weighted graph G on n vertices is a set of edges £ C ([Z]) and a weight
function p : E — R,. We say that G is r-realizable if there exist points vq,...,v, € R"

whose pairwise distances are the prescribed weights, i.e.

[|vi —vjll2 = p(ig) forallij e E.



We say that G is realizable if it is r-realizable for some r € Z, .

Example. Let G be the weighted graph with n = 4, E' = {12,23,34, 14}, and p(i(i+1)) = 2
for i = 1,2,3 and p(14) = 3. Then G is 2-realizable but not 1-realizable.

The weighted graph G’ with the same vertices and edges, but weights p/(ij) = 2 for all
17 € E is 1-realizable, by points v; = v3 = 0 and vy = vy, = 2 on the real line.

Some weighted graphs are not realizable in any dimension. For example the graph on
n = 3 vertices with all edges F = {12, 13,23} with weights p(12) = p(13) =1 and p(23) =3
does not satisfy the triangle inequality, and so cannot come from distances between points
in R".

Observation. If G is realizable, then it is (n — 1)-realizable. To see this, note that if G is
realized by vy,...,v, € R" for some r > n, then the affine span of vy,...,v, is (at most)
(n — 1)-dimensional and there is an isometry between this affine span and R"~*.

If vy,...,v, € R", then the n X n matrix
—vf— (vi,v1) (v1,v2) ... (v, V)
—vd— . | (v1,v9)  (vg,v2) ... (vg,vp)
X = . V1 V2 ... Up = . .
—vl— (v1,v) (Vo,vp) oo {Up,vp)
is positive semidefinite with rank < r. Moreover, for any ij € F,
p(i)* = llvi = vjll3 = (v = vj, v — v))

= (vi, vi) = 2{vi, vj) + (v}, 0))

- X” - 2XZJ + ij.
Proposition. The weighted graph G is r-realizable if and only if there is a matrix X € PSD,,
of rank < r satisfying the affine linear equations

p(l])2 = Xzz — QXU + ij fOT all Z] e L.

Proof. (=) By the argument above, given a realization vy, ..., v,, the matrix X = VIV
where V' is the r x n matrix with columns v, ..., v, satisfies the desired conditions.

(<) If X is positive semidefinite of rank < r, then it can be factored as X = V'V where
V e R™". Let vy,...,v, € R" be the columns of V. Then ||v; — v;||* = X;; — 2X;; + Xj; =
p(i7)?, meaning that vy, ...,v, are a realization of G. O

Corollary. If G has less than (’“52) edges, then G is realizable if and only if it is r-realizable.

Proof. The linear space

Sym
has codimension |F|, since every edge imposes a linearly independent constraint. The graph
G is realizable if and only if L N PSD,, is non-empty and G is r-realizable if and only if
L N PSD,, contains a matrix of rank < r. So this follows from our first theorem on PSD
matrix completion. 0

For example, any realizable graph with at most 5 edges it 2-realizable and any realizable
graph with at most 9 edges is 3-realizable.



0.1. A smaller representation. Since distances are preserved under translation, we can
assume, without loss of generality, that the last vector v, is the origin. (Explicitly, we can
replace a representation vy, ..., v, With v; — Vp, ..., Up_1 — Vp, Uy — Uy.)

Then, if vy,...,v,1 € R", the (n — 1) x (n — 1) matrix

—"U1T_ (v1,01) <Ul, U2> ce <U17 Un—1>
—vl— | | {v1,v2) (va,v2) ... {vo,Up_1)
X — . V1 Vo ... Up_1 = . .
: | | ‘
_Ug—1_ <U1a Un—1> (vg, Un—1> e <Un—17 Up—1)

is positive semidefinite with rank < r that satisfies
Xii = (vs,v;) = p(in)? for in € F
and
Xy —2X;; + X;; = plij)* for ij € E, i,j #n.

Example. Consider the weighted graph G on vertices {1, 2, 3,4} with edges F' = {12, 13,23, 24, 34}
where p(ij) = 1 for all ij € E. This graph is realizable if and only if there exists a matrix

Xog =1, Xzz=1

X1 —2Xp2 + X2 =1

Xop —2Xo3 + X33 =1

Solving this equations shows that

X
X = %Xll
7X11
which is positive semidefinite if and only if Xy, € [0,3]. For X;; € {0,3} is has rank two,
and there is a realization of the graph in R? with the distance between v; and v4 equal to
Xll.
For Xi; € (0,3), this matrix has rank three and there is a realization of the graph in R?
with the distance between v, and v, equal to v/ X7;.

N[ =

X1
1
1
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I ><
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—

This allows us to translate between graph realization problems and matrix completion
problems. Barvinok’s improvement for matrix completion gives the following:

Proposition. If G has (’;2) edges and G is not the union of the complete graph K, o with

some isolated vertices, then G is realizable if and only if it is r-realizable.

Proof. Suppose that G is connected. Since GG is not a complete graph, the number of edges
implies that there are at least r 4+ 3 vertices, implying that n — 1 > r 4 2. The linear space
L= {X S R(nil)x(nil) : X“ = p(ZTl)2 for in c E,X” - QXU + ij = p(lj)2 for ’Lj S E}

Sym

has codimension |E| = (r;2). Then G is realizable if and only if £ N PSD,,_; is non-empty.
If G is connected, then £ N PSD,,_; is bounded. Therefore by Barvinok’s improvement,
L N PSD,,_; contains a matrix of rank < r, which gives a realization of G in R". O
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Example. For example, consider the following graph on six vertices with 10 = (
and all weights p(ij) =1 for ij € E.

(3 (2)
e!a:aia

This realized by vectors in RS by taking v; = %ei for each ¢ = 1,...,6. Then by the

proposition above, it has some realization in R3.
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