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Let A1, . . . , Ad ∈ Rn×n
sym be linear independent over R. This defines a linear map

T : Rn×n
sym → Rd by T (X) = (〈X,Ai〉)i=1,...,d.

If we want to reconstruct X from T (X) and we don’t have any addition information, then
we need d =

(
n+1
2

)
= dimR(Rn×n

sym ). But if, in addition, we know that X was low rank, then
we may be able to take d smaller.

Question. What is the lowest rank of a matrix in T−1(b) for b ∈ Rd? For generic b ∈ Rd?
What about the lowest PSD matrix?

Example. (n = d = 2) Consider the map T : R2×2
sym → R2 given by T

(
a b
b c

)
= (a, b). What

is the lowest rank of a matrix in T−1(a, b)? Then we can check that

lowest rank in T−1(a, b) =


0 if a = b = 0

1 if a 6= 0

2 if a = 0, b 6= 0.

If a > 0, then we can even find a positive semidefinite matrix of rank one in T−1(a, b).

Example. (Connection with sums of squares) Consider the linear map

T : RN×N
sym → R[x1, . . . , xn]≤2d given by T (X) = mT

dXmd

where md is the vector of all monomials of degree ≤ d in R[x1, . . . , xn]. The finding the
smallest rank of a positive semidefinite matrix in T−1(f) is equivalent to finding the smallest
number of squares in a sum-of-squares representation of f ∈ R[x1, . . . , xn]≤2d.

To get an idea of what we might expect, let us first study this problem over C. To do this,
we need some information about the dimension of an algebraic variety.

The dimension of algebraic varieties and matrix completion over C.

Definition. The dimension of an algebraic variety V ⊂ CN , denoted dim(V ), equals
• the largest k such that a generic affine linear space L ⊂ CN of codimension k (di-
mension N − k) intersects V , i.e. L ∩ V 6= ∅, and
• the largest k such that for some i1 < . . . < ik ∈ {1, . . . , N} the image of V under the
projection π(x1, . . . , xN) = (xi1 , . . . , xik) is Zariski-dense in Ck, i.e. π(V )

Zar
= Ck.

It turns out, but is non-trivial to prove, that these two definitions are equivalent.

Example. Consider the variety V = V (x2−y, x3− z, y3− z2) = {(t, t2, t3) : t ∈ C} in C3. A
generic affine linear space of codimension one in C3 is an affine linear space, which has the
form

L = {(x, y, z) ∈ C3 : a+ bx+ cy + dz = 0}
for a, b, c, d ∈ C, then the intersection

L ∩ V = {(t, t2, t3) ∈ C3 : a+ bt+ ct2 + dt3 = 0}



is non-empty, since the polynomial a+ bt+ ct2 + dt3 has some root. However a affine linear
space of codimension two is just a line. We can check that a generic affine line in C3 does
not intersect V . (One way to see this is that two randomly chosen cubics in R[t]≤3 will not
have a common root!) Therefore dim(V ) = 1.

To see this, we can also consider the second definition of dimension. Since V is a variety,
V

Zar
= V , which is not all of C3, so dim(V ) < 3. Similarly, there is a polynomial that

vanishes on the projection of V onto any pair of coordinates (namely one of the three
polynomials listed in its description). Therefore dim(V ) < 2. However, taking π(x, y, z) = x,
we see that π(V ) = C. So, again, dim(V ) = 1.

For us, the variety of interest will be

Mr = {X ∈ Cn×n
sym : rank(X) ≤ r}.

Recall that this is the variety defined by the vanishing of the (r + 1)× (r + 1) minors of X.

Warm-up Question. What is the dimension ofM1 in Cn×n
sym ?

For n = 2, we have M1 =

{(
a b
b c

)
: ac = b2

}
. Since not every matrix has rank ≤ 1,

M1 is not the whole space, and so has dimension < 3. We saw that for the projection

π

(
a b
b c

)
= (a, b), we have

π(M1) = {(a, b) : a 6= 0} and π(M1)
Zar

= C2.

So dim(M1) = 2.
For n = 3, we have

M1 =


a b c
b d e
c e f

 : all 2× 2 minors = 0

 .

Note that for any choice of (a, b, c) ∈ C3 with a 6= 0, there is a unique way to extend
to a rank-one matrix. (Namely, taking d = b2/a, e = bc/a, f = c2/a). This shows that
dim(M1) = 3.

More generally we have the following:

Proposition. The set of n× n symmetric matrices of rank ≤ r has dimension

dim(Mr) =

(
n+ 1

2

)
−
(
n− r + 1

2

)
=

(
r + 1

2

)
+ r(n− r).

Sketch of proof. For a generic choice of Xij with 1 ≤ i ≤ r and i ≤ j ≤ n, there is a unique
way to extend to a rank r matrix X. (Specifically, we need that the r× r matrix (Xij)1≤i,j≤r

has full rank r.) The number of these entries is the value claimed. One can see this as either
the total number of entries minus the number in the bottom right (n− r)× (n− r) corner or
as the number in the top left r× r block plus the number in the first r rows and last (n− r)
columns. �

As an immediate corollary of our first definition of dimension we find the following:

Corollary. For generic A1, . . . , Ad ∈ Cn×n
sym and b ∈ Cd, there exists a matrix of rank ≤ r in

the affine linear space {X ∈ Cn×n
sym : 〈Ai, X〉 = bi, i = 1, . . . , d} if and only if d ≤ dim(Mr).



Example. (n = 4, r = 2). We find that variety of 4 × 4 symmetric matrices of rank ≤ 2
has dimension 7 in C4×4

sym
∼= C10. Therefore for d ≤ 7 the affine linear space defined by

〈Ai, X〉 = bi for generic Ai and b contains a matrix of rank ≤ 2.

Back to R and PSDn.
Fix A1, . . . , Ad ∈ Rn×n

sym to be linearly independent over R and b ∈ Rd. Then affine linear
space

L = {X ∈ Rn×n
sym : 〈X,Ai〉 = bi, i = 1, . . . d}

has codimension d in Rn×n
sym (and so dimension

(
n+1
2

)
− d).

Proposition. If d <
(
r+2
2

)
and L ∩ PSDn is non-empty, then L ∩ PSDn contains a matrix

of rank ≤ r.

Note that in terms of the map T (X) = (〈Ai, X〉)i=1,...,d this says that for any b in T (PSDn),
T−1(b) contains a positive semidefinite matrix of rank ≤ r.

Proof. Let S denote the intersection L ∩ PSDn. Then S is convex, non-empty, and contains
no lines. It follows that S has some extreme point X̃. Let m = rank(X̃).

By properties of the facial structure of PSDn, X̃ lies in the relative interior of a face F
that is linearly isomorphic to PSDm. Furthermore, since X̃ is an extreme point in S, it must
be the only point in the intersection of F with L.

L

PSDn

F

Since the intersection of F with L is a single point, their dimensions cannot add to more
than the dimension of the whole space, Rn×n

sym . That is,

dim(F) + dim(L) ≤ dim(Rn×n
sym ).

Since dim(F) = dim(Rm×m
sym ) =

(
m+1
2

)
, and the codimension of L is d = dim(Rn×n

sym )−dim(L),
this gives that

(
m+1
2

)
≤ d <

(
r+2
2

)
. Therefore m < r + 1 and m ≤ r. �

In the proof of this, we actually showed the following:

Corollary. Any extreme point of L ∩ PSDn has rank ≤ r where
(
r+1
2

)
≤ d.

Example. (n = 4, r = 2). If L is an affine space of codimension d in R4×4
sym so that L∩PSD4

is non-empty, then L is guaranteed to have a positive semidefinite matrix of rank ≤ 2 for
d <

(
2+2
2

)
= 6.

Over C, we could impose 7 (generic) affine linear constraints and still find a matrix of
rank ≤ 2, where as this says to guarantee a real and PSD matrix of rank ≤ 2, we can only
impose 5 affine linear constraints.

Next time, we’ll use stronger techniques, to show that you can actually impose one more
constraint and still find a PSD matrix of rank ≤ r:
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