Math 591 - Real Algebraic Geometry and Convex Optimization
Lecture 11: Theta bodies: approximating convex hulls of varieties Cynthia Vinzant, Spring 2019

Note that maximizing a linear function over a set is equivalent to maximizing it over the convex hull of the set. That is, for a set $S \subset \mathbb{R}^{n}$ and a linear function $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\max _{p \in S} \ell(p)=\max _{p \in \operatorname{conv}(S)} \ell(p)
$$

Today we will consider this problem in the case that S is the real variety $V_{\mathbb{R}}(I)$ of some ideal $I \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Then to maximize a specific linear function, we have the relaxation:

$$
\begin{aligned}
\max _{p \in V_{\mathbb{R}}(I)} \ell(p) & =\min _{c \in \mathbb{R}} c \text { such that } c-\ell(x) \geq 0 \text { on } V_{\mathbb{R}}(I) \\
& \leq \min _{c \in \mathbb{R}} c \text { such that } c-\ell(x) \in \operatorname{SOS}_{n, \leq 2 d}+I,
\end{aligned}
$$

the last of which can be written as a semidefinite program. Today, we try to consider all linear functions simultaneously.

Note that the (closure of the) convex hull of $V_{\mathbb{R}}(I)$ can be written as the set of all points satisfying all valid linear inequalities on $V_{\mathbb{R}}(I)$:

$$
\overline{\operatorname{conv}\left(V_{\mathbb{R}}(I)\right)}=\left\{p \in \mathbb{R}^{n}: \ell(p) \geq 0 \text { for all } \ell \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 1} \text { such that } \ell \geq 0 \text { on } V_{\mathbb{R}}(I)\right\}
$$

For any $k \in \mathbb{N}$, define the k-th theta body of the ideal I to be the convex subset of \mathbb{R}^{n} defined by linear inequalities that can be certified to be nonnegative using sums of squares of degree $\leq 2 k$:

$$
\mathrm{TH}_{k}(I)=\left\{p \in \mathbb{R}^{n}: \ell(p) \geq 0 \text { for all } \ell \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 1} \text { such that } \ell \in \operatorname{SOS}_{n, \leq 2 k}+I\right\}
$$

Any element of $\operatorname{SOS}_{n, \leq 2 k}+I$ is nonnegative on $V_{\mathbb{R}}(I)$. As the sets of defining inequalities gets bigger, the set of points satisfying them become smaller:

$$
\mathrm{TH}_{1}(I) \supseteq \mathrm{TH}_{2}(I) \supseteq \ldots \supseteq \mathrm{TH}_{k}(I) \supseteq \overline{\operatorname{conv}\left(V_{\mathbb{R}}(I)\right)}
$$

Proposition. (1) If $V_{\mathbb{R}}(I)$ is compact, then

$$
\bigcap_{k \in \mathbb{N}} \mathrm{TH}_{k}(I)=\overline{\operatorname{conv}\left(V_{\mathbb{R}}(I)\right)}
$$

(2) If $V_{\mathbb{R}}(I)$ is finite then for some sufficiently large N,

$$
\mathrm{TH}_{N}(I)=\operatorname{conv}\left(V_{\mathbb{R}}(I)\right)
$$

Proof. (1) Recall that by Schmüdgen's Theorem, any polynomial that is strictly positive on $V_{\mathbb{R}}(I)$ belongs to $\mathrm{SOS}_{n}+I$. If some point $p \in \mathbb{R}^{n}$ does not belongs to $\overline{\operatorname{conv}\left(V_{\mathbb{R}}(I)\right)}$, then there is some affine linear function $\ell \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 1}$ so that $\ell>0$ on $V_{\mathbb{R}}(I)$ and $\ell(p)<0$. For some k, ℓ belongs to $\mathrm{SOS}_{n, \leq 2 k}+I$, meaning that $p \notin \mathrm{TH}_{k}(I)$.
(2, sketch) If I equals the ideal of all polynomials vanishing on $V_{\mathbb{R}}(I)$, i.e. $I=\mathcal{I}\left(V_{\mathbb{R}}(I)\right)$, then we saw that every polynomial nonnegative on $V_{\mathbb{R}}(I)$ can be written as a sum of squares of degree $\leq 2 \cdot N$ modulo I, where $V_{\mathbb{R}}(I)$ has N points. Restricting to affine linear polynomials then shows that $\mathrm{TH}_{N}(I)=\operatorname{conv}\left(V_{\mathbb{R}}(I)\right)$.

If I is not all $\mathcal{I}\left(V_{\mathbb{R}}(I)\right)$, then one has to work a little harder. Can you prove it?

Theta bodies are useful because they are projection of spectrahedra, meaning that one can optimize over them use semidefinite programming.

To write this down explicitly we work in the quotient ring $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I$. Elements have the form $f+I$ where $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and two polynomial f, g define the same element of the quotient ring $f+I=g+I$ if and only if $f-g \in I$. Then addition and multiplication in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I$ work the way you would want:

$$
(f+I)+(g+I)=(f+g)+I \quad \text { and } \quad(f+I) \cdot(g+I)=f \cdot g+I
$$

We can define the degree of an element $f+I$ of $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I$ as the minimal degree of a representative, i.e.

$$
\operatorname{deg}(f+I)=\min _{h \in I} \operatorname{deg}(f+h)
$$

For any collection $\mathcal{B} \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I$, let \mathcal{B}_{k} denote subset of elements of degree $\leq k$.
Given the ideal I, we will assume that we have an \mathbb{R}-basis \mathcal{B} for $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I$ satisfying
(i) $\mathcal{B}_{1}=\left\{1+I, x_{1}+I, \ldots, x_{n}+I\right\}$ and
(ii) if $f_{i}+I, f_{j}+I \in \mathcal{B}_{d}$, then $f_{i} \cdot f_{j}+I$ belongs to the \mathbb{R}-span of $\mathcal{B}_{2 d}$.

For those familiar with the theory of term orders and Gröbner bases, one could take \mathcal{B} to be the standard monomials of I with respect to a graded term order. In particular, we can take the elements of \mathcal{B} to have monomial representatives, $x^{\alpha}+I$.
Example. For $I=\left\langle x_{1}^{2}-x_{1}, x_{2}^{2}-x_{2}\right\rangle \subset \mathbb{R}\left[x_{1}, x_{2}\right]$, the quotient $\mathbb{R}\left[x_{1}, x_{2}\right] / I$ is a fourdimensional \mathbb{R}-vector space. We can take the basis

$$
\mathcal{B}=\left\{1+I, x_{1}+I, x_{2}+I, x_{1} x_{2}+I\right\},
$$

which satisfies the conditions (i) and (ii) above.
Example. For $I=\left\langle x_{1}^{2}+x_{2}^{2}-1\right\rangle \subset \mathbb{R}\left[x_{1}, x_{2}\right]$, the quotient $\mathbb{R}\left[x_{1}, x_{2}\right] / I$ is an infinitedimensional \mathbb{R}-vector space. We claim that

$$
\mathcal{B}=\left\{x_{1}^{k}+I: k \in \mathbb{N}\right\} \cup\left\{x_{1}^{k} x_{2}+I: k \in \mathbb{N}\right\}
$$

is a basis for the quotient which satisfies the conditions (i) and (ii) above. Note that any monomial $x_{1}^{a} x_{2}^{b}+I$ with $b \geq 2$ can be written as a linear combination of elements from \mathcal{B} by replacing x_{2}^{2} with $1-x_{1}^{2}$ as many times as needed. To check condition (ii) in a specific instance, $x_{2}+I \in \mathcal{B}$, and its square can be written as an \mathbb{R}-linear combination of elements in \mathcal{B}_{2} :

$$
\left(x_{2}+I\right)\left(x_{2}+I\right)=x_{2}^{2}+I=(1+I)-\left(x_{1}^{2}+I\right)
$$

Then we can write $\mathrm{TH}_{k}(I)$ as the projection of a spectrahedron as follows. Let $y \in \mathbb{R}^{\mathcal{B}_{2 k}}$ be a vector of real numbers whose entries are indexed by elements of $\mathcal{B}_{2 k}$. Define the $\left|\mathcal{B}_{k}\right| \times\left|\mathcal{B}_{k}\right|$ matrix $\mathcal{M}_{\mathcal{B}_{k}}(y)$ with rows indexed by the elements of \mathcal{B}_{k} with entries

$$
\left(\mathcal{M}_{\mathcal{B}_{k}}(y)\right)_{f_{i}+I, f_{j}+I}=\sum_{f_{\ell}+I \in \mathcal{B}_{k}} c_{\ell} y_{\ell}
$$

where

$$
\left(f_{i}+I\right) \cdot\left(f_{j}+I\right)=\sum_{f_{\ell}+I \in \mathcal{B}_{k}} c_{\ell}\left(f_{\ell}+I\right) .
$$

is the (unique) linear representation guaranteed by property (ii) of \mathcal{B}.
Proposition. $\mathrm{TH}_{k}(I)=\overline{\left\{\pi_{\left(x_{1}+I, \ldots, x_{n}+I\right)}(y) \in \mathbb{R}^{n}: y \in \mathbb{R}^{\mathcal{B}_{2 k}}, y_{1+I}=1, \mathcal{M}_{\mathcal{B}_{k}}(y) \succeq 0\right\}}$.

The proof of this relies on the duality between the cone of sums of squares $\operatorname{SOS}_{n, \leq 2 k}+I$ and the cone of "moments" $\left\{y \in \mathbb{R}^{\mathcal{B}_{2 k}}: \mathcal{M}_{\mathcal{B}_{k}}(y) \succeq 0\right\}$. We leave out the details here though.

Example. Consider $I=\left\langle x_{1}^{2}+x_{2}^{2}-1\right\rangle$. Then

$$
\mathcal{B}_{4}=\left\{1+I, x_{1}+I, x_{2}+I, x_{1}^{2}+I, x_{1} x_{2}+I, x_{1}^{3}+I, x_{1}^{2} x_{2}+I, x_{1}^{4}+I, x_{1}^{3} x_{2}+I\right\},
$$

to which we can associate the vector

$$
y=\left(y_{\emptyset}, y_{1}, y_{2}, y_{11}, y_{12}, y_{111}, y_{112}, y_{1111}, y_{1112}\right) \in \mathbb{R}^{9} .
$$

Then $\mathcal{M}_{\mathcal{B}_{1}}(y)$ is a 3×3 matrix whose rows and columns are indexed by the set of elements $\mathcal{B}_{1}=\left\{1+I, x_{1}+I, x_{2}+I\right\}:$

$$
\mathcal{M}_{\mathcal{B}_{1}}(y)=\left(\begin{array}{ccc}
y_{\emptyset} & y_{1} & y_{2} \\
y_{1} & y_{11} & y_{12} \\
y_{2} & y_{12} & y_{\emptyset}-y_{11}
\end{array}\right) .
$$

Here the $(3,3)$ entry was calculated by writing

$$
\left(x_{2}+I\right)\left(x_{2}+I\right)=(1+I)-\left(x_{1}^{2}+I\right) \quad \rightarrow \quad y_{\emptyset}-y_{11} .
$$

Then the proposition above states that

$$
\mathrm{TH}_{1}(I)=\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}: \exists y_{11}, y_{12} \in \mathbb{R} \text { s.t. }\left(\begin{array}{ccc}
1 & y_{1} & y_{2} \\
y_{1} & y_{11} & y_{12} \\
y_{2} & y_{12} & 1-y_{11}
\end{array}\right) \succeq 0\right\} .
$$

This is the projection of a spectrahedron in \mathbb{R}^{4}.
For $k=2$, we find that

$$
\mathcal{M}_{\mathcal{B}_{2}}(y)=\left(\begin{array}{ccccc}
y_{\emptyset} & y_{1} & y_{2} & y_{11} & y_{12} \\
y_{1} & y_{11} & y_{12} & y_{111} & y_{112} \\
y_{2} & y_{12} & y_{\emptyset}-y_{11} & y_{112} & y_{1}-y_{111} \\
y_{11} & y_{111} & y_{112} & y_{1111} & y_{1112} \\
y_{12} & y_{112} & y_{1}-y_{111} & y_{1112} & y_{11}-y_{1111}
\end{array}\right) .
$$

And the second theta body of I is $\mathrm{TH}_{2}(I)=$

$$
\left\{\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}: \exists y_{11}, \ldots, y_{1112} \in \mathbb{R} \text { s.t. }\left(\begin{array}{ccccc}
1 & y_{1} & y_{2} & y_{11} & y_{12} \\
y_{1} & y_{11} & y_{12} & y_{111} & y_{112} \\
y_{2} & y_{12} & 1-y_{11} & y_{112} & y_{1}-y_{111} \\
y_{11} & y_{111} & y_{112} & y_{1111} & y_{1112} \\
y_{12} & y_{112} & y_{1}-y_{111} & y_{1112} & y_{11}-y_{1111}
\end{array}\right) \succeq 0\right\}
$$

For finite varieties, there is a nice characterization of when the first theta body is exact. For it, we need the following definition:

Definition. A polytope $P \subset \mathbb{R}^{n}$ is called 2-level if for every facet F of P, all the vertices of P belong to F or to a unique translate of the affine span of F.

For example the cube $[0,1]^{n}$ is a 2-level, but a pentagon in the plane is not. Gouveia, Parrilo, ad Thomas showed that these characterize finite sets for which the first theta body is exact.

Theorem (Gouveia, Parrilo, Thomas, 2010, [1]). Let $S \subset \mathbb{R}^{n}$ and let $I=\mathcal{I}(S) \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be the ideal of polynomial vanishing on S. Then $\mathrm{TH}_{1}(I)$ equals $\operatorname{conv}(S)$ if and only if $\operatorname{conv}(S)$ is a 2-level polytope.
Sketch of \Rightarrow. Let $\ell_{1} \geq 0, \ldots, \ell_{m} \geq 0$ be a minimal set of affine linear inequalities defining $P=\operatorname{conv}(S)$. Then for each $i, F_{i}=\left\{p: \ell_{i}(p)=0\right\} \cap P$ is a facet of P.

If $\mathrm{TH}_{1}(I)=\operatorname{conv}(S)$, then we can write ℓ_{i} as a sum of squares of degree two $\bmod I$:

$$
\ell_{i} \equiv \sum_{k} h_{k}^{2} \quad \bmod I \text { where } h_{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 1} .
$$

On the points $S \cap F_{i}, \ell_{i}=0$ and any element of I also vanishes, implying that h_{k} must vanish also. Since h_{k} has degree ≤ 1, this implies that h_{k} vanishes on the whole affine span of $S \cap F_{i}$.

However the affine span of $S \cap F_{i}$ is the hyperplane defined by $\ell_{i}=0$, implying that h_{k} is some multiple of $\ell_{i}, h_{k}=\lambda_{k} \ell_{i}$. This implies that

$$
\ell_{i} \equiv\left(\sum_{k} \lambda_{k}^{2}\right) \ell_{i}^{2} \quad \bmod I \Rightarrow 0 \equiv \ell_{i} \cdot\left(c \ell_{i}-1\right) \quad \bmod I
$$

where $c=\sum_{k} \lambda_{k}^{2}$. Therefore for every point $p \in S$, either p lies on the facet defined by $\ell_{i}=0$ or on the translate defined by $\ell_{i}=1 / c$. This shows that P is 2-level.

This has a very nice connection with the set STAB_{G} of indicator sets of stable sets of a graph that we worked with last time.

Theorem (Gouveia, Parrilo, Thomas, 2010, [1]). conv $\left(\mathrm{STAB}_{G}\right)$ is a 2-level polytope if and only if the graph G is perfect.

References

[1] J. Gouveia, P. Parrilo, and R. Thomas, Theta bodies for polynomial ideals. SIAM Journal of Optimization 20(4), pp. 2097-2118, 2010.

