Math 591 – Real Algebraic Geometry and Convex Optimization Lecture 11: Theta bodies: approximating convex hulls of varieties Cynthia Vinzant, Spring 2019

Note that maximizing a linear function over a set is equivalent to maximizing it over the convex hull of the set. That is, for a set $S \subset \mathbb{R}^n$ and a linear function $\ell : \mathbb{R}^n \to \mathbb{R}$,

$$\max_{p \in S} \ell(p) = \max_{p \in \operatorname{conv}(S)} \ell(p).$$

Today we will consider this problem in the case that S is the real variety $V_{\mathbb{R}}(I)$ of some ideal $I \subset \mathbb{R}[x_1, \ldots, x_n]$. Then to maximize a specific linear function, we have the relaxation:

$$\max_{p \in V_{\mathbb{R}}(I)} \ell(p) = \min_{c \in \mathbb{R}} c \text{ such that } c - \ell(x) \ge 0 \text{ on } V_{\mathbb{R}}(I)$$
$$\leq \min_{c \in \mathbb{R}} c \text{ such that } c - \ell(x) \in SOS_{n, \le 2d} + I$$

the last of which can be written as a semidefinite program. Today, we try to consider all linear functions simultaneously.

Note that the (closure of the) convex hull of $V_{\mathbb{R}}(I)$ can be written as the set of all points satisfying all valid linear inequalities on $V_{\mathbb{R}}(I)$:

$$\operatorname{conv}(V_{\mathbb{R}}(I)) = \{ p \in \mathbb{R}^n : \ell(p) \ge 0 \text{ for all } \ell \in \mathbb{R}[x_1, \dots, x_n]_{\le 1} \text{ such that } \ell \ge 0 \text{ on } V_{\mathbb{R}}(I) \}$$

For any $k \in \mathbb{N}$, define the *k*-th theta body of the ideal *I* to be the convex subset of \mathbb{R}^n defined by linear inequalities that can be certified to be nonnegative using sums of squares of degree $\leq 2k$:

$$\mathrm{TH}_k(I) = \{ p \in \mathbb{R}^n : \ell(p) \ge 0 \text{ for all } \ell \in \mathbb{R}[x_1, \dots, x_n]_{\le 1} \text{ such that } \ell \in \mathrm{SOS}_{n, \le 2k} + I \}$$

Any element of $SOS_{n,\leq 2k} + I$ is nonnegative on $V_{\mathbb{R}}(I)$. As the sets of defining inequalities gets bigger, the set of points satisfying them become smaller:

$$\operatorname{TH}_1(I) \supseteq \operatorname{TH}_2(I) \supseteq \ldots \supseteq \operatorname{TH}_k(I) \supseteq \operatorname{conv}(V_{\mathbb{R}}(I)).$$

Proposition. (1) If $V_{\mathbb{R}}(I)$ is compact, then

$$\bigcap_{k \in \mathbb{N}} \operatorname{TH}_k(I) = \overline{\operatorname{conv}(V_{\mathbb{R}}(I))}.$$

(2) If $V_{\mathbb{R}}(I)$ is finite then for some sufficiently large N,

$$\operatorname{TH}_N(I) = \operatorname{conv}(V_{\mathbb{R}}(I)).$$

Proof. (1) Recall that by Schmüdgen's Theorem, any polynomial that is strictly positive on $V_{\mathbb{R}}(I)$ belongs to $SOS_n + I$. If some point $p \in \mathbb{R}^n$ does not belongs to $\overline{conv(V_{\mathbb{R}}(I))}$, then there is some affine linear function $\ell \in \mathbb{R}[x_1, \ldots, x_n]_{\leq 1}$ so that $\ell > 0$ on $V_{\mathbb{R}}(I)$ and $\ell(p) < 0$. For some k, ℓ belongs to $SOS_{n,\leq 2k} + I$, meaning that $p \notin TH_k(I)$.

(2, sketch) If I equals the ideal of all polynomials vanishing on $V_{\mathbb{R}}(I)$, i.e. $I = \mathcal{I}(V_{\mathbb{R}}(I))$, then we saw that every polynomial nonnegative on $V_{\mathbb{R}}(I)$ can be written as a sum of squares of degree $\leq 2 \cdot N$ modulo I, where $V_{\mathbb{R}}(I)$ has N points. Restricting to affine linear polynomials then shows that $\operatorname{TH}_N(I) = \operatorname{conv}(V_{\mathbb{R}}(I))$.

If I is not all $\mathcal{I}(V_{\mathbb{R}}(I))$, then one has to work a little harder. Can you prove it?

Theta bodies are useful because they are *projection of spectrahedra*, meaning that one can optimize over them use semidefinite programming.

To write this down explicitly we work in the quotient ring $\mathbb{R}[x_1, \ldots, x_n]/I$. Elements have the form f + I where $f \in \mathbb{R}[x_1, \ldots, x_n]$ and two polynomial f, g define the same element of the quotient ring f + I = g + I if and only if $f - g \in I$. Then addition and multiplication in $\mathbb{R}[x_1, \ldots, x_n]/I$ work the way you would want:

$$(f+I) + (g+I) = (f+g) + I$$
 and $(f+I) \cdot (g+I) = f \cdot g + I$.

We can define the *degree* of an element f + I of $\mathbb{R}[x_1, \ldots, x_n]/I$ as the minimal degree of a representative, i.e.

$$\deg(f+I) = \min_{h \in I} \deg(f+h).$$

For any collection $\mathcal{B} \subset \mathbb{R}[x_1, \ldots, x_n]/I$, let \mathcal{B}_k denote subset of elements of degree $\leq k$.

Given the ideal I, we will assume that we have an \mathbb{R} -basis \mathcal{B} for $\mathbb{R}[x_1, \ldots, x_n]/I$ satisfying (i) $\mathcal{B}_1 = \{1 + I, x_1 + I, \ldots, x_n + I\}$ and

(ii) if $f_i + I, f_j + I \in \mathcal{B}_d$, then $f_i \cdot f_j + I$ belongs to the \mathbb{R} -span of \mathcal{B}_{2d} .

For those familiar with the theory of term orders and Gröbner bases, one could take \mathcal{B} to be the standard monomials of I with respect to a graded term order. In particular, we can take the elements of \mathcal{B} to have monomial representatives, $x^{\alpha} + I$.

Example. For $I = \langle x_1^2 - x_1, x_2^2 - x_2 \rangle \subset \mathbb{R}[x_1, x_2]$, the quotient $\mathbb{R}[x_1, x_2]/I$ is a fourdimensional \mathbb{R} -vector space. We can take the basis

$$\mathcal{B} = \{1+I, x_1+I, x_2+I, x_1x_2+I\},\$$

which satisfies the conditions (i) and (ii) above.

Example. For $I = \langle x_1^2 + x_2^2 - 1 \rangle \subset \mathbb{R}[x_1, x_2]$, the quotient $\mathbb{R}[x_1, x_2]/I$ is an infinitedimensional \mathbb{R} -vector space. We claim that

$$\mathcal{B} = \{x_1^k + I : k \in \mathbb{N}\} \cup \{x_1^k x_2 + I : k \in \mathbb{N}\},\$$

is a basis for the quotient which satisfies the conditions (i) and (ii) above. Note that any monomial $x_1^a x_2^b + I$ with $b \ge 2$ can be written as a linear combination of elements from \mathcal{B} by replacing x_2^2 with $1 - x_1^2$ as many times as needed. To check condition (ii) in a specific instance, $x_2 + I \in \mathcal{B}$, and its square can be written as an \mathbb{R} -linear combination of elements in \mathcal{B}_2 :

$$(x_2 + I)(x_2 + I) = x_2^2 + I = (1 + I) - (x_1^2 + I).$$

Then we can write $\operatorname{TH}_k(I)$ as the projection of a spectrahedron as follows. Let $y \in \mathbb{R}^{\mathcal{B}_{2k}}$ be a vector of real numbers whose entries are indexed by elements of \mathcal{B}_{2k} . Define the $|\mathcal{B}_k| \times |\mathcal{B}_k|$ matrix $\mathcal{M}_{\mathcal{B}_k}(y)$ with rows indexed by the elements of \mathcal{B}_k with entries

$$\left(\mathcal{M}_{\mathcal{B}_k}(y)\right)_{f_i+I,f_j+I} = \sum_{f_\ell+I\in\mathcal{B}_k} c_\ell y_\ell$$

where

$$(f_i + I) \cdot (f_j + I) = \sum_{f_\ell + I \in \mathcal{B}_k} c_\ell (f_\ell + I).$$

is the (unique) linear representation guaranteed by property (ii) of \mathcal{B} .

Proposition. TH_k(I) =
$$\overline{\{\pi_{(x_1+I,\dots,x_n+I)}(y) \in \mathbb{R}^n : y \in \mathbb{R}^{\mathcal{B}_{2k}}, y_{1+I} = 1, \mathcal{M}_{\mathcal{B}_k}(y) \succeq 0\}}$$
.

The proof of this relies on the duality between the cone of sums of squares $SOS_{n,\leq 2k} + I$ and the cone of "moments" $\{y \in \mathbb{R}^{\mathcal{B}_{2k}} : \mathcal{M}_{\mathcal{B}_k}(y) \succeq 0\}$. We leave out the details here though.

Example. Consider
$$I = \langle x_1^2 + x_2^2 - 1 \rangle$$
. Then

$$\mathcal{B}_4 = \{1 + I, x_1 + I, x_2 + I, x_1^2 + I, x_1x_2 + I, x_1^3 + I, x_1^2x_2 + I, x_1^4 + I, x_1^3x_2 + I\}$$

to which we can associate the vector

$$y = (y_{\emptyset}, y_1, y_2, y_{11}, y_{12}, y_{111}, y_{112}, y_{1111}, y_{1112}) \in \mathbb{R}^9$$

Then $\mathcal{M}_{\mathcal{B}_1}(y)$ is a 3 × 3 matrix whose rows and columns are indexed by the set of elements $\mathcal{B}_1 = \{1 + I, x_1 + I, x_2 + I\}$:

$$\mathcal{M}_{\mathcal{B}_1}(y) = \begin{pmatrix} y_{\emptyset} & y_1 & y_2 \\ y_1 & y_{11} & y_{12} \\ y_2 & y_{12} & y_{\emptyset} - y_{11} \end{pmatrix}.$$

Here the (3,3) entry was calculated by writing

$$(x_2 + I)(x_2 + I) = (1 + I) - (x_1^2 + I) \rightarrow y_{\emptyset} - y_{11}.$$

Then the proposition above states that

$$\mathrm{TH}_{1}(I) = \left\{ (y_{1}, y_{2}) \in \mathbb{R}^{2} : \exists y_{11}, y_{12} \in \mathbb{R} \text{ s.t. } \begin{pmatrix} 1 & y_{1} & y_{2} \\ y_{1} & y_{11} & y_{12} \\ y_{2} & y_{12} & 1 - y_{11} \end{pmatrix} \succeq 0 \right\}.$$

This is the projection of a spectrahedron in \mathbb{R}^4 .

For k = 2, we find that

$$\mathcal{M}_{\mathcal{B}_{2}}(y) = \begin{pmatrix} y_{\emptyset} & y_{1} & y_{2} & y_{11} & y_{12} \\ y_{1} & y_{11} & y_{12} & y_{111} & y_{112} \\ y_{2} & y_{12} & y_{\emptyset} - y_{11} & y_{112} & y_{1} - y_{111} \\ y_{11} & y_{111} & y_{112} & y_{1111} & y_{1112} \\ y_{12} & y_{112} & y_{1} - y_{111} & y_{1112} & y_{11} - y_{1111} \end{pmatrix}$$

And the second theta body of I is $TH_2(I) =$

$$\left\{ (y_1, y_2) \in \mathbb{R}^2 : \exists y_{11}, \dots, y_{1112} \in \mathbb{R} \text{ s.t. } \begin{pmatrix} 1 & y_1 & y_2 & y_{11} & y_{12} \\ y_1 & y_{11} & y_{12} & y_{111} & y_{112} \\ y_2 & y_{12} & 1 - y_{11} & y_{112} & y_1 - y_{111} \\ y_{11} & y_{111} & y_{112} & y_{111} & y_{1112} \\ y_{12} & y_{12} & y_1 - y_{111} & y_{1112} & y_{11} - y_{1111} \end{pmatrix} \succeq 0 \right\}.$$

For finite varieties, there is a nice characterization of when the first theta body is exact. For it, we need the following definition:

Definition. A polytope $P \subset \mathbb{R}^n$ is called 2-level if for every facet F of P, all the vertices of P belong to F or to a unique translate of the affine span of F.

For example the cube $[0,1]^n$ is a 2-level, but a pentagon in the plane is not. Gouveia, Parrilo, ad Thomas showed that these characterize finite sets for which the first theta body is exact. **Theorem** (Gouveia, Parrilo, Thomas, 2010, [1]). Let $S \subset \mathbb{R}^n$ and let $I = \mathcal{I}(S) \subset \mathbb{R}[x_1, \ldots, x_n]$ be the ideal of polynomial vanishing on S. Then $\mathrm{TH}_1(I)$ equals $\mathrm{conv}(S)$ if and only if $\mathrm{conv}(S)$ is a 2-level polytope.

Sketch of \Rightarrow . Let $\ell_1 \ge 0, \ldots, \ell_m \ge 0$ be a minimal set of affine linear inequalities defining $P = \operatorname{conv}(S)$. Then for each $i, F_i = \{p : \ell_i(p) = 0\} \cap P$ is a facet of P.

If $\operatorname{TH}_1(I) = \operatorname{conv}(S)$, then we can write ℓ_i as a sum of squares of degree two mod I:

$$\ell_i \equiv \sum_k h_k^2 \mod I \text{ where } h_k \in \mathbb{R}[x_1, \dots, x_n]_{\leq 1}.$$

On the points $S \cap F_i$, $\ell_i = 0$ and any element of I also vanishes, implying that h_k must vanish also. Since h_k has degree ≤ 1 , this implies that h_k vanishes on the whole affine span of $S \cap F_i$.

However the affine span of $S \cap F_i$ is the hyperplane defined by $\ell_i = 0$, implying that h_k is some multiple of ℓ_i , $h_k = \lambda_k \ell_i$. This implies that

$$\ell_i \equiv (\sum_k \lambda_k^2) \ell_i^2 \mod I \implies 0 \equiv \ell_i \cdot (c\ell_i - 1) \mod I_i$$

where $c = \sum_k \lambda_k^2$. Therefore for every point $p \in S$, either p lies on the facet defined by $\ell_i = 0$ or on the translate defined by $\ell_i = 1/c$. This shows that P is 2-level.

This has a very nice connection with the set $STAB_G$ of indicator sets of stable sets of a graph that we worked with last time.

Theorem (Gouveia, Parrilo, Thomas, 2010, [1]). $\operatorname{conv}(\operatorname{STAB}_G)$ is a 2-level polytope if and only if the graph G is perfect.

References

J. Gouveia, P. Parrilo, and R. Thomas, *Theta bodies for polynomial ideals*. SIAM Journal of Optimization 20(4), pp. 2097 – 2118, 2010.