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Note that maximizing a linear function over a set is equivalent to maximizing it over the
convex hull of the set. That is, for a set S ⊂ Rn and a linear function ` : Rn → R,

max
p∈S

`(p) = max
p∈conv(S)

`(p).

Today we will consider this problem in the case that S is the real variety VR(I) of some ideal
I ⊂ R[x1, . . . , xn]. Then to maximize a specific linear function, we have the relaxation:

max
p∈VR(I)

`(p) = min
c∈R

c such that c− `(x) ≥ 0 on VR(I)

≤ min
c∈R

c such that c− `(x) ∈ SOSn,≤2d + I,

the last of which can be written as a semidefinite program. Today, we try to consider all
linear functions simultaneously.

Note that the (closure of the) convex hull of VR(I) can be written as the set of all points
satisfying all valid linear inequalities on VR(I):

conv(VR(I)) = {p ∈ Rn : `(p) ≥ 0 for all ` ∈ R[x1, . . . , xn]≤1 such that ` ≥ 0 on VR(I)}

For any k ∈ N, define the k-th theta body of the ideal I to be the convex subset of Rn

defined by linear inequalities that can be certified to be nonnegative using sums of squares
of degree ≤ 2k:

THk(I) = {p ∈ Rn : `(p) ≥ 0 for all ` ∈ R[x1, . . . , xn]≤1 such that ` ∈ SOSn,≤2k + I}

Any element of SOSn,≤2k + I is nonnegative on VR(I). As the sets of defining inequalities
gets bigger, the set of points satisfying them become smaller:

TH1(I) ⊇ TH2(I) ⊇ . . . ⊇ THk(I) ⊇ conv(VR(I)).

Proposition. (1) If VR(I) is compact, then⋂
k∈N

THk(I) = conv(VR(I)).

(2) If VR(I) is finite then for some sufficiently large N ,

THN(I) = conv(VR(I)).

Proof. (1) Recall that by Schmüdgen’s Theorem, any polynomial that is strictly positive on
VR(I) belongs to SOSn + I. If some point p ∈ Rn does not belongs to conv(VR(I)), then
there is some affine linear function ` ∈ R[x1, . . . , xn]≤1 so that ` > 0 on VR(I) and `(p) < 0.
For some k, ` belongs to SOSn,≤2k + I, meaning that p 6∈ THk(I).

(2, sketch) If I equals the ideal of all polynomials vanishing on VR(I), i.e. I = I(VR(I)),
then we saw that every polynomial nonnegative on VR(I) can be written as a sum of squares
of degree ≤ 2·N modulo I, where VR(I) hasN points. Restricting to affine linear polynomials
then shows that THN(I) = conv(VR(I)).

If I is not all I(VR(I)), then one has to work a little harder. Can you prove it? �



Theta bodies are useful because they are projection of spectrahedra, meaning that one can
optimize over them use semidefinite programming.

To write this down explicitly we work in the quotient ring R[x1, . . . , xn]/I. Elements have
the form f + I where f ∈ R[x1, . . . , xn] and two polynomial f, g define the same element of
the quotient ring f + I = g + I if and only if f − g ∈ I. Then addition and multiplication
in R[x1, . . . , xn]/I work the way you would want:

(f + I) + (g + I) = (f + g) + I and (f + I) · (g + I) = f · g + I.

We can define the degree of an element f + I of R[x1, . . . , xn]/I as the minimal degree of a
representative, i.e.

deg(f + I) = min
h∈I

deg(f + h).

For any collection B ⊂ R[x1, . . . , xn]/I, let Bk denote subset of elements of degree ≤ k.
Given the ideal I, we will assume that we have an R-basis B for R[x1, . . . , xn]/I satisfying
(i) B1 = {1 + I, x1 + I, . . . , xn + I} and
(ii) if fi + I, fj + I ∈ Bd, then fi · fj + I belongs to the R-span of B2d.

For those familiar with the theory of term orders and Gröbner bases, one could take B to
be the standard monomials of I with respect to a graded term order. In particular, we can
take the elements of B to have monomial representatives, xα + I.

Example. For I = 〈x21 − x1, x
2
2 − x2〉 ⊂ R[x1, x2], the quotient R[x1, x2]/I is a four-

dimensional R-vector space. We can take the basis

B = {1 + I, x1 + I, x2 + I, x1x2 + I},
which satisfies the conditions (i) and (ii) above.

Example. For I = 〈x21 + x22 − 1〉 ⊂ R[x1, x2], the quotient R[x1, x2]/I is an infinite-
dimensional R-vector space. We claim that

B = {xk1 + I : k ∈ N} ∪ {xk1x2 + I : k ∈ N},
is a basis for the quotient which satisfies the conditions (i) and (ii) above. Note that any
monomial xa1xb2 + I with b ≥ 2 can be written as a linear combination of elements from B
by replacing x22 with 1 − x21 as many times as needed. To check condition (ii) in a specific
instance, x2 + I ∈ B, and its square can be written as an R-linear combination of elements
in B2:

(x2 + I)(x2 + I) = x22 + I = (1 + I)− (x21 + I).

Then we can write THk(I) as the projection of a spectrahedron as follows. Let y ∈ RB2k be
a vector of real numbers whose entries are indexed by elements of B2k. Define the |Bk|× |Bk|
matrixMBk(y) with rows indexed by the elements of Bk with entries

(MBk(y))fi+I,fj+I =
∑

f`+I∈Bk

c`y`

where
(fi + I) · (fj + I) =

∑
f`+I∈Bk

c`(f` + I).

is the (unique) linear representation guaranteed by property (ii) of B.

Proposition. THk(I) = {π(x1+I,...,xn+I)(y) ∈ Rn : y ∈ RB2k , y1+I = 1, MBk(y) � 0}.



The proof of this relies on the duality between the cone of sums of squares SOSn,≤2k + I
and the cone of “moments” {y ∈ RB2k :MBk(y) � 0}. We leave out the details here though.

Example. Consider I = 〈x21 + x22 − 1〉. Then

B4 = {1 + I, x1 + I, x2 + I, x21 + I, x1x2 + I, x31 + I, x21x2 + I, x41 + I, x31x2 + I},

to which we can associate the vector

y = (y∅, y1, y2, y11, y12, y111, y112, y1111, y1112) ∈ R9.

ThenMB1(y) is a 3× 3 matrix whose rows and columns are indexed by the set of elements
B1 = {1 + I, x1 + I, x2 + I}:

MB1(y) =

y∅ y1 y2
y1 y11 y12
y2 y12 y∅ − y11

 .

Here the (3, 3) entry was calculated by writing

(x2 + I)(x2 + I) = (1 + I)− (x21 + I) → y∅ − y11.

Then the proposition above states that

TH1(I) =

(y1, y2) ∈ R2 : ∃y11, y12 ∈ R s.t.

 1 y1 y2
y1 y11 y12
y2 y12 1− y11

 � 0

.
This is the projection of a spectrahedron in R4.

For k = 2, we find that

MB2(y) =


y∅ y1 y2 y11 y12
y1 y11 y12 y111 y112
y2 y12 y∅ − y11 y112 y1 − y111
y11 y111 y112 y1111 y1112
y12 y112 y1 − y111 y1112 y11 − y1111

 .

And the second theta body of I is TH2(I) =(y1, y2) ∈ R2 : ∃y11, . . . , y1112 ∈ R s.t.


1 y1 y2 y11 y12
y1 y11 y12 y111 y112
y2 y12 1− y11 y112 y1 − y111
y11 y111 y112 y1111 y1112
y12 y112 y1 − y111 y1112 y11 − y1111

 � 0

.
For finite varieties, there is a nice characterization of when the first theta body is exact.

For it, we need the following definition:

Definition. A polytope P ⊂ Rn is called 2-level if for every facet F of P , all the vertices of
P belong to F or to a unique translate of the affine span of F .

For example the cube [0, 1]n is a 2-level, but a pentagon in the plane is not. Gouveia,
Parrilo, ad Thomas showed that these characterize finite sets for which the first theta body
is exact.



Theorem (Gouveia, Parrilo, Thomas, 2010, [1]). Let S ⊂ Rn and let I = I(S) ⊂ R[x1, . . . , xn]
be the ideal of polynomial vanishing on S. Then TH1(I) equals conv(S) if and only if conv(S)
is a 2-level polytope.

Sketch of ⇒. Let `1 ≥ 0, . . . , `m ≥ 0 be a minimal set of affine linear inequalities defining
P = conv(S). Then for each i, Fi = {p : `i(p) = 0} ∩ P is a facet of P .

If TH1(I) = conv(S), then we can write `i as a sum of squares of degree two mod I:

`i ≡
∑
k

h2k mod I where hk ∈ R[x1, . . . , xn]≤1.

On the points S ∩ Fi, `i = 0 and any element of I also vanishes, implying that hk must
vanish also. Since hk has degree ≤ 1, this implies that hk vanishes on the whole affine span
of S ∩ Fi.

However the affine span of S ∩ Fi is the hyperplane defined by `i = 0, implying that hk is
some multiple of `i, hk = λk`i. This implies that

`i ≡ (
∑
k

λ2k)`
2
i mod I ⇒ 0 ≡ `i · (c`i − 1) mod I,

where c =
∑

k λ
2
k. Therefore for every point p ∈ S, either p lies on the facet defined by `i = 0

or on the translate defined by `i = 1/c. This shows that P is 2-level. �

This has a very nice connection with the set STABG of indicator sets of stable sets of a
graph that we worked with last time.

Theorem (Gouveia, Parrilo, Thomas, 2010, [1]). conv(STABG) is a 2-level polytope if and
only if the graph G is perfect.
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