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Take graph G = ([n], E) on vertices [n] = {1, . . . , n} and edges E ⊆ {{i, j} : i 6= j ∈ [n]}.
We say that S ⊆ E is a stable set (or independent set) of G if {i, j} 6∈ E for every pair
i, j ∈ S. We can identify each stable set S with its characteristic vector 1S =

∑n
i=1 ei in

{0, 1}n with ith coordinate 1 if i ∈ S and 0 otherwise. Let STABG denote the set of indicator
vectors of stable sets of G:

STABG = {1S : S is a stable set of G}.

The (aptly named) maximum stable set problem is to find the maximum size stable set:

α(G) = max{|S| : S is a stable set of G}

= max
n∑

i=1

xi such that x ∈ STABG.

Example. For G = ([4], {12, 13, 23, 34}), the stable sets are

∅, {1}, {2}, {3}, {4}, {1, 4}, {2, 4}

and we see α(G) = 2.

Example. For the five-cycle, C5 = ([5], {12, 23, 34, 45, 15}), the stable sets are ∅, singletons
{i}, and {i, j} where i− j 6≡ ±1 mod 5 and we have α(C5) = 2.

Note that the maximum stable set of the complement of G, Gc = ([n],
(
[n]
2

)
\E) corresponds

to the maximum size of a clique in G, i.e. the maximum size of a subset S ⊂ E for which
every pair is connected.

In general, computing α(G) is NP-Hard and so becomes quickly intractable as n grows.
Finding a stable set of G produces a lower bound for α(G). It would be nice to produce an
upper bound for α(G).

Translation to polynomial optimization. We can write STABG as the variety of some
collection of polynomials, namely

{x2i − xi : i ∈ [n]} ∪ {xixj : {i, j} ∈ E}.

To check: a point p ∈ Rn satisfies p2i − pi = 0 for all i if and only if p ∈ {0, 1}n, meaning
that p = 1S for some S ⊆ [n]. Also, pipj = 0 for all {i, j} ⊂ E if and only if S does not
contain any i, j with {i, j} ∈ E.

Let IG denote the ideal generated by these polynomials, i.e.

IG =

∑
i∈[n]

gi(x
2
i − xi) +

∑
ij∈E

hijxixj : gi, hij ∈ R[x1, . . . , xn]

 .

Clearly, every polynomial in IG vanishes on STABG. In fact, one can check that IG contains
all polynomials that vanish on STABG.



Example. For G = ([4], {12, 13, 23, 34}), the ideal IG is generated by the polynomials x2i−xi
for each i = 1, . . . , 4 and x1x2, x1x3, x2x3, x3x4. If variety consists of the seven points

1∅ = (0, 0, 0, 0), 1{1} =(1, 0, 0, 0), 1{2} = (0, 1, 0, 0), 1{3} = (0, 0, 1, 0), 1{4} = (0, 0, 0, 1),

1{1,4} = (1, 0, 0, 1), and 1{2,4} = (0, 1, 0, 1).

Then

α(G) = max
n∑

i=1

xi such that x ∈ STABG

= min
c∈R

c such that c−
n∑

i=1

xi ≥ 0 on STABG

= min
c∈R

c such that c−
n∑

i=1

xi ∈ SOSn + IG

The last equality comes from the fact that the variety of IG is finite, so every polynomial that
is nonnegative on V (IG) = STABG can be written as a sum of squares plus some element of
the ideal IG. (Recall that we can just take sums of squares of indicator polynomials).

Restricting the degree of the sums of squares involved will result in a semidefinite program
and provide an upper bound for α(G). For any k ∈ N, we can define

Θ2k(G) = min
c∈R

c such that c−
n∑

i=1

xi ∈ SOSn,≤2k + IG.

Then α(G) ≤ Θ2k(G) ≤ . . . ≤ Θ4(G) ≤ Θ2(G).
It is convenient to work in the quotient ring R[x1, . . . , xn]/IG, with elements f + IG where

f ∈ R[x1, . . . , xn]. Then f + IG = g + IG if and only if f − g ∈ IG. Note that the quotient
ring R[x1, . . . , xn]/IG is a finite-dimensional vector space over R. For example, it is spanned
by the elements {

∏
i∈S xi +IG : S ∈ STAB(G)}. For k ∈ N, let mk be the vector with entries∏

i∈S xi + IG ∈ R[x1, . . . , xn]/IG, where S ∈ STAB(G) and |S| ≤ k. This lets us write

Θ2k(G) = min
c∈R

c such that c−
n∑

i=1

xi ≡ mT
kAmk mod IG, where A � 0.

Note that the equation c −
∑n

i=1 xi ≡ mT
kAmk mod IG imposes linear conditions on the

matrix A, making this a semidefinite program.

Example. For G = ([4], {12, 13, 23, 34}), IG is generated by the polynomials x2i −xi for each
i = 1, . . . , 4 and x1x2, x1x3, x2x3, x3x4. Indeed, in this case, we see that Θ2(G) = α(G) = 2
because we can write

2− x1 − x2 − x3 − x4 = (1− x1 − x2)2 + (1− x3 − x4)2 −
4∑

i=1

(x2i − xi)− 2x1x2 − 2x3x4

≡ (1− x1 − x2)2 + (1− x3 − x4)2 mod IG.

In the 1979, Lovász introduced this relaxation and showed that it worked very well for a
class of graphs called perfect graphs. This was the first major use of semidefinite programming
to provide bounds for a problem in combinatorial optimization!



A graph G = ([n], E) is perfect if G has no induced odd cycles of length at least five or
their complements. (Alternatively, for G and all of its induced subgraphs have the property
that the coloring number equals the size of the largest clique.)

Theorem (Lovász). If G is perfect, then Θ2(G) = α(G).

We will talk about the proof next time.

Example. Note that G = ([4], {12, 13, 23, 34}) is a perfect graph, and indeed Θ2(G) = α(G).
But the five cycle C5 = ([5], {12, 23, 34, 45, 15}) is not! We might wonder what Θ2(C5) is.

In fact, Lovász proved a stronger statement, namely that if G is perfect, then for every
linear form ` =

∑
i aixi,

max
x∈STAB(G)

`(x) = min
c∈R

c such that c− `(x) ∈ SOSn,≤2 + IG.

But in Lovász did not actually prove this as stated. He proved the dual version.

The dual version. Let us first go through the dual problem of computing Θ2.
The dual cone of SOSn,≤2 + IG is the set of linear functions L : R[x1, . . . , xn]≤2/IG → R

that are nonnegative on squares. Note that

{1 + IG} ∪ {xi + IG : i ∈ [n]} ∪ {xixj + IG : ij 6∈ E}

is an R-basis for R[x1, . . . , xn]≤2/IG. Therefore a linear function L : R[x1, . . . , xn]≤2/IG → R
is determined by

L(1 + IG) = y∅, L(xi + IG) = yi for i ∈ [n], and L(xixj + IG) = yij for ij 6∈ E

Then L belongs to the dual cone of SOSn,≤2 + IG if and only if L is nonnegative on squares
h2 + IG where h+ IG ∈ R[x1, . . . , xn]≤1/IG, which happens if and only if the (n+ 1)× (n+ 1)
matrix L(m1m

T
1 ) is positive semidefinite, where m1 = (1, x1 + IG, . . . , xn + IG). Denote this

matrix by
MG(y) = L(m1m

T
1 ).

Since L(x2i + IG) = L(xi + IG) = yi and L(xixj + IG) = L(0 + IG) = 0 for ij ∈ E, this is
given by

MG(y)00 = L(1 + IG) = y∅

MG(y)0i = L(xi + IG) = yi

MG(y)ii = L(x2i + IG) = L(xi + IG) = yi

MG(y)ij = L(xixj + IG) = L(0 + IG) = 0 for ij ∈ E, and
MG(y)ij = L(xixj + IG) = yij for ij 6∈ E.

Example. For example, for G = ([4], {12, 13, 23, 34}), we have

L(m1m
T
1 ) = MG(y) =


y∅ y1 y2 y3 y4
y1 y1 0 0 y14
y2 0 y2 0 y24
y3 0 0 y3 0
y4 y14 y24 0 y4





We can compute Θ2 by computing the dual of the sums of squares problem above. This
translates to:

Θ2(G) = max
n∑

i=1

yi such that y∅ = 1 andMG(y) ∈ PSDn+1

Note that for any stable set S, 1S1
T
S gives a feasible matrixMG(y) with objective value |S|,

so we immediately get α(G) ≤ Θ2(G), just as before.
In Lovász’s original proof, he defines the theta body of a graph to be

TH(G) = {(y1, . . . , yn) ∈ Rn :MG(y) � 0 with y∅ = 1}
This is the projection of the feasible set above onto (y1, . . . , yn). It is convex and contains
STAB(G).

Theorem (Lovász). The graph G is perfect if and only if TH(G) = conv(STAB(G)).
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