Math 591 – Real Algebraic Geometry and Convex Optimization

Lecture 10: An application to stable sets Cynthia Vinzant, Spring 2019

Take graph G = ([n], E) on vertices $[n] = \{1, ..., n\}$ and edges $E \subseteq \{\{i, j\} : i \neq j \in [n]\}$. We say that $S \subseteq E$ is a **stable set** (or **independent set**) of G if $\{i, j\} \notin E$ for every pair $i, j \in S$. We can identify each stable set S with its *characteristic vector* $\mathbb{1}_S = \sum_{i=1}^n e_i$ in $\{0, 1\}^n$ with *i*th coordinate 1 if $i \in S$ and 0 otherwise. Let STAB_G denote the set of indicator vectors of stable sets of G:

 $STAB_G = \{\mathbb{1}_S : S \text{ is a stable set of } G\}.$

The (aptly named) maximum stable set problem is to find the maximum size stable set:

$$\alpha(G) = \max\{|S| : S \text{ is a stable set of } G\}$$
$$= \max \sum_{i=1}^{n} x_i \text{ such that } x \in \text{STAB}_G.$$

Example. For $G = ([4], \{12, 13, 23, 34\})$, the stable sets are

 $\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,4\}, \{2,4\}$

and we see $\alpha(G) = 2$.

Example. For the five-cycle, $C_5 = ([5], \{12, 23, 34, 45, 15\})$, the stable sets are \emptyset , singletons $\{i\}$, and $\{i, j\}$ where $i - j \not\equiv \pm 1 \mod 5$ and we have $\alpha(C_5) = 2$.

Note that the maximum stable set of the complement of G, $G^c = ([n], {[n] \choose 2} \setminus E)$ corresponds to the maximum size of a *clique* in G, i.e. the maximum size of a subset $S \subset E$ for which every pair is connected.

In general, computing $\alpha(G)$ is NP-Hard and so becomes quickly intractable as n grows. Finding a stable set of G produces a lower bound for $\alpha(G)$. It would be nice to produce an upper bound for $\alpha(G)$.

Translation to polynomial optimization. We can write $STAB_G$ as the variety of some collection of polynomials, namely

$$\{x_i^2 - x_i : i \in [n]\} \cup \{x_i x_j : \{i, j\} \in E\}.$$

To check: a point $p \in \mathbb{R}^n$ satisfies $p_i^2 - p_i = 0$ for all *i* if and only if $p \in \{0, 1\}^n$, meaning that $p = \mathbb{1}_S$ for some $S \subseteq [n]$. Also, $p_i p_j = 0$ for all $\{i, j\} \subset E$ if and only if S does not contain any i, j with $\{i, j\} \in E$.

Let I_G denote the ideal generated by these polynomials, i.e.

$$I_G = \left\{ \sum_{i \in [n]} g_i(x_i^2 - x_i) + \sum_{ij \in E} h_{ij} x_i x_j : g_i, h_{ij} \in \mathbb{R}[x_1, \dots, x_n] \right\}.$$

Clearly, every polynomial in I_G vanishes on STAB_G. In fact, one can check that I_G contains all polynomials that vanish on STAB_G.

Example. For $G = ([4], \{12, 13, 23, 34\})$, the ideal I_G is generated by the polynomials $x_i^2 - x_i$ for each $i = 1, \ldots, 4$ and $x_1x_2, x_1x_3, x_2x_3, x_3x_4$. If variety consists of the seven points

$$\begin{split} \mathbb{1}_{\emptyset} = (0,0,0,0), \ \mathbb{1}_{\{1\}} = & (1,0,0,0), \ \mathbb{1}_{\{2\}} = (0,1,0,0), \ \mathbb{1}_{\{3\}} = (0,0,1,0), \ \mathbb{1}_{\{4\}} = (0,0,0,1), \\ & \mathbb{1}_{\{1,4\}} = (1,0,0,1), \ \text{and} \ \mathbb{1}_{\{2,4\}} = (0,1,0,1). \end{split}$$

Then

$$\alpha(G) = \max \sum_{i=1}^{n} x_i \text{ such that } x \in \text{STAB}_G$$
$$= \min_{c \in \mathbb{R}} c \text{ such that } c - \sum_{i=1}^{n} x_i \ge 0 \text{ on STAB}_G$$
$$= \min_{c \in \mathbb{R}} c \text{ such that } c - \sum_{i=1}^{n} x_i \in \text{SOS}_n + I_G$$

The last equality comes from the fact that the variety of I_G is finite, so *every* polynomial that is nonnegative on $V(I_G) = \text{STAB}_G$ can be written as a sum of squares plus some element of the ideal I_G . (Recall that we can just take sums of squares of indicator polynomials).

Restricting the *degree* of the sums of squares involved will result in a semidefinite program and provide an upper bound for $\alpha(G)$. For any $k \in \mathbb{N}$, we can define

$$\Theta_{2k}(G) = \min_{c \in \mathbb{R}} c$$
 such that $c - \sum_{i=1}^{n} x_i \in SOS_{n, \leq 2k} + I_G.$

Then $\alpha(G) \leq \Theta_{2k}(G) \leq \ldots \leq \Theta_4(G) \leq \Theta_2(G)$.

It is convenient to work in the quotient ring $\mathbb{R}[x_1, \ldots, x_n]/I_G$, with elements $f + I_G$ where $f \in \mathbb{R}[x_1, \ldots, x_n]$. Then $f + I_G = g + I_G$ if and only if $f - g \in I_G$. Note that the quotient ring $\mathbb{R}[x_1, \ldots, x_n]/I_G$ is a finite-dimensional vector space over \mathbb{R} . For example, it is spanned by the elements $\{\prod_{i \in S} x_i + I_G : S \in \text{STAB}(G)\}$. For $k \in \mathbb{N}$, let m_k be the vector with entries $\prod_{i \in S} x_i + I_G \in \mathbb{R}[x_1, \ldots, x_n]/I_G$, where $S \in \text{STAB}(G)$ and $|S| \leq k$. This lets us write

$$\Theta_{2k}(G) = \min_{c \in \mathbb{R}} c$$
 such that $c - \sum_{i=1}^{n} x_i \equiv m_k^T A m_k \mod I_G$, where $A \succeq 0$.

Note that the equation $c - \sum_{i=1}^{n} x_i \equiv m_k^T A m_k \mod I_G$ imposes linear conditions on the matrix A, making this a semidefinite program.

Example. For $G = ([4], \{12, 13, 23, 34\})$, I_G is generated by the polynomials $x_i^2 - x_i$ for each $i = 1, \ldots, 4$ and $x_1x_2, x_1x_3, x_2x_3, x_3x_4$. Indeed, in this case, we see that $\Theta_2(G) = \alpha(G) = 2$ because we can write

$$2 - x_1 - x_2 - x_3 - x_4 = (1 - x_1 - x_2)^2 + (1 - x_3 - x_4)^2 - \sum_{i=1}^4 (x_i^2 - x_i) - 2x_1 x_2 - 2x_3 x_4$$
$$\equiv (1 - x_1 - x_2)^2 + (1 - x_3 - x_4)^2 \mod I_G.$$

In the 1979, Lovász introduced this relaxation and showed that it worked very well for a class of graphs called *perfect graphs*. This was the first major use of semidefinite programming to provide bounds for a problem in combinatorial optimization!

A graph G = ([n], E) is **perfect** if G has no induced odd cycles of length at least five or their complements. (Alternatively, for G and all of its induced subgraphs have the property that the coloring number equals the size of the largest clique.)

Theorem (Lovász). If G is perfect, then $\Theta_2(G) = \alpha(G)$.

We will talk about the proof next time.

Example. Note that $G = ([4], \{12, 13, 23, 34\})$ is a perfect graph, and indeed $\Theta_2(G) = \alpha(G)$. But the five cycle $C_5 = ([5], \{12, 23, 34, 45, 15\})$ is not! We might wonder what $\Theta_2(C_5)$ is.

In fact, Lovász proved a stronger statement, namely that if G is perfect, then for every linear form $\ell = \sum_{i} a_i x_i$,

$$\max_{x \in \text{STAB}(G)} \ell(x) = \min_{c \in \mathbb{R}} c \text{ such that } c - \ell(x) \in \text{SOS}_{n, \leq 2} + I_G$$

But in Lovász did not actually prove this as stated. He proved the dual version.

The dual version. Let us first go through the dual problem of computing Θ_2 .

The dual cone of $SOS_{n,\leq 2} + I_G$ is the set of linear functions $L : \mathbb{R}[x_1, \ldots, x_n]_{\leq 2}/I_G \to \mathbb{R}$ that are nonnegative on squares. Note that

$$\{1 + I_G\} \cup \{x_i + I_G : i \in [n]\} \cup \{x_i x_j + I_G : ij \notin E\}$$

is an \mathbb{R} -basis for $\mathbb{R}[x_1, \ldots, x_n]_{\leq 2}/I_G$. Therefore a linear function $L : \mathbb{R}[x_1, \ldots, x_n]_{\leq 2}/I_G \to \mathbb{R}$ is determined by

 $L(1+I_G) = y_{\emptyset}, \ L(x_i+I_G) = y_i \text{ for } i \in [n], \text{ and } L(x_ix_j+I_G) = y_{ij} \text{ for } ij \notin E$

Then L belongs to the dual cone of $SOS_{n,\leq 2} + I_G$ if and only if L is nonnegative on squares $h^2 + I_G$ where $h + I_G \in \mathbb{R}[x_1, \ldots, x_n]_{\leq 1}/I_G$, which happens if and only if the $(n+1) \times (n+1)$ matrix $L(m_1m_1^T)$ is positive semidefinite, where $m_1 = (1, x_1 + I_G, \ldots, x_n + I_G)$. Denote this matrix by

$$\mathcal{M}_G(y) = L(m_1 m_1^T).$$

Since $L(x_i^2 + I_G) = L(x_i + I_G) = y_i$ and $L(x_i x_j + I_G) = L(0 + I_G) = 0$ for $ij \in E$, this is given by

$$\mathcal{M}_G(y)_{00} = L(1+I_G) = y_{\emptyset}$$

$$\mathcal{M}_G(y)_{0i} = L(x_i + I_G) = y_i$$

$$\mathcal{M}_G(y)_{ii} = L(x_i^2 + I_G) = L(x_i + I_G) = y_i$$

$$\mathcal{M}_G(y)_{ij} = L(x_i x_j + I_G) = L(0 + I_G) = 0 \text{ for } ij \in E, \text{ and}$$

$$\mathcal{M}_G(y)_{ij} = L(x_i x_j + I_G) = y_{ij} \text{ for } ij \notin E.$$

Example. For example, for $G = ([4], \{12, 13, 23, 34\})$, we have

$$L(m_1m_1^T) = \mathcal{M}_G(y) = \begin{pmatrix} y_{\emptyset} & y_1 & y_2 & y_3 & y_4 \\ y_1 & y_1 & 0 & 0 & y_{14} \\ y_2 & 0 & y_2 & 0 & y_{24} \\ y_3 & 0 & 0 & y_3 & 0 \\ y_4 & y_{14} & y_{24} & 0 & y_4 \end{pmatrix}$$

We can compute Θ_2 by computing the *dual* of the sums of squares problem above. This translates to:

$$\Theta_2(G) = \max \sum_{i=1}^n y_i$$
 such that $y_{\emptyset} = 1$ and $\mathcal{M}_G(y) \in PSD_{n+1}$

Note that for any stable set S, $\mathbb{1}_{S}\mathbb{1}_{S}^{T}$ gives a feasible matrix $\mathcal{M}_{G}(y)$ with objective value |S|, so we immediately get $\alpha(G) \leq \Theta_{2}(G)$, just as before.

In Lovász's original proof, he defines the *theta body* of a graph to be

 $\mathrm{TH}(G) = \{ (y_1, \dots, y_n) \in \mathbb{R}^n : \mathcal{M}_G(y) \succeq 0 \text{ with } y_{\emptyset} = 1 \}$

This is the projection of the feasible set above onto (y_1, \ldots, y_n) . It is convex and contains STAB(G).

Theorem (Lovász). The graph G is perfect if and only if TH(G) = conv(STAB(G)).