Math 591 - Real Algebraic Geometry and Convex Optimization

Lecture 10: An application to stable sets
Cynthia Vinzant, Spring 2019
Take graph $G=([n], E)$ on vertices $[n]=\{1, \ldots, n\}$ and edges $E \subseteq\{\{i, j\}: i \neq j \in[n]\}$. We say that $S \subseteq E$ is a stable set (or independent set) of G if $\{i, j\} \notin E$ for every pair $i, j \in S$. We can identify each stable set S with its characteristic vector $\mathbb{1}_{S}=\sum_{i=1}^{n} e_{i}$ in $\{0,1\}^{n}$ with i th coordinate 1 if $i \in S$ and 0 otherwise. Let $S T A B_{G}$ denote the set of indicator vectors of stable sets of G :

$$
\operatorname{STAB}_{G}=\left\{\mathbb{1}_{S}: S \text { is a stable set of } G\right\}
$$

The (aptly named) maximum stable set problem is to find the maximum size stable set:

$$
\begin{aligned}
\alpha(G) & =\max \{|S|: S \text { is a stable set of } G\} \\
& =\max \sum_{i=1}^{n} x_{i} \text { such that } x \in \operatorname{STAB}_{G}
\end{aligned}
$$

Example. For $G=([4],\{12,13,23,34\})$, the stable sets are

$$
\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,4\},\{2,4\}
$$

and we see $\alpha(G)=2$.
Example. For the five-cycle, $C_{5}=([5],\{12,23,34,45,15\})$, the stable sets are \emptyset, singletons $\{i\}$, and $\{i, j\}$ where $i-j \not \equiv \pm 1 \bmod 5$ and we have $\alpha\left(C_{5}\right)=2$.

Note that the maximum stable set of the complement of $G, G^{c}=\left([n],\binom{[n]}{2} \backslash E\right)$ corresponds to the maximum size of a clique in G, i.e. the maximum size of a subset $S \subset E$ for which every pair is connected.

In general, computing $\alpha(G)$ is NP-Hard and so becomes quickly intractable as n grows. Finding a stable set of G produces a lower bound for $\alpha(G)$. It would be nice to produce an upper bound for $\alpha(G)$.

Translation to polynomial optimization. We can write STAB_{G} as the variety of some collection of polynomials, namely

$$
\left\{x_{i}^{2}-x_{i}: i \in[n]\right\} \cup\left\{x_{i} x_{j}:\{i, j\} \in E\right\}
$$

To check: a point $p \in \mathbb{R}^{n}$ satisfies $p_{i}^{2}-p_{i}=0$ for all i if and only if $p \in\{0,1\}^{n}$, meaning that $p=\mathbb{1}_{S}$ for some $S \subseteq[n]$. Also, $p_{i} p_{j}=0$ for all $\{i, j\} \subset E$ if and only if S does not contain any i, j with $\{i, j\} \in E$.

Let I_{G} denote the ideal generated by these polynomials, i.e.

$$
I_{G}=\left\{\sum_{i \in[n]} g_{i}\left(x_{i}^{2}-x_{i}\right)+\sum_{i j \in E} h_{i j} x_{i} x_{j}: g_{i}, h_{i j} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

Clearly, every polynomial in I_{G} vanishes on STAB_{G}. In fact, one can check that I_{G} contains all polynomials that vanish on STAB_{G}.

Example. For $G=([4],\{12,13,23,34\})$, the ideal I_{G} is generated by the polynomials $x_{i}^{2}-x_{i}$ for each $i=1, \ldots, 4$ and $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{3} x_{4}$. If variety consists of the seven points

$$
\begin{aligned}
\mathbb{1}_{\emptyset}=(0,0,0,0), \mathbb{1}_{\{1\}}= & (1,0,0,0), \mathbb{1}_{\{2\}}=(0,1,0,0), \mathbb{1}_{\{3\}}=(0,0,1,0), \mathbb{1}_{\{4\}}=(0,0,0,1), \\
& \mathbb{1}_{\{1,4\}}=(1,0,0,1), \text { and } \mathbb{1}_{\{2,4\}}=(0,1,0,1)
\end{aligned}
$$

Then

$$
\begin{aligned}
\alpha(G) & =\max \sum_{i=1}^{n} x_{i} \text { such that } x \in \mathrm{STAB}_{G} \\
& =\min _{c \in \mathbb{R}} c \text { such that } c-\sum_{i=1}^{n} x_{i} \geq 0 \text { on } \mathrm{STAB}_{G} \\
& =\min _{c \in \mathbb{R}} c \text { such that } c-\sum_{i=1}^{n} x_{i} \in \operatorname{SOS}_{n}+I_{G}
\end{aligned}
$$

The last equality comes from the fact that the variety of I_{G} is finite, so every polynomial that is nonnegative on $V\left(I_{G}\right)=\mathrm{STAB}_{G}$ can be written as a sum of squares plus some element of the ideal I_{G}. (Recall that we can just take sums of squares of indicator polynomials).

Restricting the degree of the sums of squares involved will result in a semidefinite program and provide an upper bound for $\alpha(G)$. For any $k \in \mathbb{N}$, we can define

$$
\Theta_{2 k}(G)=\min _{c \in \mathbb{R}} c \text { such that } c-\sum_{i=1}^{n} x_{i} \in \operatorname{SOS}_{n, \leq 2 k}+I_{G}
$$

Then $\alpha(G) \leq \Theta_{2 k}(G) \leq \ldots \leq \Theta_{4}(G) \leq \Theta_{2}(G)$.
It is convenient to work in the quotient ring $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I_{G}$, with elements $f+I_{G}$ where $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. Then $f+I_{G}=g+I_{G}$ if and only if $f-g \in I_{G}$. Note that the quotient ring $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I_{G}$ is a finite-dimensional vector space over \mathbb{R}. For example, it is spanned by the elements $\left\{\prod_{i \in S} x_{i}+I_{G}: S \in \operatorname{STAB}(G)\right\}$. For $k \in \mathbb{N}$, let m_{k} be the vector with entries $\prod_{i \in S} x_{i}+I_{G} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I_{G}$, where $S \in \operatorname{STAB}(G)$ and $|S| \leq k$. This lets us write

$$
\Theta_{2 k}(G)=\min _{c \in \mathbb{R}} c \text { such that } c-\sum_{i=1}^{n} x_{i} \equiv m_{k}^{T} A m_{k} \bmod I_{G}, \quad \text { where } A \succeq 0 .
$$

Note that the equation $c-\sum_{i=1}^{n} x_{i} \equiv m_{k}^{T} A m_{k} \bmod I_{G}$ imposes linear conditions on the matrix A, making this a semidefinite program.

Example. For $G=([4],\{12,13,23,34\}), I_{G}$ is generated by the polynomials $x_{i}^{2}-x_{i}$ for each $i=1, \ldots, 4$ and $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{3} x_{4}$. Indeed, in this case, we see that $\Theta_{2}(G)=\alpha(G)=2$ because we can write

$$
\begin{aligned}
2-x_{1}-x_{2}-x_{3}-x_{4} & =\left(1-x_{1}-x_{2}\right)^{2}+\left(1-x_{3}-x_{4}\right)^{2}-\sum_{i=1}^{4}\left(x_{i}^{2}-x_{i}\right)-2 x_{1} x_{2}-2 x_{3} x_{4} \\
& \equiv\left(1-x_{1}-x_{2}\right)^{2}+\left(1-x_{3}-x_{4}\right)^{2} \bmod I_{G}
\end{aligned}
$$

In the 1979, Lovász introduced this relaxation and showed that it worked very well for a class of graphs called perfect graphs. This was the first major use of semidefinite programming to provide bounds for a problem in combinatorial optimization!

A graph $G=([n], E)$ is perfect if G has no induced odd cycles of length at least five or their complements. (Alternatively, for G and all of its induced subgraphs have the property that the coloring number equals the size of the largest clique.)

Theorem (Lovász). If G is perfect, then $\Theta_{2}(G)=\alpha(G)$.
We will talk about the proof next time.
Example. Note that $G=([4],\{12,13,23,34\})$ is a perfect graph, and indeed $\Theta_{2}(G)=\alpha(G)$. But the five cycle $C_{5}=([5],\{12,23,34,45,15\})$ is not! We might wonder what $\Theta_{2}\left(C_{5}\right)$ is.

In fact, Lovász proved a stronger statement, namely that if G is perfect, then for every linear form $\ell=\sum_{i} a_{i} x_{i}$,

$$
\max _{x \in \operatorname{STAB}(\mathrm{G})} \ell(x)=\min _{c \in \mathbb{R}} c \text { such that } c-\ell(x) \in \mathrm{SOS}_{n, \leq 2}+I_{G} \text {. }
$$

But in Lovász did not actually prove this as stated. He proved the dual version.
The dual version. Let us first go through the dual problem of computing Θ_{2}.
The dual cone of $\mathrm{SOS}_{n, \leq 2}+I_{G}$ is the set of linear functions $L: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2} / I_{G} \rightarrow \mathbb{R}$ that are nonnegative on squares. Note that

$$
\left\{1+I_{G}\right\} \cup\left\{x_{i}+I_{G}: i \in[n]\right\} \cup\left\{x_{i} x_{j}+I_{G}: i j \notin E\right\}
$$

is an \mathbb{R}-basis for $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2} / I_{G}$. Therefore a linear function $L: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2} / I_{G} \rightarrow \mathbb{R}$ is determined by

$$
L\left(1+I_{G}\right)=y_{\emptyset}, L\left(x_{i}+I_{G}\right)=y_{i} \text { for } i \in[n], \text { and } L\left(x_{i} x_{j}+I_{G}\right)=y_{i j} \text { for } i j \notin E
$$

Then L belongs to the dual cone of $\mathrm{SOS}_{n, \leq 2}+I_{G}$ if and only if L is nonnegative on squares $h^{2}+I_{G}$ where $h+I_{G} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 1} / I_{G}$, which happens if and only if the $(n+1) \times(n+1)$ matrix $L\left(m_{1} m_{1}^{T}\right)$ is positive semidefinite, where $m_{1}=\left(1, x_{1}+I_{G}, \ldots, x_{n}+I_{G}\right)$. Denote this matrix by

$$
\mathcal{M}_{G}(y)=L\left(m_{1} m_{1}^{T}\right)
$$

Since $L\left(x_{i}^{2}+I_{G}\right)=L\left(x_{i}+I_{G}\right)=y_{i}$ and $L\left(x_{i} x_{j}+I_{G}\right)=L\left(0+I_{G}\right)=0$ for $i j \in E$, this is given by

$$
\begin{aligned}
& \mathcal{M}_{G}(y)_{00}=L\left(1+I_{G}\right)=y_{\emptyset} \\
& \mathcal{M}_{G}(y)_{0 i}=L\left(x_{i}+I_{G}\right)=y_{i} \\
& \mathcal{M}_{G}(y)_{i i}=L\left(x_{i}^{2}+I_{G}\right)=L\left(x_{i}+I_{G}\right)=y_{i} \\
& \mathcal{M}_{G}(y)_{i j}=L\left(x_{i} x_{j}+I_{G}\right)=L\left(0+I_{G}\right)=0 \text { for } i j \in E, \text { and } \\
& \mathcal{M}_{G}(y)_{i j}=L\left(x_{i} x_{j}+I_{G}\right)=y_{i j} \text { for } i j \notin E .
\end{aligned}
$$

Example. For example, for $G=([4],\{12,13,23,34\})$, we have

$$
L\left(m_{1} m_{1}^{T}\right)=\mathcal{M}_{G}(y)=\left(\begin{array}{ccccc}
y_{\emptyset} & y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1} & y_{1} & 0 & 0 & y_{14} \\
y_{2} & 0 & y_{2} & 0 & y_{24} \\
y_{3} & 0 & 0 & y_{3} & 0 \\
y_{4} & y_{14} & y_{24} & 0 & y_{4}
\end{array}\right)
$$

We can compute Θ_{2} by computing the dual of the sums of squares problem above. This translates to:

$$
\Theta_{2}(G)=\max \sum_{i=1}^{n} y_{i} \quad \text { such that } \quad y \emptyset=1 \text { and } \mathcal{M}_{G}(y) \in \mathrm{PSD}_{n+1}
$$

Note that for any stable set $S, \mathbb{1}_{S} \mathbb{1}_{S}^{T}$ gives a feasible matrix $\mathcal{M}_{G}(y)$ with objective value $|S|$, so we immediately get $\alpha(G) \leq \Theta_{2}(G)$, just as before.

In Lovász's original proof, he defines the theta body of a graph to be

$$
\operatorname{TH}(G)=\left\{\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: \mathcal{M}_{G}(y) \succeq 0 \text { with } y_{\emptyset}=1\right\}
$$

This is the projection of the feasible set above onto $\left(y_{1}, \ldots, y_{n}\right)$. It is convex and contains $\operatorname{STAB}(G)$.

Theorem (Lovász). The graph G is perfect if and only if $\mathrm{TH}(\mathrm{G})=\operatorname{conv}(\operatorname{STAB}(G))$.

