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We take V to be a vector space over R. For example Rn, the polynomial ring R[x1, . . . , xn],
or the vector space of real valued continuous function f : [0, 1] → R. Mostly we will deal
with dim(V ) <∞, but it’s good to keep the other examples in mind.

Definition. A set C ⊆ V is convex if for any u, v ∈ C, C contains the line segment between
u and v. That is, for any λ ∈ [0, 1], λu+ (1− λ)v ∈ C.

Example.
• the half-open disk {(x, y) : x2 + y2 < 1} ∪ {(x, y) : x2 + y2 = 1, y ≤ 0}
• {continuous f : [0, 1]→ R such that f(r) ≥ 0 for all r ∈ [0, 1] and f(1) = 1}

A convex combination of points v1, . . . , vk ∈ V is a point of the form
∑k

i=1 vi where
λi ≥ 0 and

∑k
i=1 λi = 1, and the convex hull of a subset S ⊆ V is defined as the set of all

convex combinations of finite subsets of V :

conv(S) =

{
k∑

i=1

λivi : k ∈ N, v1, . . . , vk ∈ S, and λ1, . . . , λk ≥ 0 with
k∑

i=1

λi = 1

}
.

Proposition. For any S ⊆ V , conv(S) is convex.

Proof. Let λ ∈ [0, 1], and to take two arbitrary elements of conv(S), we take two collec-
tions of points v1, . . . , vk, w1, . . . , w` ∈ S and nonnegative scalars α1, . . . , αk, β1, . . . , β` with∑k

i=1 αi = 1 and
∑`

j=1 βj = 1. Then we see that

λ
k∑

i=1

αivi + (1− λ)
∑̀
j=1

βjwj =
k∑

i=1

λαivi +
∑̀
j=1

(1− λ)βjwj.

Since each coefficient λαi and (1− λ)βj is nonnegative and they all sum to one,
k∑

i=1

λαi +
∑̀
j=1

(1− λ)βj = λ
k∑

i=1

αi + (1− λ)
∑̀
j=1

βj = λ+ (1− λ) = 1,

this is a convex combination of finitely many points from S and thus in conv(S). �

If S is finite, then conv(S) is called a polytope.

Definition. An affine combination of points v1, . . . , vk ∈ V is a point of the form
∑k

i=1 vi
where λi ∈ R and

∑k
i=1 λi = 1, and the affine hull of a subset S ⊆ V is defined as the set

of all affine combinations of finite subsets of V :

aff(S) =

{
k∑

i=1

λivi : k ∈ N, v1, . . . , vk ∈ S, and λ1, . . . , λk ∈ R with
k∑

i=1

λi = 1

}
.

We define the dimension of a convex set C to be the dimension of its affine hull, aff(C), as
an affine linear space.



Definition. A subset F ⊆ C of a convex set C is a face of C if F is convex and has the
property that

λu+ (1− λ)v ∈ F ⇒ u, v ∈ F
for all λ ∈ (0, 1) and u, v ∈ C. Both ∅ and C are always faces of C. All other faces we call
proper faces of C.

Question. What are the proper faces of the three convex sets D, S, and D ∪ S where
D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, and
S = {(x, y) ∈ R2 : 0 ≤ x ≤ 2,−1 ≤ y ≤ −1}?

D S D ∪ S
For those familiar with polytopes, faces are often defined by the sets maximizes a linear

function. Recall that the dual vector space of V , V ∗, is the real vector space of linear
functionals ` : V → R.

Proposition. For any ` ∈ V ∗ and convex set C ⊆ V , the set

F = {v ∈ C : `(v) ≥ `(w) for all w ∈ C}
is a face of C.

In this case we say that ` exposes F and that F is an exposed face of C.

Example. In both the disk and the square from above, all faces are exposed. For example,
in the disk D the face {(1, 0)} is exposed by the linear function `(x, y) = y. This function
also exposes the face [0, 2] × {1} in the square S, where as the face {(1, 2)} is exposed by
`(x, y) = x+ y.

Non-example. Now consider the face {(0, 1)} of the union D∪S. The only linear functions
achieving their maximum over C at (0, 1) have the form `(x, y) = cy for c ≥ 0. But any such
function exposes the face [0, 2]× {1}.

One question we address next time will be: given a point v ∈ C, what linear functions
attain their maximum (over C) at v?


