Math 591 – Real Algebraic Geometry and Convex Optimization Lecture 1: Convexity basics Cynthia Vinzant, Spring 2019

We take V to be a vector space over \mathbb{R} . For example \mathbb{R}^n , the polynomial ring $\mathbb{R}[x_1, \ldots, x_n]$, or the vector space of real valued continuous function $f : [0, 1] \to \mathbb{R}$. Mostly we will deal with dim $(V) < \infty$, but it's good to keep the other examples in mind.

Definition. A set $C \subseteq V$ is **convex** if for any $u, v \in C$, C contains the line segment between u and v. That is, for any $\lambda \in [0, 1]$, $\lambda u + (1 - \lambda)v \in C$.

Example.

- the half-open disk $\{(x, y) : x^2 + y^2 < 1\} \cup \{(x, y) : x^2 + y^2 = 1, y \le 0\}$
- {continuous $f: [0,1] \to \mathbb{R}$ such that $f(r) \ge 0$ for all $r \in [0,1]$ and f(1) = 1}

A convex combination of points $v_1, \ldots, v_k \in V$ is a point of the form $\sum_{i=1}^k v_i$ where $\lambda_i \geq 0$ and $\sum_{i=1}^k \lambda_i = 1$, and the convex hull of a subset $S \subseteq V$ is defined as the set of all convex combinations of finite subsets of V:

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^{k} \lambda_i v_i : k \in \mathbb{N}, v_1, \dots, v_k \in S, \text{ and } \lambda_1, \dots, \lambda_k \ge 0 \text{ with } \sum_{i=1}^{k} \lambda_i = 1 \right\}.$$

Proposition. For any $S \subseteq V$, conv(S) is convex.

Proof. Let $\lambda \in [0, 1]$, and to take two arbitrary elements of $\operatorname{conv}(S)$, we take two collections of points $v_1, \ldots, v_k, w_1, \ldots, w_\ell \in S$ and nonnegative scalars $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_\ell$ with $\sum_{i=1}^k \alpha_i = 1$ and $\sum_{j=1}^\ell \beta_j = 1$. Then we see that

$$\lambda \sum_{i=1}^{k} \alpha_i v_i + (1-\lambda) \sum_{j=1}^{\ell} \beta_j w_j = \sum_{i=1}^{k} \lambda \alpha_i v_i + \sum_{j=1}^{\ell} (1-\lambda) \beta_j w_j.$$

Since each coefficient $\lambda \alpha_i$ and $(1 - \lambda)\beta_j$ is nonnegative and they all sum to one,

$$\sum_{i=1}^{k} \lambda \alpha_i + \sum_{j=1}^{\ell} (1-\lambda)\beta_j = \lambda \sum_{i=1}^{k} \alpha_i + (1-\lambda) \sum_{j=1}^{\ell} \beta_j = \lambda + (1-\lambda) = 1,$$

this is a convex combination of finitely many points from S and thus in conv(S).

If S is finite, then conv(S) is called a **polytope**.

Definition. An **affine combination** of points $v_1, \ldots, v_k \in V$ is a point of the form $\sum_{i=1}^k v_i$ where $\lambda_i \in \mathbb{R}$ and $\sum_{i=1}^k \lambda_i = 1$, and the **affine hull** of a subset $S \subseteq V$ is defined as the set of all affine combinations of finite subsets of V:

aff
$$(S) = \left\{ \sum_{i=1}^{k} \lambda_i v_i : k \in \mathbb{N}, v_1, \dots, v_k \in S, \text{ and } \lambda_1, \dots, \lambda_k \in \mathbb{R} \text{ with } \sum_{i=1}^{k} \lambda_i = 1 \right\}.$$

We define the dimension of a convex set C to be the dimension of its affine hull, aff(C), as an affine linear space.

Definition. A subset $F \subseteq C$ of a convex set C is a **face** of C if F is convex and has the property that

$$\lambda u + (1 - \lambda)v \in F \quad \Rightarrow \quad u, v \in F$$

for all $\lambda \in (0, 1)$ and $u, v \in C$. Both \emptyset and C are always faces of C. All other faces we call **proper** faces of C.

Question. What are the proper faces of the three convex sets D, S, and $D \cup S$ where

For those familiar with polytopes, faces are often defined by the sets maximizes a linear function. Recall that the dual vector space of V, V^* , is the real vector space of linear functionals $\ell: V \to \mathbb{R}$.

Proposition. For any $\ell \in V^*$ and convex set $C \subseteq V$, the set $F = \{v \in C : \ell(v) > \ell(w) \text{ for all } w \in C\}$

is a face of C.

In this case we say that ℓ exposes F and that F is an exposed face of C.

Example. In both the disk and the square from above, all faces are exposed. For example, in the disk D the face $\{(1,0)\}$ is exposed by the linear function $\ell(x,y) = y$. This function also exposes the face $[0,2] \times \{1\}$ in the square S, where as the face $\{(1,2)\}$ is exposed by $\ell(x,y) = x + y$.

Non-example. Now consider the face $\{(0,1)\}$ of the union $D \cup S$. The only linear functions achieving their maximum over C at (0,1) have the form $\ell(x,y) = cy$ for $c \ge 0$. But any such function exposes the face $[0,2] \times \{1\}$.

One question we address next time will be: given a point $v \in C$, what linear functions attain their maximum (over C) at v?