$$
\begin{gathered}
\text { Math } 591 \text { - Real Algebraic Geometry and Convex Optimization } \\
\text { Lecture 1: Convexity basics } \\
\text { Cynthia Vinzant, Spring } 2019
\end{gathered}
$$

We take V to be a vector space over \mathbb{R}. For example \mathbb{R}^{n}, the polynomial ring $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, or the vector space of real valued continuous function $f:[0,1] \rightarrow \mathbb{R}$. Mostly we will deal with $\operatorname{dim}(V)<\infty$, but it's good to keep the other examples in mind.

Definition. A set $C \subseteq V$ is convex if for any $u, v \in C, C$ contains the line segment between u and v. That is, for any $\lambda \in[0,1], \lambda u+(1-\lambda) v \in C$.

Example.

- the half-open disk $\left\{(x, y): x^{2}+y^{2}<1\right\} \cup\left\{(x, y): x^{2}+y^{2}=1, y \leq 0\right\}$
- \{continuous $f:[0,1] \rightarrow \mathbb{R}$ such that $f(r) \geq 0$ for all $r \in[0,1]$ and $f(1)=1\}$

A convex combination of points $v_{1}, \ldots, v_{k} \in V$ is a point of the form $\sum_{i=1}^{k} v_{i}$ where $\lambda_{i} \geq 0$ and $\sum_{i=1}^{k} \lambda_{i}=1$, and the convex hull of a subset $S \subseteq V$ is defined as the set of all convex combinations of finite subsets of V :

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i}: k \in \mathbb{N}, v_{1}, \ldots, v_{k} \in S, \text { and } \lambda_{1}, \ldots, \lambda_{k} \geq 0 \text { with } \sum_{i=1}^{k} \lambda_{i}=1\right\} .
$$

Proposition. For any $S \subseteq V, \operatorname{conv}(S)$ is convex.
Proof. Let $\lambda \in[0,1]$, and to take two arbitrary elements of $\operatorname{conv}(S)$, we take two collections of points $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{\ell} \in S$ and nonnegative scalars $\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{\ell}$ with $\sum_{i=1}^{k} \alpha_{i}=1$ and $\sum_{j=1}^{\ell} \beta_{j}=1$. Then we see that

$$
\lambda \sum_{i=1}^{k} \alpha_{i} v_{i}+(1-\lambda) \sum_{j=1}^{\ell} \beta_{j} w_{j}=\sum_{i=1}^{k} \lambda \alpha_{i} v_{i}+\sum_{j=1}^{\ell}(1-\lambda) \beta_{j} w_{j} .
$$

Since each coefficient $\lambda \alpha_{i}$ and $(1-\lambda) \beta_{j}$ is nonnegative and they all sum to one,

$$
\sum_{i=1}^{k} \lambda \alpha_{i}+\sum_{j=1}^{\ell}(1-\lambda) \beta_{j}=\lambda \sum_{i=1}^{k} \alpha_{i}+(1-\lambda) \sum_{j=1}^{\ell} \beta_{j}=\lambda+(1-\lambda)=1
$$

this is a convex combination of finitely many points from S and thus in conv (S).
If S is finite, then $\operatorname{conv}(S)$ is called a polytope.
Definition. An affine combination of points $v_{1}, \ldots, v_{k} \in V$ is a point of the form $\sum_{i=1}^{k} v_{i}$ where $\lambda_{i} \in \mathbb{R}$ and $\sum_{i=1}^{k} \lambda_{i}=1$, and the affine hull of a subset $S \subseteq V$ is defined as the set of all affine combinations of finite subsets of V :

$$
\operatorname{aff}(S)=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i}: k \in \mathbb{N}, v_{1}, \ldots, v_{k} \in S, \text { and } \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R} \text { with } \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

We define the dimension of a convex set C to be the dimension of its affine hull, aff (C), as an affine linear space.

Definition. A subset $F \subseteq C$ of a convex set C is a face of C if F is convex and has the property that

$$
\lambda u+(1-\lambda) v \in F \quad \Rightarrow \quad u, v \in F
$$

for all $\lambda \in(0,1)$ and $u, v \in C$. Both \emptyset and C are always faces of C. All other faces we call proper faces of C.
Question. What are the proper faces of the three convex sets D, S, and $D \cup S$ where

$$
\begin{aligned}
& D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}, \text { and } \\
& S=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 2,-1 \leq y \leq-1\right\} ?
\end{aligned}
$$

For those familiar with polytopes, faces are often defined by the sets maximizes a linear function. Recall that the dual vector space of V, V^{*}, is the real vector space of linear functionals $\ell: V \rightarrow \mathbb{R}$.

Proposition. For any $\ell \in V^{*}$ and convex set $C \subseteq V$, the set

$$
F=\{v \in C: \ell(v) \geq \ell(w) \text { for all } w \in C\}
$$

is a face of C.
In this case we say that ℓ exposes F and that F is an exposed face of C.
Example. In both the disk and the square from above, all faces are exposed. For example, in the disk D the face $\{(1,0)\}$ is exposed by the linear function $\ell(x, y)=y$. This function also exposes the face $[0,2] \times\{1\}$ in the square S, where as the face $\{(1,2)\}$ is exposed by $\ell(x, y)=x+y$.
Non-example. Now consider the face $\{(0,1)\}$ of the union $D \cup S$. The only linear functions achieving their maximum over C at $(0,1)$ have the form $\ell(x, y)=c y$ for $c \geq 0$. But any such function exposes the face $[0,2] \times\{1\}$.

One question we address next time will be: given a point $v \in C$, what linear functions attain their maximum (over C) at v ?

