
Combinatorial optimization and SDP/SOS.
Part I: the maximum cut problem

Dávid Papp, Spring 2019

Given a complete graph G = (V = [n], E) with nonnegative edge weights w : E 7→ R+, a

cut is a subset of the vertices S ⊆ V . The value of the cut S is w(S)
def
=

∑
i∈S,j∈S̄ wij . (Here,

S̄ = V \ S.)
The maximum cut problem is to find a cut of maximum weight in a given edge-weighted

complete graph. The maximum cut problem can be “solved” trivially, but enumeration is
prohibitively expensive. The maximum cut problem is NP-hard. Every cut gives a lower bound
on the value of the maximum cut. Natural questions: can we find good cuts in polynomial
time? Can we find a good upper bound on the value of the maximum cut in polynomial time?

Approach 1: a greedy (or myopic) algorithm. Assign each vertex i = 1, . . . , n, in
order, to S or S̄ depending on whether∑

j≤i−1,j∈S

wij >
∑

j≤i−1,j∈S̄

wij.

Exercise. The greedy algorithm in general does not find a maximum cut. However, the
value of the cut obtained by it is at least half of the value of the maximum cut. Hint: the
value of the cut is at least 1

2

∑
ij∈E wij. Thus, this greedy algorithm is a 1

2
-approximation

algorithm.

Approach 2: a randomized algorithm. Flip n unbiased coins, then assign each vertex
i = 1, . . . , n to S or S̄ depending on whether coin i came up heads or tails.

Exercise. The expected value of the cut returned by the above randomized algorithm is at
least half of the value of the maximum cut.

Surprisingly, there are no known elementary or combinatorial algorithms with a better ap-
proximation ratio. However, using SDP, we can obtain a 0.878-approximation algorithm,
due to Michel Goemans and David Williamson1, as follows.

We can formulate the problem as a quadratic optimization problem over the n-dimensional
hypercube: define the vector x ∈ {−1, 1}n such that

xi =

{
+1 i ∈ S
−1 i ∈ S̄

.

Then the weight of a cut S is

w(S) =
n∑
i=1

n∑
j=1

wij
1− xixj

2
.

1http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf

1

http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf


Thus, the maximum cut problem can be formulated as

max
x∈{−1,1}n

n∑
i=1

n∑
j=1

wij
1− xixj

2
. (1)

This is still the same NP-hard problem as before. We can massage it into an SDP with a rank

constraint. Introduce a new (matrix) variable for X
def
= xxT. Then X is positive semidefinite

and has rank one. Moreover, Xii = x2
i = 1 (this is why we opted for the ±1 “encoding” in

place of the 0/1). We can see (think this through!!) that (1) is equivalent to

maximize
n∑
i=1

n∑
j=1

wij
1−Xij

2

subject to X ∈ PSDn

Xii = 1 (i = 1, . . . , n)

rank(X) = 1.

This is still the same NP-hard problem as before. Dropping the rank constraint, we obtain
the SDP relaxation:

maximize
n∑
i=1

n∑
j=1

wij
1−Xij

2

subject to X ∈ PSDn (2)

Xii = 1 (i = 1, . . . , n).

This SDP can be solved in polynomial time (this is slightly less obvious than it is often
made out to be), and because it is a relaxation of a maximization problem, it provides an
upper bound on the value of the maximum cut.

How good is this bound? Can we obtain a high-value cut from it?

Here is a geometric interpretation (or alternative derivation) of the SDP. Instead of
representing each vertex with a binary variable, we can represent them with an n-dimensional
unit vector vi ∈ Sn, and replace xixj with vT

i vj, since with the choice of vi = (xi, 0, . . . , 0),
each vi is a unit vector, and xixj = vT

i vj. Thus, this is again a relaxation of (1):

maximize
n∑
i=1

n∑
j=1

wij
1− vT

i vj
2

(3)

subject to ‖vi‖ = 1 (i = 1, . . . , n).

The problems (2) are (3) are equivalent. Given a feasible solution to (3), we can take V
as the matrix whose columns are v1, . . . , vn. Then, X = V TV is a feasible solution to (2),
with the same objective function value. Conversely, for every feasible solution X of (2), we
can find a matrix V satisfying X = V TV (even in polynomial time, e.g., using Cholesky

2



decomposition). The columns of this V yield a feasible solution to (3) with the same objective
function value.

The second relaxation is more intuitive to extract a cut from. (Picture!) Given v1, . . . , vn,
choose a hyperplane through the origin (but otherwise in general position), and assign the
vertex i depending on which side of the hyperplane is vi on.

Approach 3: SDP with randomized rounding. (This is the Goemans–Williamson
algorithm.) Solve the SDP relaxation (2), factorize X into to V TV , then choose a hyperplane
through the origin uniformly at random, and assign the vertex i depending on which side of
the hyperplane is vi on.

Exercise. How does one “choose a hyperplane through the origin uniformly at random”?
Equivalently, how can we draw a uniformly random vector on the unit sphere?

Theorem 1. The Goemans–Williamson algorithm is a 0.878-approximation algorithm (in
expectation).

Proof. Let zmax be the value of the maximum cut, zsdp be the optimal value of the SDP
relaxation, and zexp be the expected value of the cut obtained using the algorithm. Clearly,
zsdp ≥ zmax ≥ zexp. (Why?) Moreover , letting v1, . . . , vn be the optimal solution from the
SDP relaxation, we can see (Picture!) that

zexp =
∑
ij∈E

wijProb[vertices i and j are separated]

=
∑
ij∈E

wij
2](vi, vj)

2π

=
1

π

∑
ij∈E

wij arccos(vT
i vj)

Plugging everything together:

vsdp ≥ vmax ≥ vexp ≥
1

π

∑
ij∈E

wij arccos(vT
i vj) ≥ αvsdp ≥ αvmax,

if we can find some coefficient α > 0 such that 1−y
2
≥ α arccos(y)

π
for every y ∈ [−1, 1]. (Apply

this term-by-term, with vT
i vj playing the role of y.) As it happens, we can choose α > 1/2;

specifically, we can have

α = 0.878 < min
y∈[−1,1]

2

π

arccos(y)

1− y
.

3


