Math 591 - Homework 4

Due 3pm on Thursday, March 7, 2019

Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together in small groups (2-4 people), but you should try the problems on your own first.

Problem 1. Given a nonnegative univariate polynomial $f \in \mathbb{R}[x]_{\leq 8}$, the set of Gram matrices of f is

$$
\operatorname{Gram}(f)=\left\{X \in \mathrm{PSD}_{5}: m_{4}^{T} X m_{4}=f\right\}
$$

where $m_{4}=\left(1, x, x^{2}, x^{3}, x^{4}\right)^{T}$. Note that $m_{4}^{T} X m_{4}=f$ imposes $9=\operatorname{dim}\left(\mathbb{R}[x]_{\leq 8}\right)$ affine linear constraints on X.
(a) What is the smallest r for which $\operatorname{Gram}(f)$ is guaranteed to have a matrix of rank $\leq r$ by the PSD matrix-completion theorems from class? That is, what is the smallest r for which the intersection of a codimension- 9 affine linear space and PSD_{5} is guaranteed to have a matrix of rank $\leq r$ (assuming it is non-empty)?
(b) Show that if f is nonnegative, then f is a sum of two squares $f=h_{1}^{2}+h_{2}^{2}$ and $\operatorname{Gram}(f)$ has a matrix of rank ≤ 2.
Hint: factor f as $\left(h_{1}+i h_{2}\right) \cdot\left(h_{1}-i h_{2}\right)$ where $h_{1}, h_{2} \in \mathbb{R}[x]_{\leq 4}$.
Problem 2. Let \mathbb{S}^{n-1} denote the sphere $\left\{x \in \mathbb{R}^{n}: x_{1}^{2}+\ldots+x_{n}^{2}=1\right\}$.
(a) Show that $\left\{X \in \operatorname{PSD}_{n}: \operatorname{rank}(X)=1,\langle I, X\rangle=1\right\}=\left\{x x^{T}: x \in \mathbb{S}^{n-1}\right\}$.
(b) Show that for any matrices $A, B \in \mathbb{R}_{\text {sym }}^{n \times n}$ with $n \geq 3$, the image of the map $\mathbb{S}^{n-1} \rightarrow \mathbb{R}^{2}$ given by $x \mapsto\left(x^{T} A x, x^{T} B x\right)$ is convex.

Problem 3. Let $\ell_{12}, \ell_{13}, \ell_{23} \in \mathbb{R}_{+}$and for each i, j, let $d_{i j}=\ell_{i j}^{2}$.
(a) Show that there is a triangle with side lengths $\ell_{12}, \ell_{13}, \ell_{23}$ if and only if the matrix

$$
\left(\begin{array}{cc}
2 d_{13} & d_{13}+d_{23}-d_{12} \\
d_{13}+d_{23}-d_{12} & 2 d_{23}
\end{array}\right)
$$

is positive semidefinite.
(b) Use (a) to show the triangle inequality. That is, show that there is triangle with side lengths $\ell_{12}, \ell_{13}, \ell_{23}$ if and only if $\ell_{j k} \leq \ell_{i j}+\ell_{i k}$ for all distinct choices of i, j, k. Hint: Plug in $d_{i j}=\ell_{i j}^{2}$ and factor the 2×2 determinant.

Optional Bonus Problem. Find a sum-of-squares certificate that $V_{\mathbb{R}}\left(x^{4}+y^{4}-x^{2}\right)$ is contained in the ball $\left\{(x, y): x^{2}+y^{2} \leq 5 / 4\right\}$.

