Math 591 – Homework 3

Due 5pm on Friday, February 22, 2019

Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together in small groups (2-4 people), but you should try the problems on your own first.

Problem 1. Consider $m = \begin{pmatrix} 1 & xy & x^2y & xy^2 \end{pmatrix}$. Find a 4×4 positive semidefinite matrix Y so that $\langle A, Y \rangle < 0$ for every matrix A for which $1 - 3x^2y^2 + x^4y^2 + x^2y^4 = m^T Am$.

Problem 2. Show that x is nonnegative on the variety V(f) where $f = x^4 - x^3 + y^2$ but that x cannot be written as a sum of squares plus a polynomial multiple of f.

Hint: consider the lowest exponent of x*.*

Problem 3. (Univariate representations)

- (a) Show that every polynomial $f \in \mathbb{R}[x]$ that is nonnegative on $[0, \infty)$ can be written as $\sigma_0 + x\sigma_1$ where σ_0, σ_1 are sums of squares with $\deg(\sigma_0), \deg(x\sigma_1) \leq \deg(f)$.
- (b) Write down a spectrahedral description of the closure of the convex hull of $\{(t, t^2, t^3, t^4) : t \in [0, \infty)\}$. That is, find a matrix $\mathcal{M}(y)$, whose entries are affine linear functions of y_1, \ldots, y_4 so that

$$\overline{\operatorname{conv}(\{(t,t^2,t^3,t^4):t\in[0,\infty)\})} = \{(y_1,y_2,y_3,y_4):\mathcal{M}(y)\succeq 0\}$$

Problem 4. Let G = ([5], E) be the five cycle with edges $E = \{\{i, j\} : i \equiv j \pm 1 \mod 5\}$.

(a) Write down the problem

min c such that
$$c - \sum_{i=1}^{5} x_i \in SOS_{5,\leq 2} + I_G$$

explicitly as a semidefinite program

 $\min\langle C, X \rangle$ such that $\langle A_i, X \rangle = b_i$ for $i = 1, \dots, m$

for some *m* and real symmetric matrices $C, A_1, \ldots, A_m \in \mathbb{R}^{6\times 6}_{sym}$ and $b \in \mathbb{R}^m$. Here I_G denotes the the ideal generated by $x_i^2 - x_i$ for $i = 1, \ldots, 5$ and $x_i x_j$ for $\{i, j\} \in E$. *Hint: write down the condition that* $c - \sum_{i=1}^5 x_i = m_1^T X m_1 \mod I_G$ as a set of affine constraints on the matrix X where $m_1 = \begin{pmatrix} 1 & x_1 & \ldots & x_5 \end{pmatrix}^T$.

- (b) Write down the dual semidefinite program.
- (c) Optional bonus: Show that the optimal value is strictly greater than 2.