Math 591 - Homework 2

Due 3pm on Thursday, February 7, 2019

Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together in small groups (2-4 people), but you should try the problems on your own first.

Problem 1. Let K denote the convex cone of quadratic polynomials in $\mathbb{R}[x]$ that are nonnegative on $[-1,1]$, i.e.

$$
K=\mathcal{P}([-1,1])=\left\{(a, b, c) \in \mathbb{R}^{3}: a x^{2}+b x+c \geq 0 \text { for all } x \in[-1,1]\right\} .
$$

(a) Describe the dual cone K^{*}.
(b) Draw the both K and K^{*} in the planes "last coordinate" $=1$.
(c) Give a semialgebraic description of K.

Problem 2. For $A \in \mathbb{R}_{\text {sym }}^{n \times n}$, consider the maximization problem

$$
\max _{y \in \mathbb{R}} y \text { s.t. } A-y I \in \mathrm{PSD}_{n}
$$

where I is the $n \times n$ identity matrix.
(a) Write a minimization problem of which this is the dual.
(b) Show that the primal and dual problems attain the same value. What is this optimal value in terms of the matrix A ?

Problem 3.

(a) Show that if any polynomial $f \in \mathbb{R}[x, y]$ vanishes on the half circle $V_{\mathbb{R}}\left(x^{2}+y^{2}-1\right) \cap\{(x, y): x \leq 0\}$, then f vanishes on all of $V_{\mathbb{R}}\left(x^{2}+y^{2}-1\right)$.
Hint: you can parametrize the circle by $\left\{\left(\frac{t^{2}-1}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right): t \in \mathbb{R}\right\}$.
(b) Show that the set

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\} \cup\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 2, y^{2} \leq 1\right\}
$$

is not a basic closed semialgebraic set.

Problem 4. The Newton polytope of a polynomial $f=\sum_{\alpha} c_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is the convex hull of the exponent vectors of f :

$$
\operatorname{Newt}(f)=\operatorname{conv}\left(\left\{\alpha: c_{\alpha} \neq 0\right\} \subset \mathbb{R}^{n}\right.
$$

For $w \in \mathbb{R}^{n}$, it can also be useful to consider the w-initial form of $f, \operatorname{in}_{w}(f)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} \underline{x}^{\alpha}$, where $\mathcal{A}=\left\{\alpha \in \operatorname{Newt}(f): w^{T} \alpha \geq w^{T} \beta\right.$ for all $\left.\beta \in \operatorname{Newt}(f)\right\}$. Show the following:
(a) If $f=\sum_{i=1}^{k} h_{i}^{2}$, then $\operatorname{Newt}\left(h_{i}\right) \subseteq \frac{1}{2} \operatorname{Newt}(f)$.
(b) The Motzkin polynomial $M(x, y)=1-3 x^{2} y^{2}+x^{4} y^{2}+x^{2} y^{4}$ is not a sum of squares.

Hint: look at the coefficient of $x^{2} y^{2}$ in any sum-of-squares representation.

