Math 591 - Homework 1

Due 3pm on Thursday, January 24, 2019
Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together in small groups (2-4 people), but you should try the problems on your own first.

Recall that $F \subseteq C$ is a face of a convex set C if it is convex and for all $u, v \in C, \lambda \in(0,1)$,

$$
\lambda u+(1-\lambda) v \in F \Rightarrow u, v \in F \text {. }
$$

An extreme point of C is a point $p \in C$ for which $\{p\}$ is a face of C.

Problem 1. For a convex set $C \subseteq V$, show that for any $\ell \in V^{*}$, the set $F=\{v \in C: \ell(v) \geq \ell(w)$ for all $w \in C\}$ is a face of C.
(Bonus Problem): Find (sufficient) conditions on C and/or V so that the following is true: If the maximum of a linear functional $\ell: V \rightarrow \mathbb{R}$ is attained on C, then it is attained by an extreme point of C.

Problem 2. For convex sets $A, B \subset V$, show that the following are also convex:
(a) $T(A)$ where W is an \mathbb{R}-vector space and $T: V \rightarrow W$ is a linear map
(b) $A \times B=\{(a, b): a \in A, b \in B\} \subset V \times V$
(c) $A+B=\{a+b: a \in A, b \in B\}$

Problem 3. Suppose that $C, K \subset V$ are convex cones. Show the following:
(a) If $C \subseteq K$ then $C^{*} \supseteq K^{*}$.
(b) $(C+K)^{*}=C^{*} \cap K^{*}$
(c) If $L \subset V$ is a linear subspace, then the convex cone dual to L is

$$
L^{\perp}=\left\{\ell \in V^{*}: \ell(v)=0 \text { for all } v \in L\right\} .
$$

(d) If K is contained in a linear subspace L, then L^{\perp} belongs to the lineality space of K^{*}, that is, $K^{*}+L^{\perp}=K^{*}$.
(e) If L belongs to the lineality space of K, i.e. $K+L=K$, then $K^{*} \subseteq L^{\perp}$.

Recall that for a subspace $L \subseteq \mathbb{R}^{n}, \mathcal{F}_{L}=\left\{A \in \operatorname{PSD}_{\mathrm{n}}: L \subseteq \operatorname{ker}(A)\right\}$ is a face of PSD_{n}.
Problem 4. (Barvinok II.12.4.1) Let L_{1}, L_{2} be subspaces of \mathbb{R}^{n}. Prove that $\mathcal{F}_{L_{1}}$ is an exposed face of $\mathcal{F}_{L_{2}}$ if and only if $L_{2} \subset L_{1}$.

