Math 409 — Homework 3
Due on Thursday, April 18

You are welcome to talk with other students in the class about problems but should write
up solutions on your own. Solutions can be handwritten or typed but need to be legible and
submitted via Gradescope by the end of the day on Thursday. You should justify all your
answers in order to receive full credit.

Problem 1. Let G = (V, E) be a directed graph with edge costs ¢ : £ — R and suppose
that P = {(s,v1), (v1,v2),..., (v, t)} is the shortest s — ¢ path in G.

(a) Fill in the details on the proof of Bellman’s principal (Lemma 9). That is, show that if
G has no negative cost cycles, then for each i < k, P, = {(s,v1), (v1,v2), ..., (vi—1,0;)}
is the shortest s — v; path in G. (Hint: it may be useful to show that the minimum
cost of an s — t walk in G achieved by a path.)

(b) Show that this no longer holds without the assumption of no negative cycles. That
is, give an example of a graph G = (V| E), edge costs ¢ : E — R, and shortest s — ¢
path P so that the s — v; portion of P is not the shortest s — v; path in G.

Problem 2. Consider the following directed graph G = (V| E)) (with edge costs in blue).

(a) Use the Moore-Bellman-Ford algorithm to compute the distances from s to each other
node v (call those values ¢(v). It is enough to give the final outcomes ¢(v).

(b) Consider the function 7 : V' — R given by 7(v) = ¢(v) using the values of ¢(v)
computed in part (a). Re-label the graph with the reduced costs c¢;(e) from this
function. Is 7 a feasible potential?

c) Run Dijkstra’s algorithm with cost function ¢, from part (b) and source node a. Use
the symbol ¢ (v) to denote the computed a-v distances. It is enough to give the final
values of ¢'(v).

d) How do you translate the values ¢'(v) from part (¢) into the minimum costs of a — v
paths w.r.t the original cost function ¢? (Hint: for a given a — v path P, find a
relation between its costs w.r.t. ¢ and ¢;.)

Remark: Here you use the more-time-consuming Moore-Bellman-Ford algorithm to compute
shortest paths from one source and then use this to be able to use the less-time-consuming
Dijkstra’s algorithm to compute shortest paths in G from another source (even though the
original edge costs are not nonnegative).

Problem 3 on the next page.

Problem 3 (Schrijver). In order to complete a big project, n activities need to be completed,
labeled aq, . .., a,. Each activity a; takes a certain amount of time ¢;. Activities can be worked
on simultaneously, but some activities need to be completed before others are started. We
would like to know the minimum amount of time it will take to complete the project.
Consider the directed graph with n + 2 vertices V = {s,e,a4,...,a,} and directed edges

E ={(s,a;):i=1,....n}U{(a,e):i=1,...,n}
U {(ai,a;) : activity a; needs to be complete before activity a; starts}.

Here s and e are dummy variables representing the start and end of the project, respectively.

(a) Show that the minimum amount to time it will take to complete the project is the
mazimum length cost of an s-e path in the graph (V, E') where the edges (s, a;) have
length zero and edges (a;,e) and (a;, a;) has length ¢;.

(b) How would you define edge costs ¢ : E — R to solve this as minimum cost path
problem? Is it reasonable to assume that there are no negative (directed) cycles?

(c) The following activities are part of building a house:

activity days needed mneeds to be done
before activity #
1. groundwork 2 2
2. foundation 4 3
3. building walls 10 4,6,7
4. exterior plumbing 4 5,9
5. interior plumbing 5t 10
6. electricity 7 10
7. roof 6 8
8. finishing outer walls 7 9
9. exterior painting 9 14
10. panelling 8 11,12
11. floors 4 13
12. interior painting 5t 13
13. finishing interior 6
14. finishing exterior 2

Find the minimum number of days it will take to complete the house, from start to
finish, and describe which activities are bottlenecks. An activity is a bottleneck if a
delay on the completion of that activity will necessarily increase the completion time
of the whole project.

If you solve a min-cost path problem, it is enough to give the final ¢(v) values for all
vertices. You do not have to show all your steps in the computation.

Remark: When a directed graph has no directed cycles, one can compute a topological sorted
order of the vertices, vy, ...,v, in time O(|V| 4+ |E|) in which ¢ < j whenever (v;,v;) € E.
Using this, one can modify the Moore-Bellman-Ford algorithm to get an algorithm that finds
shortest paths in time O(|V| + |E|) (rather than O(|V||E])).

