Math 407 - Sensitivity Analysis

Wednesday, November 29
Changes in the right-hand side: $\mathrm{b} \rightarrow \tilde{\mathrm{b}}$
Our small craft store is still making scarves and hats and trying to maximize their profits.
Every week, they have 80 hours of manual labor and 2500 g of wool available.

	work (hours)	wool (g)	demand (\#)	profit (\$)
scarf	6	200	15	10
hat	4	100	15	6

$6 x_{1}+4 x_{2}=80 ~ \vdots \quad \vdots 200 x_{1}+100 x_{2}=2500$

As a linear program:
(OP) max $10 x_{1}+6 x_{2}$ s.t. $0 \leq x_{1} \leq 15$
$0 \leq x_{2} \leq 15$
$6 x_{1}+4 x_{2} \leq 80$ $200 x_{1}+100 x_{2} \leq 2500$
where
$x_{1}=$ (average) number of scarves made per week $x_{2}=$ (average) number of hats made per week optimal solution: $\quad\left(x_{1}, x_{2}\right)=(10,5)$
optimal value: 130
Suppose that the amount of work hours available each week changes $80 \rightarrow(80+t)$.
Q1: For what values of t is it feasible to use up all available work hours and wool?
Q2: For t in this range, how do the optimal solution and optimal value change with t ?
Q3: How much additional profit can be gained from having 8 additional hours of work?

Q4: What is the dual LP of the original linear program?
Q5: What is the optimal solution of the dual?
Q6: How does changing the available work hours $80 \rightarrow(80+t)$ affect the dual LP?
Q7: How would changing the available wool from 2500 g to $(2500+t) \mathrm{g}$ affect the dual LP? What about the optimal value?

Q8: How much additional profit can be gained from an additional 100 g of wool?

Solutions

A1: Using up all available work hours and wool means that

$$
\begin{aligned}
6 x_{1}^{*}+4 x_{2}^{*} & =80+t \\
200 x_{1}^{*}+100 x_{2}^{*} & =2500
\end{aligned}
$$

meaning that

$$
\begin{aligned}
\left(\begin{array}{cc}
6 & 4 \\
200 & 100
\end{array}\right)\binom{x_{1}^{*}}{x_{2}^{*}}=\binom{80+t}{2500} \Rightarrow\binom{x_{1}^{*}}{x_{2}^{*}} & =\left(\begin{array}{cc}
6 & 4 \\
200 & 100
\end{array}\right)^{-1}\binom{80+t}{2500} \\
& =\left(\begin{array}{cc}
-1 / 2 & 1 / 50 \\
1 & -3 / 100
\end{array}\right)\binom{80+t}{2500}=\binom{10-t / 2}{5+t}
\end{aligned}
$$

This is feasible if and only this point satisfies the other four inequalities: $0 \leq x_{1} \leq 15$, $0 \leq x_{2} \leq 15$. Plugging in $x_{1}=10-t / 2$ and $x_{2}=5+t$ gives the conditions:

$$
\left.\right)
$$

Therefore this point is feasible for $-5 \leq t \leq 10$.
A2: Since the cost vector $(10,6)$ is a positive combination of $(6,4)$ and $(200,100)$, namely

$$
\binom{10}{6}=\binom{6}{4}+\frac{1}{50}\binom{200}{100},
$$

the point $\left(x_{1}, x_{2}\right)=(10-t / 2,5+t)$ found above is optimal if and only if it is feasible! Recall: Given a linear program $\max \left\{\mathbf{c}^{T} \mathbf{x}\right.$ s.t. $\left.A \mathbf{x} \leq \mathbf{b}\right\}$ and a feasible point \mathbf{x}^{*} of (P),

$$
\mathbf{x}^{*} \text { is optimal } \Leftrightarrow \mathbf{c}=\sum_{i \in I} y_{i} \mathbf{a}_{i} \text { for some } y_{i} \geq 0
$$

where $I=\left\{i: \mathbf{a}_{i}^{T} \mathbf{x}^{*}=b_{i}\right\}$.
(Why? Duality and complimentary slackness!: $\mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x}^{*}=\sum_{i=1}^{m} y_{i}\left(b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}^{*}\right)$
Therefore $-5 \leq t \leq 10$,
Optimal Solution: $(10-t / 2,5+t)$
Optimal Value: $10(10-t / 2)+6(5+t)=130+t$

A3: Adding 8 additional hours of work gives an additional $\$ 8$ of profit.
(To maximize profits, they should make $6=10-8 / 2$ scarves and $13=5+8$ hats per week for a total profit of $\$ 138=10 \cdot 6+6 \cdot 13$.)

A4: The dual LP of the original linear program is:

$$
(\mathrm{OD}) \max 15 y_{2}+15 y_{4}+80 y_{5}+2500 y_{6} \text { s.t. } \begin{aligned}
& y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6} \geq 0 \\
& -y_{1}+y_{2}+6 y_{5}+200 y_{6}=10 \\
& -y_{3}+y_{4}+4 y_{5}+100 y_{6}=6
\end{aligned}
$$

A5: In the optimal solution for the primal, only the 5th and 6th inequalities hold with equality at $\left(x_{1}^{*}, x_{2}^{*}\right)=(10,5)$. By complimentary slackness, the optimal solution for the dual has $y_{1}=y_{2}=y_{3}=y_{4}=0$. Therefore the optimal solution for the dual is given by

$$
\begin{array}{lll}
6 y_{5}+200 y_{6}=10 & \Rightarrow & y_{5}=1 \\
4 y_{5}+100 y_{6}=6 & \Rightarrow & y_{6}=1 / 50
\end{array}
$$

Therefore the optimal solution for the dual is:

$$
\left(\begin{array}{l}
y_{1}^{*} \\
y_{2}^{*} \\
y_{3}^{*} \\
y_{4}^{*} \\
y_{5}^{*} \\
y_{6}^{*}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
1 / 50
\end{array}\right)
$$

A6: Changing $80 \rightarrow(80+t)$ hours changes the objective function of the dual LP. As long as $\mathbf{y}^{*}=(0,0,0,0,1,1 / 50)^{T}$ remains the optimal solution for the dual, the optimal value of $15 y_{2}^{*}+15 y_{4}^{*}+(80+t) y_{5}^{*}+2500 y_{6}^{*}$ will be

$$
(80+t)(1)+2500(1 / 50)=130+t
$$

Note: If \mathbf{y}^{*} is the unique optimal solution for the dual LP, then it will remain the optimal solution for small changes in \mathbf{b}. We can use \mathbf{y}^{*} to determine the change in optimal value:

$$
\text { new optimal value }=\tilde{\mathbf{b}}^{T} \mathbf{y}^{*}=(\mathbf{b}+\Delta \mathbf{b})^{T} \mathbf{y}^{*}=\mathbf{b}^{T} \mathbf{y}^{*}+\Delta \mathbf{b}^{T} \mathbf{y}^{*}
$$

In the example above, we see that increasing b_{5} by t increases the optimal value by t because $y_{5}^{*}=1$:

$$
\text { new optimal value }=\left(\begin{array}{c}
0 \\
15 \\
0 \\
15 \\
80+t \\
2500
\end{array}\right)^{T}\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
1 / 50
\end{array}\right)=130+t
$$

A7: Similarly, As long as $\mathbf{y}^{*}=(0,0,0,0,1,1 / 50)^{T}$ remains the optimal solution for the dual LP, changing the grams of available wool $2500 \rightarrow(2500+t)$ will give a maximum profit of

$$
15 y_{2}^{*}+15 y_{4}^{*}+80 y_{5}^{*}+(2500+t) y_{6}^{*}=80(1)+(2500+t)(1 / 50)=130+t / 50
$$

In particular, the coefficient, $1 / 50$, of t comes from y_{6}^{*}.

A8: With an additional 100 g of wool we can check that it is still feasible (\Rightarrow optimal) to use up all available work hours and wool:

$$
\begin{aligned}
\left(\begin{array}{cc}
6 & 4 \\
200 & 100
\end{array}\right)\binom{x_{1}^{*}}{x_{2}^{*}}=\binom{80}{2600} \Rightarrow\binom{x_{1}^{*}}{x_{2}^{*}} & =\left(\begin{array}{cc}
6 & 4 \\
200 & 100
\end{array}\right)^{-1}\binom{80}{2600} \\
& =\left(\begin{array}{cc}
-1 / 2 & 1 / 50 \\
1 & -3 / 100
\end{array}\right)\binom{80}{2600}=\binom{12}{2} .
\end{aligned}
$$

This is still feasible since both coordinates are between 0 and 15 . Therefore the maximum profit increases by $\$ 2=100 / 50$.

