Math 407 - Mathematica Demo

October 20, 2023

Example 1. Let's try the simplex algorithm on a larger example. Namely

$$
\max x_{1}+x_{2} \quad \text { s.t. } \quad x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{1}-x_{2} \leq 1, x_{2}-x_{3} \leq 1,-x_{1}+x_{3} \leq 1
$$

We add slack variables to get into equational form, giving

$$
\begin{aligned}
& \max x_{1}+x_{2} \quad \text { s.t. } \quad\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \geq 0 \\
& x_{1}-x_{2}+x_{4}=1 \\
& x_{2}-x_{3}+x_{5}=1 \\
& -x_{1}+x_{3}+x_{6}=1
\end{aligned}
$$

In the original LP, the point $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$ is feasible, so we see that $(0,0,0,1,1,1)$ is feasible for the LP in equational form. The corresponding feasible basis is $\{4,5,6\}$, with tableau

$$
\begin{aligned}
& \mathcal{T}(\{4,5,6\}): \quad x_{4}=1-x_{1}+x_{2} \\
& x_{5}=1 \quad-x_{2}+x_{3} \\
& v=(0,0,0,1,1,1) \\
& \begin{array}{ccc}
x_{6} & =1+x_{1} \quad-x_{3} \\
\hline z=x_{1}+x_{2}
\end{array}
\end{aligned}
$$

We can choose x_{1} or x_{2} to enter. Let's choose x_{1}. We increase x_{1} while keeping $x_{2}=x_{3}=0$. The maximum feasible value is $x_{1}=1$, which makes $x_{4}=0$. So x_{4} leaves.

$$
\begin{array}{ll}
\mathcal{T}(\{1,5,6\}): & \begin{array}{l}
x_{1}=1+x_{2} \\
x_{5}=1-x_{2}+x_{3} \\
x_{6}
\end{array} \\
v=(1,0,0,0,1,2) \quad & x_{4} \\
x_{6}=2+2 x_{2}-x_{3}-x_{4} \\
\hline
\end{array}
$$

Only x_{2} can enter. We increase x_{2} while keeping $x_{3}=x_{4}=0$. The maximum feasible value is $x_{2}=1$, which makes $x_{5}=0$. So x_{5} leaves.

$$
\begin{array}{ll}
\mathcal{T}(\{1,2,6\}): & \begin{array}{l}
x_{1}=2+x_{3}-x_{4} \\
x_{2}=1 \\
\\
\\
\\
x_{6}=3
\end{array} x_{3}+x_{5} \\
\frac{z}{z}=3+2 x_{3}-x_{4}-2 x_{5} \\
\hline z, 0,0,3)
\end{array}
$$

Only x_{3} can enter. We increase x_{3} while keeping $x_{4}=x_{5}=0$. This is feasible for any $x_{3} \geq 0$. We conclude that the LP is unbounded. Indeed, the point $\left(2+x_{3}, 1+x_{3}, x_{3}, 0,0,3\right)$ is feasible for all $x_{3} \geq 0$ and the value of the objective funciton at this point is $3+2 x_{3}$ which $\rightarrow \infty$ as $x_{3} \rightarrow \infty$.

We can see the path that we took through our pivots on the plot of the feasible region using x_{1}, x_{2}, x_{3} as parameters for our feasible region:

Example 2. [Chvátal, Problem 10.2] A furniture-manufacturing company makes bookcases, desks, chairs, and bedframes.

- A bookcase requires three hours of work, one unit of metal, and four units of wood, and brings in a net profit of $\$ 19$.
- A desk requires two hours of work, one unit of metal, and three units of wood, and brings in a net profit of $\$ 13$.
- A chair requires one hour of work, one unit of metal, and three units of wood, and brings in a net profit of $\$ 12$.
- A bedframe requires two hours of work, one unit of metal, and four units of wood, and brings in a net profit of $\$ 17$.
- Only 225 hours of labor, 117 units of metal, and 420 units of wood are available per day.

How should they use their resources to maximize the profit?
We model this problem as the LP

$$
\max 19 x_{1}+13 x_{2}+12 x_{3}+17 x_{4} \quad \text { s.t. } \begin{aligned}
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) & \geq 0 \\
3 x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5} & =225 \\
x_{1}+x_{2}+x_{3}+x_{4}+x_{6} & =117 \\
4 x_{1}+3 x_{2}+3 x_{3}+4 x_{4}+x_{7} & =420
\end{aligned}
$$

where

$$
\begin{array}{ll}
x_{1}=\# \text { bookcases } & x_{5}=\# \text { unused hours } \\
x_{2}=\# \text { desks } & x_{6}=\text { \#unused units of metal } \\
x_{3}=\# \text { chairs } & x_{7}=\text { \#unused units of wood } \\
x_{4}=\# \text { bedframes } &
\end{array}
$$

There is a natural feasible basis to start from - namely make nothing! The corresponding basis is $\{5,6,7\}$ (since these index the nonzero coordinates resulting from making no products).

$$
\begin{array}{ll}
\mathcal{T}(\{5,6,7\}): & x_{5}=225-3 x_{1}-2 x_{2}-x_{3}-2 x_{4} \\
& x_{6}=117-2 x_{1}-x_{2}-x_{3}-x_{4} \\
\left.x_{7}=420-205,117,420\right) & z=
\end{array}
$$

We see from the last line that at the current basic feasible solution, we are making no profit and that we can increase any nonbasic variable to increase the profit. Perhaps we try to start making bookcases, since those are the most profitable. That is, we choose x_{1} to enter. We increase x_{1} while keeping $x_{2}=x_{3}=x_{4}=0$. The maximum feasible value is $x_{1}=225 / 3=75$, which makes $x_{5}=0$. So x_{5} leaves.

$$
\begin{aligned}
& \mathcal{T}(\{1,6,7\}): \quad x_{1}=75-2 x_{2} / 3-x_{3} / 3-2 x_{4} / 3-x_{5} / 3 \\
& x_{6}=42-x_{2} / 3-2 x_{3} / 3-x_{4} / 3+x_{5} / 3 \\
& \begin{array}{ccccccc}
x_{7}=120-x_{2} / 3-5 x_{3} / 3-4 x_{4} / 3+4 x_{5} / 3 \\
\hline z=1425+x_{2} / 3+17 x_{3} / 3+13 x_{4} / 3-19 x_{5} / 3
\end{array}
\end{aligned}
$$

At this basic feasible solution, we are making 75 bookcases and a profit of $\$ 1425$. From the last line, we see that it could be profitable to start making one of the other products (while still keeping the number of unused hours equal to zero). Suppose we choose to start making chairs. That is, we choose x_{2} to enter. We increase x_{2} while keeping $x_{3}=x_{4}=x_{5}=0$. The maximum feasible value is $x_{2}=225 / 2$, which makes $x_{1}=0$. So x_{1} leaves.

$$
\begin{aligned}
& \mathcal{T}(\{2,6,7\}): \quad x_{2}=225 / 2-3 x_{1} / 2-x_{3} / 2-x_{4}-x_{5} / 2 \\
& x_{6}=9 / 2+x_{1} / 2-x_{3} / 2 \quad+x_{5} / 2 \\
& v=\left(0, \frac{225}{2}, 0,0,0, \frac{9}{2}, \frac{165}{2}\right) \quad \begin{array}{l}
x_{7}=165 / 2+x_{1} / 2-3 x_{3} / 2-x_{4}+3 x_{5} / 2 \\
\hline z=2925 / 2-x_{1} / 2+11 x_{3} / 2+4 x_{4}-13 x_{5} / 2
\end{array}
\end{aligned}
$$

We are now making only desks! The profit has increased from $\$ 1425$ to $\$ 2925 / 2=$ $\$ 1462.50$. We not yet at the optimal solution. We can choose x_{3} or x_{4} to enter. Let's choose x_{3}. We increase x_{3} while keeping $x_{1}=x_{4}=x_{5}=0$. The maximum feasible value is $x_{3}=9$, which makes $x_{6}=0$. So x_{6} leaves.

$$
\begin{array}{cl}
\mathcal{T}(\{2,3,7\}): & x_{2}=108-2 x_{1}-x_{4}-x_{5}+x_{6} \\
x_{3}= & 9 \\
& x_{7}=69 x_{1} \\
& =69 x_{1}-x_{4} \\
& =(0,108,9,0,0,0,69)
\end{array}
$$

At the corresponding basic feasible solution, we're making 108 desks, 9 chairs, and a profit of $\$ 1512$. We not yet at the optimal solution. We can choose x_{1} or x_{4} to enter. Let's
choose x_{1}. We increase x_{1} while keeping $x_{4}=x_{5}=x_{6}=0$. The maximum feasible value is $x_{1}=108 / 2=54$, which makes $x_{2}=0$. So x_{2} leaves.

$$
\begin{array}{cccccccccc}
\mathcal{T}(\{1,3,7\}): & x_{1}=54-x_{2} / 2-x_{4} / 2-x_{5} / 2+x_{6} / 2 \\
& x_{3}=63-1 x_{2} / 2-1 x_{4} / 2+x_{5} / 2-3 x_{6} / 2 \\
v=(54,0,63,0,0,0,15) & x_{7}=15+x_{2} / 2-1 x_{4} / 2+x_{5} / 2+5 x_{6} / 2 \\
\cline { 2 - 5 } & =1782-5 x_{2} / 2+3 x_{4} / 2-7 x_{5} / 2-17 x_{6} / 2
\end{array}
$$

At the corresponding basic feasible solution, we're making 54 bookcases, 63 chairs, and a profit of $\$ 1782$. We not yet at the optimal solution. Only x_{4} can enter. We increase x_{4} while keeping $x_{2}=x_{5}=x_{6}=0$. The maximum feasible value is $x_{4}=30$, which makes $x_{7}=0$. So x_{7} leaves.

$$
\begin{array}{ll}
\mathcal{T}(\{1,3,4\}): & x_{1}=39-x_{2}-x_{5}-2 x_{6}+x_{7} \\
& x_{3}=48-x_{2} \\
& x_{4}=30 \\
& +x_{2}+x_{5}+5 x_{6}-2 x_{7} \\
\cline { 2 - 4 } & =1827-20,0,0,0)
\end{array}
$$

At the corresponding basic feasible solution, we're making 39 bookcases, 48 chairs, 30 bed frames and a profit of $\$ 1827$. The coefficient of every variable in the last line is negative, so this is the (unique) optimal solution!

