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Example 1. Let’s try the simplex algorithm on a larger example. Namely
max x1 + x2 s.t. x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 − x2 ≤ 1, x2 − x3 ≤ 1, −x1 + x3 ≤ 1

We add slack variables to get into equational form, giving
max x1 + x2 s.t. (x1, x2, x3, x4, x5, x6) ≥ 0

x1 − x2 + x4 = 1

x2 − x3 + x5 = 1

−x1 + x3 + x6 = 1

In the original LP, the point (x1, x2, x3) = (0, 0, 0) is feasible, so we see that (0, 0, 0, 1, 1, 1)
is feasible for the LP in equational form. The corresponding feasible basis is {4, 5, 6}, with
tableau

T ({4, 5, 6}) :

v = (0, 0, 0, 1, 1, 1)

x4 = 1 − x1 + x2

x5 = 1 − x2 + x3

x6 = 1 + x1 − x3

z = x1 + x2

We can choose x1 or x2 to enter. Let’s choose x1. We increase x1 while keeping
x2 = x3 = 0. The maximum feasible value is x1 = 1, which makes x4 = 0. So x4 leaves.

T ({1, 5, 6}) :

v = (1, 0, 0, 0, 1, 2)

x1 = 1 + x2 − x4

x5 = 1 − x2 + x3

x6 = 2 + x2 − x3 − x4

z = 2 + 2x2 − x4

Only x2 can enter. We increase x2 while keeping x3 = x4 = 0. The maximum feasible value
is x2 = 1, which makes x5 = 0. So x5 leaves.

T ({1, 2, 6}) :

v = (2, 1, 0, 0, 0, 3)

x1 = 2 + x3 − x4

x2 = 1 + x3 − x5

x6 = 3 − x4 − x5

z = 3 + 2x3 − x4 − 2x5

Only x3 can enter. We increase x3 while keeping x4 = x5 = 0. This is feasible for any
x3 ≥ 0. We conclude that the LP is unbounded. Indeed, the point (2 + x3, 1 + x3, x3, 0, 0, 3)
is feasible for all x3 ≥ 0 and the value of the objective funciton at this point is 3 + 2x3

which → ∞ as x3 → ∞.



We can see the path that we took through our pivots on the plot of the feasible region
using x1, x2, x3 as parameters for our feasible region:

Example 2. [Chvátal, Problem 10.2] A furniture-manufacturing company makes
bookcases, desks, chairs, and bedframes.

• A bookcase requires three hours of work, one unit of metal, and four units of wood,
and brings in a net profit of $19.

• A desk requires two hours of work, one unit of metal, and three units of wood, and
brings in a net profit of $13.

• A chair requires one hour of work, one unit of metal, and three units of wood, and
brings in a net profit of $12.

• A bedframe requires two hours of work, one unit of metal, and four units of wood,
and brings in a net profit of $17.

• Only 225 hours of labor, 117 units of metal, and 420 units of wood are available per
day.

How should they use their resources to maximize the profit?
We model this problem as the LP

max 19x1 + 13x2 + 12x3 + 17x4 s.t. (x1, x2, x3, x4, x5, x6, x7) ≥ 0

3x1 + 2x2 + x3 + 2x4 + x5 = 225

x1 + x2 + x3 + x4 + x6 = 117

4x1 + 3x2 + 3x3 + 4x4 + x7 = 420



where

x1 = #bookcases x5 = #unused hours
x2 = #desks x6 = #unused units of metal
x3 = #chairs x7 = #unused units of wood
x4 = #bedframes

There is a natural feasible basis to start from – namely make nothing! The corresponding
basis is {5, 6, 7} (since these index the nonzero coordinates resulting from making no
products).

T ({5, 6, 7}) :

v = (0, 0, 0, 0, 225, 117, 420)

x5 = 225 − 3x1 − 2x2 − x3 − 2x4

x6 = 117 − x1 − x2 − x3 − x4

x7 = 420 − 4x1 − 3x2 − 3x3 − 4x4

z = 19x1 + 17x2 + 12x3 + 17x4

We see from the last line that at the current basic feasible solution, we are making no
profit and that we can increase any nonbasic variable to increase the profit. Perhaps we try
to start making bookcases, since those are the most profitable. That is, we choose x1 to
enter. We increase x1 while keeping x2 = x3 = x4 = 0. The maximum feasible value is
x1 = 225/3 = 75, which makes x5 = 0. So x5 leaves.

T ({1, 6, 7}) :

v = (75, 0, 0, 0, 0, 42, 120)

x1 = 75 − 2x2/3 − x3/3 − 2x4/3 − x5/3
x6 = 42 − x2/3 − 2x3/3 − x4/3 + x5/3
x7 = 120 − x2/3 − 5x3/3 − 4x4/3 + 4x5/3
z = 1425 + x2/3 + 17x3/3 + 13x4/3 − 19x5/3

At this basic feasible solution, we are making 75 bookcases and a profit of $1425. From the
last line, we see that it could be profitable to start making one of the other products (while
still keeping the number of unused hours equal to zero). Suppose we choose to start making
chairs. That is, we choose x2 to enter. We increase x2 while keeping x3 = x4 = x5 = 0. The
maximum feasible value is x2 = 225/2, which makes x1 = 0. So x1 leaves.

T ({2, 6, 7}) :

v = (0, 225
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x2 = 225/2 − 3x1/2 − x3/2 − x4 − x5/2
x6 = 9/2 + x1/2 − x3/2 + x5/2
x7 = 165/2 + x1/2 − 3x3/2 − x4 + 3x5/2
z = 2925/2 − x1/2 + 11x3/2 + 4x4 − 13x5/2

We are now making only desks! The profit has increased from $1425 to $2925/2 =
$1462.50. We not yet at the optimal solution. We can choose x3 or x4 to enter. Let’s
choose x3. We increase x3 while keeping x1 = x4 = x5 = 0. The maximum feasible value is
x3 = 9, which makes x6 = 0. So x6 leaves.

T ({2, 3, 7}) :

v = (0, 108, 9, 0, 0, 0, 69)

x2 = 108 − 2x1 − x4 − x5 + x6

x3 = 9 + x1 + x5 − 2x6

x7 = 69 − x1 − x4 + 3x6

z = 1512 + 5x1 + 4x4 − x5 − 11x6

At the corresponding basic feasible solution, we’re making 108 desks, 9 chairs, and a profit
of $1512. We not yet at the optimal solution. We can choose x1 or x4 to enter. Let’s



choose x1. We increase x1 while keeping x4 = x5 = x6 = 0. The maximum feasible value is
x1 = 108/2 = 54, which makes x2 = 0. So x2 leaves.

T ({1, 3, 7}) :

v = (54, 0, 63, 0, 0, 0, 15)

x1 = 54 − x2/2 − x4/2 − x5/2 + x6/2
x3 = 63 − x2/2 − x4/2 + x5/2 − 3x6/2
x7 = 15 + x2/2 − x4/2 + x5/2 + 5x6/2
z = 1782 − 5x2/2 + 3x4/2 − 7x5/2 − 17x6/2

At the corresponding basic feasible solution, we’re making 54 bookcases, 63 chairs, and a
profit of $1782. We not yet at the optimal solution. Only x4 can enter. We increase x4

while keeping x2 = x5 = x6 = 0. The maximum feasible value is x4 = 30, which makes
x7 = 0. So x7 leaves.

T ({1, 3, 4}) :

v = (39, 0, 48, 30, 0, 0, 0)

x1 = 39 − x2 − x5 − 2x6 + x7

x3 = 48 − x2 − 4x6 + x7

x4 = 30 + x2 + x5 + 5x6 − 2x7

z = 1827 − x2 − 2x5 − x6 − 3x7

At the corresponding basic feasible solution, we’re making 39 bookcases, 48 chairs, 30 bed
frames and a profit of $1827. The coefficient of every variable in the last line is negative, so
this is the (unique) optimal solution!


