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The Central Path of a Linear Program

Linear Program: Maximizex∈Rn c · x s.t. A · x = b and x ≥ 0.

Replace by : Maximizex∈Rn fλ(x) s.t. A · x = b,

where λ ∈ R+ and fλ(x) := c · x + λ
∑n

i=1 log(xi ).

The maximum of the function fλ is attained by a unique point
x∗(λ) in the the open polytope {x ∈ (R>0)n : A · x = b}.

The central path is {x∗(λ) : λ > 0}.
As λ→ 0 , the path leads from the
analytic center of the polytope, x∗(∞),
to the optimal vertex, x∗(0).
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The Central Path of a Linear Program

The central path is {x∗(λ) : λ > 0}.
As λ→ 0 , the path leads from the
analytic center of the polytope, x∗(∞),
to the optimal vertex, x∗(0).

Interior point methods = piecewise-linear approx. of this path

Bounds on curvature of the path → bounds on # Newton steps

We can use concepts from algebraic geometry and matroid theory
to bound the total curvature of the central path.
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The Central Curve

The central curve C is the Zariski closure of the central path.
It contains the central paths of all polyhedra in the hyperplane
arrangement {xi = 0}i=1,...,n ⊂ {A · x = b}.

−→
Zariski closure

Goal: Study the nice algebraic geometry of this curve
and its applications to the linear program
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History and Contributions

Motivating Question: What is the maximum total curvature of the
central path given the size of the matrix A?

Deza-Terlaky-Zinchenko (2008) make continuous Hirsch conjecture
Conjecture: The total curvature of the central path is at most O(n).

Bayer-Lagarias (1989) study the central path as an algebraic object and
suggest the problem of identifying its defining equations.

Dedieu-Malajovich-Shub (2005) apply differential and algebraic geometry
to bound the total curvature of the central path.

Our contribution is to use results from algebraic geometry and matroid

theory to find defining equations of the central curve and refine bounds

on its degree and total curvature.
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Outline

◦ Algebraic conditions for optimality

◦ Degree of the curve (and other combinatorial data)

◦ Total curvature and the Gauss map

◦ Defining equations

◦ The primal-dual picture
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Some details

Here we assume that . . .

1) A is a d × n matrix of rank-d (possibly very special), and

2) c ∈ Rn and b ∈ Rd are generic.

(This ensures that the central curve is irreducible and nonsingular.)
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Algebraic Conditions for Optimality

. . . of the function fλ(x) = c · x + λ
∑n

i=1 log |xi | in {A · x = b}:

∇fλ(x) = c + λx−1 ∈ span{rows(A)}

⇔ x−1 ∈ span{rows(A)}+ λ−1c

⇔ x−1 ∈ span{rows(A), c} =: LA,c
⇔ x ∈ L−1A,c

where L−1A,c denotes the coordinate-wise reciprocal LA,c:

L−1A,c :=

{
(u−11 , . . . , u−1n ) where (u1, . . . , un) ∈ LA,c

}
Proposition. The central curve equals the intersection of the

central sheet L−1A,c with the affine space
{
A · x = b

}
.
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Level sets of the cost function

Consider intersecting the
central curve C with the
level set {c · x = c0}.

Observations:

1) There is exactly one point of C ∩ {c · x = c0} in each bounded
region of the induced hyperplane arrangement.

2) This number is the same for almost any choice of c0.

Claim: The points C ∩ {c · x = c0} are the analytic centers of the
hyperplane arrangement {xi = 0}i∈[n] in {A · x = b, c · x = c0}.
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Level sets of the cost function and analytic centers

Claim: The points C ∩ {c · x = c0} are the analytic centers of the
hyperplane arrangement {xi = 0}i∈[n] in {A · x = b, c · x = c0}.

⇒ # bounded regions of induced hyperplane arrangement ≤ deg(C)

Theorem: The number of bounded regions in hyperplane
arrangement induced by {c · x = c0} equals the degree of the
central curve C. Thus, deg(C) ≤

(n−1
d

)
, with equality for generic A.

For matroid enthusiasts,

this number is the absolute value

of the Möbius invariant of
(
A
c

)
.
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Combinatorial data

Proudfoot and Speyer (2006) determine the ideal of polynomials
vanishing on L−1A,c and its Hilbert series.

Using the matroid associated to L−1A,c, they construct a simplicial
complex containing combinatorial data of this ideal.

1 1 1 0 0
0 0 0 1 1
1 2 0 4 0

 {123, 1245,

1345, 2345} h = (1, 2, 2)

matrix
(
A
c

)
→ matroid → “broken circuit” → h-vector

complex

⇒ deg(C) =
∑d

i=0 hi and genus(C) = 1−
∑d

j=0(1− j)hj .
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Total Curvature

Classic differential geometry: The total curvature of any real algebraic
curve C in Rm is the arc length of its image under the Gauss map
γ : C → Sm−1. This quantity is bounded above by π times the degree of
the projective Gauss curve in Pm−1. That is,

total curvature of C ≤ π · deg(γ(C)).

Dedieu-Malajovich-Shub (2005) apply this to the central curve.

Classic algebraic geometry: deg(γ(C)) ≤ 2 · (deg(C) + genus(C)− 1)

Theorem: The degree of the projective Gauss curve of the central
curve C satisfies a bound in terms of matroid invariants:

deg(γ(C)) ≤ 2 ·
d∑

i=1

i · hi ≤ 2 · (n − d − 1) ·
(
n − 1

d − 1

)
.
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Equations

Proudfoot and Speyer (2006) also prove that the equations
defining L−1A,c are the homogeneous polynomials∑

i∈supp(v)

vi ·
∏

j∈supp(v)\{i}

xj ,

where v runs over the vectors in kernel
(A
c

)
of minimal support.

(These are the cocircuits of the linear space LA,c.)

(
A
c

)
=

1 1 1 0 0
0 0 0 1 1
1 2 0 4 0

 Cocircuit v =
(
−2 1 1 0 0

)
produces −2x2x3 + 1x1x3 + 1x1x2.
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j∈supp(v)\{i}

xj ,

where v runs over the vectors in kernel
(A
c

)
of minimal support.

(These are the cocircuits of the linear space LA,c.)

(
A
c

)
=

1 1 1 0 0
0 0 0 1 1
1 2 0 4 0

 Cocircuit v =
(
−2 1 1 0 0

)
produces −2x2x3 + 1x1x3 + 1x1x2.
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Example

(n = 5, d = 2)

A =

(
1 1 1 0 0
0 0 0 1 1

)
c =

(
1 2 0 4 0

)
b =

(
3
2

)

Polynomials defining C:

−2x2x3 + x1x3 + x1x2,
4x2x4x5 − 4x1x4x5 + x1x2x5 − x1x2x4,
4x3x4x5 − 4x1x4x5 − x1x3x5 + x1x3x4,
4x3x4x5 − 4x2x4x5 − 2x2x3x5 + 2x2x3x4

x1 + x2 + x3 − 3

x4 + x5 − 2

h = (1, 2, 2) ⇒ deg(C) = 5, total curvature(C) ≤ 12π

(≤ 16π)
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Duality

Dual LP: Minimizey∈Rd bTy : ATy − s = c , s ≥ 0

←→ Minimizes∈Rn vT s : B · s = B · c , s ≥ 0,

where B = kernel(A) and A · v = b.

The primal-dual central path is cut out by the system of
polynomial equations

A · x = A · v , B · s = B · c, and x1s1 = . . . = xnsn = λ.

Examine λ→ 0 and λ→∞.
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Global Geometry: a nice curve in Pn × Pn

Primal (x-space) Dual (s-space)

a

b

b

a

c

c

f

e

d
e

e

f d

fd

b

c

a

vertices ←→ vertices
analytic centers ←→ points at ∞

points at ∞ ←→ analytic centers
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Further Questions

Further Questions:

◦ What can be said about non-generic behavior?

◦ What is total curvature of just the central path?
(continuous Hirsch conjecture?)

◦ Extensions to semidefinite and hyperbolic programs?

a

b

b

a

c

c

f

e

d
e

e

f d

fd

b

c

a

Thanks!
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