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Spectrahedra . . . What? Why?

Let PSDd denote the convex cone of
positive semidefinite matrices in Rd×d

sym .

A spectrahedron is the intersection
PSDd with an affine linear space L.

Writing L = A0 + spanR{A1, . . . ,An} identifies L ∩ PSDd with

S =
{
x ∈ Rn : A(x) � 0

}
where A(x) = A0 +

∑n
i=1 xiAi .

These are feasible sets of semidefinite programs (extension of linear
programming with applications in combinatorial optimization,
control, polynomial optimization, quantum information, . . .).
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Some examples

polytope cylinder elliptope`1(x) 0
. . .

0 `12(x)



1− x y 0 0
y 1 + x 0 0
0 0 1− z 0
0 0 0 1 + z


1 x y
x 1 z
y z 1



Some differences with polyhedra:

I S can have infinitely-many faces

I dim(face) + dim(normal cone) not always equal to n.
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Positive semidefinite matrices

A real symmetric matrix A is positive semidefinite if the following
equivalent conditions hold:

I all eigenvalues of A are ≥ 0

I all diagonal minors of A are ≥ 0

I vTAv ≥ 0 for all v ∈ Rd

I there exists B ∈ Rd×k with

A = BBT = (〈ri , rj〉)ij =
k∑

i=1

cic
T
i

where r1, . . . , rd , c1, . . . , ck are the rows and cols of B
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The convex cone of PSD matrices

The cone of PSD matrices PSDd = conv({xxT : x ∈ Rd}).

PSDd is self-dual under the inner product 〈A,B〉 = trace(A · B) :

〈A,B〉 ≥ 0 for all B ∈ PSDd ⇔ 〈A, bbT 〉 ≥ 0 for all b ∈ Rd

⇔ bTAb ≥ 0 for all b ∈ Rd

⇔ A ∈ PSDd

Faces of PSDd have dim
(r+1

2

)
for r = 0, 1, . . . , d and look like

FL = {A ∈ PSDd : L ⊆ ker(A)}.

Ex: for L = span{er+1, . . . , ed},

FL =

{(
A 0
0 0

)
: A ∈ PSDr

}
∼= PSDr
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Structure of spectrahedra

A spectrahedron S = {x ∈ Rn : A(x) � 0}
is a convex, basic-closed semi-algebraic set.

A(x , y , z) =


1− x y 0 0
y 1 + x 0 0
0 0 1− z 0
0 0 0 1 + z

 ↔

Its faces are intersections of faces of PSDd with {A(x) : x ∈ Rn}
→ characterized by kernels of A(x).
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Spectrahedral Shadows: an interlude

Caution:
The projection of spectrahedron may not be a spectrahedron!

S = proj(S) =
not basic closed
⇒ not a spectrahedron

Caution:
The convex dual of spectrahedron may not be a spectrahedron!

S =

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

S◦ = still not a spectrahedron
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Spectrahedral shadows: an interlude

A spectrahedral shadow is the image of a spectrahedron under linear
projection. These are convex semialgebraic sets.

Unlike spectrahedra, the class of spectrahedral shadows is closed under
projection, duality, convex hull of unions, . . .

Helton-Nie Conjecture (2009):
Every convex semialgebraic set is a spectrahedral shadow.

Counterexample by Scheiderer in 2016.

Open: What is the smallest dimension of a counterexample?

For more, come to
“An Afternoon of Real Algebraic Geometry,” MSRI, Friday Sept. 15, 2-6pm.
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Example: Elliptopes

The d × d elliptope is

Ed = {A ∈ PSDd : Aii = 1 for all i}

= {d × d correlation matrices} in stats

Ed has 2d−1 matrices of rank-one: {xxT : x ∈ {−1, 1}d},
corresponding to cuts in the complete graph Kd .

MAXCUT = max
S⊂[d ]

∑

i∈S,j∈Sc

wij = max
x∈{−1,1}d

∑

i,j

wij
(1− xixj)

2

= max
A∈Ed ,rk(A)=1

∑

i,j

wij
(1− Aij)

2
≤ max

A∈Ed

∑

i,j

wij
(1− Aij)

2
.

Goemans-Williamson use this to give ≈ .87 optimal cuts of graphs.
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Example: Univariate Moments

S = conv{(t, t2, . . . , t2d) : t ∈ R} is a spectrahedron in R2d

S =
{
x ∈ R2d : M(x) � 0

}
where M(x) = (xi+j−2)1≤i ,j≤d+1

Ex. (d=1): conv{(t, t2) : t ∈ R} =

{
(x1, x2) :

(
1 x1
x1 x2

)
� 0

}

Minimization of univariate polynomial of degree ≤ 2d

→Minimization of linear function over S

Ex: conv{(t, t2, t3) : t ∈ [−1, 1]}

=

{
x ∈ R3 :

(
1± x1 x1 ± x2
x1 ± x2 x2 ± x3

)
� 0

}
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Extreme Points: Pataki range

S = {x ∈ Rn : A(x) � 0}, dim(S) = n, Ai ∈ Rd×d
sym .

If x is an extreme point of S and r is the rank of A(x) then

(
r + 1

2

)
+ n ≤

(
d + 1

2

)

Furthermore if A0, . . . ,An are generic, then n ≥
(d−r+1

2

)
.

The interval of r ∈ Z+ satisfying both ≤’s is the Pataki range.

Open: For each d , n, is there a spectrahedron with an extreme
point of each rank in the Pataki range?
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Facial structure

Example: d = 3, n = 3 Pataki range: r = 1, 2

Counting rank-1 matrices:

{X : rank(X ) ≤ 1} is variety of codim 3 and degree 4 in R3×3
sym .

⇒ 0, 1, 2, 3, 4 or ∞ rank-1 matrices in S (generically 0,2, or 4)

There must be ≥ 1 rank-1 matrix. Why? Topology!

If ∂S has no rank-1 matrices, then the map S2 ∼= ∂S → P2(R) given by
x 7→ ker(A(x)) is an embedding. ⇒⇐

(For more see Friedland, Robbin, Sylvester,1984)
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Another connection with topology

Suppose A0 = I and let f (x) = det(A(x)).

⇒ f is hyperbolic, i.e.
for every x ∈ Rn, f (tx) ∈ R[t] is real-rooted.

Figure 4: A quartic symmetroid of type (⇢, �) = (2, 2).

We now establish the existence part of the Degtyarev-Itenberg theorem.

Proof of the if direction in Theorem 1.1. The constraints 0  �  ⇢  10 and ⇢ � 2 allow
for 20 solutions (⇢, �) among even integers. In the following table we list the twenty pairs
(⇢, �) followed by four symmetric 4 ⇥ 4-matrices A0, A1, A2, A3 with integer entries. Each
quadruple specifies a matrix A(x) as in (1.1) whose symmetroid f = det(A(x)) is transversal
and has a non-empty spectrahedron S(f). To verify the correctness of the list, one computes
the ten complex nodes, one checks that ⇢ of them are real, and one examines how many lie on
the spectrahedron. The latter test is done by computing the eigenvalues of the matrix A(x)
at each node x. If all eigenvalues have the same sign then x is on the spectrahedron. The
list starts with (⇢, �) = (2, 2), as in Figure 4, and ends with (⇢, �) = (10, 0), as in Figure 3.

(2, 2) :

2
664

3 4 1 �4
4 14 �6 �10
1 �6 9 2
�4 �10 2 8

3
775

2
664

11 0 2 2
0 6 �1 4
2 �1 6 2
2 4 2 4

3
775

2
664

17 �3 2 9
�3 6 �4 1
2 �4 13 10
9 1 10 17

3
775

2
664

9 �3 9 3
�3 10 6 �7
9 6 18 �3
3 �7 �3 5

3
775

(4, 4) :

2
664

18 3 9 6
3 5 �1 �3
9 �1 13 7
6 �3 7 6

3
775

2
664

17 �10 4 3
�10 14 �1 �3
4 �1 5 �4
3 �3 �4 6

3
775

2
664

8 6 10 10
6 18 6 15
10 6 14 9
10 15 9 22

3
775

2
664

8 �4 8 0
�4 10 �4 0
8 �4 8 0
0 0 0 0

3
775

6

If VR(f ) is smooth, this implies that that
VR(f ) ⊂ Pn−1 consists of bd/2c nested spheres.

Open (Generalized Lax Conjecture):
Is every hyperbolicity region a spectrahedron?
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Combinatorics of spectrahedra

What is the “f -vector” of a spectrahedron?

Extreme points and faces of S come with a lot of discrete data . . .

dimension, matrix rank, dimension of normal cone, degree,
# number of connected components, Betti #s, . . .

Very open: What values are possible?
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