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Hyperbolic Polynomials

A homogeneous polynomial f € R[x1, ..., xa|q is hyperbolic
with respect to a point e € R" if f(e) # 0 and for every x € R”,
all roots of f(te + x) € R[t] are real.
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hyperbolic with
respect to e = (1,0,0)
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Hyperbolic Polynomials

A homogeneous polynomial f € R[x1, ..., xa|q is hyperbolic
with respect to a point e € R" if f(e) # 0 and for every x € R",
all roots of f(te + x) € R[t] are real.
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hyperbolic with not hyperbolic

respect to e = (1,0,0)
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Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f,e),
is the connected component of e in R"\Vg(f).
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Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f,e),
is the connected component of e in R"\Vg(f).

Gérding (1959) showed that
» C(f,e) is convex, and

» f is hyperbolic with respect to any point a € C(f,e).
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Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f,e),
is the connected component of e in R"\Vg(f).

Gérding (1959) showed that
» C(f,e) is convex, and

» f is hyperbolic with respect to any point a € C(f,e).

One can use interior point methods to optimize a linear function
over an affine section of a hyperbolicity cone, Giiler (1997),
Renegar (2006). This solves a hyperbolic program.
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Two Important Examples of Hyperbolic Programming

C(f,e)
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Two Important Examples of Hyperbolic Programming

Linear Programming

f [T xi
e (1,...,1)
C(f,e)
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Two Important Examples of Hyperbolic Programming

Linear Programming

Semidefinite Programming

X11 ... Xin
Xln .- Xnn
e (1,...,1) Id,
C(f,e) positive definite matrices
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Connections to Multiaffine Polynomials and Matroids

A polynomial f is multiaffine if it has degree one in each variable.

Example: f = x1x0 + x1x3 + xo0x3
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Connections to Multiaffine Polynomials and Matroids

A polynomial f is multiaffine if it has degree one in each variable.

A polynomial f is real stable if it is hyperbolic and (R )" C C(f,e)

Theorem (Choe, Oxley, Sokal, Wagner (2004))

If f is multiaffine and real stable then the monomials in the
support of f form the bases of a matroid.

Example: f = x1x0 + x1x3 + xo0x3
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Connections to Multiaffine Polynomials and Matroids

A polynomial f is multiaffine if it has degree one in each variable.

A polynomial f is real stable if it is hyperbolic and (R )" C C(f,e)

Theorem (Choe, Oxley, Sokal, Wagner (2004))

If f is multiaffine and real stable then the monomials in the
support of f form the bases of a matroid.

For any representable matroid there is a multiaffine real stable
polynomial whose support is the collection of its bases.

Example: f = x1x0 +x1x3 +x0x3 — {{1,2},{1,3},{2,3}}
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Interlacing Derivatives

If all roots of p(t) are real, then the roots of /
p'(t) are real and interlace the roots of p(t).
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Interlacing Derivatives

If all roots of p(t) are real, then the roots of /
p'(t) are real and interlace the roots of p(t).

For any direction a € C(f, e) the polynomial

of 0
Da(f) = : a,'ani = <atf(ta+X))

t=0

is hyperbolic and interlaces f.

—~
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Interlacing Derivatives

If all roots of p(t) are real, then the roots of
p'(t) are real and interlace the roots of p(t

For any direction a € C(f, e) the polynomial

D,(f) = gf _ <f ta-l—x)

is hyperbolic and interlaces f. (Not true for a ¢ C(f,e)

o
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The Convex Cone of Interlacers

Int(f,e) ={g € R[x1,...,xn]d—1 : g(€) >0 and g interlaces f}

\_/
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The Convex Cone of Interlacers

Int(f,e) ={g € R[x1,...,xn]d—1 : g(€) >0 and g interlaces f}

\_/

Theorem
If f is square free and hyperbolic w.r.t. e € R", then

Int(f,e)={g : Def -g—1f-Deg >0 on R"}.
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The Convex Cone of Interlacers

Int(f,e) ={g € R[x1,...,xn]d—1 : g(€) >0 and g interlaces f}

\_/

Theorem
If f is square free and hyperbolic w.r.t. e € R", then

Int(f,e)={g : Def -g—1f-Deg >0 on R"}.

This is a convex cone in R[xq, ..., Xpld—1.
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Special Interlacers g = D,f

Theorem
If f € R[xy,...,xn]q is square-free and hyperbolic w.r.t e € R",

C(f,e)={acR" : D.f-D,f —f-DeD,f >0 on R"}.

~

Q

/
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Special Interlacers g = D,f

Theorem

If f € R[xy,...,xn]q is square-free and hyperbolic w.r.t e € R",

C(f,e)={acR" : D.f-D,f —f-DeD,f >0 on R"}.

~

/\ This writes the hyperbolicity cone
C(f,e) as a slice of the cone of
\ ‘/ nonnegative polynomials.
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)

Def - Daf — f - DeD,f

= (24a)(2a1x — 204 2a5x) — (o — 2j41 ng)(zal)
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)

Deof - Dof — - DeD,f
= (2a)2axa — X541 23%) — (6 — X1 x7)(2a1)
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)
Deof - Dof — - DeD,f
= (2X1)(231X1 — Zj#l Qajxj) — (X12 — Zj;él xJ.Q)(Qal)

aa —a —an
—a» dl 0

= C((f,e) = caeR” =0
—a, O ai
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)
Deof - Dof — - DeD,f
= (2X1)(231X1 — Zj#l Qajxj) — (X12 — Zj;él xJ.Q)(Qal)

aa —a —an
—a» dl 0

= C((f,e) = caeR” =0
—a, O ai

(determinant = a]~%f(a))
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Sums of Squares Relaxation

Corollary
{a €R" : Df-Dyf —f-DeD,f is a sum of squares } C C(f,e).
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Sums of Squares Relaxation

Corollary
{a €R" : Df-Dyf —f-DeD,f is a sum of squares } C C(f,e).

the projection of a spectrahedron!
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Sums of Squares Relaxation

Corollary
{a €R" : Df-Dyf —f-DeD,f is a sum of squares } C C(f,e).

the projection of a spectrahedron!

Theorem
If some power of f has a determinantal representation
fr =det(>; x;M;) where My, ..., M, are real symmetric matrices

and Zi e;M; = 0, then this relaxation is exact.
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Sums of Squares Relaxation

Corollary
{a €R" : Df-Dyf —f-DeD,f is a sum of squares } C C(f,e).

the projection of a spectrahedron!

Theorem
If some power of f has a determinantal representation
fr =det(>; x;M;) where My, ..., M, are real symmetric matrices

and Zi e;M; = 0, then this relaxation is exact.

Question: Is this relaxation always exact?
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Sums of Squares Relaxation

Corollary
{a €R" : Df-Dyf —f-DeD,f is a sum of squares } C C(f,e).

the projection of a spectrahedron!

Theorem
If some power of f has a determinantal representation
fr =det(>; x;M;) where My, ..., M, are real symmetric matrices

and Zi e;M; = 0, then this relaxation is exact.

Question: Is this relaxation always exact?

Answer: No.
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A Counterexample: The Vamos Matroid

f(Xl,...,Xg): Z HX,', 1 4
/C([i])\c i€l A
7

C= {{17 27374}7 {17 2, 576}7 {17 2,7, 8}7 {3747 5, 6}7 {3747 7, 8}}
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A Counterexample: The Vamos Matroid

f(x1,...,xg) = Z HX,', 1 4

/C([i])\c i€l A
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Wagner, Wei (2009): f is hyperbolic w.r.t. (R4)" (i.e. real stable)
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7
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Wagner, Wei (2009): f is hyperbolic w.r.t. (R4)" (i.e. real stable)

Brandén (2011): No power of f has a definite
determinantal representation.
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A Counterexample: The Vamos Matroid

f(Xl,...,Xg): Z HX,', 1 4
/C([i])\c i€l A
7

C= {{17 27374}7 {17 2, 576}7 {17 2,7, 8}7 {3747 5, 6}7 {3747 7, 8}}

Wagner, Wei (2009): f is hyperbolic w.r.t. (R4)" (i.e. real stable)

Brandén (2011): No power of f has a definite
determinantal representation.

Theorem. De,f - Degf — f - De, Dgyf is not a sum of squares.
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A Counterexample: The Vamos Matroid

f(Xl,...,Xg): Z HX,', 1 4
/C([i])\c i€l A
7

C= {{17 27374}7 {17 2, 576}7 {17 2,7, 8}7 {3747 5, 6}7 {3747 7, 8}}

Wagner, Wei (2009): f is hyperbolic w.r.t. (R4)" (i.e. real stable)

Brandén (2011): No power of f has a definite
determinantal representation.

Theorem. De,f - Degf — f - De, Dgyf is not a sum of squares.

Corollary. Brandén's result.
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Last Thoughts
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Last Thoughts

> Interlacers are important in the
study of hyperbolic polynomials and
have a nice convex structure.

Cynthia Vinzant Hyperbolic Polynomials, Interlacers, and Sums of Squares



Last Thoughts

> Interlacers are important in the
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have a nice convex structure.

> The “Wronskian" polynomials
Def - Df — f - DeD,f
can be a strong computational tool
for studying f.
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Last Thoughts

> Interlacers are important in the
study of hyperbolic polynomials and
have a nice convex structure.

> The “Wronskian" polynomials
Def - Df — f - DeD,f
can be a strong computational tool
for studying f.

Thanks!
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