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Hyperbolic Polynomials

A homogeneous polynomial f € R[x1, ..., xa|q is hyperbolic
with respect to a point e € R" if f(e) # 0 and for every x € R”,
all roots of f(te + x) € R[t] are real.
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Hyperbolic Polynomials

A homogeneous polynomial f € R[x1, ..., xa|q is hyperbolic
with respect to a point e € R" if f(e) # 0 and for every x € R",
all roots of f(te + x) € R[t] are real.
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respect to e = (1,0,0)
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Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f,e),
is the connected component of e in R"\Vg(f).
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Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f,e),
is the connected component of e in R"\Vg(f).

Gérding (1959) showed that
» C(f,e) is convex, and

» f is hyperbolic with respect to any point a € C(f,e).

Cynthia Vinzant An SOS Relaxation for Hyperbolicity Cones



Hyperbolicity Cones

Its hyperbolicity cone, denoted C(f,e),
is the connected component of e in R"\Vg(f).

Gérding (1959) showed that
» C(f,e) is convex, and

» f is hyperbolic with respect to any point a € C(f,e).

One can use interior point methods to optimize a linear function
over an affine section of a hyperbolicity cone, Giiler (1997),
Renegar (2006). This solves a hyperbolic program.
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Two Important Examples of Hyperbolic Programming

C(f,e)
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Two Important Examples of Hyperbolic Programming

Linear Programming

C(f,e)
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Two Important Examples of Hyperbolic Programming

Linear Programming

Semidefinite Programming

X11 ... Xin
Xln .- Xnn
e (1,...,1) Id,
C(f,e) positive definite matrices
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Some convex cones are slices of other convex cones.

Theorem
Every hyperbolicity cone is a linear slice
of the cone of nonnegative polynomials.
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Some convex cones are slices of other convex cones.

Theorem
Every hyperbolicity cone is a linear slice
of the cone of nonnegative polynomials.

Iff € R[x1,...,xn|q is hyperbolic with
respect to e € R", then its hyperbolicity
cone C(f,e) is a slice of the cone of
nonnegative polynomials in R[xy, ..., xp|2d—2-
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Interlacing Derivatives

If all roots of p(t) are real, then the roots of /
p'(t) are real and interlace the roots of p(t).
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Interlacing Derivatives

If all roots of p(t) are real, then the roots of /
p'(t) are real and interlace the roots of p(t).

For any direction a € C(f, e) the polynomial

of 0
Da(f) = : a,'ani = <atf(ta+X))

t=0

is hyperbolic and interlaces f.

—~
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Interlacing Derivatives

If all roots of p(t) are real, then the roots of
p'(t) are real and interlace the roots of p(t

For any direction a € C(f, e) the polynomial

D,(f) = gf _ <f ta-l—x)

is hyperbolic and interlaces f. (Not true for a ¢ C(f,e)

o
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Interlacing and Nonnegativity

~—~

For any a € C(f,e), the product
D.f - D.f is nonnegative on Vg(f). /_\

/
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Interlacing and Nonnegativity

~—~

For any a € C(f,e), the product
D.f - D.f is nonnegative on Vg(f). /_\
In fact, Dof - Dof — f - Do D,f \ )

is nonnegative on R”.

/
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Interlacing and Nonnegativity

For any a € C(f,e), the product
D.f - D.f is nonnegative on Vg(f). /_\

In fact, Dof - Dof — f - Do D,f \ )

is nonnegative on R”.

4
Theorem

Iff € R[x1,...,xn|q is square-free and hyperbolic with respect to
the point e € R" and f(e) > 0, then the hyperbolicity cone C(f,e)
is the following linear section of nonnegative polynomials:

{a€R" : Df-Dyf —f-D.Df >0 on R}

[STERVTIVED T
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)

Def - Daf — f - DeD,f

= (24a)(2a1x — 204 2a5x) — (o — 2j41 ng)(zal)
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)

Deof - Dof — - DeD,f
= (2a)2axa — X541 23%) — (6 — X1 x7)(2a1)
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)
Deof - Dof — - DeD,f
= (2X1)(231X1 — Zj#l Qajxj) — (X12 — Zj;él xJ.Q)(Qal)

aa —a —an
—a» dl 0

= C((f,e) = caeR” =0
—a, O ai
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Example: the Lorentz cone

fx)=x2—x2—...—x2 e=(1,0,...,0)
Deof - Dof — - DeD,f
= (2X1)(231X1 — Zj#l Qajxj) — (X12 — Zj;él xJ.Q)(Qal)

aa —a —an
—a» dl 0

= C((f,e) = caeR” =0
—a, O ai

(determinant = a]~%f(a))
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Sums of Squares Relaxation

Corollary
{a € R" : Dof - Dof — - DeD,f is a sum of squares } C C(f,e).
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Sums of Squares Relaxation

Corollary
{a € R" : Dof - Dof — - DeD,f is a sum of squares } C C(f,e).

the projection of a spectrahedron!
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Sums of Squares Relaxation

Corollary
{a € R" : Dof - Dof — - DeD,f is a sum of squares } C C(f,e).

the projection of a spectrahedron!

Theorem
If f =det(>; x;M;) where My, ..., M, are real symmetric matrices
and ) ; e;M; = 0, then this relaxation is exact.
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Sums of Squares Relaxation

Corollary
{a € R" : Dof - Dof — - DeD,f is a sum of squares } C C(f,e).

the projection of a spectrahedron!

Theorem
If f =det(>; x;M;) where My, ..., M, are real symmetric matrices
and ) ; e;M; = 0, then this relaxation is exact.

Conjecture

This relaxation is always exact and
every hyperbolicity cone is the
projection of a spectrahedron.
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Sums of Squares Relaxation

Corollary
{a € R" : Dof - Dof — - DeD,f is a sum of squares } C C(f,e).

the projection of a spectrahedron!

Theorem
If f =det(>; x;M;) where My, ..., M, are real symmetric matrices
and ) ; e;M; = 0, then this relaxation is exact.

Conjecture

This relaxation is always exact and
every hyperbolicity cone is the
projection of a spectrahedron.

Thanks!
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