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Frames and intensity measurements

A frame is a collection of vectors
® = {¢1,...,¢Pn} spanning .

(a “"redundant basis")
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Frames and intensity measurements

A frame is a collection of vectors
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(a “redundant basis")

A frame defines intensity measurements of a signal x € CY:

(b, )P = dpc"dn for k=1,....n.
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Frames and intensity measurements

A frame is a collection of vectors
® = {¢1,...,0n} spanning CY.

(a “redundant basis")

A frame defines intensity measurements of a signal x € CY:
(b, )P = dpc"dn for k=1,....n.

Phase Retrieval: Recover x from its measurements |{¢y, x)|?.
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Frames and intensity measurements

A frame is a collection of vectors
® = {¢1,...,0n} spanning CY.

(a “redundant basis")

A frame defines intensity measurements of a signal x € CY:
(o, X)|° = opxx"¢x for k=1,...,n.

Phase Retrieval: Recover x from its measurements |{¢y, x)|?.

Some Questions: How do we recover the signal x?7
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Frames and intensity measurements

A frame is a collection of vectors
® = {¢1,...,0n} spanning CY.

(a “redundant basis")

A frame defines intensity measurements of a signal x € CY:
(o, X)|° = opxx"¢x for k=1,...,n.

Phase Retrieval: Recover x from its measurements |{¢y, x)|?.

Some Questions: How do we recover the signal x?7
When is recovery of signals in C¢ possible?
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Frames and intensity measurements

A frame is a collection of vectors
® = {¢1,...,0n} spanning CY.

(a “redundant basis")

A frame defines intensity measurements of a signal x € CY:
|{ Dk, x>\2 = ¢pxx"¢p for k=1,... n.

Phase Retrieval: Recover x from its measurements |{¢y, x)|?.

Some Questions: How do we recover the signal x?7

When is recovery of signals in C¢ possible?
When is recovery of signals in C9 stable?

Cynthia Vinzant An algebraic approach to phase retrieval



Frames and intensity measurements

A frame is a collection of vectors
® = {¢1,...,0n} spanning CY.

(a “redundant basis")

A frame defines intensity measurements of a signal x € CY:
|{ Dk, x>\2 = ¢pxx"¢p for k=1,... n.

Phase Retrieval: Recover x from its measurements |{¢y, x)|?.

Some Questions: How do we recover the signal x?7

When is recovery of signals in CY possible?
When is recovery of signals in C9 stable?
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Motivation and Applications

In practice the signal is some structure that is too
small (DNA, crystals) or far away (astronomical phenomena)

or obscured (medical images) to observe directly.

xray
sample source

mask = !

diffraction
pattern

(picture from Candés-Eldar-Strohmer-Voroninski 2013)
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mask %; If some measurements are
possible, then one hopes to
reconstruct this structure.
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Motivation and Applications

In practice the signal is some structure that is too
small (DNA, crystals) or far away (astronomical phenomena)

or obscured (medical images) to observe directly.

xray
sample source

mask %; If some measurements are
possible, then one hopes to
reconstruct this structure.

diffraction
pattern

Here our signal x lies in a finite-
dimensional space (C9), and its

measurements are modeled
by |[{¢k, x)|? for ¢y € CH.

(picture from Candés-Eldar-Strohmer-Voroninski 2013)
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Phase Retrieval: recovering a vector from its measurements

When do the frame measurements |{¢y, x)|*> determine x € C9?
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Phase Retrieval: recovering a vector from its measurements

When do the frame measurements |{¢y, x)|*> determine x € C9?

(Never: |(¢x, x)|? invariant under x — e?x)
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Phase Retrieval: recovering a vector from its measurements

When do the frame measurements |{¢y, x)|*> determine x € C9?

(Never: |(¢x, x)|? invariant under x — e?x)

The frame measurements define a map

Mo (C4/S1) = R by  x= (% 00)[?),

Cynthia Vinzant An algebraic approach to phase retrieval



Phase Retrieval: recovering a vector from its measurements

When do the frame measurements |{¢y, x)|*> determine x € C9?

(Never: |(¢x, x)|? invariant under x — e?x)

The frame measurements define a map
Mg (C4/ST) — R" by X (|<x, ¢k>\2)k or

[
) rank-1 Hermitian N
Mo : { d x d matrices } — R by X = (trace(X - A))y-
where X = xx*, Ax = ¢, 0%
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Phase Retrieval: recovering a vector from its measurements

When do the frame measurements |{¢y, x)|*> determine x € C9?

(Never: |(¢x, x)|? invariant under x — e?x)

The frame measurements define a map
Mg (C4/ST) — R" by X (|<x, ¢k>\2)k or
|

rank-1 Hermitian N
Mo { d x d matrices } — R" by X = (trace(X - Ax))y-

where X = xx*, Ay = ¢, ¢

Better question: When is the map Mg injective?
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Question: How many measurements?

We need n ~ 4d measurements to recover vectors in C.
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Question: How many measurements?

We need n ~ 4d measurements to recover vectors in C.

> (Balan-Casazza-Edidin, 2006):
For n > 4d — 2, M is injective for generic ® € CI*".
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Question: How many measurements?

We need n ~ 4d measurements to recover vectors in C.

> (Balan-Casazza-Edidin, 2006):
For n > 4d — 2, M is injective for generic ® € CI*".

> (Heinosaari-Mazzarella-Wolf, 2011):
For n < 4d — 2a — 3, Mg is not injective,

where oo = # of 1's in binary expansion of d — 1.

[QTERVTIVED T An algebraic approach to phase retrieval



Question: How many measurements?

We need n ~ 4d measurements to recover vectors in C.

> (Balan-Casazza-Edidin, 2006):
For n > 4d — 2, M is injective for generic ® € CI*".

> (Heinosaari-Mazzarella-Wolf, 2011):
For n < 4d — 2a — 3, Mg is not injective,

where oo = # of 1's in binary expansion of d — 1.

Conjecture (Bandeira-Cahill-Mixon-Nelson, 2013)
(a) If n < 4d — 4, then My is not injective.
(b) If n>4d — 4, then My is injective for generic ®.
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Question: How many measurements?

We need n ~ 4d measurements to recover vectors in C.

> (Balan-Casazza-Edidin, 2006):
For n > 4d — 2, M is injective for generic ® € CI*".

> (Heinosaari-Mazzarella-Wolf, 2011):
For n < 4d — 2a — 3, Mg is not injective,

where oo = # of 1's in binary expansion of d — 1.

Conjecture (Bandeira-Cahill-Mixon-Nelson, 2013)
(a) If n < 4d — 4, then My is not injective.
(b) If n>4d — 4, then My is injective for generic ®.

We prove (b) by writing injectivity as an algebraic condition.
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A nice reformulation of non-injectivity

Observation (Bandeira et al., among others):

Mg is non-injective < 3 a nonzero matrix Q € (CZ:;ZW with

rank(Q) <2 and ¢;Qpx =0 foreachl <k <n.
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A nice reformulation of non-injectivity

Observation (Bandeira et al., among others):

Mg is non-injective < 3 a nonzero matrix Q € (CZ:;ZW with

rank(Q) <2 and ¢;Qpx =0 foreachl <k <n.

Why?
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A nice reformulation of non-injectivity

Observation (Bandeira et al., among others):

Mg is non-injective < 3 a nonzero matrix Q € (CZ:;ZW with
rank(Q) <2 and ¢;Qpx =0 foreachl <k <n.
Why?

Mo(x) = Mo(y) & ¢xxdx = ¢ryy dr for 1< k<n
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A nice reformulation of non-injectivity

Observation (Bandeira et al., among others):

Mg is non-injective < 3 a nonzero matrix Q € (CZ:r‘,jn with
rank(Q) <2 and ¢, Qpx =0 foreachl <k <n.
Why?

Mo(x) =Mo(y) & @b = ¢ryy dx for 1< k<n
& o(xx* —yy* )k =0 forl1 < k<n
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A nice reformulation of non-injectivity

Observation (Bandeira et al., among others):

dxd
Herm

Mg is non-injective < 3 a nonzero matrix @ € C with
rank(Q) <2 and ¢;Qpx =0 foreachl <k <n.
Why?

Mo(x) = Moly) &  ¢pxx*di = diyy o for1<k<n
& PO —yy*)pk =0 forl<k<n
N———

rank 2
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A nice reformulation of non-injectivity

Observation (Bandeira et al., among others):

Mg is non-injective < 3 a nonzero matrix Q € (CZ:;ZW with

rank(Q) <2 and ¢;Qpx =0 foreachl <k <n.
Why?

Mo(x) = Moly) &  ¢pxx*di = diyy o for1<k<n
& PO —yy*)pk =0 forl<k<n
N———

rank 2

More algebraic question: When does (spang{¢;8%,...,d,051)*+

dxd 9

intersect the rank-2 locus of (CHerm'
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Getting (Real) Algebraic

Consider the incidence set

{(q>, Q) € P(CT*") x B(C9X9 ) : rank(Q) < 2 and &% Q¢x = 0 Vk}.

Herm
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Getting (Real) Algebraic

Consider the incidence set

{(q>, Q) € P(CT*") x B(C9X9 ) : rank(Q) < 2 and &% Q¢x = 0 Vk}.

Herm

® e Cdxn —  U+iV where U,V € R¥*"
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Getting (Real) Algebraic

Consider the incidence set

{(q>, Q) € P(CT*") x B(C9X9 ) : rank(Q) < 2 and &% Q¢x = 0 Vk}.

Herm

® e Cdxn —  U+iV where U,V € R¥*"
Q e Cdxd — X +41iY where X € R9%d y ¢ RIxd

Herm sym ! skew
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Getting (Real) Algebraic

Consider the incidence set

Herm

{(q>, Q) € P(CT*") x B(C9X9 ) : rank(Q) < 2 and &% Q¢x = 0 Vk}.

® e Cdxn —  U+iV where U,V € R¥*"
Q e Cdxd — X +41iY where X € R9%d y ¢ RIxd

Herm sym ! skew

real projective variety
in P((Rdxn)Z) X P(Rdxd x Rdxd)

sym skew

incidence set —
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Getting (Real) Algebraic

Consider the incidence set

{(®,Q) € PIC™") x P(CEz) © rank(Q) <2 and 6, Qe = 0 Vk}.

® c Cdxn —  U+1iV where U,V € RIxn
Qe cixd — X +1iY where X € RGXd, Y € R%XY

cidence set  —s real projective variety
in P((R?*")2) x P(RExd x RYLY)
Consequence: The bad frames, {® : Mg is non-injective},

are the projection of a real (projective) variety.

(= a closed semialgebraic subset of P((R¥*")?))
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Getting (Complex) Algebraic

Let By, be the set of (U, V, Q) in P(CI*" x CI*n) x P(CI*9),
where U = (u1,...,up) and V = (v1,...,v,), satisfying

rank(Q) <2 and (ux —ivk)" Q(ux +ivk) =0 forall 1<k < n.
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Getting (Complex) Algebraic

Let By, be the set of (U, V, Q) in P(CI*" x CI*n) x P(CI*9),
where U = (u1,...,up) and V = (v1,...,v,), satisfying

rank(Q) <2 and (ux —ivk)" Q(ux +ivk) =0 forall 1<k < n.

Theorem (CEH-)
The projective variety By , has dimension 2dn+4d —6 — n
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Getting (Complex) Algebraic

Let By, be the set of (U, V, Q) in P(CI*" x CI*n) x P(CI*9),
where U = (u1,...,up) and V = (v1,...,v,), satisfying

rank(Q) <2 and (ux —ivk)" Q(ux +ivk) =0 forall 1<k < n.

Theorem (CEH-)
The projective variety By , has dimension 2dn+4d —6 — n

= 2dn —1 + 4d —4 -1 — n.
dim( P((C@*m)2) ) dim( {rk-2 in P(CI*9)} ) constraints

[STERVTIVEN T An algebraic approach to phase retrieval



Getting (Complex) Algebraic

Let By, be the set of (U, V, Q) in P(CI*" x CI*n) x P(CI*9),
where U = (u1,...,up) and V = (v1,...,v,), satisfying

rank(Q) <2 and (ux —ivk)" Q(ux +ivk) =0 forall 1<k < n.

Theorem (CEH-)
The projective variety By , has dimension 2dn+4d —6 — n

= 2dn —1 + 4d —4 -1 — n.
dim( P((C@*m)2) ) dim( {rk-2 in P(CI*9)} ) constraints

Sketch of proof:  The preimage 772_1((?) of any matrix @ is the
product of n quadratic hypersurfaces.
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The set of bad frames is small.

Theorem (CEH-)
The projective variety By , has dimension 2dn +4d — 6 — n.
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The set of bad frames is small.

Theorem (CEH-)
The projective variety By , has dimension 2dn +4d — 6 — n.

As a consequence, for n > 4d — 4,

dim(m1(Ba,n))< 2dn—2 and  codim(my(Ba,n))> 1.
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The set of bad frames is small.

Theorem (CEH-)
The projective variety By , has dimension 2dn +4d — 6 — n.

As a consequence, for n > 4d — 4,
dim(m1(Ba,n))< 2dn—2 and  codim(my(Ba,n))> 1.

=
{® : Mg is non-injective} C m1(Bg,,) C a hypersurface in (Cdxm)2
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The set of bad frames is small.

Theorem (CEH-)
The projective variety By , has dimension 2dn +4d — 6 — n.

As a consequence, for n > 4d — 4,
dim(m1(Ba,n))< 2dn—2 and  codim(my(Ba,n))> 1.

=
{® : Mg is non-injective} C m1(Bg,,) C a hypersurface in (Cdxm)2

Corollary

Forn > 4d — 4, My is injective for generic € Cdxn o~ (RdX")?
There is a Zariski-open set of frames ® for which Mg is injective.
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Example: d =2, n=4d -4=4

A 2 x 2 Hertmitian matrix @ defines the real quadratic polynomial

. . X11 X2 +iy12) (a+ic
q(a,b,c,d) = (a—ic b—id) (Xlz—i}/12 o >(b+id)
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Example: d =2, n=4d -4=4

A 2 x 2 Hertmitian matrix @ defines the real quadratic polynomial

. . X11 X2 +iy12) (a+ic
q(a,b,c,d) = (a—ic b—id) (Xlz—i}/12 o >(b+id)

= X11(32 + C2) + X22(b2 + d2) + 2x12(ab + Cd) + 2y12(bC — ad)
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Example: d =2, n=4d -4=4

A 2 x 2 Hertmitian matrix @ defines the real quadratic polynomial

. . X11 X2 +iy12) (a+ic
b,c,d)= (a— b—id . .
a(a.b.cd) = (2~ ic : )(Xl2 — iy X22 >(b+1d)
= X11(32 + C2) + X22(b2 + d2) + 2x12(ab + Cd) + 2y12(bC — ad)
Since any @ has rank < 2, the frame

¢ — a1 t+ic; a)+icy az3tics ag+ic
“\bytidy by+idy bs+ids by +ids

defines injective measurements Mg whenever
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Example: d =2, n=4d -4=4

A 2 x 2 Hertmitian matrix @ defines the real quadratic polynomial
o . X11 x12 +1iy12) fa+ic
q(a,b,c,d) = (a—ic b—id) (Xl2 iy o > (b N id)

= X11(32 + C2) + X22(b2 + d2) + 2x12(ab + Cd) + 2y12(bC — ad)
Since any @ has rank < 2, the frame

¢ — a1 t+ic; a)+icy az3tics ag+ic
“\bytidy by+idy bs+ids by +ids

defines injective measurements Mg whenever

a% + C12 b% + d12 aiby +cdy bic — ar1dy
a% + c22 b% + d22 aby + codr  boco — ardo
a% + C32 b% + d::? a3b3 + C3d3 b3C3 — a3d3
8121 + CE bz% —+ d} a4b4 + C4d4 b4C4 — a4d4

det # 0.
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:
For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.
= {Q : ¢} Qdx = 0} = just one point in P(C3*3)
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢5 € C3, we expect codim(span{p,¢7, ..., pgps}) = 1.
= {Q : ¢} Qdx = 0} = just one point in P(C3*3)
= expect {Q : ¢;Qepx = 0} N V(det(Q)) = 0.
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.
= {Q : ¢} Qdx = 0} = just one point in P(C3*3)
= expect {Q : ¢;Qepx = 0} N V(det(Q)) = 0. — injective
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.

= {Q : ¢} Qdx = 0} = just one point in P(C3*3)

= expect {Q : ¢;Qepx = 0} N V(det(Q)) = 0. — injective

4d — 5 = 7 measurements:
For ¢1,...,¢7 € C3, we expect codim(span{¢1¢3, ..., p;05}) = 2.
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.
= {Q : ¢} Qdx = 0} = just one point in P(C3*3)
= expect {Q : ¢;Qepx = 0} N V(det(Q)) = 0. — injective

4d — 5 = 7 measurements:
For ¢1,...,¢7 € C3, we expect codim(span{¢1¢3, ..., p;05}) = 2.

= {Q: ¢;Qdx = 0} = a line in P(C3*3)
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.
= {Q : ¢} Qdx = 0} = just one point in P(C3*3)
= expect {Q : ¢;Qepx = 0} N V(det(Q)) = 0. — injective

4d — 5 = 7 measurements:

For ¢1,...,¢7 € C3, we expect codim(span{¢163,...,¢;03}) = 2.
= {Q: ¢;Qdx = 0} = a line in P(C3*3)

= {Q: ¢; Qo = 0} N V(det(Q)) = finitely many points in P(C3*3).
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.
= {Q : ¢} Qdx = 0} = just one point in P(C3*3)
= expect {Q : ¢;Qepx = 0} N V(det(Q)) = 0. — injective

4d — 5 = 7 measurements:

For ¢1,...,¢7 € C3, we expect codim(span{¢163,...,¢;03}) = 2.
= {Q: ¢;Qdx = 0} = a line in P(C3*3)

= {Q: ¢; Qo = 0} N V(det(Q)) = finitely many points in P(C3*3).

“finitely many” = 3 = deg(det(Q))
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.
= {Q : ¢} Qdx = 0} = just one point in P(C3*3)
= expect {Q : ¢;Qepx = 0} N V(det(Q)) = 0. — injective

4d — 5 = 7 measurements:
For ¢1,...,¢7 € C3, we expect codim(span{¢1¢3, ..., p;05}) = 2.

={Q: ¢;Qdx =0} = alinein P(C3x3)
= {Q: ¢; Qo = 0} N V(det(Q)) = finitely many points in P(C3*3).

“finitely many” = 3 = deg(det(Q))
Since 3 is odd, at least one must be Hermitian.
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Example: d =3

The rank-two matrices in C3*3 form an 8-dimensional hypersurface
defined by the 3 x 3 determinant det(Q).

4d — 4 = 8 measurements:

For ¢1,...,¢s € C3, we expect codim(span{e; 95, ..., pgd5}) = 1.
= {Q : ¢} Qdx = 0} = just one point in P(C3*3)
= expect {Q : ¢;Qepx = 0} N V(det(Q)) = 0. — injective

4d — 5 = 7 measurements:
For ¢1,...,¢7 € C3, we expect codim(span{¢1¢3, ..., p;05}) = 2.

={Q: ¢;Qdx =0} = alinein P(C3x3)
= {Q: ¢; Qo = 0} N V(det(Q)) = finitely many points in P(C3*3).

“finitely many” = 3 = deg(det(Q))
Since 3 is odd, at least one must be Hermitian. — non-injective
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Fewer measurements?

Conjecture
For n < 4d — 5 and every & € C¥*" Mg is not injective.
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Fewer measurements?

Conjecture
For n < 4d —5 and every ® € CI*", My, is not injective.

Smallest open question: (d =4, n=4d —5=11)

Given vectors ¢1, ..., ¢11 € C*, does there always exist a
Hermitian rank-two matrix @ € Cf_,if’m for which ¢; Q¢ = 07
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Fewer measurements?

Conjecture
For n < 4d — 5 and every & € C¥*" Mg is not injective.

Smallest open question: (d =4, n=4d —5=11)

Given vectors ¢1, ..., ¢11 € C*, does there always exist a
Hermitian rank-two matrix @ € Cf_,if’m for which ¢; Q¢ = 07

dim({rk-2 in C***}) =12 and deg({rk-2 in C***}) = 20.
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Fewer measurements?

Conjecture
For n < 4d —5 and every ® € CI*", My, is not injective.

Smallest open question: (d =4, n=4d —5=11)

Given vectors ¢1, ..., ¢11 € C*, does there always exist a
Hermitian rank-two matrix @ € Cf_,if’m for which ¢; Q¢ = 07

dim({rk-2 in C***}) =12 and deg({rk-2 in C***}) = 20.

We expect 20 rank-two matrices @ € P(C9*9) with ¢} Q¢x = 0.
Must there be a Hermitian one?
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Frame theory and phase retrieval bring together
many areas of mathematics and produce interesting
algebraic questions.

Tools from algebraic geometry can be used to tackle
problems that look very non-algebraic.
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