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What is convex algebraic geometry?

Convex algebraic geometry is the study of convex semialgebraic
objects, especially those arising in optimization and statistics.

Many convex concepts have algebraic analogues.

convex duality ↔ algebraic duality
convex combinations ↔ secant varieties

boundary of a projection ↔ branch locus

Algebraic techniques can help answer questions about these convex
sets. Convexity provides additions tools and challenges.
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Motivational Example: The elliptope

The 3-elliptope is



(x , y , z) ∈ R3 :




1 x y
x 1 z
y z 1


 � 0





I convex, semialgebraic
(defined by polynomial ≤’s)

I a spectrahedron (feasible set
of a semidefinite program)

appears in . . .

I statistics as set of correlation matrices

I combinatorial optimization
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The elliptope: convex algebraic istructure

Convex structure

I ∞-many zero-dim’l faces

I 6 one-dim’l faces

I 4 vertices

t

Algebraic structure
Bounded by a cubic hypersurface,

{(x , y , z) ∈ R3 : f = 2xyz − x2 − y2 − z2 + 1 = 0}

that has 4 nodes and contains 6 lines.
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Low-rank matrices

The elliptope exhibits general behavior for its size and dimension.

For general A0,A1,A2,A3 ∈ R3×3
sym the set of matrices

{A0 + xA1 + yA2 + zA3 : (x , y , z) ∈ R3 or C3}

contains 4 rank-one matrices over C and 0,2, or 4 over R.

Why? The set of matrices of rank ≤ 1 is variety of codimension 3 and
degree 4 in R3×3

sym
∼= R6.

If A0 � 0, there will always be 2 or 4 matrices of rank-one over R.
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Algebraic and convex duality

We can use duality in algebraic geometry to calculate hypersurface
bounding the dual of a convex body.

Multivariate Gaussians, Semidefinite Matrix Completion, and Convex Algebraic Geometry 23

as underlying graph, where all vertices and all edges have the same color:

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 λ2 0 0 · · · λ2

λ2 λ1 λ2 0 · · · 0
0 λ2 λ1 λ2 · · · 0
...

...
. . .

. . .
. . . 0

0 0 0 λ2 λ1 λ2

λ2 0 0 0 λ2 λ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

In contrast to the approach in the proof of Lemma 4.7, in this representation we only need to solve a
system of two polynomial equations in two unknowns, regardless of the cycle size m. The equations are

(K−1)11 = 1 and (K−1)12 = x.

By clearing denominators we obtain two polynomial equations in the unknowns λ1 and λ2. We need to
express these in terms of the parameter x, but there are many extraneous solutions. The ML degree is
algebraic degree of the special solution (λ̂1(x), λ̂2(x)) which makes (34) positive definite.

Fig. 4 The cross section of the cone of sufficient statistics in Example 5.3 is the red convex body shown in the left figure.
It is dual to Cayley’s cubic surface, which is shown in yellow in the right figure and also in Fig. 1 on the left.

Example 5.3. Let G be the colored triangle with the same color for all three vertices and three distinct
colors for the edges. This is an RCOP model with m = 3 and d = 4. The corresponding subspace L of S3

consists of all concentration matrices

K =

⎛
⎝

λ4 λ1 λ2

λ1 λ4 λ3

λ2 λ3 λ4

⎞
⎠ .

The dual of the elliptope is bounded by the union of a quartic
surface and four planes. Writing down the solution of a random
linear optimization problem over the elliptope requires solving a
degree four polynomial.
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Moments and Sums of Squares

The cone of nonnegative polynomials

NNn,2d = {p ∈ R[x1, . . . , xn]≤2d : p(x) ≥ 0 for all Rn}

is convex, semialgebraic, and contains the cone of sums of squares

SOSn,2d = {h21 + . . .+ h2r : hj ∈ R[x1, . . . , xn]≤d}.

The dual cone to NNn,2d is the cone of moments of degree ≤ 2d :

NN◦
n,2d = conv{λ(1, x1, . . . , xn, x

2
1 , x1x2, . . . , x

2d
n ) : λ ∈ R, x ∈ Rn}.

Duality reverses inclusion, so NN◦
n,2d ⊆ SOS◦n,2d .

Moreover SOS◦n,2d is a spectrahedron!
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Sums of squares and the Goemans-Williamson relaxation

MAXCUT: Given weights we ∈ R to the edges of a graph G = (V ,E ),
find a cut V → {±1} maximizing the summed weight of mixed edges.

max
∑

wij(1− xixj) s.t. x21 = x22 = x23 = 1

= max
∑

wij(1− yij) s.t. y belongs to

w12

w23w13

C = conv{(x1x2, x1x3, x2x3) : x ∈ {±1}3}

The dual convex body is

C◦= {(a12, a13, a23) :
∑

aijxixj ≤ 1 for x ∈ {±1}3}

⊆ {(a12, a13, a23) : 1−
∑

aijxixj is SOS mod 〈x2j − 1〉} = S

Then C ⊆ S◦ = Thanks!
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