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Spectrahedra

——

Let ST denote the convex cone of
positive semidefinite matrices in S”.

A spectrahedron is the intersection S
with an affine linear space L.

Cynthia Vinzant Geometry of Spectrahedra



Spectrahedra

——

Let ST denote the convex cone of
positive semidefinite matrices in S”.

A spectrahedron is the intersection S
with an affine linear space L.

Example: for m: 8" — R[x1, ..., xp]<24 given by m(A) = mJ A my
™ Hf)nSt

is the spectrahedron of sums of squares representations of f.
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Spectrahedra of a sum of squares

Forn=1, 2d = 4, and f(x):x4—i—x2+1,
1 0 a 1
fix) = (1 x x2)[0 1—-2a 0] | x

a 0 1/ \x?

This matrix is positive semidefinite < a € [-1,1/2].
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Spectrahedra of a sum of squares

Forn=1, 2d = 4, and f(x):x4—i—x2+1,
1 0 a 1
fix) = (1 x x2)[0 1—-2a 0] | x
a 0 1/ \x
This matrix is positive semidefinite < a € [-1,1/2].

At endpoints, a = —1,1/2, this matrix has rank two =

(x> =1)2 + (V3x)? and (x® +1/2)? + (V3/2)°.
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Spectrahedra

Example:
1 x y z
_ x 1 x y|. 3
L= yox 1 x|’ (x,y,z) eR
z y x 1

LNnSt
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Spectrahedra

Example:
1 x y z
_ x 1 x y|. 3
L= yox 1 x|’ (x,y,z) eR
z y x 1

LNnSt

Goal: understand the algebraic and convex geometry of L N 8%
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Positive semidefinite matrices

A real symmetric matrix A is positive semidefinite if the following
equivalent conditions hold:

> all eigenvalues of A are > 0

» all diagonal minors of A are > 0
» v Av >0 for all v € R"

> there exists B € R"™k with

k

A= BB" = ((nn)y = Y ac
i=1

where ry,...,r, C1,...,ck are the rows and columns of B
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Real algebraic geometry basics

Basic closed semialgebraic set = set of the form

{pPcR":g1(p) >0,...,8:(p) > 0}

where g1, ..., 85 € R[xq, ..., x].

Example: ST and S N L (given by diagonal minors > 0)
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Real algebraic geometry basics

Basic closed semialgebraic set = set of the form
{pPcR":g1(p) >0,...,8:(p) > 0}

where g1, ..., 85 € R[xq, ..., xp].

Example: ST and S N L (given by diagonal minors > 0)

Semialgebraic set = finite boolean combination (complements,
intersections, and unions) of basic closed semialgebraic sets

@ D

basic closed basic closed not basic closed
1-x2—y2>0 x(2-x)>0,1-y2>0 (union)
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Real algebraic geometry basics

Tarski-Seidenberg Theorem
The projection of a semialgebraic set is semialgebraic.

S={(xy:2) : (y+x)? < (z41)(x+1), (y—x)* < (z=1)(x-1), x* < 1}

S 7sz(5)

Cynthia Vinzant Geometry of Spectrahedra



Real algebraic geometry basics

Tarski-Seidenberg Theorem
The projection of a semialgebraic set is semialgebraic.

S={(xy:2) : (y+x)? < (z41)(x+1), (y—x)* < (z=1)(x-1), x* < 1}

S 7sz(5)

Te(S) ={(x,2) : —1<z<4x®-3x, x<1/2}
U{(x,z) : 4x*=3x<z<1, -1/2<x}

Computation: Cylindrical Algebraic Decomposition
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Convexity basics

A subset CC R is ...
. convex if for x,y € C, A€ [0,1], sx+ (1 —A)ye C

... a convex cone if it is convex and uC C C for u € R>g
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Convexity basics

A subset CC R is ...
. convex if for x,y € C, A€ [0,1], sx+ (1 —A)ye C

... a convex cone if it is convex and uC C C for u € R>g

The convex hull of S C R is

K k
conv(S) = {ZAiPi D Pi€S, A >0, ZA; = 1} .
i—1

i=1
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Convexity basics

A subset CC R is ...
. convex if for x,y € C, A€ [0,1], sx+ (1 —A)ye C

... a convex cone if it is convex and uC C C for u € R>g

The convex hull of S C R is

K k
conv(S) = {ZAiPi D Pi€S, A >0, ZA; = 1} .
i—1

i=1

The conical hull of S C R9 is

k
R>p - conv(S) = {Z AiPi 1 i €S, Ai 2 O}‘
i=1
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Convexity basics : extreme points/rays

An extreme point of a convex set C is a point p € C such that

p=Xx+(1-MNy for x,ye C,A€(0,1) = x=y=p.

O m ¢
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Convexity basics : extreme points/rays

An extreme point of a convex set C is a point p € C such that

p=Xx+(1-MNy for x,ye C,A€(0,1) = x=y=p.

O m ¢

Krein-Milman Theorem
A convex compact set is the convex hull of its extreme points.
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Convexity basics : extreme points/rays

An extreme point of a convex set C is a point p € C such that

p=Xx+(1-MNy for x,ye C,A€(0,1) = x=y=p.

O m ¢

Krein-Milman Theorem
A convex compact set is the convex hull of its extreme points.

An extreme ray of a convex cone C is a ray Ryr C C such that

r=Xx+py for x,ye C,\,peRy = xyeR,r
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Convexity basics : faces

Extreme points and rays are examples of faces.
We say F C C is a face of C if F is convex and

X+ (1—ANyeF for x,ye C,Ae(0,1) = x,ye€F.

Cynthia Vinzant Geometry of Spectrahedra



Convexity basics : faces

Extreme points and rays are examples of faces.
We say F C C is a face of C if F is convex and

X+ (1—ANyeF for x,ye C,Ae(0,1) = x,ye€F.

Example: F ={x€ C: (c,x) > (c,y) forally € C}
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Convexity basics : faces

Extreme points and rays are examples of faces.
We say F C C is a face of C if F is convex and

X+ (1—ANyeF for x,ye C,Ae(0,1) = x,ye€F.

Example: F ={x€ C: (c,x) > (c,y) forally € C}

Note: Faces of C N L has the form F N L where F = face of C.

Extreme points of C N L need not be extreme points of C!
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Convexity basics : faces of the PSD cone

Example: ST = conv({xx" : x € R"}) is a convex cone.

Its extreme rays are {R xx" : x € R"}.
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Convexity basics : faces of the PSD cone

Example: ST = conv({xx" : x € R"}) is a convex cone.
Its extreme rays are {R xx" : x € R"}.

Faces of S7 have dim ("}%) for r = 0,1,..., n and look like
Fv ={Ae S} : V Cker(A)}.

Ex: for V = span{e,+1,...,en},

BO r ~ r
Fy = {(O 0> : B€S+} :S+
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Convexity basics : faces of spectrahedra

Faces of ST N L have the form Fy = {Ac ST NL : V C ker(A)}.

Example:
1—x y 0 0
1+x 0 0
L=< Alx,y,z)= g 0 1-2 o0 t(x,y,z) R
0 0 0 142z

StntL
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Convexity basics : faces of spectrahedra

Faces of ST N L have the form Fy = {Ac ST NL : V C ker(A)}.

Example:
1—x y 0 0
L=< A(x,y,z)= )(; 1—5)( 132 g S(x,y,z) €R?
0 0 0 14z
% Fv
spangp{es} — 2—dim’l face z =1
spang{e1} — edge x =1,y =0

spang{e1,e3} — point (x,y,z) =(1,0,1)

StntL
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Dual cones

For a convex convex cone C C RY,
the dual cone is

C*={ceR: (c,x) >0 forall x e C}.

For closed cones, (C*)* = C.
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Dual cones

For a convex convex cone C C RY,
the dual cone is

C*={ceR: (c,x) >0 forall x e C}.

For closed cones, (C*)* = C.

Visualizing with ¢; = x3 = 1:

~/
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Dual cones: visualization challenge

For a convex convex cone C C R,

the dual cone is

C*={ceR:(c,x) >0 forall xe C}.
Visualizing with ¢; = x3 = 1:
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Dual cones: projection and slicing

Consider (orthogonal) projection 7, : RY — L.

For a convex cone C C RY, what linear inequalities define 7, (C)?

| -
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Dual cones: projection and slicing

Consider (orthogonal) projection 7, : RY — L.

For a convex cone C C RY, what linear inequalities define 7, (C)?

| -

Ans: {¢ € C*: (is constant on preimages of 7 } = C*N L

Projection and slicing are dual operations.
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Dual cones: projection and slicing

For (orthogonal) projection 7, : RY — L.

(r(C)) = C*'NL  and (CNL) = 7, (CY)

Projection and slicing are dual operations.
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Dual cones: PSD cone

The cone of PSD matrices ST = conv({xx” : x € R"}).

S7 is self-dual under the inner product (A, B) = trace(A- B) :

(A,B) >0 forall BEST < (A bb") >0 forall becR"

o bTAb >0 forall be R”
& AcS!
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Dual cones: PSD cone

The cone of PSD matrices ST = conv({xx” : x € R"}).

S7 is self-dual under the inner product (A, B) = trace(A- B) :

(A,B) >0 forall BEST < (A bb") >0 forall becR"

o bTAb >0 forall be R”
& AcS!

Then for any subspace L C 8",

(r(ST)* = 8"NL  and  (STNL) = 7(ST)
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Dual cones: PSD cone

The cone of PSD matrices ST = conv({xx” : x € R"}).

S7 is self-dual under the inner product (A, B) = trace(A- B) :

(A,B) >0 forall BEST < (A bb") >0 forall becR"

o bTAb >0 forall be R”
& AcS!

Then for any subspace L C 8",
(me(ST))" = SYnL  and  (S!NL)" = 7 (ST)

Cor: {spectrahedral shadows} are closed under projection, duality
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Dual cones: sums of squares

For any subspace L C S,

(r(ST)* = 8"NL  and  (STNL) = m(ST)

Recall that £, <o¢ = 7 (SY) where 7. (A) = mg(x)T A mg(x)
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Dual cones: sums of squares

For any subspace L C S,

(r(ST)* = 8"NL  and  (STNL) = m(ST)

Recall that £, <o¢ = 7 (SY) where 7. (A) = mg(x)T A mg(x)

Cor: ©¥ .,y =SV N L is a spectrahedron!
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Dual cones: sums of squares

For any subspace L C S,

(r(ST)* = 8"NL  and  (STNL) = m(ST)

Recall that £, <o¢ = 7 (SY) where 7. (A) = mg(x)T A mg(x)
Cor: zﬁ,gd = SJ’Y N L is a spectrahedron!

When ¥, <04 = Pp <24, this gives that
P:,§2d = conv(mpgy(x) : x € R"}

is a spectrahedron.
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Duality and SOS

C =conv{\(1,t,2t> —1,4t3 — 3¢t) : t € [-1,1], A > O}

C* ={(a,b,c,d) : at+bt+c(2t>~1)+d(4t>~3t) > 0 for t € [-1,1]}

C c*
spectrahedron spec. shadow
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Spectrahedral shadows: an interlude

Caution:
The projection of spectrahedron may not be a spectrahedron!

not basic closed
= not a spectrahedron
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Spectrahedral shadows: an interlude

Caution:
The projection of spectrahedron may not be a spectrahedron!

not basic closed
= not a spectrahedron

Caution:
The dual of spectrahedron may not be a spectrahedron!

C*

still not a spectrahedron
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Spectrahedral shadows: an interlude

A spectrahedral shadow is the image of a spectrahedron under linear
projection. These are convex semialgebraic sets.

Unlike spectrahedra, the class of spectrahedral shadows is closed under
projection, duality, convex hull of unions, ...

Cynthia Vinzant Geometry of Spectrahedra



Spectrahedral shadows: an interlude

A spectrahedral shadow is the image of a spectrahedron under linear
projection. These are convex semialgebraic sets.

Unlike spectrahedra, the class of spectrahedral shadows is closed under
projection, duality, convex hull of unions, ...

Helton-Nie Conjecture (2009):
Every convex semialgebraic set is a spectrahedral shadow.
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Spectrahedral shadows: an interlude

A spectrahedral shadow is the image of a spectrahedron under linear
projection. These are convex semialgebraic sets.

Unlike spectrahedra, the class of spectrahedral shadows is closed under
projection, duality, convex hull of unions, ...

Helton-Nie Conjecture (2009):
Every convex semialgebraic set is a spectrahedral shadow.

Counterexample by Scheiderer in 2016: P3 <.

Open: What is the smallest dimension of a counterexample?
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Back to spectrahedra L N SY

Parametrize L by A(x) = Ag + x1A1 + ..., xgAqg.
Then LNST = {x € RY: A(x) = 0}.

ol

polytope cylinder
4(x) 0 1-x vy 0
. y 1+ x 0
K 0 0 1—z
0 f12(x) 0 0 0
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Example: Elliptopes

The n x n elliptope is
En = {A € PSD, : A;; = 1 for all I}

= {n x n correlation matrices} in stats

En has 2771 matrices of rank-one: {xx : x € {-1,1}"},
corresponding to cuts in the complete graph K.
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Example: Elliptopes

The n x n elliptope is
En = {A € PSD, : A;; = 1 for all I}

= {n x n correlation matrices} in stats

En has 2771 matrices of rank-one: {xx : x € {-1,1}"},
corresponding to cuts in the complete graph K.

(1 = xix;)
MAXCUT = - 1= xix)
mas 2w = e D Wi
i€S,jese 1I,J
(1—Aj) (1-Ay)
- Aesmrﬁ()i\) 1 z} Wit - Teasx Z W”

Goemans-Williamson use this to give ~ .87 optimal cuts of graphs.
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Example: Univariate Moments

C = conv{(t,t2,...,t29) : t € R} is a spectrahedron in R?9

C = {X € de M >‘ O} where M( ) (Xi+j—2)1§i,j§d+1
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Example: Univariate Moments

C = conv{(t,t2,...,t29) : t € R} is a spectrahedron in R?9

C = {X € de M >‘ O} where M( ) (Xi+j—2)1§i,j§d+1

Ex. (d=1): conv{(t, 2): t € R} = {(xl,xz); <1 Xl) - o}

X1 X2
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Example: Univariate Moments

C = conv{(t,t2,...,t29) : t € R} is a spectrahedron in R?9

C = {X € de M >‘ O} where M( ) (Xi+j—2)1§i,j§d+1

Ex. (d=1): conv{(t,t?): t € R} = {(Xl,X2) : <1 Xl) - 0}
X1 X2
Minimization of univariate polynomial of degree < 2d

—Minimization of linear function over C

Cynthia Vinzant Geometry of Spectrahedra



Example: Univariate Moments

C = conv{(t,t2,...,t29) : t € R} is a spectrahedron in R?9

C = {X € de M >‘ O} where M( ) (Xi+j—2)1§i,j§d+1

Ex. (d=1): conv{(t, 2): t € R} = {(xl,xz); <1 Xl) - o}

X1 X2
Minimization of univariate polynomial of degree < 2d

—Minimization of linear function over C

Ex: conv{(t,t?,t3): t € [-1,1]}

1+x x1*xx
_ 3. 1 1 2 .
{XGR -<X1:f:X2 X2:|:X3>0}
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Extreme Points: Pataki range

C={xeRe: A(x) = 0}, dim(C)=d, A; €S".

If x is an extreme point of C and r is the rank of A(x) then

r+1 n+1
d <
Furthermore if Ag, ..., Aq are generic, then d > (”7?1).

The interval of r € Z_ satisfying both <'s is the Pataki range.
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Pataki range: examples

Example: d =3,n=3
Pataki range: r =1,2

< X =
N = X
= N <
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Pataki range: examples

Example: d =3,n=3
Pataki range: r =1,2

Example: d =3,n=4
Pataki range: r=2,3
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Pataki range: examples

Example: d =3,n=3
Pataki range: r =1,2

< X =
N = X
= N <

Example: d =3,n=4
Pataki range: r=2,3

1 x y z
Example: d =3,n=4 x 1 x vy
Pataki range: r =2,3 y x 1 x
z y x 1

Cynthia Vinzant Geometry of Spectrahedra



Low-rank matrices on the elliptope

Example: d =3,n=3 Patakirange: r=1,2
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Low-rank matrices on the elliptope

Example: d =3,n=3 Patakirange: r=1,2

Counting rank-1 matrices:

{X :rank(X) < 1} is variety of codim 3 and degree 4 in S3.
= 0,1,2,3,4 or co rank-1 matrices in C (generically 0,2, or 4)
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Low-rank matrices on the elliptope

Example: d =3,n=3 Patakirange: r=1,2

Counting rank-1 matrices:

{X :rank(X) < 1} is variety of codim 3 and degree 4 in S3.
= 0,1,2,3,4 or co rank-1 matrices in C (generically 0,2, or 4)

There must be > 1 rank-1 matrix. Why? Topology!

If OC has no rank-1 matrices, then the map S? = 9C — P?(R) given by
x — ker(A(x)) is an embedding. =<«

(For more see Friedland, Robbin, Sylvester,1984)
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Another connection with topology
N V
Suppose Ag = I and let f(x) = det(A(x)). 4

= f is hyperbolic, i.e.
for every x € R”, f(tx) € R[t] is real-rooted. i
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Another connection with topology

SV
Suppose Ag = I and let f(x) = det(A(x)). é

= f is hyperbolic, i.e.
for every x € R”, f(tx) € R[t] is real-rooted. i

If Vr(f) is smooth, this implies that that
Vir(f) C P! consists of |d/2] nested spheres.
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Another connection with topology

SV
Suppose Ag = I and let f(x) = det(A(x)). é

= f is hyperbolic, i.e.
for every x € R”, f(tx) € R[t] is real-rooted. i

If Vr(f) is smooth, this implies that that
Vir(f) C P! consists of |d/2] nested spheres.

Open (Generalized Lax Conjecture):
Is every hyperbolicity region a spectrahedron?
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Some combinatorial questions on spectrahedra

What is the “f-vector” of a spectrahedron?
Extreme points and faces come with a lot of discrete data ...

dimension, matrix rank, dimension of normal cone, degree,
# number of connected components, Betti #s, ...

Very open: What values are possible?
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Some combinatorial questions on spectrahedra

What is the “f-vector” of a spectrahedron?
Extreme points and faces come with a lot of discrete data ...

dimension, matrix rank, dimension of normal cone, degree,
# number of connected components, Betti #s, ...

Very open: What values are possible?

Thanks!
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